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Abstract

In this paper, we establish new Lyapunov-type inequalities for a class of fractional

boundary value problems. As an application, we obtain a lower bound for the

eigenvalues of corresponding equations.
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1 Introduction

Let u be a nontrivial solution to the second order differential equation

u′′(t) + q(t)u(t) = , a < t < b (.)

with the Dirichlet boundary condition

u(a) = u(b) = , (.)

where q : [a,b]→ R is continuous. Then the so-called Lyapunov inequality []

(b – a)

∫ b

a

∣

∣q(s)
∣

∣ds >  (.)

holds, and constant  in (.) cannot be replaced by a larger number. The above inequality

has several applications to various problems related to differential equations.

There are several generalizations and extensions of Lyapunov’s result. Hartman and

Wintner [] proved that if u is a nontrivial solution to (.)-(.), then

∫ b

a

(b – s)(s – a)q+(s)ds > b – a,

where q+(s) is the positive part of q, defined as

q+(s) = max
{

q(s), 
}

.
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For other generalizations and extensions of the classical Lyapunov’s inequality, we refer to

[–] and the references therein.

Recently, some Lyapunov-type inequalities for fractional boundary value problems have

been obtained. In [], Ferreira established a Lyapunov-type inequality for a differential

equation that depends on the Riemann-Liouville fractional derivative, i.e., for the bound-

ary value problem

(

aD
αu

)

(t) + q(t)u(t) = , a < t < b,  < α ≤ ,

u(a) = u(b) = ,

where he proved that if u is a nontrivial continuous solution to the above problem, then

∫ b

a

∣

∣q(s)
∣

∣ds >
Ŵ(α)αα

[(α – )(b – a)]α–
. (.)

In [], Ferreira obtained a Lyapunov-type inequality for the Caputo fractional boundary

value problem

(

C
aD

αu
)

(t) + q(t)u(t) = , a < t < b,  < α ≤ ,

u(a) = u(b) = ,

where he established that if u is a nontrivial continuous solution to the above problem,

then

∫ b

a

∣

∣q(s)
∣

∣ds > Ŵ(α)

(



b – a

)α–

. (.)

Observe that if we set α =  in (.) or (.), one can obtain the classical Lyapunov inequal-

ity (.). In [], Jleli and Samet studied the fractional differential equation

(

C
aD

αu
)

(t) + q(t)u(t) = , a < t < b,  < α ≤ 

with mixed boundary conditions

u(a) = u′(b) =  (.)

or

u′(a) = u(b) = . (.)

For boundary conditions (.) and (.), two Lyapunov-type inequalities were established

respectively as follows:

∫ b

a

(b – s)α–
∣

∣q(s)
∣

∣ds≥
Ŵ(α)

max{α – ,  – α}(b – a)
(.)
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and

∫ b

a

(b – s)α–
∣

∣q(s)
∣

∣ds≥ Ŵ(α).

Rong and Bai [] established a Lyapunov-type inequality for the above fractional differ-

ential equation with the fractional boundary conditions

C
aD

βu(b) = u(a) = ,

where  < β ≤  and  < α ≤ β + . They established the following result: if a nontrivial

continuous solution to the above fractional boundary value problem exists, then

∫ b

a

(b – s)α–β–
∣

∣q(s)
∣

∣ds≥
(b – a)–β

max{ 
Ŵ(α)

– Ŵ(–β)
Ŵ(α–β)

, Ŵ(–β)
Ŵ(α–β)

, ( –α
α–

) Ŵ(–β)
Ŵ(α–β)

}
. (.)

Observe that if β = , then (.) reduces to the Lyapunov-type inequality (.). For other

related works, we refer to [–].

In all the above cited works, the fractional order α belongs to (.]. In this paper, we are

concerned with the problem of finding new Lyapunov-type inequalities for the fractional

boundary value problem

(

aD
αu

)

(t) + q(t)u(t) = , a < t < b,  < α ≤ , (.)

u(a) = u′(a) = u′′(a) = u′′(b) = , (.)

where aD
α is the standard Riemann-Liouville fractional derivative of fractional order α

and q : [a,b] → R is a continuous function. As an application, we obtain a lower bound

for the eigenvalues of the corresponding problem.

Let f be a real function defined on [a,b] (a < b).

Definition . The integral

(

aI
αf

)

(t) =


Ŵ(α)

∫ t

a

(t – s)α–f (s)ds, t ∈ [a,b],

where α > , is called the Riemann-Liouville fractional integral of order α, and Ŵ(α) is the

Euler gamma function defined by

Ŵ(α) =

∫ ∞



tα–e–t dt, α > .

Definition . The expression

aD
αf (t) =



Ŵ(n – α)

(

d

dt

)n ∫ t

a

f (s)

(t – s)α–n+
ds,

where n = [α]+, [α] denotes the integer part of number α, is called the Riemann-Liouville

fractional derivative of order α.
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The following lemma is crucial in finding an integral representation of the fractional

boundary value problem (.)-(.).

Lemma . Assume that f ∈ C(a,b) ∩ L(a,b) with a fractional derivative of order α > 

that belongs to C(a,b)∩ L(a,b). Then

aI
α
aD

αf (t) = f (t) + c(t – a)α– + c(t – a)α– + · · · + cn(t – a)α–n,

for some constants ci ∈ R, i = , . . . ,n, n = [α] + .

For more details on fractional calculus, we refer the reader to [–].

2 Main results

The following lemmas will be needed.

Lemma . We have that u ∈ C[a,b] is a solution to the boundary value problem (.)-

(.) if and only if u satisfies the integral equation

u(t) =

∫ b

a

G(t, s)q(s)u(s)ds,

where G(t, s) is the Green function of problem (.)-(.) defined as

G(t, s) =


Ŵ(α)

{

(t–a)α–(b–s)α–

(b–a)α–
– (t – s)α–, a ≤ s≤ t ≤ b,

(t–a)α–(b–s)α–

(b–a)α–
, a ≤ t ≤ s≤ b.

Proof From Lemma ., u ∈ C[a,b] is a solution to the boundary value problem (.)-

(.) if and only if

u(t) = c(t–a)
α–+c(t–a)

α–+c(t–a)
α–+c(t–a)

α––


Ŵ(α)

∫ t

a

(t– s)α–q(s)u(s)ds

for some real constants ci, i = , . . . , . Using the boundary conditions u(a) = u′(a) = u′′(a) =

, we get immediately

c = c = c = .

The boundary condition u′′(b) =  yields

c =


(b – a)α–Ŵ(α)

∫ b

a

(b – s)α–q(s)u(s)ds.

Hence

u(t) =
(t – a)α–

(b – a)α–Ŵ(α)

∫ b

a

(b – s)α–q(s)u(s)ds –


Ŵ(α)

∫ t

a

(t – s)α–q(s)u(s)ds,

which concludes the proof. �
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Lemma . The function G defined in Lemma . satisfies the following property:

 ≤ G(t, s)≤ G(b, s) =
(b – s)α–(s – a)(b – a – s)

Ŵ(α)
, (t, s) ∈ [a,b]× [a,b].

Proof We start by fixing an arbitrary s ∈ (a,b]. Differentiating G(t, s) with respect to t, we

get

∂tG(t, s) =
(α – )

Ŵ(α)

{

(t–a)α–(b–s)α–

(b–a)α–
– (t – s)α–, a ≤ s ≤ t ≤ b,

(t–a)α–(b–s)α–

(b–a)α–
, a ≤ t ≤ s≤ b.

For a ≤ t ≤ s≤ b, we have

Ŵ(α)

(α – )
∂tG(t, s) =

(t – a)α–(b – s)α–

(b – a)α–
≥ ,

while for a≤ s ≤ t ≤ b, we have

Ŵ(α)

(α – )
∂tG(t, s) =

(t – a)α–(b – s)α–

(b – a)α–
– (t – s)α–

=
(t – a)α–((b – a) – (s – a))α–

(b – a)α–
–

(

(t – a) – (s – a)
)α–

= (t – a)α–
(

 –
s – a

b – a

)α–

– (t – a)α–
(

 –
s – a

t – a

)α–

≥ (t – a)α–
(

 –
s – a

b – a

)α–

– (t – a)α–
(

 –
s – a

b – a

)α–

= (t – a)α–
[(

 –
s – a

b – a

)α–

–

(

 –
s – a

b – a

)α–]

≥ .

Consequently, the function G(t, s) is non-decreasing with respect to t, from which it fol-

lows that

 =G(a, s)≤ G(t, s)≤ G(b, s), (t, s) ∈ [a,b]× [a,b].

The proof is complete. �

We have the following Hartman-Wintner-type inequality.

Theorem. If a nontrivial continuous solution to the fractional boundary value problem

(

aD
αu

)

(t) + q(t)u(t) = , a < t < b,  < α ≤ ,

u(a) = u′(a) = u′′(a) = u′′(b) = 

exists, where q is a real and continuous function in [a,b], then

∫ b

a

(b – s)α–(s – a)(b – a – s)
∣

∣q(s)
∣

∣ds≥ Ŵ(α)· (.)
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Proof Let B = C[a,b] be the Banach space endowed with the norm

‖y‖∞ = max
a≤t≤b

∣

∣y(t)
∣

∣, y ∈ B.

It follows from Lemma . that a solution u to (.)-(.) satisfies the integral equation

u(t) =

∫ b

a

G(t, s)q(s)u(s)ds, t ∈ [a,b].

Thus, for all t ∈ [a,b], we have

∣

∣u(t)
∣

∣ ≤

∫ b

a

∣

∣G(t, s)
∣

∣

∣

∣q(s)
∣

∣

∣

∣u(s)
∣

∣ds

≤

(∫ b

a

sup

a≤t≤b

∣

∣G(t, s)
∣

∣

∣

∣q(s)
∣

∣ds

)

‖u‖∞,

which yields

‖u‖∞ ≤

(∫ b

a

sup

a≤t≤b

∣

∣G(t, s)
∣

∣

∣

∣q(s)
∣

∣ds

)

‖u‖∞.

Since u is nontrivial, then ‖u‖∞ 
= , so

 ≤

∫ b

a

sup

a≤t≤b

∣

∣G(t, s)
∣

∣

∣

∣q(s)
∣

∣ds.

Now, an application of Lemma . yields

 ≤

∫ b

a

G(b, s)
∣

∣q(s)
∣

∣ds,

from which the inequality in (.) follows. �

Corollary . If a nontrivial continuous solution to the fractional boundary value problem

(

aD
αu

)

(t) + q(t)u(t) = , a < t < b,  < α ≤ ,

u(a) = u′(a) = u′′(a) = u′′(b) = 

exists, where q is a real and continuous function in [a,b], then

∫ b

a

(b – s)α–(s – a)
∣

∣q(s)
∣

∣ds≥
Ŵ(α)

(b – a)
· (.)

Proof From Theorem ., we have

∫ b

a

(b – s)α–(s – a)(b – a – s)
∣

∣q(s)
∣

∣ds≥ Ŵ(α).
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Next we note

b – a – s ≤ (b – a), s ∈ [a,b].

Thus we get

(b – a)

∫ b

a

(b – s)α–(s – a)
∣

∣q(s)
∣

∣ds≥ Ŵ(α),

which gives the desired inequality (.). �

We have the following Lyapunov-type inequality.

Corollary . If a nontrivial continuous solution to the fractional boundary value problem

(

aD
αu

)

(t) + q(t)u(t) = , a < t < b,  < α ≤ ,

u(a) = u′(a) = u′′(a) = u′′(b) = 

exists, where q is a real and continuous function in [a,b], then

∫ b

a

∣

∣q(s)
∣

∣ds≥
Ŵ(α)(α – )α–

(α – )α–(b – a)α–
· (.)

Proof Let

ψ(s) = (b – s)α–(s – a), s ∈ [a,b].

Now, we differentiate ψ(s) on (a,b), and we obtain after simplifications

ψ ′(s) = (b – s)α–
[

(b – s) – (α – )(s – a)
]

.

Observe that ψ ′(s) has a unique zero, attained at the point

s∗ =
b + (α – )a

α – 
.

It is easily seen that s∗ ∈ (a,b), ψ ′(s) >  on (a, s∗), and ψ ′(s) <  on (s∗,b). We conclude

that

max
a≤s≤b

ψ(s) = ψ
(

s∗
)

= (α – )α–
(

b – a

α – 

)α–

.

From Corollary ., we have

∫ b

a

ψ(s)
∣

∣q(s)
∣

∣ds≥
Ŵ(α)

(b – a)
,

which yields

∫ b

a

∣

∣q(s)
∣

∣ds≥
Ŵ(α)

(b – a)ψ(s∗)
,
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from which inequality (.) follows. �

Corollary . If a nontrivial continuous solution to the boundary value problem

u′′′′(t) + q(t)u(t) = , a < t < b,

u(a) = u′(a) = u′′(a) = u′′(b) = 

exists, where q is a real and continuous function in [a,b], then

∫ b

a

(b – s)(s – a)(b – a – s)
∣

∣q(s)
∣

∣ds≥ . (.)

Proof Inequality (.) follows from Theorem . with α = . �

Corollary . If a nontrivial continuous solution to the boundary value problem

u′′′′(t) + q(t)u(t) = , a < t < b,

u(a) = u′(a) = u′′(a) = u′′(b) = 

exists, where q is a real and continuous function in [a,b], then

∫ b

a

(b – s)(s – a)
∣

∣q(s)
∣

∣ds ≥


b – a
· (.)

Proof Inequality (.) follows from Corollary . with α = . �

Corollary . If a nontrivial continuous solution to the boundary value problem

u′′′′(t) + q(t)u(t) = , a < t < b,

u(a) = u′(a) = u′′(a) = u′′(b) = 

exists, where q is a real and continuous function in [a,b], then

∫ b

a

∣

∣q(s)
∣

∣ds≥


(b – a)
· (.)

Proof Inequality (.) follows from Corollary . with α = . �

3 Application

In this section, we give an application of the Hartman-Wintner-type inequality (.) for

the eigenvalue problem

(


Dαu

)

(t) + λu(t) = ,  < t < ,  < α ≤ , (.)

u() = u′() = u′′() = u′′() = . (.)
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Theorem . If λ is an eigenvalue to the fractional boundary value problem (.)-(.),

then

|λ| ≥
Ŵ(α)

B(,α – )
,

where B is the beta function defined by

B(x, y) =

∫ 



sx–( – s)y– ds, x, y > .

Proof Let λ be an eigenvalue to (.)-(.). Then there exists u = uλ, a nontrivial solution

to (.)-(.). An application of Corollary . yields

|λ|

∫ 



( – s)α–s ds≥
Ŵ(α)


.

Now,

∫ 



( – s)α–s ds =

∫ 



s–( – s)(α–)– ds = B(,α – ),

from which we obtain

|λ|B(,α – )≥
Ŵ(α)


.

The proof is complete. �
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