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Lycopene overproduction 
in Saccharomyces cerevisiae through combining 
pathway engineering with host engineering
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Abstract 

Background: Microbial production of lycopene, a commercially and medically important compound, has received 
increasing concern in recent years. Saccharomyces cerevisiae is regarded as a safer host for lycopene production than 
Escherichia coli. However, to date, the lycopene yield (mg/g DCW) in S. cerevisiae was lower than that in E. coli and did 
not facilitate downstream extraction process, which might be attributed to the incompatibility between host cell and 
heterologous pathway. Therefore, to achieve lycopene overproduction in S. cerevisiae, both host cell and heterologous 
pathway should be delicately engineered.

Results: In this study, lycopene biosynthesis pathway was constructed by integration of CrtE, CrtB and CrtI in S. 

cerevisiae CEN.PK2. When YPL062W, a distant genetic locus, was deleted, little acetate was accumulated and approxi-
mately 100 % increase in cytosolic acetyl-CoA pool was achieved relative to that in parental strain. Through screening 
CrtE, CrtB and CrtI from diverse species, an optimal carotenogenic enzyme combination was obtained, and CrtI from 
Blakeslea trispora (BtCrtI) was found to have excellent performance on lycopene production as well as lycopene pro-
portion in carotenoid. Then, the expression level of BtCrtI was fine-tuned and the effect of cell mating types was also 
evaluated. Finally, potential distant genetic targets (YJL064W, ROX1, and DOS2) were deleted and a stress-responsive 
transcription factor INO2 was also up-regulated. Through the above modifications between host cell and caroteno-
genic pathway, lycopene yield was increased by approximately 22-fold (from 2.43 to 54.63 mg/g DCW). Eventually, in 
fed-batch fermentation, lycopene production reached 55.56 mg/g DCW, which is the highest reported yield in yeasts.

Conclusions: Saccharomyces cerevisiae was engineered to produce lycopene in this study. Through combining host 
engineering (distant genetic loci and cell mating types) with pathway engineering (enzyme screening and gene fine-
tuning), lycopene yield was stepwise improved by 22-fold as compared to the starting strain. The highest lycopene 
yield (55.56 mg/g DCW) in yeasts was achieved in 5-L bioreactors. This study provides a good reference of combinato-
rial engineering of host cell and heterologous pathway for microbial overproduction of pharmaceutical and chemical 
products.
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Background
Artificial biosynthetic pathway and host cell are two 

fundamental elements for microbe-based heterologous 

biosynthesis of natural products. On one hand, poten-

tial metabolic and regulatory issues from host cell play 

an important role in pathway productivity [1–4]. One-

hundred distant genetic loci that are not directly involved 

in target pathway were identified to influence carotenoid 

production significantly in Saccharomyces cerevisiae [5]. 

On the other hand, balanced metabolic flux between 

modules in target pathway is another important issue to 

improve pathway performance. �rough multivariate-

modular optimization of taxadiene metabolic pathway, 

a 15,000-fold increase in taxadiene titer was observed 
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in Escherichia coli [6]. A “push–pull-block” pathway 

manipulation strategy significantly enhanced terpenoids 

production in yeasts [7, 8]. �us, optimal pathway out-

put can be achieved by means of delicate engineering of 

both target pathway and host cell [9]. It was reported that 

bisabolene production in S. cerevisiae was increased by 

20 times through deleting multiple distant genes related 

to intracellular mevalonate level and manipulating the 

expression level of three genes involved in mevalonate 

(MVA) pathway [10]. Swidah et  al. [11] reported that 

through the combinatorial effects of deletion of ADH1 to 

restore redox imbalance, expression of a butanol resist-

ant allele GCD1, and manipulation of acetyl-CoA for-

mation module, butanol production in S. cerevisiae was 

increased by more than 30 times. In a word, combina-

torial engineering host cell with heterologous pathway 

offers a promising alternative to achieve better metabolic 

flux balance and higher output of heterologous pathway.

Lycopene has long been used as functional food, nutra-

ceutical, pharmaceutical and cosmetic due to its anti-

oxidative and anti-cancer activities [12, 13]. Compared 

to chemical synthesis and extraction from tomatoes, 

microbial production of lycopene is more economical 

and sustainable. In recent years, lycopene production 

was successfully realized in Blakeslea trispora, E. coli 

and yeasts. However, regarding to food safety issues, it 

is controversial to use B. trispora or E. coli for lycopene 

synthesis, since E. coli would release endotoxin [14] and 

B. trispora requires the addition of cyclase inhibitors 

[15]. Saccharomyces cerevisiae is generally recognized as 

safe (GRAS), robust and preferred organism for indus-

trial use. To date, lycopene yield in S. cerevisiae was 

increased to 24.41 mg/g DCW with elaborate efforts in 

directed evolution and copy number variation of Crt 

genes from Xanthophyllomyces dendrorhous [16]. How-

ever, the lycopene yield was still much lower than that 

in E. coli [17, 18], which did not facilitate downstream 

extraction process. It was speculated that such low yield 

might be attributed to the incompatibility between S. 

cerevisiae and the heterologous pathway. �erefore, 

combinatorial engineering S. cerevisiae with a heterolo-

gous pathway may offer an effective solution to enhance 

lycopene yield.

In this study, heterologous carotenogenic pathway and 

its recruited host S. cerevisiae were combinatorially engi-

neered (Fig.  1c). Acetyl-CoA formation was enhanced 

by the deletion of YPL062W. A novel and optimal com-

bination of geranylgeranyl diphosphate synthase (CrtE, 

or GGPPS), phytoene synthase (CrtB) and phytoene 

desaturase (CrtI) was generated through related enzyme 

screening from diverse species. �e expression level of 

CrtI, which has significant impact on lycopene produc-

tion as well as lycopene proportion in carotenoid, was 

fine-tuned by varying promoter strength and copy num-

ber. �e influences of different cell mating types and 

potential distant genetic loci were also evaluated. Using 

this combinatorial engineering strategy, we achieved 

approximately 22-fold improvement (up to 54.63  mg/g 

DCW) in lycopene yield, which provides a good refer-

ence to increase the compatibility between heterologous 

pathway and host cell for microbial production of valu-

able molecules.

Methods
Materials

All oligonucleotides were purchased from Invitrogen. 

Q5 DNA polymerase and PmeI restriction endonuclease 

were purchased from New England Biolabs (MA, USA). 

DNA purification and plasmids isolation kits were pur-

chased from Tiangen (Beijing, China). CloneJET PCR 

Cloning Kit was purchased from Fermentas (MD, USA). 

DNA sequencing was conducted by Genewiz (Beijing, 

China). Standards of lycopene and phytoene were pur-

chased from Sigma (Sigma-Aldrich, MO, USA). Stand-

ards of phytofluene, ζ-carotene and neurosporene were 

purchased from Express (Beijing, China).

Strains and culture conditions

Escherichia coli DH5α was used for routine cloning pro-

cedures, and was cultivated at 37  °C in Luria–Bertani 

(LB) medium containing 100 μg/mL ampicillin for selec-

tion. All the yeast strains engineered in this study are 

based on homologous haploid S. cerevisiae strains, CEN.

PK2-1C (MATa) or CEN.PK2-1D (MATα). Engineered 

yeast strains were selected on synthetic complete (SC) 

medium (0.67 % yeast nitrogen base without amino acids, 

2 % glucose, and appropriate amino acid drop-out mix), 

or YPD medium (2 % peptone, 1 % yeast extract, and 2 % 

glucose) with 200  μg/mL geneticin, 300  μg/mL hygro-

mycin B or 50  μg/mL bleomycin when needed. YPDG 

medium, consisting of 2  % glucose (unless otherwise 

indicated), 2 % peptone, 1 % yeast extract and 1 % D-(+)-

galactose, was used for shake-flask fermentations.

For shake-flask fermentation, yeast glycerol-stock was 

inoculated into a tube containing 2 mL YPD medium for 

overnight growth, then all the preculture was inoculated 

into a 250 mL shake-flask containing 25 mL YPD. After 

growing to the mid-log phase, the seed was transferred to 

50 mL fresh YPDG medium at an initial OD600 of 0.5 and 

grown at 30 °C for 48 h.

Construction of plasmids and strains

Saccharomyces cerevisiae strains and plasmids used in 

this study are summarized in Table 1. All oligonucleotides 

used for construction of the above plasmids and strains 

are listed in Additional file  1: Table S1. Construction 
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procedures of plasmids and integration modules are 

shown in Fig.  1b. All heterologous genes used for lyco-

pene biosynthesis were codon-optimized and synthesized 

by Genewiz (Beijing, China) for expression in S. cerevi-

siae. Endogenous truncated 3-hydroxy-3-methylglutaryl 

coenzyme A reductase (tHMG1) [19], promoters, termi-

nators and integration homologous arms (except TRP1 

homologous arm) used in this study were amplified from 

the genomic DNA of S. cerevisiae CEN.PK2-1C. Auxo-

troph markers (LEU2, HIS3) and TRP1 homologous 

arm were amplified from the genomic DNA of S. cer-

evisiae S288C. Antibiotic markers (KanMX, HphMX and 

BleMX) were amplified from plasmid pKan, pHph and 

pBle (owned by our laboratory), respectively. Overlap 

extension PCR (OE-PCR) was used to assemble the above 

parts into modules according to Additional file 1: Figure 

S1. �e resulting modules were purified and cloned into 

pJET1.2/blunt vector following the protocol of CloneJET 

PCR Cloning Kit (Fermentas, MD, USA), obtaining plas-

mid pCY series (Table 1). Finally, all the integration mod-

ules were digested from plasmids with PmeI, then purified 

and transformed into yeast for genomic integration using 

the LiAc/SS carrier DNA/PEG method [20]. For gene 

deletions, one-step integration of PCR-amplified deletion 

cassettes was adopted [21]. Gene deletions and genomic 

integrations were verified by diagnostic PCR.

Fig. 1 Schematic representation of the engineering strategies for enhanced lycopene production in S. cerevisiae. a The engineered lycopene 
biosynthetic pathway in S. cerevisiae. Genetic modifications are noted by thick arrows. Red arrows indicate the heterologous lycopene biosynthetic 
pathway consisting of CrtE, CrtB and CrtI, which starts either from FPP (solid arrow) or directly from IPP and DMAPP (dashed arrow). The enzyme 
overexpressed in the described lycopene-producing strain is highlighted in blue. b Construction of plasmids and integration modules. c The ration-
ale of experiment design: combinatorial engineering of host cell and heterologous pathway
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Table 1 S. cerevisiae strains and plasmids used in this study

Description Source

Strain name

 CEN.PK2-1C MATa, ura3-52, trp1-289, leu2-3,112, his3∆1, MAL2-8C, SUC2 EUROSCARF

 CEN.PK2-1D MATα, ura3-52, trp1-289, leu2-3,112, his3∆1, MAL2-8C, SUC2 EUROSCARF

 SyBE_
Sc14C01

CEN.PK2-1C, ∆gal80::HIS3 This study

 SyBE_
Sc14C02

CEN.PK2-1C, ∆gal1 ∆gal7 ∆gal10::HIS3 This study

 SyBE_
Sc14C06

SyBE_Sc14C01, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-PaCrtE-TGPM1 This study

 SyBE_
Sc14C07

SyBE_Sc14C02, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-PaCrtE-TGPM1 This study

 SyBE_
Sc14C10

CEN.PK2-1C, ∆gal1 ∆gal7 ∆gal10::HIS3, ∆ypl062w::KanMX This study

 SyBE_
Sc14C21

SyBE_Sc14C10, trp1::TRP1_TCYC1-AaCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-PaCrtE-TGPM1 This study

 SyBE_
Sc14C51

SyBE_Sc14C10, trp1::TRP1_TCYC1-PaCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-PaCrtE-TGPM1 This study

 SyBE_
Sc14C52

SyBE_Sc14C10, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-PaCrtE-TGPM1 This study

 SyBE_
Sc14C53

SyBE_Sc14C10, trp1::TRP1_TCYC1-AaCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-PaCrtE-TGPM1 This study

 SyBE_
Sc14C22

SyBE_Sc14C10, trp1::TRP1_TCYC1-PaCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-PaCrtE-TGPM1 This study

 SyBE_
Sc14C23

SyBE_Sc14C10, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-PaCrtE-TGPM1 This study

 SyBE_
Sc14C24

SyBE_Sc14C10, trp1::TRP1_TCYC1-AaCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-SaCrtE-TGPM1 This study

 SyBE_
Sc14C54

SyBE_Sc14C10, trp1::TRP1_TCYC1-PaCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-SaCrtE-TGPM1 This study

 SyBE_
Sc14C55

SyBE_Sc14C10, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-SaCrtE-TGPM1 This study

 SyBE_
Sc14C56

SyBE_Sc14C10, trp1::TRP1_TCYC1-AaCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-SaCrtE-TGPM1 This study

 SyBE_
Sc14C25

SyBE_Sc14C10, trp1::TRP1_TCYC1-PaCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-SaCrtE-TGPM1 This study

 SyBE_
Sc14C26

SyBE_Sc14C10, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-SaCrtE-TGPM1 This study

 SyBE_
Sc14C27

SyBE_Sc14C10, trp1::TRP1_TCYC1-AaCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-AfCrtE-TGPM1 This study

 SyBE_
Sc14C57

SyBE_Sc14C10, trp1::TRP1_TCYC1-PaCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-AfCrtE-TGPM1 This study

 SyBE_
Sc14C58

SyBE_Sc14C10, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-AfCrtE-TGPM1 This study

 SyBE_
Sc14C59

SyBE_Sc14C10, trp1::TRP1_TCYC1-AaCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-AfCrtE-TGPM1 This study

 SyBE_
Sc14C28

SyBE_Sc14C10, trp1::TRP1_TCYC1-PaCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-AfCrtE-TGPM1 This study

 SyBE_
Sc14C29

SyBE_Sc14C10, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-AfCrtE-TGPM1 This study

 SyBE_
Sc14C30

SyBE_Sc14C10, trp1::TRP1_TCYC1-AaCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-BtCrtE-TGPM1 This study

 SyBE_
Sc14C60

SyBE_Sc14C10, trp1::TRP1_TCYC1-PaCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-BtCrtE-TGPM1 This study

 SyBE_
Sc14C61

SyBE_Sc14C10, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-BtCrtE-TGPM1 This study

 SyBE_
Sc14C62

SyBE_Sc14C10, trp1::TRP1_TCYC1-AaCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-BtCrtE-TGPM1 This study
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Table 1 continued

Description Source

 SyBE_
Sc14C31

SyBE_Sc14C10, trp1::TRP1_TCYC1-PaCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-BtCrtE-TGPM1 This study

 SyBE_
Sc14C32

SyBE_Sc14C10, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-BtCrtE-TGPM1 This study

 SyBE_
Sc14C33

SyBE_Sc14C10, trp1::TRP1_TCYC1-AaCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1 This study

 SyBE_
Sc14C63

SyBE_Sc14C10, trp1::TRP1_TCYC1-PaCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1 This study

 SyBE_
Sc14C64

SyBE_Sc14C10, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-AaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1 This study

 SyBE_
Sc14C65

SyBE_Sc14C10, trp1::TRP1_TCYC1-AaCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1 This study

 SyBE_
Sc14C34

SyBE_Sc14C10, trp1::TRP1_TCYC1-PaCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1 This study

 SyBE_
Sc14C35

SyBE_Sc14C10, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1 This study

 SyBE_
Sc14C40

SyBE_Sc14C10, leu2::LEU2_TCYC1-RFP This study

 SyBE_
Sc14C41

SyBE_Sc14C10, leu2::LEU2_TCYC1-RFP-PGAL3 This study

 SyBE_
Sc14C42

SyBE_Sc14C10, leu2::LEU2_TCYC1-RFP-PGAL7 This study

 SyBE_
Sc14C43

SyBE_Sc14C10, leu2::LEU2_TCYC1-RFP-PGAL10 This study

 SyBE_
Sc14C44

SyBE_Sc14C10, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TCYC1-BtCrtI-PGAL3-TACT1-tHMG1-PGAL10-PGAL1-
TmCrtE-TGPM1

This study

 SyBE_
Sc14C45

SyBE_Sc14C10, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TCYC1-BtCrtI-PGAL7-TACT1-tHMG1-PGAL10-PGAL1-
TmCrtE-TGPM1

This study

 SyBE_
Sc14C46

SyBE_Sc14C10, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-PaCrtB-TPGK1, leu2::LEU2_TCYC1-BtCrtI-PGAL7-TACT1-tHMG1-PGAL10-PGAL1-
TmCrtE-TGPM1, ∆YGLCtau3::HphMX_PGAL7-BtCrtI-TCYC1

This study

 SyBE_
Sc14D04

CEN.PK2-1D, ∆gal1 ∆gal7 ∆gal10::HIS3, ∆ypl062w::KanMX, trp1::TRP1_TCYC1-BtCrtI-PGAL10-PGAL1-PaCrtB-TPGK1 This study

 SyBE_
Sc14D05

SyBE_Sc14D04, leu2::LEU2_TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1 This study

 SyBE_
Sc14D06

SyBE_Sc14D04, leu2::LEU2_TCYC1-BtCrtI-PGAL3-TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1 This study

 SyBE_
Sc14D07

SyBE_Sc14D04, leu2::LEU2_TCYC1-BtCrtI-PGAL7-TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1 This study

 SyBE_
Sc14D08

SyBE_Sc14D04, leu2::LEU2_TCYC1-BtCrtI-PGAL7-TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1, ∆YGLCtau3::HphMX_PGAL7-BtCrtI-TCYC1 This study

 SyBE_
Sc14D10

SyBE_Sc14D04, leu2::LEU2_TCYC1-BtCrtI-PGAL7-TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1, ∆yjl064w::BleMX This study

 SyBE_
Sc14D11

SyBE_Sc14D04, leu2::LEU2_TCYC1-BtCrtI-PGAL7-TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1, ∆rox1::BleMX This study

 SyBE_
Sc14D12

SyBE_Sc14D04, leu2::LEU2_TCYC1-BtCrtI-PGAL7-TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1, ∆dos2::BleMX This study

 SyBE_
Sc14D13

SyBE_Sc14D04, leu2::LEU2_TCYC1-BtCrtI-PGAL7-TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1, ∆rox1::BleMX, ∆dos2::HphMX This study

 SyBE_
Sc14D14

SyBE_Sc14D04, leu2::LEU2_TCYC1-BtCrtI-PGAL7-TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1, ∆rox1::BleMX, 
∆YPRCdelta15::HphMX_PGAL1-INO2-TCPS1

This study

Plasmid

 pJET1.2/blunt Blunt-end PCR fragments cloning vector Fermentas

 pCY01 pJET1.2/blunt possessing TRP1 homologous arm, TCYC1-AaCrtI-PGAL10-PGAL1-AaCrtB-TPGK1 This study

 pCY02 pJET1.2/blunt possessing TRP1 homologous arm, TCYC1-PaCrtI-PGAL10-PGAL1-PaCrtB-TPGK1 This study

 pCY03 pJET1.2/blunt possessing TRP1 homologous arm, TCYC1-BtCrtI-PGAL10-PGAL1-PaCrtB-TPGK1 This study

 pCY04 pJET1.2/blunt possessing LEU2 homologous arm with LEU2 marker, TACT1-tHMG1-PGAL10-PGAL1-PaCrtE-TGPM1 This study
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Assay of extracellular glucose, ethanol, acetate 

and glycerol

�e concentrations of residual glucose, ethanol, acetate 

and glycerol in the medium were determined by HPLC 

(Waters Corp., USA) with a refractive index detector. 

Aminex HPX-87H column (BioRad, CA) was used for 

separation at the column temperature of 65  °C. 5  mM 

H2SO4 was used as eluent with a flow rate of 0.6  mL/

min.

Assay of acetyl-CoA

Cells were sampled during the course of lycopene shake-

flask fermentation for acetyl-CoA assay. Acetyl-CoA was 

extracted as previously described [22] and analyzed by 

the acetyl-CoenzymeA Assay Kit (Sigma-Aldrich). �e 

acetyl-CoA concentration was normalized by dry cell 

weight.

Assay of promoter strength

Fluorescence intensity of red fluorescence protein (RFP) 

was used to characterize the strengths of GAL3, GAL7 

and GAL10 promoters as previously described [23]. �e 

strain without promoter fused with RFP (SyBE_Sc14C40) 

was used as the negative control. Culturing procedures 

of all the test strains (SyBE_Sc14C40–SyBE_Sc14C43; 

Table  1) were the same as lycopene fermentation in 

shake-flasks. Every 6  h of cultivation, cells were har-

vested, washed and diluted with phosphate-buffered 

saline (PBS) into an OD600 of 0.3–0.4 for fluorescence 

assay. RFP fluorescence intensity was detected by Spec-

traMax M2 microplate reader with excitation and emis-

sion wavelengths at 587 and 611  nm, respectively. 

Promoter strength was determined as the ratio of the 

fluorescence to OD600 for each strain.

Extraction and analysis of carotenoid

Extraction of carotenoid was as described by Xie et  al. 

[24] with some modifications. Briefly, cells harvested 

from cultures were washed, resuspended in boiling 3  N 

HCl for 2 min, and cooled in an ice-bath for 3 min. �en, 

cells debris were washed twice with water, resuspended 

in acetone containing 1  % BHT (w/v), vortexed with 

glass beads (425–600 µm, Sigma) until colorless, and fol-

lowed by centrifugation. �e acetone phase containing 

the extracted carotenoid was filtered for HPLC analysis. 

A HPLC system (Waters e2695) equipped with a BDS 

Hypersil C18 column (4.6 × 150 mm, 5 µm) and a UV/

VIS detector (Waters 2489) was used to analyze the pro-

duced carotenoid. �e signals of phytoene, phytofluene, 

ζ-carotene, neurosporene and lycopene were detected 

at 287, 349, 401, 440 and 471 nm, respectively [25]. �e 

mobile phase consisted of methanol–acetonitrile-dichlo-

romethane (21:21:8 v/v) with a flow rate of 1 mL/min at 

30 °C [26]. Total carotenoid was calculated as the sum of 

the above carotenoids.

Microscopy

Microscopic analysis was used to investigate lycopene 

formation of strain SyBE_Sc14C45 during shake-flask 

fermentation with YPDG medium. SyBE_Sc14C45 cul-

tivated in YPD medium (without galactose) was used as 

control. After 36  h of cultivation, cells were harvested, 

washed and diluted with sterile water into an OD600 of 

5.0. Images were taken with an Olympus CX41 (Olym-

pus, Tokyo, Japan).

Fed-batch fermentation

Strain SyBE_Sc14D14 was selected for fed-batch fer-

mentation. Seed cultures were prepared by inoculating 

Table 1 continued

Description Source

 pCY05 pJET1.2/blunt possessing LEU2 homologous arm with LEU2 marker, TACT1-tHMG1-PGAL10-PGAL1-SaCrtE-TGPM1 This study

 pCY06 pJET1.2/blunt possessing LEU2 homologous arm with LEU2 marker, TACT1-tHMG1-PGAL10-PGAL1-AfCrtE-TGPM1 This study

 pCY07 pJET1.2/blunt possessing LEU2 homologous arm with LEU2 marker, TACT1-tHMG1-PGAL10-PGAL1-BtCrtE-TGPM1 This study

 pCY08 pJET1.2/blunt possessing LEU2 homologous arm with LEU2 marker, TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-TGPM1 This study

 pCY09 pJET1.2/blunt possessing LEU2 homologous arm with LEU2 marker, TCYC1-RFP This study

 pCY10 pJET1.2/blunt possessing LEU2 homologous arm with LEU2 marker, TCYC1-RFP-PGAL3 This study

 pCY11 pJET1.2/blunt possessing LEU2 homologous arm with LEU2 marker, TCYC1-RFP-PGAL7 This study

 pCY12 pJET1.2/blunt possessing LEU2 homologous arm with LEU2 marker, TCYC1-RFP-PGAL10 This study

 pCY13 pJET1.2/blunt possessing LEU2 homologous arm with LEU2 marker, TCYC1-BtCrtI-PGAL3-TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-
TGPM1

This study

 pCY14 pJET1.2/blunt possessing LEU2 homologous arm with LEU2 marker, TCYC1-BtCrtI-PGAL7-TACT1-tHMG1-PGAL10-PGAL1-TmCrtE-
TGPM1

This study

 pCY15 pJET1.2/blunt possessing YGLCtau3 homologous arm with HphMX marker, PGAL7-BtCrtI-TCYC1 This study

 pCY40 pJET1.2/blunt possessing YPRCdelta15 homologous arm with HphMX marker, PGAL1-INO2-TCPS1 This study
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250 µL of glycerol-stock into a 250 mL shake-flask con-

taining 25 mL YPD and culturing at 30 °C for 16 h to an 

OD600 of 6–7, and then 15 mL of precultures were inocu-

lated into a 2 L shake-flask containing 400 mL YPD and 

subcultured for an additional 8 h at 30 °C to an OD600 of 

5–6. Seed cultures were transferred into a 5  L bioreac-

tor (BaiLun, China) containing 2  L YPD batch medium 

at a 10 % (v/v) inoculum. Fermentation was carried out 

at 30  °C with an air flow rate of 1.5 vvm. �e dissolved 

oxygen was kept at 30 % by adjusting the agitation speed 

from 400 to 700  rpm and pH was controlled at 6.0 by 

automatic addition of 6 M sodium hydroxide.

According to the employed galactose-inducible sys-

tem for lycopene biosynthesis, fed-batch fermentation 

was divided into two stages: cell growth stage and lyco-

pene production stage. During the first stage to achieve 

maximal cell growth, concentrated glucose solution 

(500 g/L) was fed periodically into bioreactors to keep 

the glucose concentration under 2  g/L. In the mean-

while, 100  mL of the concentrated yeast extract solu-

tion (400  g/L) was fed periodically into the bioreactor 

every 10 h. Once cell growth entered stationary phase, 

glucose and yeast extract feedings were ceased, and 

10  g/L of D-(+)-galactose was added to induce lyco-

pene biosynthesis. After the depletion of the residual 

glucose, cells began to consume ethanol converted by 

glucose consumption. Ethanol concentration was con-

trolled below 5 g/L by adjusting 100 % ethanol feeding 

rate until harvest.

Results and discussion
Construction of inducible lycopene biosynthesis pathway

To avoid the potential toxicity of lycopene, genes respon-

sible for carotenoid synthesis were placed under the con-

trol of galactose-regulated GAL promoters. Δgal1 Δgal7 

Δgal10 and Δgal80 were two routine strategies to employ 

GAL promoters, since Δgal1 Δgal7 Δgal10 eliminates 

galactose utilization and Δgal80 does not require galac-

tose for induction [27]. Here, S. cerevisiae SyBE_Sc14C01 

(Δgal80) and SyBE_Sc14C02 (Δgal1 Δgal7 Δgal10) were 

chosen as the host cells for lycopene production. �e 

carotenogenic pathway was constructed by genomic inte-

gration of CrtE, CrtB, CrtI and tHMG1 in the respective 

hosts (Fig. 1a). As a result, strain SyBE_Sc14C07 (Δgal1 

Δgal7 Δgal10) with CrtE and CrtB from Pantoea agglom-

erans and CrtI from Blakeslea trispora produced 78.8 % 

higher lycopene yield (4.31  mg/g DCW) than strain 

SyBE_Sc14C06 (Δgal80) harboring the same Crt genes 

(2.43  mg/g DCW) after 48  h of shake-flask culture in 

YPDG medium (Additional file 1: Figure S2). �us, strain 

SyBE_Sc14C02 (Δgal1 Δgal7 Δgal10) was selected as the 

host cell for the further study.

Enhancement of acetyl-CoA pool by the deletion 

of YPL062 W

Δypl062w (Additional file  1: Table S2) was previously 

reported to enhance carotenoid production by increasing 

the intracellular mevalonate level [10], but the mecha-

nism was not clear. In order to testify whether Δypl062w 

is benefit to lycopene production, YPL062W was deleted 

in SyBE_Sc14C07, generating strain SyBE_Sc14C23. As a 

result, Δypl062w increased lycopene yield by more than 

1.5-fold when cultured in YPDG medium with 2 % glu-

cose (Fig.  2a), which is consistent with previous work 

[10]. Compared to strain SyBE_Sc14C07 with 0.51  g/L 

extracellular acetate accumulation, no acetate accumu-

lation was observed in strain SyBE_Sc14C23 (Fig.  2c). 

Furthermore, SyBE_Sc14C07 and SyBE_Sc14C23 were 

cultivated in YPDG media with higher (4 %) glucose. As 

shown in Fig.  2b and d, 10.84  mg/g DCW of lycopene 

together with very little amount of acetate was detected 

in SyBE_Sc14C23, whereas only 70  µg/g DCW of lyco-

pene and up to 5.04 g/L of acetate were obtained in SyBE_

Sc14C07. It was also observed that cell growth of strain 

without Δypl062w was abolished when acetate accumu-

lated up to 1.0 g/L (Fig. 2d), which is in accordance with 

�omas et  al. [28]. Moreover, when SyBE_Sc14C07 was 

cultured in YPDG medium with 2  % glucose, different 

concentrations (0, 0.5, 1.0, 1.5  g/L) of acetic acid were 

added to the media at the time of 7 h when glucose was 

exhausted (indicated as arrow in Additional file  1: Fig-

ure S3). Cell growth was also abolished when the added 

acetic acid concentration exceeded 1.0  g/L (Additional 

file 1: Figure S3A). Lycopene yield was dropped by 98.4 % 

(from 4.31 mg/g DCW to 67 µg/g DCW) when additional 

0.5  g/L acetic acid was added (Additional file  1: Figure 

S3B). No lycopene production was detected when 1.0 g/L 

acetic acid was added (Additional file 1: Figure S3B), sug-

gesting acetate accumulation would be harmful to lyco-

pene biosynthesis. �us, Δypl062w acted as an important 

role in S. cerevisiae to reduce acetate accumulation.

As is known, acetate is the direct precursor for cyto-

solic acetyl-CoA. �erefore, we assumed that Δypl062w 

would enhance cytosolic acetyl-CoA pool from acetate. 

As expected, the cytosolic acetyl-CoA concentrations in 

SyBE_Sc14C23 were increased by approximately 100  % 

than those in SyBE_Sc14C07 at early times (Fig.  2e, f ). 

When lycopene was rapidly accumulated, SyBE_Sc14C23 

demonstrated the same cytosolic acetyl-CoA level but 

higher lycopene production as compared to SyBE_

Sc14C07 (Fig. 2a, b, e, f ). �is result suggested the expan-

sion on lycopene production might be derived from the 

increase in acetyl-CoA supplement, since the intracellu-

lar mevalonate level of Δypl062w strain was significantly 

increased during terpenoid production [10]. �erefore, 
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Δypl062w enhanced “trapping” the carbon from acetate 

accumulation toward acetyl-CoA, which consequently 

improved MVA pathway flux and further lycopene pro-

duction. Our findings made us a better understanding of 

the effect of Δypl062w on MVA pathway.

Optimal combination of CrtE, CrtB and CrtI by screening 

enzymes from diverse sources

It is known that enzymes from different organisms often 

vary in catalytic activities [29, 30]. Besides, host cell 

compatibility may also affect the optimal performance 

of heterologous enzymes [16, 31]. �us, screening 

enzymes from diverse sources offers an effective strat-

egy to increase the productivity of heterologous pathway 

in specific host [29, 32]. To date, most of the caroteno-

genic genes employed in heterologous biosynthesis were 

derived from Pantoea, Paracoccus or Xanthophyllomyces 

species [33, 34]. However, in S. cerevisiae, the currently 

reported Crt genes for high-level carotenoid produc-

tion were only from X. dendrorhous [16, 24, 35]. In this 

study, we aimed to rebuild a carotenogenic pathway with 

high productivity in S. cerevisiae by screening enzymes 

Fig. 2 The effect of ∆ypl062w on lycopene production. S. cerevisiae SyBE_Sc14C07 and SyBE_Sc14C23 were cultivated in YPDG media containing 
different concentrations of glucose (2 %, left side; 4 %, right side), respectively, in shake-flasks for analysis of lycopene production (a, b), acetate accu-
mulation (c, d) and cytosolic acetyl-CoA level (e, f). The error bars represent standard deviation calculated from triplicate experiments
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(CrtE, CrtB, and CrtI) from some other species except 

X. dendrorhous. Five CrtEs originated from P. agglo-

merans (PaCrtE), Sulfolobus acidocaldarius (SaCrtE), 

Archaeoglobus fulgidus (AfCrtE), B. trispora (BtCrtE) 

and Taxus x media (TmCrtE), two CrtBs from P. agglo-

merans (PaCrtB) and Paracoccus sp. (formerly Agrobac-

terium aurantiacum) (AaCrtB), and three CrtIs from P. 

agglomerans (PaCrtI), Paracoccus sp. (AaCrtI) and B. 

trispora (BtCrtI) were selected for carotenoid biosyn-

thesis. As illustrated in Fig.  3, thirty lycopene-produc-

ing strains were constructed and their production was 

investigated. Consequently, the lycopene yield in strain 

SyBE_Sc14C35 harboring the best enzyme combination 

(TmCrtE, PaCrtB and BtCrtI) was increased by 7.5-fold, 

up to 36.75 mg/g DCW, and the lycopene proportion in 

carotenoid was 64.11 % (Fig. 3). �is strain was used as 

the candidate for the further optimization.

In general, CrtE, one of the rate-limiting enzymes 

in carotenoid pathway [36], was found to be crucial to 

the production yield of overall carotenoid. As shown 

in Fig.  3, strains harboring AfCrtE, BtCrtE or TmCrtE 

showed much higher yield of total carotenoid than that 

harboring PaCrtE or SaCrtE. TmCrtE was reported to 

possess a larger pocket and higher affinity for farnesyl 

diphosphate (FPP) binding than other GGPPSs [30], thus 

it was reasonable that strain with TmCrtE achieved high 

carotenoid yield. CrtE from B. trispora [37] was firstly 

well expressed in S. cerevisiae and achieved quite high 

yield of overall carotenoid, demonstrating that BtCrtE 

would be a promising GGPPS candidate for further 

study. AfCrtE can directly utilize dimethylallyl pyroph-

osphate (DMAPP)/isopentenyl pyrophosphate (IPP) to 

synthesize geranylgeranyl diphosphate (GGPP) and thus 

avoid competing FPP for sterols biosynthesis [38], which 

might explain the improved carotenoid production cata-

lyzed by AfCrtE. In addition to AfCrtE, SaCrtE was also a 

bifunctional FPP/GGPP synthase [39] and has been dem-

onstrated to increase diterpenoids production [40, 41]. 

But it was difficult to interpret the low carotenoid yield 

by SaCrtE according to our current data, which might 

be ascribed to the insufficient expression of SaCrtE or its 

incompatibility with CrtB and CrtI.

Phytoene, synthesized by CrtB from GGPP, is the first 

intermediate of the carotenoid pathway. �en lycopene was 

generated by CrtI through four successive dehydrogena-

tion steps from phytoene (Fig. 1a). As illustrated in Fig. 3, 

rather than lycopene, phytoene was one of the major com-

ponents of the total carotenoid in most of our engineered 

strains, indicating that CrtI-catalyzed conversion from phy-

toene to lycopene was another rate-limiting step, which is 

consistent with previous reports [16, 35]. To be noted, all 

the strains harboring BtCrtI showed much better perfor-

mance than strains harboring PaCrtI or AaCrtI, irrespec-

tive of lycopene yield or proportion in carotenoid (Fig. 3). 

BtCrtI, an enzyme from eukaryotic organsims, was firstly 

well expressed in S. cerevisiae and found to be more suit-

able for high-level conversion from phytoene to lycopene in 

S. cerevisise according to our results. �e molecular mecha-

nism for its high efficiency in conversion from phytoene to 

lycopene is an interesting topic in the field in future.

Fine-tuning of BtCrtI and selection of homologous haploid 

yeast hosts

Despite the improved lycopene yield in SyBE_Sc14C35, 

approximately 26  % of the total carotenoid was phy-

toene, which indicated that the phytoene conversion 

Fig. 3 Combinatorial optimization of CrtE, CrtB and CrtI from diverse species. Thirty lycopene-producing strains were constructed by screening 
enzymes from various sources and tested for lycopene production. Pa, Pantoea agglomerans; Sa, Sulfolobus acidocaldarius; Af, Archaeoglobus fulgidus; 
Bt, Blakeslea trispora; Tm, Taxus x media; Aa, Paracoccus sp. (formerly Agrobacterium aurantiacum). The error bars represent standard deviation calcu-
lated from triplicate experiments
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directed by BtCrtI was not efficient enough. In order to 

achieve higher lycopene proportion, the expression level 

of BtCrtI needs to be fine-tuned. Here, BtCrtI was fine-

tuned by adjusting different promoters and integration 

copy numbers. �e strengths of GAL promoters used 

in this step were characterized in strain SyBE_Sc14C10 

(CEN.PK2-1C, Δgal1 Δgal7 Δgal10, Δypl062w), and 

PGAL3 was found to be the weakest one (Additional file 1: 

Figure S4). When one additional copy of BtCrtI under 

the control of PGAL3 or PGAL7 was integrated in strain 

SyBE_Sc14C35, the lycopene proportion in the resulting 

strain SyBE_Sc14C44 or SyBE_Sc14C45 was increased by 

17.9 % (from 64.11 to 75.58 %) or 35.2 % (up to 86.68 %), 

respectively (Fig. 4). Moreover, a slight decrease in lyco-

pene yield was observed after another additional copy of 

PGAL7-BtCrtI integrated in SyBE_Sc14C45 (Fig. 4), which 

is similar to recent report [16]. To be noted, although the 

lycopene yield was modestly increased, the total carot-

enoid yield was decreased obviously after fine-tuning 

steps for higher lycopene proportion (Fig.  4). As shown 

in Additional file 1: Figure S5, most of the lycopene was 

accumulated in cell membrane, which is consistent with 

early reports [42, 43]. Rapid lycopene accumulation in 

cell membrane would lead to membrane stress or cell 

toxicity, which might explain the significant decrement in 

the content of total carotenoid after fine-tuning. �ere-

fore, increasing lycopene tolerance in S. cerevisiae would 

be an effective direction to improve lycopene yield.

Haploid cell type was reported to have significant influ-

ence on heterologous terpenoid production [44]. Jackson 

et  al. [45] found that MATa strain was more suitable to 

produce epi-cedrol than MATα strain, since MATa strain 

might synthesize more FPP for prenylation of the mat-

ing pheromone [46]. However, cell mating types did not 

have significant effect on linalool production [47]. Here, 

lycopene production in CEN.PK2-1C (MATa) and CEN.

PK2-1D (MATα) with the same genetic modifications 

was evaluated, respectively. �e strains (SyBE_Sc14D05–

SyBE_Sc14D08) derived from CEN.PK2-1D (MATα) 

achieved 12–15  % higher lycopene yield than strains 

(SyBE_Sc14C35, SyBE_Sc14C44–SyBE_Sc14C46) from 

CEN.PK2-1C (MATa) (Fig.  4), suggesting that MATα 

strain was preferred in the case of lycopene produc-

tion. Finally, the strain SyBE_Sc14D07 (MATα) achieved 

lycopene yield of 46.26 mg/g DCW with a proportion of 

82.36 % (Fig. 4).

E�ects of distant genetic loci on lycopene production

As the engineered metabolic pathways were highly 

inter-connected with the rest of cellular metabolism and 

tightly regulated [48], distantly located genetic loci in 

host cell could also have potential interactions with tar-

get pathway. As Δrox1, Δdos2 and Δyjl064w (Additional 

file  1: Table S2) were proved to greatly benefit carote-

noid production [5, 10], these three distant genetic loci 

were knocked out individually in strain SyBE_Sc14D07. 

As shown in Fig.  5, both Δrox1 and Δdos2 conferred a 

modest increase (8.7 and 5.7 %, respectively) in lycopene 

production as expected, while Δyjl064w led to 18.2  % 

decreased lycopene yield as compared to SyBE_Sc14D07. 

Moreover, the combination of Δrox1 and Δdos2 did not 

show a synergistic effect on lycopene production (Fig. 5), 

which is inconsistent with the results obtained by Trikka 

Fig. 4 Carotenoid production by fine-tuning of BtCrtI and select-
ing homologous haploid strains. BtCrtI expression was fine-tuned 
by adjusting copy number and promoter strength, and haploid 
cells with different mating types (a, α) were compared as well for 
carotenoid production. The error bars represent standard deviation 
calculated from triplicate experiments

Fig. 5 The effects of distant genetic loci on lycopene production. 
Three gene-deletion targets (ROX1, DOS2, and YJL064W) and one 
overexpression target (INO2) were investigated in S. cerevisiae SyBE_
Sc14D07 for lycopene production. The error bars represent standard 
deviation calculated from triplicate experiments
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et  al. [5]. �ese inconsistencies might be attributed to 

that the impact of perturbations in one strain may not be 

directly applied to another strain with a modified genetic 

background [1]. Consequently, a relatively higher lyco-

pene yield of 50.28  mg/g DCW was obtained in SyBE_

Sc14D11 with Δrox1.

As shown in Additional file  1: Figure S5, lycopene 

tended to accumulate in cell membrane and thus cause 

cell toxicity. Here, INO2 (Additional file  1: Table S2), an 

endogenous transcription factor related to cellular stress 

response [49, 50], was overexpressed in SyBE_Sc14D11. As 

a result, a lycopene yield of 54.63 mg/g DCW, the highest 

yield reported, was obtained in the resulting strain SyBE_

Sc14D14 in shake-flask cultivation (Fig.  5). INO2 was 

reported to alleviate alkanes (C9–C11) toxicity by regulat-

ing genes associated with efflux pumps, stress response, 

lipid metabolism and ergosterol biosynthesis in S. cer-

evisiae [51]. High-level expression of INO2 was proved 

to up-regulate phospholipid and sterol biosynthesis [52]. 

�erefore, increasing lycopene tolerance through modify-

ing membrane components (i.e. lipid, and ergosterol) may 

be the main reason for the improvement of lycopene yield 

via INO2. �erefore, INO2 was identified as a novel tar-

get for lycopene production in S. cerevisiae. Strain SyBE_

Sc14D14 was chosen for fed-batch fermentation.

Lycopene overproduction in fed-batch fermentation

To evaluate the production performance of the engi-

neered strain SyBE_Sc14D14, fed-batch fermentation 

was performed at a 2 L scale using YPD as the medium 

(Fig.  6). Based on carbon restriction strategy, trace 

amount of acetate was observed during the whole process 

(Additional file 1: Figure S6). Eventually, a total carotenoid 

titer of 1.81 g/L (60.94 mg/g DCW), consisting of 3.99 % 

of phytoene, 4.87 % of neurosporene and 91.14 % of lyco-

pene, was obtained after 120  h of cultivation (Fig.  6). 

Lycopene yield of 55.56 mg/g DCW achieved in our work 

was the highest yield in yeast strains to date. However, the 

lycopene titer (1.65 g/L) was just similar to previous work 

by Xie et al. [16]. �is is due to the relative low cell den-

sity, since the highest OD600 only reached 106 throughout 

the fermentation. Additionally, excessive accumulations 

of ethanol and glycerol were also observed during cell 

growth phase (Fig. 6a; Additional file 1: Figure S6), which 

competed carbon flow from biomass synthesis and 

implied redox imbalance of our engineered strain [53]. In 

future, to limit glucose below 0.5 g/L in growth phase will 

greatly increase cell density as well as reduce by-product 

(ethanol or glycerol) accumulation. Moreover, intracel-

lular and extracellular metabolomics analysis will be an 

efficient way to find some biomarkers for batch media or 

feeding solution optimization. Off-gas analysis will also 

be promising for more precise process control. As recent 

studies in media optimization have demonstrated great 

potential in lycopene overproduction [16, 54], we believe 

that lycopene production by our engineered strain would 

be further improved by continuous efforts in both meta-

bolic engineering and fermentation optimization.

Conclusions
In this work, lycopene overproduction was realized by 

combinatorial engineering of S. cerevisiae and lycopene 

biosynthesis pathway. Extracellular acetate accumula-

tion was reduced and cytosolic acetyl-CoA pool was 

enhanced through the deletion of YPL062W. A novel 

and optimal combination of CrtE, CrtB and CrtI was 

obtained by screening enzymes from diverse sources. 

It was also found that CrtI from B. trispora had signifi-

cant influence on lycopene yield as well as proportion in 

carotenoid. �e proportion of lycopene was significantly 

increased via fine-tuning of CrtI. �en the effects of cell 

mating types, several potential distant targets (YJL064 W, 

ROX1, and DOS2), and INO2, a stress-related transcrip-

tion factor, were also investigated. Lycopene yield was 

stepwise improved by approximately 22-fold as compared 

to the starting strain. �e highest reported lycopene yield 

(55.56 mg/g DCW) and titer (1.65 g/L) were achieved in 

5-L bioreactors, providing a good example for microbial 

overproduction of pharmaceutical and chemical prod-

ucts through combinatorial engineering of host cell and 

heterologous pathway.

Fig. 6 Lycopene production in fed-batch fermentation. a Profile of 
glucose, ethanol, cell density and lycopene accumulation of strain 
SyBE_Sc14D14 during fed-batch fermentation. b Percentage ratios of 
the produced carotenoid composition at 120 h. The red liquid in the 
bottles was the lycopene fermentation broth. The error bars represent 
standard deviation calculated from duplicate experiments
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Bt: Blakeslea trispora; Tm: Taxus x media.
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