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Abstract— In this paper we prove some Lyapunov stability
results for Quantum systems. The evolution of open quantum
systems can be described using a one parameter semigroup
of completely positive operators with which we can associate
a minimal quantum Markov dilation. Analogous to Lyapunov
stability theorems of classical Markov processes, we develop
Lyapunov stability theorems for minimal Markov dilations of
quantum systems. This theory depends on a quantum version
of Dynkin’s formula.

Index Terms— Lyapunov stability, Quantum Control, Quan-
tum Markov Processes.

I. INTRODUCTION

Lyapunov stability theory has been used extensively in
the design of controllers for classical nonlinear systems. In
this paper, we prove some Lyapunov type stability results
for quantum systems whose evolution can be described
using quantum Markov processes. One can describe an
open quantum system using a quantum stochastic differential
equation (QSDE). Hudson and Parthasarathy [1] prove that
the solution of a QSDE leads to a one parameter semi-
group of completely positive operators that can be used
to describe the system evolution. Given such a semigroup
one can associate a minimal Markov dilation for the group
(see Section III). We develop Lyapunov stability theory for
quantum systems whose evolution is described using a one
parameter semigroup of completely positive operators.

This paper is organised as follows: In the next section, we
review classical Markov processes and Lyapunov stability of
classical systems. We state two simple Lyapunov stability
results that we wish to generalise to the quantum case.
In Section III we review quantum Markov processes and
state a quantum version of Dynkin’s formula. Finally, in
Section IV we prove a quantum Lyapunov stability result.
We also discuss a simple example.

II. CLASSICAL MARKOV PROCESS AND LYAPUNOV
STABILITY

We recall some Lyapunov stability results of classical
stochastic systems [2].

A. Classical Markov Processes

Suppose (xt, ζ,Mt,Px) is a Markov process in the sense
of Dynkin [3]. Here, xt : Ω→ X is defined on some sample
space Ω and X is a metric space, ζ is an R+ valued random
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variable defined on Ω, Mt is a σ-algebra on the space Ωt =
{ω : ζ(ω) > t} and Px is a probability measure on some
σ-algebra M 0 such that Mt ⊂M 0 for all t ≥ 0.

We can think of ζ as the terminal time of the process.
For a fixed ω, the function xt(ω) defines in the space X ,
the trajectory corresponding to the sample path ω. The σ-
algebra Mt can be visualised as the totality of events which
are observed in the time-interval [0, t]. Finally, Px(A) gives
the probability of event A given the initial condition x0 = x.

The probability measure Px{·} satisfies the Markov prop-
erty:

Px{xt+h ∈ Γ|Mt} = Pxt
{xh ∈ Γ} (1)

The transition function corresponding to this Markov process
is given by

P̃ (t, x,Γ) = Px{xt ∈ Γ},

where, t ≥ 0, x, xt ∈ X and Γ ∈ B = B(X), the Borel σ-
algebra of X . Now let B = B(X,B) denote the ∗-algebra
of all complex-valued, bounded and measurable functions
defined on (X,B). The transition function determines a
unique positive semigroup of unital operators Tt on the space
B as follows

(Ttf)(x) =
∫
X

P̃ (x, t, dy)f(y).

The weak infinitesimal operator, corresponding to this semi-
group of operators, is defined

Ãf = wlimh↓0
Thf − f

h
.

Here, wlimh↓0 denotes the weak limit as h decreases to
zero. Dynkin’s formula [3] plays a crucial rule in proving
several stochastic stability results and is a stochastic version
of the second fundamental theorem of calculus. Suppose
f ∈ Dom(Ã), the domain of Ã. Then, Dynkin’s formula
states

Exf(xτ )− f(x) = Ex

∫ τ

0

Ãf(xs)ds. (2)

Here, Ex is the expectation value with respect to the measure
Px. In the following, for ease of notation, we denote by xzt
the Markov process (xt, ζ,Mt,Pz). The superscript z will
be dropped if it causes no confusion. Also, if τm is any
Markov time, then the stopped process xt∧τm

is defined as

xt∧τm
=
{
xt if t ≤ τm,
xτm

otherwise.
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B. Stochastic Stability
Definition 2.1: The process xzt is said to be stable with

respect to the triple (Q,P, ε), where Q,P ⊂ X and ε > 0
if z ∈ Q implies

Pz {xzt ∈ P, ∀ t <∞} ≥ ε.
We collect some assumptions to be used in later theorems.
A1: For any constant c > 0 let Qc denote the set {x :

V (x) < c}, and suppose V : X → R+ is continuous in
the open set Qm for some m > 0.

A2: xt is a right continuous Markov process defined until
at least some time τ ′ > τm = inf{t : xt /∈ Qm} with
probability 1.

A3: Let Ãm = ÃQm
, the weak infinitesimal operator of

xt∧τm
.

A4: V (x) is in the domain of Ãm.
Let Bm = {ω : xt ∈ Qm, ∀ t <∞}. The following lemma
and theorem are from Kushner [2, ch. 2].

Lemma 2.1: Assume (A1) to (A4). Let ÃmV (x) ≤ 0.
Then, V (xt∧τm

) is a supermartingale and for λ ≤ m, and
initial condition x0 = z ∈ Qm,

Pz

{
sup
∞>t≥0

V (xt∧τm
) ≥ λ

}
≤ V (z)

λ
.

Also, there is a random variable c(ω), 0 ≤ c(ω) ≤ m, such
that with probability 1 relative to Bm, V (xt) → c(ω) as
t→∞ and Pz{Bm} ≥ 1− V (z)

m .
This lemma is a direct consequence of Dynkin’s formula and
in order to generalise Lyapunov theory to quantum Markov
processes, we need a quantum version of Dynkin’s formula.

Theorem 2.2 (Stability): Assume (A1) to (A4) for some
m > 0 and suppose ÃmV (x) ≤ 0. Let V (0) = 0 and z ∈
Qm. Then the system is stable relative to (Qr, Qm, 1− r

m ) for
any r = V (x0) = V (z) ≤ m. Also, for almost all ω ∈ Bm,
V (xt∧τm

)→ c(ω) ≤ m. If V (x) > 0 for x 6= 0 and z ∈ Qm
then the origin is stable with probability 1.

III. QUANTUM MARKOV PROCESSES

A. Reformulation of Classical Markov Processes
In order to motivate the definition of quantum Markov

processes, we reformulate the classical Markov process in
a different mathematical terminology. Consider the Markov
process1 (xt,Mt,Px). Let H be the probability space
L2(Px), the space of all square integrable functions defined
on Ω. Also, let Ht denote the subspace of H of functions
measurable with respect to Mt and let Ft be the projection
onto Ht. Then Ft is an increasing sequence of projections in
H. For any g ∈ B = B(X,B), we can define the operator
jt(g) in B(H), the set of bounded operators on H, by

(jt(g)φ)(ω) = g(xt)(Ftφ)(ω), ∀ φ ∈ H.
Then jt is a ∗-homomorphism from B to B(H). The Markov
property (1) is encapsulated in the operator relations

jt(1) = Ft

Ftjs(g)Ft = jt(Ts−tg), g ∈ B, s ≥ t.
1We assume that ζ(ω) = ∞ for almost all ω for the Markov process

(xt, ζ,Mt,Px).

Here, 1 is the identity operator. Dynkin’s formula (2) can be
written as

F0jτ (f)F0 = j0(f) + F0

∫ ∞
0

1τ>sjs(Ã(f))dsF0.

Here 1τ>s is the indicator function of the event τ > s.

B. Quantum Markov Dilations

Let At, t ≥ 0 be a unital C∗-algebra of operators in the
Hilbert space Kt, and let T (s, t) : At → As, s < t be a
stochastic operator. That is,

1) T (s, t)1 = 1.
2) T (s, t) is completely positive: i.e., for all n = 1, 2, . . .

and all X1, . . . , Xn ∈ At, Y1, . . . , Yn ∈ As, we have∑
1≤i,j≤n

Y ∗i T (s, t)(X∗i Xj)Yj ≥ 0.

3) If Yn ∈ At for n = 1, 2, . . . and Yn → Y ∈ At weakly,
then T (s, t)(Yn)→ T (s, t)Y weakly in As.

Also suppose that the Chapman-Kolgomorov equation holds:

T (r, s)T (s, t) = T (r, t) ∀ r < s < t.

Let T (t, t) be the identity operator on At.
Bhat and Parthasarathy [4,5] prove the following theorem

(see e.g. [6, Prop 9.8] and the appendix).
Theorem 3.1: Suppose {At} is a family of unital C∗-

algebras of operators on Hilbert space Kt, t ≥ 0 and let
{T (s, t) : At → As, s < t} be a family of stochastic op-
erators obeying the Chapman-Kolgomorov conditions. Then
there exists a triple (H, Ft, jt) such that

1) H is a Hilbert space and Ft is a projection in H
satisfying Ft ↑ 1 as t ↑ ∞.

2) jt : At → B(H) is a ∗-homomorphism and jt(1) =
Ft.

3) Fsjt(X)Fs = js(T (s, t)(X)) for s < t, X ∈ At.
4) {jt1(X1) . . . jtn(Xn)u, t1 > . . . > tn, Xti ∈ Ati , u ∈
K0} is total in H.

5) The subspace Ht, the range of Ft is spanned by the
set {jt1(X1) . . . jtn(Xn)u, t ≥ t1 > . . . > tn, Xti ∈
Ati , u ∈ K0}.

6) The triple (H, Ft, jt) is unique up to an isometric
transformation.

Definition 3.1: The triple (H, Ft, jt) is called the mini-
mal Markov dilation for the family {T (s, t)} of stochastic
operators.
In the above theorem, Statement 3) is the quantum version
of the classical Markov property (1).

C. Markov stop times and the Strong Markov property

In this subsection, we consider a one parameter semigroup
of stochastic operators (i.e. T (s, t) = T (t− s)). Let Kt = K
be a Hilbert space and let At = A ⊂ B(K) be a unital
C∗-algebra. Let {Tt : At+t0 → At0 , t > 0, t0 ≥ 0} be
a one parameter semigroup of stochastic operators. Suppose
(H, Ft, jt) is a Markov dilation associated with the stochastic
operator Tt.
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Definition 3.2: [6, p. 111] A stoptime (or Markov time)
τ for the flow (H, Ft, jt) is a spectral measure on [0,∞]
with values in orthogonal projections on H satisfying the
condition

[τ([0, s]), jt(X)] = 0, ∀ s ≤ t and X ∈ A .

Here [·, ·] denotes the commutator of two operators.
The projection τ([0, t]) is to be interpreted as the event of,
stopping the Markov process, has occurred at or before time
t. We denote by 1E the event τ(E) for all Borel subsets
E of [0,∞]. For any two stoptimes τ1, τ2 that commute (i.e.
[τ1([0, a]), τ2([0, b])] = 0) we can define the minimum τ1∧τ2
and maximum τ1 ∨ τ2 stoptimes, of τ1 and τ2 as

1τ1∧τ2≤t = 1τ1≤t + 1τ2≤t − 1τ1≤t1τ2≤t,

1τ1∨τ2≤t = 1τ1≤t1τ2≤t.

Also, if t ≥ 0, then denote the ‘deterministic’ stoptime τ
defined as τ({t}) = 1 by t.

Now suppose τ is a simple stoptime (i.e. the support of τ
is a finite set). Then define the operators

jτ (X) =
∑
s

τ({s})js(X), X ∈ A , (3)

Fτ = jτ (1). (4)

Here, the summation is over the support of τ . For any
stoptime τ and any set E = {t1 < t2 < . . . < tn} ⊂ (0,∞),
define the stoptime τE as

τE([0, s]) =


τ({0}) if s < t1,
τ([0, ti−1]) if ti−1 ≤ s < ti, i = 1, . . . , n
τ([0, tn]) if tn ≤ s <∞,
1 if s =∞.

(5)
Now, if τ is any stoptime then {τE : E = {t1 < t2 <

. . . < tn} ⊂ (0,∞)} is a monotone decreasing net of
projections in H which converges strongly to a projection [6,
Proposition 13.1, Corollary 12.4]. We define

Fτ = slimEFτE
.

Here, slim stands for the strong limit. Attal and
Parthasarathy [7] prove the following theorem, provided the
infinitesimal generator of the stochastic operator Tt satisfies
a technical condition, called condition S2 [6, p. 123].

Theorem 3.2: [6, Theorem 16.5] Let {Tt} be a strongly
continuous semigroup of stochastic operators on a C∗-
algebra A of operators on a Hilbert space K, whose infinites-
imal generator satisfies condition S. Let (H, F (t), jt), t ≥ 0
be its minimal Markov dilation and let τ be any stoptime.
Then there exists a ∗-homomorphism jτ : A → B(H)
satisfying the following conditions

1) jτ (X) = slimt→∞jτ∧t(X)τ([0,∞]) for all X ∈ A .

2If L, with domain Dom(L), is the generator of Tt, then Condition S
is satisfied if there exists a dense ∗-subalgebra A0 ⊂ Dom(L) such that

1) A0 is invariant under the action of {Tt}.
2) The map t 7→ L(X1Tt(Y )X2) is locally bounded for every

X1, X2, Y ∈ A0.

2) jτ (1) = Fττ([0,∞]).
3) Fτ jτ+t(X)Fτ = jτ (TtX) for all t > 0 and X ∈ A .

The final property in the above theorem encapsulates the
strong Markov property of the minimal Markov dilation.

D. Dynkin’s Formula

Recall that if Tt is a family of stochastic operators on a
C∗ algebra of operators A then the differential generator of
Tt is defined to be the operator L with domain consisting of
the set of all X ∈ A such that the limit

lim
h→0

ThX −X
h

is well-defined. The above limit is defined to be L(X).
Note that if τ is a non-negative real-valued spectral

measure on H then we can define a self-adjoint operator τ̂ =∫∞
0
sP τ (ds). Here P τ (ds) is the projection corresponding

to ds under the spectral measure τ . We can define the square
root of τ̂ as τ̂1/2 =

∫∞
0
s1/2P τ (ds).

Theorem 3.3: [7, Theorem 9.3] Suppose {Tt} is a family
of stochastic operators with differential generator L and
associated minimal Markov dilation (H, Ft, jt). Also let
τ be a finite stoptime and suppose ψ ∈ H is such that
F0ψ ∈ Dom(τ̂1/2). Then for all X ∈ Dom(L),

F0jτ (X)F0ψ = j0(X)F0ψ

+F0

∫ ∞
0

1τ>sjs(L(X))dsF0ψ. (6)

Because the space K is isomorphic to H0 and we can think
of H0 as K. Therefore, Dynkin’s formula (6) holds for all
u ∈ K with F0ψ replaced by u in the above equation.

E. Open quantum systems and Markov dilations

Open quantum systems can be described using quantum
stochastic differential equations [8]–[10]. Such a system can
be described in a compact manner using its Ito generator
matrix (see e.g. [11] for a detailed description)

G =
[
− 1

2L
†L− iH −L†S
L S− I

]
. (7)

Here, the entries in G are bounded linear operators defined
on the system Hilbert space K. If we use A to denote the
algebra of bounded operators defined on K, then L is a vector
of length n with entries in A , H ∈ A is Hermitian and S
is an n × n matrix with entries in A , satisfying S†S = I.
Here, (·)† denotes the conjugate transpose of a matrix.

Physically, G represents a quantum system with Hamil-
tonian H coupled to a multichannel quantum noise field
Â through interaction operators L and scattering matrix S.
Here, Â is the quantum noise defined on a suitable Boson
Fock space and is given by

Â =
[

t AT (t)
A∗(t) Λ(t)

]
.

A is a vector (of length n) of annihilation operators and Λ
is an n× n matrix of scattering operators.
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Hudson and Parthasarathy [1]3 proved that the evolution
of the system operators X ∈ A can be described via a one
parameter semigroup of operators whose generator can be
written as

L(X) =
1
2
L†[X,L] +

1
2

[L†, X]L− i[X,H].

Following Gough and James [11] we simply use G =
(S,L, H) to describe the system with generator matrix (7).

Finally, Gough and James [11] consider the network de-
scription of several open quantum systems that are connected
together either in parallel (concatenation) or series configu-
rations. Given two systems G1 and G2, the concatenation,
G1 �G2 and series products G1 / G2 are defined by

G1 �G2 =
((

S1 0
0 S2

)
,

(
L1

L2

)
, H1 +H2

)
G1 / G2 = (S2S1,L2 + S2L1, H1 +H2 +

1
2i

(L†2S2L1 − L†1S2L2))

The series product is well defined only if G1 and G2 have
the same number of field channels. It describes the open
quantum system formed by connecting the field output of
the first system to the field input of the second system and
can be used to model field mediated interactions.

In analyzing the stability of open quantum system we
assume that the plant is described by its generator Gp and
is controlled using a controller with generator Gc. The
controller and plant network is described using series and/or
concatenation products and is denoted by Gp ∧ Gc. We
look for controllers that stabilize the plant in the sense of
Lyapunov as described in the following section

IV. LYAPUNOV STABILITY FOR QUANTUM SYSTEMS

The main results of this paper are discussed in this section.
We define a notion of Lyapunov stability for quantum
systems and prove two stability theorems that are similar to
the classical results discussed in Section II. We first introduce
the notion of a quantum state.

A. State of a Quantum system

Consider a quantum system S whose states are described
in a Hilbert space K. Let ρ be a density matrix on H so
that 〈·〉 = trace{·ρ} denotes the expectation value of an
operator. Suppose (Ω,B) is some measure space with σ-
algebra B. Then, an Ω-valued observable X : B → P(K)
is a spectral valued measure that takes values in P(K), the set
of projections in K. We can define a probability distribution
on Ω (see [8, Theorem 9.18])

Prob{X ∈ A} = µ(A) = trace{ρX(A)}, A ∈ B. (8)

This probability distribution may be interpreted as the prob-
ability that a measurement of the observable X takes a value
in the set A4.

3Also see [8,11].
4Note that if we wish to find a probability distribution of several

observables simultaneously, then we can set Ω to be Rn. However, this
definition will only make sense if all the n observables commute.

Suppose {Tt} is a family of stochastic operators de-
fined on a C∗-algebra A ⊂ B(K) and let (H, Ft, jt) be
the associated minimal Markov dilation. Suppose X =
(X1, . . . , Xn), Xi ∈ B(K) are system observables and let
jt(X) = (jt(X1), . . . , jt(Xn)). We call (ρ, jt(X)) the state
of the system at time t.

Remark 4.1: Note that the observables Xi are a set of
relevant system observables. In the classical case, there is
a notion of minimum set of system state variables and the
system stability may be guaranteed provided this set of state
variables satisfies certain properties. However, as far as we
are aware, there is no similar notion of minimal observables
for the quantum system and this is an interesting topic for
future research.

In the remaining part of this paper, whenever we say that
the system is stable we mean that the system is stable with
respect to the selected set of relevant observables.

B. Definitions

There are two notions of Lyapunov stability that we can
consider.

Definition 4.1: Suppose Q,P ⊂ B(H)n. We say that the
system is stable with respect to (Q,P ) if j0(X) ∈ Q implies

F0jt(X)F0 ∈ P, ∀t <∞.
This definition may be interpreted as follows: if the initial
state of the system is in some set Q, then the conditional
expectation of the system state is in some set P for all
time. This definition is slightly different to the classical
Definition 2.1, wherein, the stability of the system is defined
in terms of the probability that the state of the system remains
in some set P for all time. However, the proof of Lemma 2.1
uses the following argument to bound the probability that the
state of the system remains in some set P for all time:

1) Prove that the expectation value of the state is in some
set P ′.

2) Use Chebyshev inequality:

Prob{X > λ} ≤ E{X}
λ

for any positive-valued random variable, to bound the
probability that the state of the system remains in some
set P for all time.

Therefore, though Definition 4.1 gives a bound on the
expectation value of the observables X, in the classical case
this is equivalent to giving a bound on the probability that
the state of the system remains in some set P for all time.

We may use the density matrix ρ to give a bound on the
probability that the measured values of the state are in some
set P for all time. Suppose (ρ, jt(X)) is the state of the
system and X is an Rn valued observable.

Definition 4.2: Suppose Q ⊂ B(H)n, P ∈ Rm, f :
B(H)n → B(H)m is some function of the states X of the
system and ε > 0. We say that the system is stable with
respect to5 (Q,P, ε, f) if j0(X) ∈ Q implies

Prob{F0jt(f(X))F0 ∈ P, ∀t <∞} ≥ ε
5c.f. Definition 2.1.
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Here, Prob is defined in Equation (8)
This definition may be interpreted as follows: if the initial
state of the system is in some set Q, the probability that the
measured value of the observable f(X) is in some set P is
greater than ε.

Remark 4.2: Note that for Definition 4.2 to make sense,
we need the observables f1(X), f2(X), . . . , fm(X) to com-
mute with each other. Here, fi(X), the ith component of f
is defined in the obvious way.

Example 1: Consider a quantum system with relevant
states being the angular momentum operators Li, Lj and Lk
in the three orthogonal directions in R3. The states satisfy
the commutation relations

[Li, Lj ] = i~εijkLk,

where εijk denotes the Levi-Civita symbol. For the Lyapunov
function f = [f1 f2]T , where

f1(Li, Lj , Lk) = L2
i + L2

j + L2
k = L2,

f2(Li, Lj , Lk) = L2
i .

the two components of f commute with each other.

C. Stability results

We collect the following assumptions together for future
reference.

A1 Let K be a Hilbert space and suppose Tt is a stochastic
operator on a C∗-algebra A ⊂ B(K) and (H, Ft, jt)
is the associated minimum Markov dilation.

A2 Let V : B(H)n → B(H) be of the form

X 7→
p∑
i=1

Y1Y2 . . . Yqi .

Here p and qi, i = 1, . . . , p are finite integers
and Y1, . . . , Yqi

∈ {X1, . . . , Xn, X
∗
1 , . . . X

∗
n}, i =

1, . . . , p. Suppose V (X) is non-negative (i.e. for all
ψ ∈ H,X ∈ B(H)n, 〈ψ, V (X)ψ〉 ≥ 0) and con-
tinuous in the set Qm = {X ∈ B(H)n : V (X) ≤
m1}. Let t0 = inf{t : jt(X) /∈ Qm} and suppose
τm determined by τm({t0}) = 1 is a stoptime on
(H, Ft, jt).

A3 V (X) is in the domain of L, the infinitesimal generator
of Tt for all X ∈ Qm.

The following lemma is analogous to the classical result in
Lemma 2.1.

Lemma 4.1: Suppose (A1)-(A3) are satisfied and let
jτ∧t(L(V (X)) ≤ 0. Then, V (jτ∧t(X)) is a nonnegative
supermartingale6 in the sense that F0V (jτ∧t(X))F0 ≤
V (jτ∧0(X)) and for λ ≤ m, initial density matrix ρ and
j0(X) ∈ Qm, we have

Prob{ sup
∞>t≥0

V (jτ∧0(X)) ≥ λ} ≤ ‖V (jτ∧0(X))‖
λ

(9)

6One can think of inequality F0V (jτ∧t(X))F0 ≤ V (jτ∧0(X)) as the
defining inequality of a quantum supermartingale. As far as we are aware,
no such definition is known for quantum supermartingales.

Proof: Firstly, note that for arbitrary stoptimes τ

jτ (X1X2) = jτ (X1)jτ (X2)
jτ (X1 +X2) = jτ (X1) + jτ (X2)

for all X1, X2 ∈ A . The first equation above follows from
the fact that jτ is a ∗-homomorphism (see [7, p. 21]). The
second equation follows directly from the relation jt(X) =
U∗XU , for some unitary matrix U and the definition of jτ .
Therefore, we have

V (jτ (X)) = jτ (V (X)).

From Dynkin’s formula (6) we have

F0V (jτ∧t(X))F0ψ

= F0jτ∧t(V (X))F0ψ

= j0(V (X))F0ψ

+F0

∫ ∞
0

1τ∧t>sjs(L(V (X)))dsF0ψ.

The result now follows from the negativity of
jτ∧s(L(V (X)).
Note that if V ≥ 0 then we can write V = X∗X
for some operator X . Therefore jt(V ) = jt(X∗X) =
jt(X)(jt(X))∗ ≥ 0. Therefore jt(L(V )) ≤ 0 if and only
if L(V ) ≤ 0.

The following theorem is the main result of our paper.
Theorem 4.2: Suppose (A1)-(A3) are satisfied for some

m > 0 and let jτ∧t(L(V (X)) ≤ 0. Then the system is stable
relative to (Qr, Qm) for any r ≤ m (c.f Definition 4.1).

Proof: This theorem is a direct consequence of
Lemma 4.1.
Now suppose the system is in state (ρ,X) and V is
some Lyapunov function. Then 〈V (jt(X))〉 is a real-valued
stochastic process with probability measure P on some
sample space Ω determined by the conditional expectation
E0· and density matrix ρ. We make the following two
additional assumptions
A2’ Let V and X be as defined in (A2) and let Q′m =

{X ∈ B(H)n : 〈V (X)〉 ≤ m}. Also suppose τ ′m,
defined similar to τm with Qm replaced with Q′m, is
a stoptime.

A4 Tt is strongly continuous. Therefore, the maps t 7→
jt(X)ψ and t 7→ Ftψ are continuous for all X ∈ K
and ψ ∈ H [7, Proposition 5.3].

Also let Bm = {ω ∈ Ω : jt(X) ∈ Q′m ∀t <∞}.
Corollary 2.1: Suppose (A1),(A2’) and (A3) are satisfied

for some m > 0 and let jτ∧t(L(V (X)) ≤ 0. Then the
system is stable relative to (Q′r, Q

′
m, 1− r

m , V ) for any r =
〈V (X)〉 ≤ m. Also, 〈V (jt∧τm(X))〉 is a non-negative super-
martingale and for almost all ω ∈ Bm, 〈V (jt∧τm(X))〉 →
c(ω) ≤ m where c is some random variable.

Proof: From the inequality F0V (jτ∧t(X))F0 ≤
V (jτ∧0(X)) we have

E{〈V (jτ∧t(X))〉} ≤ 〈V (jτ∧0(X))〉.

Also, because Tt is strongly continuous by (A4) we have
E{〈V (jτ∧t(X))〉} → 〈V (jτ∧0(X))〉 as t → 0. These
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two facts and the non-negativity of V implies the fact
that 〈V (jτ∧t(X))〉 is a non-negative supermartingale [3,
Theorem 12.6]. The existence of the random variable c
follows from the supermartingale convergence theorem. The
stability with respect to the triple (Q′r, Q

′
m, 1− r

m ) follows
from Equation (9).

D. Example

We consider a two level atom with two input field channels
(see example 4.4 in [12]). The generator of the plant is

Gp = (1,
√
γ1σ−,

1
2
ωσz) � (1,

√
γ2σ−, 0).

Here σx, σy and σz are the Pauli matrices (see e.g. [13])
and σ± = σx ± iσy . Consider the Lyapunov function V =
σ1 = 1

2 (I + σz) ≥ 0. With vacuum inputs, the mean excited
state energy of the two-level atom, 〈σ1〉 goes to zero due
to decoherence modeled by the vacuum noise. Gough and
James [12] suggest using a simple plant controller network

Gp ∧Gc = (1,
√
γ1σ−,

1
2
ωσz) /Gc / (1,

√
γ2σ−, 0)

with controller Gc = (−1, 0, 0) to minimize the decoher-
ence.

A simple calculation shows that the generator of V is

L(V ) = −(γ − 2
√
γ1γ2)V

Here γ = γ1 + γ2. Therefore L(V ) ≤ 0. From Theorem 4.2
we see that the system is stable with respect to (Qr, Qm, 1−
r
m , V ). That is, if the operator σ1 is less than r1 for some r
then is less than m1 for all time with probability 1− r

m . Also,
if the initial mean energy of the excited state is less than r
initially, then it is less than m for all time with probability
1− r

m .

V. CONCLUSION

In this paper we generalised Lyapunov stability theory
to quantum Markov dilations. Open quantum systems can
be described using one parameter semigroups of completely
positive operators and an associated minimal Markov dila-
tion. One can define Lyapunov functions for such Markov
process to be positive operators that depend on the system
observables. The expectation value of a Lyapunov function
can be expressed in terms of the integral of its Lindbald
generator using a quantum version of Dynkin’s formula.
The negativity of the generator ensures stability in the sense
of Definition 4.1 (c.f. [2]). Several Lyapunov type stability
results such as asymptotic stability can be generalised to
quantum systems and is a subject of future research.

APPENDIX

In this appendix, we show how one can evaluate the min-
imal Markov dilation given a family of stochastic operators
{Tt}. Let D denote the set of all ordered triples (t,X, u),
where t = {t1 > t2 > . . . , tn}, X = X1, . . . Xn, Xi ∈ Ati ,

u ∈ H0 and n = 1, 2, . . .. We can define a positive definite
kernel on D as follows [6, p. 97].

L((t,X, u), (t,Y, v)) = 〈u, T (0, tn)(X∗n . . .
. . . {T (t3, t2)(X∗2{T (t2, t1)(X∗1Y1)}Y2)} . . . Yn)v〉

For arbitrary (s,X, u) and (t,Y, v), let r = s∪t be ordered
as a decreasing sequence and let

X̃j =
{
Xk if rj = sk for some k,
1 otherwise.

Ỹj =
{
Yk if rj = tk for some k,
1 otherwise.

Now define

L((s,X, u)(t,Y, v)) = L((r, X̃, u)(r, Ỹ, v)).

Because, L is a positive definite kernel on D , by the GNS
principle7 there exists a Gelfand pair (H, λ) such that

1) H is a Hilbert space and λ : D → H.
2) 〈λ((s,X, u)), λ((t,Y, v))〉 =

L((s,X, u), (s,X, u)).
3) {λ((s,X, u)) : (s,X, u) ∈ D} spans H.
Let Ht denote the closed linear span of {λ((s,X, u)) :

(s,X, u) ∈ D and s1 ≤ t} and let Ft be the projection from
H onto its subspace Ht. Define the representation j0t : At →
B(Ht) such that

j0t (X)λ((t, s1, . . . , sn), (Y0, Y1, . . . , Yn), u) =
λ((t, s1, . . . , sn), (XY0, Y1, . . . , Yn), u)

and let jt : At → B(H) be defined as

jt(X) = j0t (X)Ft. (10)
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