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Abstract: Lycopene is a bioactive red pigment found in plants, especially in red fruits and vegetables,
including tomato, pink guava, papaya, pink grapefruit, and watermelon. Several research reports
have advocated its positive impact on human health and physiology. For humans, lycopene is an
essential substance obtained from dietary sources to fulfil the body requirements. The production of
reactive oxygen species (ROS) causing oxidative stress and downstream complications include one
of the major health concerns worldwide. In recent years, oxidative stress and its counter strategies
have attracted biomedical research in order to manage the emerging health issues. Lycopene has
been reported to directly interact with ROS, which can help to prevent chronic diseases, including
diabetes and neurodegenerative and cardiovascular diseases. In this context, the present review
article was written to provide an accumulative account of protective and ameliorative effects of
lycopene on coronary artery disease (CAD) and hypertension, which are the leading causes of death
worldwide. Lycopene is a potent antioxidant that fights ROS and, subsequently, complications. It
reduces blood pressure via inhibiting the angiotensin-converting enzyme and regulating nitrous
oxide bioavailability. It plays an important role in lowering of LDL (low-density lipoproteins) and
improving HDL (high-density lipoproteins) levels to minimize atherosclerosis, which protects the
onset of coronary artery disease and hypertension. Various studies have advocated that lycopene
exhibited a combating competence in the treatment of these diseases. Owing to all the antioxidant,
anti-diabetic, and anti-hypertensive properties, lycopene provides a potential nutraceutical with a
protective and curing ability against coronary artery disease and hypertension.

Keywords: lycopene; nutraceutical; reactive oxygen species; coronary artery disease; hypertension

1. Introduction

Bioactive components can be found in plant-based natural products derived through
food processing [1]. Many of these plant metabolites aid in the reduction of oxidative stress,
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making them potentially useful in the treatment of a wide range of severe illnesses. Despite
the availability of numerous medications to treat oxidative stress-related chronic diseases,
the high profile of drug side effects necessitates the use of alternative and complementary
treatment options for diabetes and cardiovascular diseases (CVDs), such as coronary artery
disease (CAD) and blood pressure control [2,3]. To avoid or treat chronic disorders, lifestyle
adjustments and dietary interventions, such as increasing fruit and vegetable consumption,
are frequently advocated [4–6]. Lycopene is a red-colored compound found in colored fruits
and vegetables, including tomato, papaya, pink guava, and watermelon, and is responsible
for their reddish hue. Tomatoes and tomato-based products are the most common sources
of lycopene [7,8]. Tomato sauce and ketchup are better sources of sources of lycopene as
compared to natural raw tomatoes [9]. Lycopene is a natural substance that may be used
in high doses as a dietary supplement without causing harm to human health or physiol-
ogy [10–12]. In accordance with these findings, lycopene has gotten a lot of interest as a
possible nutraceutical for disease prevention and therapy, notably for improving vascular
function and lowering blood pressure [13–15]. Biological and biomedical researchers are
becoming increasingly interested in the expanding body of evidence indicating lycopene’s
disease-preventive properties. Lycopene-rich diets have been inversely associated with
heart diseases and malignancies by several in vitro, ex vivo, and in vivo studies [16–18].
The buildup of ROS, which is accompanied by abnormalities such as inflammation and
irregular lipid metabolism, is a critical risk factor for the increasing occurrence of metabolic
disorders [19,20]. ROS, also known as free radicals, are highly reactive, unstable oxygen-
containing molecules that can cause cell death by damaging deoxyribonucleic acid (DNA),
ribonucleic acid (RNA), and proteins [21,22]. The fundamental biological function of ly-
copene is the protestation of DNA from oxidative stress by quenching ROS and inhibiting
mutations that might cause chronic diseases [23]. The elongated carbon chain with con-
jugated double bonds have made lycopene as the most potent single oxygen and free
radical scavenger among 600 naturally occurring carotenoids [24–26]. It is more efficient in
shielding cells and tissues from ROS-induced damage [9,27].

Though lycopene is beneficial for a range of ailments (Figure 1), it is especially useful
in the treatment of cardiovascular diseases (CVDs), the leading cause of mortality globally.
CVDs are exacerbated by high blood pressure, high cholesterol, and smoking [28,29]. Blood
flow to the heart and central nervous system is often restricted, resulting in arterial remod-
eling and atherosclerosis, which are the principal causes of coronary artery disease [30].
Hypertension, one of the most common causes of cardiovascular morbidity and death, is
caused by a restriction of blood flow caused by modified arteries. As a result, hypertension
and coronary artery disease have a strong and frequent relationship [31]. A number of
pathophysiologic pathways are shared by both disorders. Endothelial dysfunction, which
aggravates atherosclerosis and makes atherosclerotic plaques more unstable, is caused by
hypertension [32–34]. Several studies on lycopene supplementation have showed promis-
ing results in lowering blood pressure and coronary artery disease [35,36]. There were
no harmful effects at high lycopene consumption levels, according to safety evaluation
studies [37,38]. Because lycopene is a lipid-soluble antioxidant, cholesterol-lowering drugs,
such as probucol and cholestyramine, diminish lycopene blood concentrations, owing to
gastrointestinal absorption issues [39].

Since natural medications are being given increasing attention due to the widespread usage
of natural chemicals rather than synthetic drugs to treat ailments, and lycopene is a promising
nutraceutical in treating a variety of diseases by blocking disease pathways. This review has
focused on the potential effects of lycopene on coronary artery disease and hypertension.



Antioxidants 2022, 11, 232 3 of 21

Figure 1. Lycopene as a nutraceutical compound has applications against multiple diseased conditions.

2. Discovery, Chemical Structure, Properties, Biosynthesis and Physiological Role
of Lycopene

Lycopene is a carotenoid with a molecular formula (C40H56) that gives the Solanum
lycopersicum L. fruits their red color [40]. Chemically, the lycopene molecule has 11 con-
jugated double bonds, and its structures can have over 70 Z-isomers [41,42]. According
to estimations, all-E-lycopene contains 80 percent to 97 percent lycopene in tomato fruit.
However, Z-isoforms account for more than half of the lycopene present in human blood
and tissues [43,44] (Figure 2).

Figure 2. Common isomers of lycopene. (A) all-E-lycopene isomer, (B) Z-lycopene isomer.

Millardet identified lycopene in 1876 and named it as ‘soanorubin’; later on, it was
named lycopene and it was purified [45]. Tomato is a major source of natural lycopene;
however, it is found in many plants at variable concentrations [46,47]. The extended conju-
gated double bond system of these compounds is a significant property of the carotenoids
and is responsible for their attractive colors [48,49]. Lycopene produces the light-absorbing
chromophore, and the extended conjugated double bond system of these compounds is a
significant property of the carotenoids that is responsible for their attractive colors. In order
for a molecule to have visible color, it must have at least seven conjugated double bonds.
The maximum absorption wavelength increases as the number of conjugated double bonds
increases [50,51]. Lycopene is not a precursor molecule for vitamin A because it lacks the ter-
minal b-ionic ring found in vitamin A’s core structure. Lycopene is the most effective singlet
oxygen quencher among the carotenoids, with the number of conjugated double bonds and,
to a lesser degree, the presence of cyclic or acyclic end groups dictating its quenching abil-
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ity [52]. Furthermore, its biological properties, such as oxidative sensitivity, are impacted
by its chain structure, which includes a large conjugated polyene system [53,54]. Lycopene
is found in nature as an all trans form with seven double bonds that can be isomerized to
mono-cis or poly-cis when exposed to high temperatures, light, oxygen, acids, catalysts,
and metal ions. Lycopene is a lipophilic molecule with hydrophobic properties due to its
acyclic structure and 11 linear conjugated double bonds, making it more soluble in organic
solvents, such as chloroform, benzene, hexane, methylene chloride, acetone, and petroleum
ether [55]. Lycopene is a vivid red pigment that is water insoluble [56]. Lycopene is present
in the chloroplasts of fresh fruit, a plant cell organelle that is rarely eaten [57]. [57]. Thermal
food processing, particularly in the presence of cooking oils, causes lycopene to micellize
and enhance its intestinal absorption rate by a factor of ten [58].

The complicated process of lycopene manufacturing begins when chlorophyll de-
grades to produce white-colored leucoplast, which produces particular red-colored pig-
mented organelles called chromoplast. The biosynthetic process begins with the conversion
of acetyl-Co-A to isopentenyl diphosphate (IPP) via the mevalonate route [59]. IPP (5C)
interacts with DMAPP (5C) to form geranyl diphosphate (GPP), a ten-carbon molecule [60].
The next step entails adding two IPP molecules one at a time, resulting in the synthesis
of geranylgeranyl diphosphate (GGPP), a 20-carbon complex. Two molecules of GGPP
are joined head-to-head in a condensation process to generate phytoene, a 40-carbon
chemical that is then converted to lycopene via a mechanism mediated by phytoene desat-
urase [61,62] (Figure 3).

Figure 3. Biosynthesis of lycopene starts from central metabolite Acetyle-co-A, which is subsequently
converted to IPP, GPP, GGPP, phytoene, and lycopene.

The brilliant crimson hue of lycopene crystals in the shape of small globules hang
throughout the fruit [63]. Lycopene is located in the thylakoid membranes as a protein
lycopene complex at the cellular level, owing to its lipophilic nature. Despite the fact that
lycopene is not an essential ingredient, it has been discovered to provide a variety of health
advantages. Because it is a substantial carotenoid in human blood, it can protect lipids,
proteins, and DNA from oxidative stress [21]. Lycopene’s antioxidant activity may be
enhanced by the absence of the b ionone ring structure. Due to stereochemical variations,
lycopene differs from other regularly eaten carotenoids in that it can only be found in
particular subcellular locations. The human body directly absorbs a substantial amount of
intact lycopene, which circulates through the body’s plasma, liver, and peripheral organs.
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It accumulates in the human tissues but is not evenly distributed [64]. Adipose tissues,
adrenal glands, testes, and liver, for example, have larger concentrations, while the kidneys,
prostate, lungs, and ovaries have lower concentrations [56]. Plasma lycopene has a half-life
of 12–33 days in the human body [65]. Lycopene must be absorbed and incorporated into
the plasma and tissues in order to be used as a dietary supplement. Tomato lycopene
is not easily absorbed since it is integrated into the nutritional matrix. Clinical research
demonstrates that heat-processed tomato products absorb lycopene more quickly than raw
sources, and that adding oil increases absorption [66].

Isomerization of lycopene at low pH in the stomach has been described [67]. Before the
lycopene is integrated into mixed micelles, it must be freed from the food matrix. Micelles
include bile salts, cholesterol, and fatty acids from the meal and their amphiphilic shape
aids in keeping the lipophilic nutrients soluble in the watery digesta [68]. The micelles
approach the apical side of intestinal enterocytes’ unstirred water layer, where lycopene
diffuses passively over the apical membrane [69]. Lycopene is considered to be absorbed in
the same way that dietary lipids are, via passive diffusion [70,71]. According to research, the
scavenger receptor class B type I (SR-BI) cholesterol membrane transporter aids in lycopene
absorption. It has also been observed that various additional transporters are linked to
lycopene absorption. [72,73]. Once within the enterocyte, lycopene is bound with dietary
lipids to form chylomicrons [69], which are then transported via the basolateral membrane,
into the lymphatic system, and finally discharged into the circulation (Figure 4). Lycopene
transport and distribution are aided by plasma lipoproteins. It continues to be found in the
lipophilic area of lipoproteins, which is the hydrophobic molecule’s core [18,74]. Lycopene
is mostly transported by low-density lipoproteins [75,76]. Furthermore, cis isomers of
lycopene have been found to have a stronger capacity to integrate into lipoprotein and
other proteins than all trans isomers, owing to their shorter chain length [77].

Figure 4. A diagram depicting the digestion and absorption of lycopene. Food releases lycopene,
which is then integrated into micelles containing bile salt, cholesterol, and fatty acids. The micelle
approaches enterocytes, and lycopene diffuses over the apical membrane in a passive manner.
Lycopene is packed with other dietary lipids inside the enterocyte to form chylomicrons, which are
carried over the basolateral membrane, into the lymphatic system, and subsequently discharged into
the blood.

3. Lycopene as an Antioxidant

A stressor is any agent that induces stress [78,79]. Stress is an organism’s general
response to negative stimuli. Stress affects the physiological balance by causing a biological
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reaction to stimuli [80]. Oxidative stress, which is induced by highly reactive free radicals,
is one of the primary causes of chronic illness [81,82]. Antioxidants have been identified
as a varied set of chemicals that inhibit oxidation in various ways [83–86]. Only a few
lipophilic natural oxidants exist, and lycopene is one of them. As a powerful singlet oxygen
quencher, it can stop lipid oxidation in its early stages. Lycopene’s ability to protect against
oxidative stress has been established [87,88]. Lycopene has been found to be more potent
in this activity as compared to other carotenoids, such as tocopherol, ß-cryptoxanthin,
carotene, lutein, and zeaxanthin [9]. B-carotene and a-tocopherol, two more lipophilic
antioxidants, had double and 100-fold lower rates, respectively [89]. Lycopene’s major
biological purpose is to protect DNA from oxidative stress in order to prevent mutations that
might lead to chronic diseases [90–92]. ycopene is the most potent free radical and single
oxygen scavenger among 600 naturally occurring carotenoids because of its long chain
with conjugated double bonds [93,94]. It modulates phase I and II detoxifying enzymes,
which affect cell proliferation, immunological response, and gene transcription [24]. It
activates the antioxidant response element (ARE), which causes the cellular enzymes
glutathione S-transferase (GST), superoxide dismutase (SOD), and quinone reductase to be
synthesized [95–98]. HO-1, GST, NQO1, and SOD are antioxidant and detoxifying enzymes
that are sometimes referred to as phase II cytoprotective enzymes [46,99]. ARE is located in
the promoter regions of inducible genes that code for phase II enzymes, and it promotes
overexpression of these genes when it binds to Nrf2. Lycopene inhibits Nrf2/Keapl binding
in heat stressed birds, allowing Nrf2 to be transported to the nucleus and upregulate phase
II enzyme synthesis [100].

The electrophile response element transcription system (EpRE) or antioxidant re-
sponse element transcription system (ARE) are related to the cis-regulatory portions in
the promoter region of detoxifying enzymes [26,101]. By activating the ARE transcrip-
tion pathway [26], lycopene can affect xenobiotic metabolism by disrupting the cytosolic
linkages between the major ARE-activating Nrf2 and its inhibitor (Keap1) [26,102]. Once
liberated of Keap1, Nrf2 translocates to the nucleus, where it induces phase II enzyme
expression [26,103]. According to some research, overexpression of phase II detoxification
enzymes, in addition to blocking phase I metabolism and metabolic activation of afla-
toxin B1, enhances lycopene’s anti-aflatoxin actions [104,105]. Lycopene operates in three
methods to produce reactive oxygen species (ROS): first, radical addition (adduct forma-
tion), then electron transfer to the radical, and finally, allylic hydrogen abstraction [106].
Two processes that contribute to lycopene’s antioxidative impact are the formation of
adducts and allylic hydrogen abstraction [107,108]. The type of the reacting free radical,
the structural characteristics of lycopene, and the positioning and direction of lycopene
inside the membrane in biological systems are all elements that impact these potential
interactions [109–111].

The non-polarity of cell membranes or micelles is aided by the polar environment,
which assists in the production of adducts and allylic hydrogen abstraction [107]. Lycopene
and free radical reactions can occur in a variety of ways at the same time [109]. Lycopene
can increase the cellular antioxidant defense system by regenerating non-enzymatic an-
tioxidants, such as vitamins E and C, from their radicals [26]. Vitamin E is suggested to
be protected by lycopene [87,112,113]. Lycopene serves as an antioxidant in systems that
create singlet oxygen, but as a pro-oxidant in systems that generate peroxide. Lycopene
serves as an antioxidant due to its redox potential [114–116]. Indeed, lycopene behaves as a
pro-oxidant in high doses while acting as an antioxidant in low ones [117]. Many factors
impact pro-oxidant potency, including tissue oxygen tension, lycopene concentration, and
interactions with other antioxidants [115]. As a pro-oxidant, lycopene may have both
good and negative impacts in biological systems, as well as influence the course of human
illnesses. If lycopene works as a pro-oxidant in previously damaged cells, it may help
prevent the creation and progression of cancerous lesions as well as tumor cytotoxicity.
Carotenoids’ pro-oxidant effects can be limited by antioxidant connections, enhancing the
antioxidant capabilities of these bioactive molecules [115].
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4. Lycopene in Human Health and Diseases

Humans benefit from lycopene in a number of ways [26]. A lycopene-rich diet may
help to prevent or lower the risk of cardiovascular disease and some malignancies [118].
According to study [119], 5 to 7 mg of lycopene per day may be sufficient to gain the benefits.
Higher doses of lycopene (35–75 mg/day) may be provided in the occurrence of cancer or
cardiovascular disease [120]. When combined with prostaglandins and phospholipids in
cell membranes, lycopene can improve skin defense mechanisms [121]. Lycopene has been
linked to the prevention and treatment of a wide range of ailments (Table 1).

Table 1. An illustration of the nutraceutical impact of lycopene against diseases.

Diseases Issue Dose of Lycopene Subjected Time Role/Activity of Lycopene References

Cancer

Loss of gap
junctional

communication
(GJC)

4–8 mg 3–12 months Suppression of carcinogen
formation. [92]

60 mg 9 weeks GJC is boosted by a lycopene
oxidation product. [66,122]

50 mg/kg 5 to 7 days
Metabolite of lycopene, can

enhance connexln 43, which is
linked to GJC.

[116,123]

Apoptosis 10, 40, 120 mg/kg 9 weeks Lycopene triggers apoptosis
in cells. [124]

Melanoma 10 mg/kg 15
mg/day 5 weeks 12 weeks Lycopene inhibits melanoma

development. [121,125]

Mammary and
endometrial cancer 76 to 154 mg 14 days

Lycopene inhibits the
insulin-like growth factor 1
(IGF-1R) signaling pathway.

[125–127]

Prostate and colon
cancer 10–30 mg 3 to 5 days Inhibit Ras signaling. [26,128]

ovarian cancer 20–40 mg/kg 18 weeks Downregulation of STAT3
reduces tumor development. [129]

Lung cancer 5 mg/kg 16 weeks Inhibits lung cancer. [87]
Oral cancer 5 mg/kg 16 weeks ROS scavenger. [87]

Vitamin A
deficiency 10–2400 mg 90 days Upregulate signaling

pathways [130]

Inflammatory
Diseases

Brain tissue
inflammation

50, 100, 150 mg/kg 24 weeks
Lycopene boosts antioxidant

gene expression,
inflammatory mediators.

[17,119]

60 mg/kg 7 days

Lycopene helps to prevent
inflammation by lowering the
levels of plasma interleukin

(IL)-6 and TNF.

[131,132]

Skin Diseases

Photodamage by
UV-B 10 mg/kg 5 weeks

Lycopene inhibits epidermal
ornithine decarboxylase.
Prevents DNA damage.

[121,133]

Atopic dermatitis
(AD) 100 mg 7 days

The activation of nuclear
hormone receptor signaling

pathways.
[134].

Photo aging 2.5–10 µM 24 h
Lycopene gel provided

superior photoaging
protection.

[135]

Cardiovascular
diseases 2 mg/day 12–20 weeks Lycopene reduces

atherosclerotic plaques. [136,137]

Bacterial
infection 50, 100, 150 mg/kg 24 weeks Lycopene stimulates immune

response. [119,138]
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Table 1. Cont.

Diseases Issue Dose of Lycopene Subjected Time Role/Activity of Lycopene References

Age-related
macular

degeneration
4 mg/kg/day 10 weeks Lycopene is capable to quench

singlet oxygen in the eye. [139]

Diabetes 10 mg/kg 5 weeks

Enhanced antioxidant
enzymes, suppresses RAGE
expression, increased NF-B

expression.

[140,141]

Infertility 4–8 mg 3–12 months
Boosted antioxidants, reduced
lipid peroxidation, decreased
DNA damage in spermatozoa.

[92,142]

Neurobehavioral
deficits and

poorer
cognition

10 mg/kg 15 days
Increased cognition, increased

brain’s antioxidant, nitric
oxide pathways are inhibited.

[143–146]

Alzheimer
disease 30 mg 5 weeks

Reduced mitochondrial
dysfunction, reduced

inflammatory cytokine.
[147–149]

Parkinson
disease

15, 30, 45
mg/kg/day 12 weeks Induction of ROS and

neurobehavioral deficits. [150–152]

Bone diseases 50 mg/kg/day 10 weeks
Regulation of metabolism,
osteoclast differentiation,
osteoblasts upregulation.

[153–155]

5. Lycopene in Cardiovascular Diseases (CVDs)

CVDs are the leading cause of illness and death around the world. High blood pres-
sure, cholesterol, and smoking are all major risk factors for cardiovascular disease. Damage
and remodeling of blood vessels impede blood flow, and atherosclerosis is the most preva-
lent cause of CVDs, which affect the heart and brain [156]. In comparison to Mediterranean
nations, Europe and the United States have the greatest rate of CVDs [157]. The lower
rates of CVD have been related to a diet heavy in vegetables, such as tomatoes, tomato
derivatives, and olive oil. Small concentrations of lycopene in the blood, on the other hand,
have been associated to hypertension, myocardial infarction, stroke, and atherosclerosis.
Lycopene concentrations in the blood have been proven to reduce the risk of serious cardiac
events. [158]. Epidemiological studies strongly advocate the preventive role of lycopene
in CVDs. Low blood lycopene levels have been linked to all-cause mortality and poor
cardiovascular disease outcomes. Lycopene supplementation has been shown to increase
blood lycopene levels, reduce oxidative stress markers, and improve antioxidant status [76].
Reduction in the pro-inflammatory cytokines, adhesion molecules, inhibition of leuko-
cyte migration and inflammation-related genes, problems in the interaction of monocyte
with endothelium, activation of T-lymphocytes, and cyclooxygenase-2 downregulation
are all anti-inflammatory mechanisms. Lycopene inhibited TNF-induced NF-kB activation
and monocyte-endothelial cell interaction [159]. VCAM-1 and LDL were found inversely
linked to serum lycopene [160]. Supplementation with lycopene can improve microvas-
cular function by lowering sVCAM and sICAM concentrations, reducing DNA damage,
and increasing superoxide dismutase (SOD) activity [161–163]. Advanced glycation end
products (AGE) include a diverse group of adducts generated by the glycoxidation or
glycation of DNA or protein molecules by reducing sugars [164]. Interaction of AGEs
with their corresponding receptors RAGEs is the major cause of several disorders. AGE
and RAGE interaction initiates oxidative stress via several pathways, such as activation of
NF-kB, upregulation of gene expression for cytokines, and stimulation of NOX enzymes.
Oxidative stress causes several diseases, including renal failure [165,166]. The reduction
in NO production, impairment of endothelium, increased rate of mRNA degradation,
neurodegenerative diseases, damage to blood vessels, and diabetes are some other sub-
sequent effects of oxidative stress [167,168]. In this context, the natural or synthesized
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molecules with the potential to inhibit or reduce the production or interaction of AGEs
and RAGEs have a great significance in current biomedical research. According to re-
search reports, lycopene can reduce the production of AGE and RAGE, which aids in
vessel protection [6,137,169]. The use of lycopene can promote the function of endothelial
cells, as indicated by preclinical studies. Lycopene has the ability to improve the NO
bioavailability, endothelium-regulated vasodilation [170], reduce the damage to proteins,
DNA, and lipids, and improve mitochondrial functioning, through its antioxidant activ-
ity [171]. Lycopene supplementation boosted mitochondrial gene expression and lowered
mitochondrial dysfunction [6,172]. Lycopene and tomato products were found to decrease
the total cholesterol and low-density lipoprotein cholesterol (LDL-C) in clinical investi-
gations [173–175]. In healthy postmenopausal women, lycopene supplementation can
decrease total and LDL cholesterol [176]. In rats given lycopene supplements [177], HDL
was increased significantly and LDL, triglycerides, and total cholesterol were decreased.
A significant decrease in TG in lycopene-supplemented hamsters [178] and a reduction
in oxidized LDL in lycopene-supplemented rats have also been reported [179]. IMT is a
well-established biomarker of arterial structural change [180], and it has been associated to
the presence of cardiovascular risk factors, notably in the carotid artery [181]. The thickness
of the intima-media is inversely linked to serum lycopene levels [182]. The combination of
lutein and lycopene (20 mg each) therapy resulted in a decrease in IMT after 12 months,
with the combination showing to be more helpful than lutein alone.

5.1. Coronary Artery Disease (CAD) and Lycopene

Cardiovascular diseases with more that 17 million deaths every year include one
of the major causes of death worldwide. CAD, which has become almost epidemic in
many societies, is the most prominent CVD [183]. It is a chronic inflammatory disease
caused by the remodeling of coronary arteries due to the narrowing of internal passage and
hardening of vessels by plaque formation [184,185]. In addition to the above, the activation
of platelets and inflammatory factors also contribute to reduce the blood flow to the heart
muscles, reducing the supply of oxygen and nutrients [186], especially during vigorous
exertion. Atherosclerosis is a silent and gradual process demonstrated by the accumula-
tion of low-density lipids and inflammatory factors in the arteries [187–190]. Oxidized
low-density lipoprotein cholesterol LDL-C is the main contributor to the development of
atherosclerosis and subsequent CAD via the activation and differentiation of monocytes to
macrophages [191]. Macrophages interact with LDL-C, and the production of interleukins,
cytokines, and tumor necrosis factors is induced. All these molecules contribute to the
formation of first lesion of atherosclerosis [192,193]. The smooth muscle cells are migrated
to the intima from the medial layer of the artery, leading to the formation of a fibrous cap
over the streak of lipid materials and subsequent formation of second lesion of atheroscle-
rosis (plaque) [194]. The nature of the fibrous cap determines the properties of the plaque.
Stable plaque is composed of an intact cap of smooth muscle cells in combination with
collagen type I and III. Such a type of plaque results in stenosis, reduces the blood flow,
and results in ischemia [195]. The second type of plaque, thin vulnerable plaques, is made
up of type I collagen in combination with only a few smooth muscle cells. However, it con-
tains a major proportion of proinflammatory molecules, macrophages, and prothrombotic
molecules [196,197]. These plaques can erode or rapture, while the coagulatory proteins
circulating in the blood can interact with them, resulting in thrombosis and acute coronary
syndrome [198,199]. Chronic CAD can cause heart failure [200], altered heart rate [201],
myocardial ischemia, and left ventricular dysfunction [202]. In epidemiological research,
the risk pattern for coronary artery disease has been thoroughly investigated. Age, male
sex, raised LDL-C levels, low HDL-C levels, diabetes mellitus, food, genetics, and cigarette
smoking are prominent risk factors for coronary heart disease [203–206]. Obesity and
metabolic disorders are also considered as the risk factors for CAD [36,207].

Lycopene suppresses the formation of vascular smooth muscle cells (VSMCs) and foam
cells, both of which have anti-atherosclerotic characteristics [208–210]. Contractile VSMC
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change into proliferative and migratory cells during the atherosclerotic process, allowing
them to move into the intima and build the plaque’s extracellular matrix [211]. Phenotypic
modulation refers to phenotypic alterations that are important in vascular remodeling,
which might result in atherosclerosis, hypertension, or diabetic macroangiopathy [212].
Lycopene prevents G1 phase cells from entering the S phase of the cell cycle [213], not
by inhibiting matrix metalloproteinase [214]. It was also found that minimally oxidized
LDL-C can cause VSMC phenotypic modification; to suppress this process, lycopene may
inhibit oxidized LDL formation [215,216]. Direct binding to platelet-derived growth factor
(PDGF) and reducing PDGF signaling [217] or acting as an antioxidant, since reactive
oxygen species speed up the switch from contractile to synthetic phenotype [218], were
observed to limit VSMC proliferation and migration. Lycopene also suppresses apoptosis
in endothelial cells in vitro by interrupting the upregulation of p53 and caspase 3 mRNA,
and prevents cluster of differentiation 14 (CD14) and toll-like receptor-4 expression in
the endothelium membrane [219,220]. Circulating plasma lycopene is thought to protect
against atherosclerosis (Figure 5), especially in smokers [221,222]. In high-fat diet rabbits,
lycopene decreased the development of atherosclerotic plaques in the aorta and improved
the lipid profile compared to the control group [223]. In hypertensive individuals, a short-
term therapy with antioxidant-rich tomato extract (250 mg/day for eight weeks) can reduce
blood pressure [224]. According to a research, lycopene consumption and carotid artery
intima-media thickness, a risk factor for CVD, have an inverse association. [225].

Figure 5. Demonstration of vessel protection by the application of lycopene that caused the inhibition
of AGE and RAGE production. It also leads to vasodilation, protection of proteins, DNA, lipids,
and mitochondrial damage, by boosting the antioxidant activity. Improved endothelial function is
reached by increasing nitric oxide (NO) bioavailability, ensuring positive changes in the lipid profile
and healthy arteries, and preventing atherosclerosis.

5.2. Hypertension and Lycopene

A systolic blood pressure of more than 140 mmHg or a diastolic blood pressure of
more than 90 mmHg, or both, is characterized as systemic arterial hypertension (HT),
often known as high blood pressure [226]. As the silent killer, promoted by low-density
lipoprotein cholesterol and smoking, it remains the third-leading cause of mortality from
cardiovascular disease. Hypertension is also a major cause of stroke and renal failure. Hy-
pertension is associated to oxidative stress and inflammatory processes [227,228]. Chronic
hypertension can cause renal failure, left ventricular hypertrophy (LVH), chronic heart
disease (CHD), heart failure (HF), peripheral vascular disease, stroke, and retinopathy.
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The pathophysiology of hypertension is highly complex and multifactorial. A complex
interaction of environmental and pathophysiological variables that impact many systems
have been reported to contribute to the development of hypertension. According to one
opinion, as described by some research reports, hypertension is developed by the influence
of oxidative stress. Oxidative stress makes changes in the structure and function of blood
vessels by lowering the nitric oxide (NO), resulting in endothelial dysfunction and vascu-
lar cell proliferation, migration, and apoptosis, all of which promote hypertension [229].
The blood pressure-lowering effects of ROS scavengers, antioxidants, and NOX inhibitors
also support the role of oxidative stress in the pathogenesis of hypertension [230]. NO is
produced by endothelial cells that operate in coordination with prostacyclin to inhibit the
production of adhesion molecules and aggregation of platelets. Hence, in the absence of
NO, the components and mechanisms of atherosclerosis are promoted. The pathogenesis of
hypertension is also well described by the renin-angiotensin system (RAS), which also pro-
vides the potential targets for the therapies against hypertension [230]. Angiotensinogen, a
precursor of angiotensin, is produced in the liver, while renin is the enzyme produced by
the juxtaglomerular cells of the kidneys, which catalyzes the first step in the processing
of angiotensinogen into angiotensin I [231]. The angiotensin-converting enzyme (ACE),
mainly produced in the lungs, is responsible for the conversion of angiotensin I into an-
giotensin II [232], which interacts with corresponding receptors and leads to the production
of multiple biological molecules including ADH (antidiuretic hormone), aldosterone, and
potent agents for vesorestriction from smooth muscle cells of vessels, adrenal, and pituitary
glands. The combined effects of all these developments include the reabsorption of sodium
and water by kidney, decrease in the amount of urine, narrowing of blood vessels, and
subsequent onset of hypertension [233] (Figure 6).

Figure 6. A presentation of antihypertensive effects of lycopene by inhibition of ACE (angiotensin-
converting enzyme) and through an antioxidant activity to inhibit the action of ROS on the linings of the
blood vessels, resulting in the improvement of nitric oxide levels and the functioning of endothelium.
Eventually, a decrease in vasoconstriction, inhibition of antidiuretic hormone and aldosterone, and
decrease in the reabsorption of water and Na+ by the kidneys decrease the blood pressure.

Lycopene reduces oxidative stress indirectly increases nitric oxide (NO) generation in
the endothelium, acting as an antioxidant and decreases blood pressure. After 6 weeks of
tomato extract supplementation, a significant reduction in both systolic and diastolic blood
pressure was found in 54 patients suffering from moderate hypertension, already using
ACE inhibitors or calcium channel blockers, indicating a contributory role of lycopene
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in the management of hypertension [229]. In a meta-analysis, lycopene supplementation
(above 12 mg/day) was found to lower systolic blood pressure in prehypertensive and
hypertension patients, while it has shown no effect on diastolic blood pressure [234,235].
Lycopene can impede the angiotensin II by inhibiting the ACE [2]. Due to the antioxi-
dant and anti-inflammatory properties, lycopene supplementation prevented changes in
hemodynamic parameters, biochemical and inflammatory markers, apoptotic alterations,
and reduced the extent of myocardial infarction. A study on 299 Korean men found that
they had a significant reduction in their blood pressure [230], after 8 weeks of 15 mg/day
lycopene supplementation [236] (Figure 6).

6. Conclusions

Lycopene has been shown to have a variety of biological effects in epidemiologic
research and animal and cell culture investigations. These findings have prompted more
research into the role of lycopene and its derivatives in the development of chronic illnesses.
More research is certainly needed to identify and describe additional lycopene metabolites
as well as their biological activities, which could provide vital insight into the processes
behind lycopene’s positive benefits in humans, especially in terms of chronic disease pre-
vention. Furthermore, higher lycopene consumption is linked to a lower risk of death from
cardiovascular disease-, stroke-, and hypertension-related injuries. It will be determined
in the future whether lycopene with increased bioavailability can maintain its antioxidant
effect on lipoprotein oxidation and cardiovascular markers over time. Research with a
longer duration of lycopene supplementation and a placebo control group are needed, as
well as the correct amount, as there are a variety of studies demonstrating varying benefits
with different doses, but no clear criteria to identify an accurate dose for hypertension and
CAD patients. It is also crucial to see how this lycopene treatment affects other clinical
manifestations of hypertension and coronary artery disease. Additionally, it is important to
look into the effects of different lycopene isomers on oxidative and cardiovascular markers.
Nonetheless, our findings imply that lycopene supplementation has a lot of potential in the
treatment of cardiovascular disease and could be used to improve the inflammatory state
and cardiovascular parameters in hypertension and coronary artery disease patients.
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36. Mozos, I.; Stoian, D.; Caraba, A.; Malainer, C.; Horbańczuk, J.O.; Atanasov, A.G. Lycopene and vascular health. Front. Pharmacol.

2018, 9, 521. [CrossRef] [PubMed]

http://doi.org/10.1016/j.nut.2021.111157
http://www.ncbi.nlm.nih.gov/pubmed/33610027
http://doi.org/10.1177/153537020222701013
http://doi.org/10.1016/j.foodchem.2020.128396
http://doi.org/10.1155/2021/2713511
http://doi.org/10.1001/jama.289.19.2560
http://doi.org/10.1080/10408398.2013.801827
http://doi.org/10.1016/j.ejphar.2021.174590
http://doi.org/10.1016/S0140-6736(02)98858-6
http://doi.org/10.1002/mnfr.201601009
http://www.ncbi.nlm.nih.gov/pubmed/28318092
http://doi.org/10.3390/molecules26133888
http://doi.org/10.3390/molecules15020959
http://www.ncbi.nlm.nih.gov/pubmed/20335956
http://doi.org/10.1016/j.envint.2020.106235
http://www.ncbi.nlm.nih.gov/pubmed/33157375
http://doi.org/10.3390/foods10081854
http://doi.org/10.1088/1755-1315/205/1/012035
http://doi.org/10.1016/j.jnutbio.2019.01.002
http://doi.org/10.18388/abp.2012_2163
http://www.ncbi.nlm.nih.gov/pubmed/22428131
http://doi.org/10.1016/j.canlet.2008.05.016
http://www.ncbi.nlm.nih.gov/pubmed/18585855
http://doi.org/10.3109/10715762.2011.564168
http://doi.org/10.1186/s40104-016-0113-9
http://www.ncbi.nlm.nih.gov/pubmed/27602206
http://doi.org/10.1080/00913847.2020.1796183
http://doi.org/10.1136/openhrt-2021-001735
http://doi.org/10.1177/2047487319885458
http://doi.org/10.12669/pjms.35.3.274
http://www.ncbi.nlm.nih.gov/pubmed/31258568
http://doi.org/10.1038/sj.jhh.1001345
http://doi.org/10.1159/000498897
http://doi.org/10.1016/j.eujim.2017.07.002
http://doi.org/10.3389/fphar.2018.00521
http://www.ncbi.nlm.nih.gov/pubmed/29875663


Antioxidants 2022, 11, 232 14 of 21

37. Singh, D.; Aggarwal, S. Lycopene in oral diseases. Guident 2012, 5, 73–74.
38. Trumbo, P.R. Are there adverse effects of lycopene exposure? J. Nutr. 2005, 135, 2060S–2061S. [CrossRef] [PubMed]
39. Elinder, L.S.; Hadell, K.; Johansson, J.; Mølgaard, J.; Holme, I.; Olsson, A.G.; Walldius, G. Probucol treatment decreases serum

concentrations of diet derived antioxidants. Arter. Thromb. Vasc. Biol. 1995, 15, 1057–1063. [CrossRef]
40. Khoo, H.E.; Prasad, K.N.; Kong, K.W.; Jiang, Y.; Ismail, A. Carotenoids and their isomers: Color pigments in fruits and vegetables.

Molecules 2011, 16, 1710–1738. [CrossRef]
41. Chasse, G.A.; Mak, M.L.; Deretey, E.; Farkas, I.; Torday, L.L.; Papp, J.G.; Sarma, D.S.; Agarwal, A.; Chakravarthi, S.;

Agarwal, S.; et al. An ab initio computational study on selected lycopene isomers. J. Mol. Struct. Theochem. 2001, 571, 27–37.
[CrossRef]

42. Guo, W.H.; Tu, C.Y.; Hu, C.H. Cis-trans isomerizations of β-carotene and lycopene: A theoretical study. J. Phys. Chem. B. 2008,
112, 12158–12167. [CrossRef]

43. Honda, M.; Murakami, K.; Ichihashi, K.; Takada, W.; Goto, M. Enriched (Z)-lycopene in Tomato Extract via Co-Extraction of
Tomatoes and Foodstuffs Containing Z-isomerization-accelerating Compounds. Catalysts 2021, 11, 462. [CrossRef]

44. Schierle, J.; Bretzel, W.; Bühler, I.; Faccin, N.; Hess, D.; Steiner, K.; Schüep, W. Content and isomeric ratio of lycopene in food and
human blood plasma. Food Chem. 1997, 59, 459–465. [CrossRef]

45. Papaioannou, E.H.; Liakopoulou-Kyriakides, M.; Karabelas, A.J. Natural origin lycopene and its “green” downstream processing.
Crit. Rev. Food Sci. Nutr. 2016, 56, 686–709. [CrossRef] [PubMed]

46. Arain, M.A.; Mei, Z.; Hassan, F.U.; Saeed, M.; Alagawany, M.; Shar, A.H.; Rajput, I.R. Lycopene: A natural antioxidant for
prevention of heat-induced oxidative stress in poultry. World’s Poult. Sci. J. 2018, 74, 89–100. [CrossRef]

47. Suwanaruang, T. Analyzing lycopene content in fruits. Agric. Agric. Sci. Procedia 2016, 11, 46–48. [CrossRef]
48. Rodriguez-Amaya, D.B.; Kimura, M. Carotenoids in Foods. In Harvestplus Handbook for Carotenoid Analysis; International Food

Policy Research Institute (IFPRI): Washington, DC, USA, 2004; p. 2.
49. Grabowska, M.; Wawrzyniak, D.; Rolle, K.; Chomczyński, P.; Oziewicz, S.; Jurga, S.; Barciszewski, J. Let food be your medicine:

Nutraceutical properties of lycopene. Food Funct. 2019, 10, 3090–3102. [CrossRef]
50. Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Press: Washington, DC, USA, 2001; pp. 1–45.
51. Meléndez-Martínez, A.J.; Stinco, C.M.; Mapelli-Brahm, P. Skin Carotenoids in Public Health and Nutricosmetics: The Emerging

Roles and Applications of the UV Radiation-Absorbing Colourless Carotenoids Phytoene and Phytofluene. Nutrients 2019, 11,
1093. [CrossRef]

52. Islamian, J.P.; Mehrali, H. Lycopene as a carotenoid provides radioprotectant and antioxidant effects by quenching radiation-
induced free radical singlet oxygen: An overview. Cell J. 2015, 16, 386.

53. Shi, J.; Le Maguer, M.; Bryan, M. Lycopene from tomatoes. Funct. Foods Biochem. Process. Asp. 2002, 2, 135–167.
54. Fernandes, R.F.; Maia, L.F.; Couri, M.R.; Costa, L.A.S.; de Oliveira, L.F.C. Raman spectroscopy as a tool in differentiating

conjugated polyenes from synthetic and natural sources. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 134, 434–441.
[CrossRef]

55. Roldán-Gutiérrez, J.M.; Dolores Luque de Castro, M. Lycopene: The need for better methods for characterization and determina-
tion. Trends Anal. Chem. 2007, 26, 163–170. [CrossRef]

56. Story, E.N.; Kopec, R.E.; Schwartz, S.J.; Harris, G.K. An Update on the Health Effects of Tomato Lycopene. Annu. Rev. Food Sci.
Technol. 2010, 1, 189–210. [CrossRef]

57. Petyaev, I.M. Lycopene deficiency in ageing and cardiovascular disease. Oxidative Med. Cell. Longev. 2016, 3218605. [CrossRef]
58. Dhuique-Mayer, C.; Servent, A.; Descalzo, A.; Mouquet-Rivier, C.; Amiot, M.J.; Achir, N. Culinary practices mimicking a

polysaccharide-rich recipe enhance the bioaccessibility of fat-soluble micronutrients. Food Chem. 2016, 210, 182–188. [CrossRef]
59. Marshall, J.H. Production of Secondary Metabolites from Acetyl Co-A Precursors in Bacterial and Fungal Hosts. Ph.D. Thesis,

University of California, Berkeley, CA, USA, 2004.
60. Thulasiram, H.V.; Poulter, C.D. Farnesyl diphosphate synthase: The art of compromise between substrate selectivity and

stereoselectivity. J. Am. Chem. Soc. 2006, 128, 15819–15823. [CrossRef]
61. Shahbani, Z.H.; Akbari, N.K.; Samoudi, M.; Omid, Y.N.; Abou Alhasanirad, S.; Safari, A.; Hosseini, F.; Hajhosseini, R. Effect of

concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli strains. Iran. J. Biotechnol. 2009, 7,
224–232.

62. Hong, J.; Park, S.H.; Kim, S.; Kim, S.W.; Hahn, J.S. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme
engineering and increasing membrane flexibility and NAPDH production. Appl. Microbiol. Biotechnol. 2019, 103, 211–223.
[CrossRef] [PubMed]

63. Ilahy, R.; Siddiqui, M.W.; Tlili, I.; Montefusco, A.; Piro, G.; Hdider, C.; Lenucci, M.S. When color really matters: Horticultural
performance and functional quality of high-lycopene tomatoes. Crit. Rev. Plant Sci. 2018, 37, 15–53. [CrossRef]

64. Khachik, F.; Carvalho, L.; Bernstein, P.S.; Muir, G.J.; Zhao, D.Y.; Katz, N.B. Chemistry, distribution, and metabolism of tomato
carotenoids and their impact on human health. Exp. Biol. Med. 2002, 227, 845–851. [CrossRef]

65. Liu, C.; Lian, F.; Smith, D.E.; Russell, R.M.; Wang, X.D. Lycopene supplementation inhibits lung squamous metaplasia and
induces apoptosis via up-regulating insulin-like growth factor-binding protein 3 in cigarette smoke-exposed ferrets. Cancer Res.
2003, 63, 3138–3144. [PubMed]

http://doi.org/10.1093/jn/135.8.2060S
http://www.ncbi.nlm.nih.gov/pubmed/16046742
http://doi.org/10.1161/01.ATV.15.8.1057
http://doi.org/10.3390/molecules16021710
http://doi.org/10.1016/S0166-1280(01)00424-9
http://doi.org/10.1021/jp8019705
http://doi.org/10.3390/catal11040462
http://doi.org/10.1016/S0308-8146(96)00177-X
http://doi.org/10.1080/10408398.2013.817381
http://www.ncbi.nlm.nih.gov/pubmed/25671774
http://doi.org/10.1017/S0043933917001040
http://doi.org/10.1016/j.aaspro.2016.12.008
http://doi.org/10.1039/C9FO00580C
http://doi.org/10.3390/nu11051093
http://doi.org/10.1016/j.saa.2014.06.022
http://doi.org/10.1016/j.trac.2006.11.013
http://doi.org/10.1146/annurev.food.102308.124120
http://doi.org/10.1155/2016/3218605
http://doi.org/10.1016/j.foodchem.2016.04.037
http://doi.org/10.1021/ja065573b
http://doi.org/10.1007/s00253-018-9449-8
http://www.ncbi.nlm.nih.gov/pubmed/30343427
http://doi.org/10.1080/07352689.2018.1465631
http://doi.org/10.1177/153537020222701002
http://www.ncbi.nlm.nih.gov/pubmed/12810641


Antioxidants 2022, 11, 232 15 of 21

66. Stahl, W.; Sies, H. Uptake of lycopene and its geometrical isomers is greater from heat-processed than from unprocessed tomato
juice in humans. J. Nutr. 1992, 122, 2161–2166. [CrossRef]

67. Re, R.; Fraser, P.D.; Long, M.; Bramley, P.M.; Rice-Evans, C. Isomerization of lycopene in the gastric milieu. Biochem. Biophys. Res.
Commun. 2001, 281, 576–581. [CrossRef] [PubMed]

68. During, A.; Harrison, E.H. Intestinal absorption and metabolism of carotenoids: Insights from cell culture. Arch. Biochem. Biophys.
2004, 430, 77–88. [CrossRef]

69. Reboul, E. Mechanisms of carotenoid intestinal absorption: Where do we stand? Nutrients 2019, 11, 838. [CrossRef] [PubMed]
70. Mapelli-Brahm, P.; Margier, M.; Desmarchelier, C.; Halimi, C.; Nowicki, M.; Borel, P.; Meléndez-Martínez, A.J.; Reboul, E.

Comparison of the bioavailability and intestinal absorption sites of phytoene, phytofluene, lycopene and β-carotene. Food Chem.
2019, 300, 125232. [CrossRef]

71. During, A.; Dawson, H.D.; Harrison, E.H. Carotenoid transport is decreased and expression of the lipid transporters SR-BI,
NPC1L1, and ABCA1 is downregulated in caco-2 cells treated with ezetimibe. J. Nutr. 2005, 135, 2305–2312. [CrossRef]

72. Moussa, M.; Landrier, J.; Reboul, E.; Ghiringhelli, O.; Comera, C.; Collet, X.; Borel, P. Lycopene absorption in human intestinal
cells and in mice involves scavenger receptor class B type I but not Niemann-Pick C1-like 1. J. Nutr. 2008, 138, 1432–1436.
[CrossRef] [PubMed]

73. Arballo, J.; Amengual, J.; Erdman, J.W. Lycopene: A critical review of digestion, absorption, metabolism, and excretion.
Antioxidants 2021, 10, 342. [CrossRef]

74. Clinton, S.K. Lycopene: Chemistry, biology, and implications for human health and disease. Nutr. Rev. 1998, 56, 35–51. [CrossRef]
75. Przybylska, S. Lycopene—A bioactive carotenoid offering multiple health benefits: A review. Int. J. Food Sci. Technol. 2020, 55,

11–32. [CrossRef]
76. Boileau, P.; Krishnan, S.G.; Tinsi, L.; Walch, G.; Coste, J.S.; Molé, D. Tuberosity malposition and migration: Reasons for poor

outcomes after hemiarthroplasty for displaced fractures of the proximal humerus. J. Shoulder Elb. Surg. 2002, 11, 401–412.
[CrossRef] [PubMed]

77. Gouin, J.P.; Glaser, R.; Malarkey, W.B.; Beversdorf, D.; Kiecolt-Glaser, J. Chronic stress, daily stressors, and circulating inflammatory
markers. Health Psychol. 2012, 31, 264. [CrossRef] [PubMed]

78. Suresh, P.; Matthews, A.; Coyne, I. Stress and stressors in the clinical environment: A comparative study of fourth-year student
nurses and newly qualified general nurses in Ireland. J. Clin. Nurs. 2013, 22, 770–779. [CrossRef] [PubMed]

79. Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [CrossRef] [PubMed]
80. Mao, X.; Gu, C.; Chen, D.; Yu, B.; He, J. Oxidative stress-induced diseases and tea polyphenols. Oncotarget 2017, 8, 81649–81661.

[CrossRef]
81. Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al.

Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757. [CrossRef]
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