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Abstract 

Background: Several different lying positions, such as lying on the left side, supine, 
lying on the right side and prone position, existed when healthy people fell asleep. 
This article explored the influence of lying positions on the shape of ECG (electrocar-
diograph) waveform during sleep, and then lying position classification based on ECG 
waveform features and random forest was achieved.

Methods: By means of de-noising the overnight sleep ECG data from ISRUC website 
dataset, as well as extracting the waveform features, we calculated a total of 30 ECG 
waveform features, including 2 newly proposed features, S/R and ∠QSR. The means 
and significant difference level of these features within different lying positions were 
calculated, respectively. Then 12 features were selected for three kinds of classification 
schemes.

Results: The lying positions had comparatively less effect on time-limit features. 
QT interval and RR interval were significantly lower than that in supine ( P ≤ 0.01 ). 
Significant differences appeared in most of the amplitude and double-direction 
features. When lying on the left side, the height of P wave and T wave, QRS area and 
T area, the QR potential difference and ∠QSR were significantly lower than those in 
supine ( P ≤ 0.01 ). However, S/R was significantly greater on left than those in supine 
( P ≤ 0.01 ) and on right ( P ≤ 0.05 ). The height of T wave and area under T wave were 
significantly higher in supine than those on right ( P ≤ 0.01 ). For the subject spe-
cific classifier, a mean accuracy of 97.17% with Cohen’s kappa statistic κ of 0.91, and 
AUC > 0.97 were achieved. While the accuracy and κ dropped to 63.87% and 0.32, 
AUC > 0.66, respectively when the subject independent classifier was considered.

Conclusions: When subjects were lying on the left side during sleep, due to the effect 
of gravity on heart, the position of heart changed, for example, turned and rotated, 
causing changes in the vectorcardiogram of frontal plane and horizontal plane, which 
lead to a change in ECG. When lying on the right side, the heart was upheld by the 
mediastinum, so that the degree of freedom was poor, and the ECG waveform was 
almost unchanged. The proposed method could be used as a technique for conveni-
ent lying position classification.
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Background

Sleep is an essential process in human life, which plays a necessary role in self-repair, 

self-recovery of body condition, as well as integration and consolidation of memory. 

It is an indispensable part of human health. About one-third of a person’s lifetime 

is spent during sleep. Good sleep can eliminate fatigue, restore one’s strength and 

energy, and ensure body functioning well. For healthy subjects during the overnight 

sleep, different lying positions appear such as lying on the left side, supine (lying on 

the back), lying on the right side, and prone (lying on the stomach). �is may cause 

the skin to squeeze or stretch, and the distance between the electrodes to shorten or 

prolong. On the other hand, the heart is squeezed slightly, and chest is pressed so that 

breath is influenced. All these body changes will result in ECG (electrocardiograph) 

waveform changes.

As early as in 1997, in the course of clinical myocardial ischemia monitoring, 

Adams et  al. had found that the side lying position frequently caused obvious ECG 

changes [1]. Shinar et al. found that the R-wave durations were significantly different 

in three lying positions, and thus successfully identified 90% of body position changes 

during sleep by calculating the R-wave duration of lead I, II, and III lead ECG, simul-

taneously [2]. Shinar further used these three leads to classify four positions, finding 

that the II lead ECG worked best and achieved 80% accuracy [3]. When comparing 

standing and supine positions of healthy subjects, Batchvarov et  al. found that the 

RR interval of 12-lead ECG was significantly shorter in standing than that in supine 

[4]. Smit et  al. investigated the changes of QRS waves in ECG after normal exhala-

tion, maximum inspiration, and maximum exhalation. It was concluded that the three 

kinds of breath-holding conditions had little effect on the QRS complex and individ-

ual differences were large [5].

Existing studies have shown that body positions and chest changes could cause 

changes in ECG waveforms, but there’s no study exploring the consistent principle of 

such changes in ECG waveforms, systematically. It is of great importance for research-

ers to consider these impact in mind from lying position changing when studying the 

ECG waveform changes in different sleep stages. And furthermore, these changes in 

waveforms can be applied to non-artificial and low-intrusion lying position supervi-

sion. Consequently, in this article, we present a method of exploring the influence of 

lying positions on the shape of ECG waveforms during the overnight sleep in healthy 

subjects, and then lying position classification based on such principle and random 

forest is applied.

Methods

�e study presented in this article can be divided into 3 parts. Data process mainly 

includes ECG signal preprocessing, character points detection, data epoch segmen-

tation, features extraction with three kinds of waveform features. �en the signifi-

cant differences between lying positions of waveform features are calculated. Finally 

lying position classification based on ECG waveform and random forest during sleep 

is achieved. �e workflow is shown in Fig. 1.
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Dataset

�e data used in this article was from the ISRUC web sleep database, which provided 

a variety of physiological data from 10 healthy subjects [6]. �e overnight sleep data 

in this database was recorded by polysomnography (PSG), which lasted for about 

8 h. �e experiment was finished at the Sleep Medicine Center of the University of 

Coimbra. For each subject, the database provided a total of 19 physiological data such 

as electrocardiogram (ECG) and lying position. �e ECG sampling rate was 200 Hz. 

Because the R wave peaks morphology of No. 5 subject in the database was double-

peak, the determination of the R-wave peak point’s horizontal and vertical coordi-

nates were interfered. �us this piece of data wasn’t included in this study. For the 

remaining 9 participants, only a small number of subjects had prone position during 

the overnight sleep. �erefore, this article studied the ECG waveform changes within 

the left, supine and right-side lying position during the overnight sleep for 9 healthy 

subjects.

Signal preprocessing

�e ECG signal in the ISRUC database mainly contained two kinds of noises, myoelec-

tric interference caused by muscle electrical activity with a frequency of 2 Hz–2 kHz, 

and baseline drift caused by human respiratory coupling. In this study, first of all, the 

mean filter was applied to remove the interference from AC (alternating current) in the 

ECG signal. Secondly, the three-layer lifting wavelet decomposition method was used 

to remove the high frequency myoelectric interference. Finally, the effect of baseline 

drift was eliminated by the function fitting method. Since this article was to explore 

the changes of ECG waveform features, it was necessary to acquire high accuracy point 

locations of P-wave, QRS-wave, and T-wave. In this study, the multi-character points 

Fig. 1 The workflow of this study
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detection algorithm of ECG signals based on wavelet transform, proposed by Yang et al. 

was used to decompose and de-noise the original signal, and the position of the QRS 

complex were obtained [7]. �en the area increment method, which was proposed by 

Song et al. was applied to locate the P wave end at the right side of P wave peak, and the 

T wave origin at the left side of T wave peak [8]. Finally, all the subject’s overnight ECG 

character points and waveforms were manually checked. After signal preprocessing and 

character points detection, the results are shown as follows in Fig. 2.

Data segmentation and ECG waveform features

�e ISRUC database divided the subject’s overnight sleep data into 30 s epochs. �en 

the sleep stage of each epoch was determined and the lying position was recorded. In 

this study, we excluded the time segments whose lying position duration was no longer 

than 1 min (two epochs), and those the ECG signal waveform disturbed during the body 

position changing so that the character points detection could not be performed.

�e characteristics of ECG waveform morphology features and their meanings are 

shown in Table  1. In this study, these features are divided into three classes accord-

ing to their orientation in the ECG chart, which are the time-limit features (horizontal 

direction features), amplitude features (vertical direction features) and double-direction 

features (features reflecting both time and amplitude simultaneously). �e time-limit 

features reflect the time interval between the ECG waveforms character points on the 

time axis. �e amplitude features reflect the height of the ECG waveforms and potential 

Fig. 2 The results after signal preprocessing and character points detection. From left to right, there are P 
wave origin, P wave peak, P wave end, Q wave peak, R wave peak, S wave peak, T wave origin, T wave peak, T 
wave end. This part of ECG signal was from No.1 subject, which appeared from 5 h 40 min 11 s 505 ms to 5 h 
40 min 13 s 355 ms
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difference of points in the amplitude direction. �e double-direction features mainly 

include area features, slope features and angle feature.

�e calculation methods for several special waveform features are described as follows.

a. Waveform height features

�e height of the waveform reflects the amplitude of the electrical signal. In actual ECG 

signal, the amplitude of the reference equipotential is not zero, and it fluctuates within 

a certain range. �erefore, the heights of P wave, R wave, S wave, and T wave cannot 

be directly represented by the vertical coordinates of waveform points. It is necessary 

to calculate the reference equipotential amplitude and the amplitude of each waveform 

with respect to the reference equipotential line. In TP segment all myocardial cells are 

at rest, so that there is no potential difference between them, and almost no electrical 

activity appears. TP segment is longer and more stable than PR segment, so TP segment 

was selected in this study to calculate the baseline equipotential line.

Table 1 The ECG waveform features explored in this study

No. Features Meaning Orientation

1 QT interval Interval between Q peak and T end Horizontal

2 RR interval Interval between contiguous R peak Horizontal

3 PR inter Interval between P begin and QRS begin Horizontal

4 PR segment Segment between P end and QRS begin Horizontal

5 ST inter Interval between QRS end and T end Horizontal

6 ST segment Segment between QRS end and T begin Horizontal

7 RT slope Slope of the line between R peak and T peak Double

8 P wide Wide between P begin and P end Horizontal

9 QS wide Wide between Q peak and S peak Horizontal

10 T wide Wide between T begin and T end Horizontal

11 TP segment Segment between T end and next P begin Horizontal

12 P peak Amplitude of P peak Vertical

13 R peak Amplitude of R peak Vertical

14 T peak Amplitude of T peak Vertical

15 T area Area under T wave Double

16 Rp-Tp x Wide between R peak and T peak Horizontal

17 Rp-Tp y The difference of amplitude between R and T Vertical

18 Tp-Te Wide between T peak and T end Horizontal

19 QR Difference of amplitude between Q and R Vertical

20 RS The difference of amplitude between R and S Vertical

21 QRS area Area under QRS wave Double

22 S peak Amplitude of S peak Vertical

23 RS slope Slope of the line between R peak and S peak Double

24 S/R Amplitude ratio of S and R Vertical

25 T/R Amplitude ratio of T and R Vertical

26 Ta/QRSa Area ratio of T area and QRS area Double

27 QRSa–Ta Area difference of T area and QRS area Double

28 ST slope Slope of the line between J point and T begin Double

29 QTc Corrected QT interval Horizontal

30 Angle qsr Angle of ∠QSR Double
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Firstly, the mean filter was selected with width 5 to smooth the TP segment. �en 

we selected 5 points (TP(i), i = 1, 2, 3, 4, 5) at equal intervals in the TP segment. �e 

average amplitude of this 5 points was recorded as a stable point, which was used to 

represent the baseline equipotential of the corresponding ECG waveform before this 

TP segment. Finally, the potential difference between the P wave, R wave, S wave and T 

wave peaks and the stable point was calculated as the height of the corresponding wave-

forms. Take R wave height as an example, the waveform height formula is as follows:

b. Slope features

Slope features can reflect both time and amplitude change at the same time. �e abso-

lute value of slope features will increase with the amplitude of waveform increasing, and 

will decrease with the time interval increasing. Taking RT slope as an example, the for-

mula for calculating the absolute value of the slope of the connection line between the R 

wave peak point and T wave peak point is as follows:

c. Area features

In order to reduce the influence of lying position changes on the depth of Q-wave and 

S-wave, in this study we used the method of calculating the triangular-like area when 

calculating the QRS complex area. �e origin of T wave might be affected by the dou-

ble effect of the baseline drift and the ST segment change, resulting in different heights 

between the T wave start point and end point. �erefore, this method was also used 

when calculating the area under T wave. As shown in Fig. 3, the area of the QRS com-

plex and the area under the T-wave should be calculated by subtracting the area of the 

triangle from the area obtained by summing the vertical ordinates of the ECG waveform, 

thereby correcting the calculation of QRS complex area and T-wave area. �e formula is 

as follows:

(1)

Rp = R − stable

= R −

1

5

5∑

i=1

TP(i)

(2)RT_slope =

∣

∣

∣

∣

R_y − T_y

R_x − T_x

∣

∣

∣

∣

(3)

QRSa = SOQRS − S�OQS

=

S∑

x=Q

ecg(x) −

1

2
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(4)

Ta = SOTsTTe − S�OTsTe

=
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ecg(x) −

1

2
× OTe × OTs
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Among them, Q represents the Q-wave peak horizontal ordinate, S represents the 

S-wave peak horizontal ordinate, Ts represents the beginning of the T-wave horizontal 

ordinate, Te represents the end of the T-wave horizontal ordinate. �e meaning of other 

segments in the formula is shown in Fig. 3.

d. Corrected features

QTc (corrected QT interval) is heart-rate-corrected QT interval, that reflects the entire 

process of cardiac depolarization and repolarization. �e calculation formula is Bazetts’s 

algorithm as follows:

Among the formula HRn is the standardized heart rate. It is calculated as follows:

e. Newly proposed features

As shown in Fig. 4, further observation on the ECG waveforms in three lying positions 

revealed that when lying on the left side, the S wave was lower than those in supine and 

lying on the right side. And the waveform amplitudes of the R waves in different lying 

positions were obviously different. �erefore, this study proposed two new features, 

namely S/R and angle ∠QSR. S/R is the ratio of S wave depth and R-wave height, which 

can reflect the relative depth of S waves.

(5)QTc =
QT

2
√
HRn

(6)
HRn =

60

HR
=

60

60

/

RRi

fs

Fig. 3 QRS complex area and T wave area calculation
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Angle ∠QSR is the angle value of the inner angle ∠QSR of the triangular QRS. Firstly, 

the lengths of QR, RS and QS are calculated. �en according to the cosine theorem, 

∠QSR can be obtained. In this article, the unit of ∠QSR is degree, and the formula is as 

follows:

Classi�er: random forest

RF (Random forest) is a novel classification method proposed by Breiman in 2001 [9]. It 

is a classifier that is built randomly and contains a large number of decision trees. �e 

classification result is acquired by voting, because the output is determined by the mode 

of the output of each tree. Such randomness is mainly embodied in two aspects. On the 

one hand, a dataset of size N, which is the same as all training dataset, is selected using 

(7)S
/

R =

S − stable

R − stable

(8)∠QSR = cos−1

(

QS2 + RS2 − QR2

2 × QS × RS

)

a ECG waveform when lying on the left side 

b Supine c Lying on the right side

Fig. 4 ECG waveform in 3 lying positions, all from the No.1 subject in the database. Left: from 4 h 3 min 26 s 
305 ms to 4 h 3 min 28 s 155 ms. Supine: from 6 h 31 min 47 s 405 ms to 6 h 31 min 49 s 255 ms. Right: from 
2 h 18 min 33 s 655 ms to 2 h 18 min 35 s 505 ms
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the bootstrapping procedure to train each decision tree. On the other hand, a subset 

of all features is randomly selected at each internal node. Consequently, RF can handle 

high-dimensional dataset (involving many features) without feature selection, and it is 

better at solving multiple classification problems when comparing with SVM (support-

ing vector machine). �e decision trees are independent of each other in training proce-

dure, so the parallel computing can be applied, which leads to fast calculation compared 

with ANN (artificial neural network). Besides, the structure of RF is simpler and it is 

easy to build, and it has strong ability to avoid over-fitting at the same time.

Because of the advantages of fast calculation, high precision, strong anti-noise ability 

and avoiding over-fitting when compared with other good classification method, ran-

dom forest was chosen in this study. �e number of trees was set as 500. After signifi-

cance analysis, 12 features, including QT, RR, TP, ∠QSR, S/R, QR, P peak, R peak, T 

peak, T area, QRS area, T area/QRS area, were selected for classification.

When establishing each decision tree, there are two random processes to avoid 

over-fitting. �e input data for random forest is sampled by bootstrapping procedure 

randomly, that is, there may be duplicate samples in the input data. Assuming N data-

set, the number of input data is also N. �is makes the input data of each tree not a 

full dataset during training, making it relatively easy to avoid over-fitting.

�en from M features, m features (m ≪ M) are randomly selected. After that, the 

decision tree is created by completely splitting way, so that either one leaf node of the 

decision tree cannot continue to split, or all the samples inside belong to the same 

class. Since the two random processes applied, over-fitting does not occur even with-

out pruning. Every tree obtained by this algorithm is very weak, but they are very 

powerful when combined as random forest.

Each decision tree is like an expert proficient in a narrow field (because we choose 

m from M features to let each decision tree learn), so that there is a random forest 

including many experts who are proficient in different fields. When solving a new 

problem (new input data), they can view this from different perspective. And in the 

end, various experts vote to get the results. In this study, we separated the data as 

training data and testing data, building the RF as classifier by TreeBagger through 

MATLAB and the classification was achieved. We randomly selected 1–99% of the 

data in the database as training data, and the rest as testing data. �en the learn-

ing curves including accuracy and Cohen’ k were plotted to verifying the absence of 

overfitting. When the proportion of training data was more than 30%, the accuracy 

and Cohen’ k didn’t increase any more. But when the proportion of training data was 

more than 50%, the accuracy was stable and the Cohen’ k started to decrease, which 

meant that the overfitting existed. As we can saw in Fig. 7 in “Results” section, when 

the proportion was 20%, the accuracy reached a high level of 97.17% and the Cohen’ 

k reached an acceptable level of 0.91. Besides, less training data would lead to faster 

calculation. Consequently, we selected 20% of the data as training data to acquire high 

accuracy as well as Cohen’ k, and avoiding overfitting.
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Performance evaluation

�e performance of classifier was evaluated by accuracy, Cohen’s kappa statistic κ, ROC–

AUC (receiver operating characteristic curve–area under curve), Sensitivity, Specificity 

and F1-scores. Accuracy stands for the percentage of correctly classified epochs in the 

whole dataset. Statistic κ is a more effective evaluator because it takes the prior probabil-

ity into account. It can be calculated as

PA is the proportion of correctly observed, while PC is the proportion of randomly 

expected. Pprio is equal to 1. Such variables can be calculated by the second formula. m 

means the number of class. In this study m = 3. And P means the proportion of the cor-

responding sample to the entire. Statistic κ ≤ 0 means that the observed result is even 

worse than random expecting. And κ ≥ 0 means that all sample are classified into the 

correct class. A higher value of κ indicates a better classification result between our clas-

sifier and the expected results.

ROC curve is a graphical plot that presents the ability of a binary classifier system. It 

is created by plotting the FPR (false positive rate) and TPR (true positive rate) at various 

threshold. Because that the classifiers in this study are ternary classifiers, after classifica-

tion results are obtained, in order to draw ROC curve and calculate the AUC, Sensitivity, 

Specificity and F1-scores of one lying position, the other two lying positions are com-

bined. E.g. before drawing ROC curve and calculating such several indexes of lying on 

the left, epochs of supine and lying on the right are combined as not-left, then the 2 × 2 

confusion matrix is built.

Generally speaking, a good classifier should be associated with high values of accuracy, 

statistic κ and AUC.

Classi�cation scheme

In this study, we developed three kinds of classification scheme for different cases, 

including subject specific scheme, subject independent scheme without feature normali-

zation and subject independent scheme with feature normalization. �e result of ECG 

waveform features significance analysis between different lying positions will be pre-

sented in “Results” section. After significance analysis, 12 features, which showed strong 

significant difference between lying positions including QT, RR, TP, ∠QSR, S/R, QR, P 

peak, R peak, T peak, T area, QRS area, T area/QRS area, were selected for classification.

A total of 5114 epochs of the overnight sleep data from 9 subjects were included in 

this study. Due to the fact that most subjects did not have prone position, or only had 

several prone epochs in overnight sleep, the prone epochs were manually removed. Con-

sequently, there are only three classes in classification including lying on the left, supine, 

and lying on the right. �e details and workflow are shown in Fig. 5.

(9)κ =

PA − PC

Pprio − PC
=

∑m
i=1

Pii −

∑m
i=1

Pi·P·i

Pprio −

∑m
i=1

Pi·P·i
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a. Subject speci�c scheme

For each subject, 20% epochs of three kinds of lying positions were randomly selected 

for training the classifier, and the rest 80% were used as testing data. �e reasons 20% for 

training and 80% for testing are that on the one hand, the waveforms were obviously dif-

ferent in 3 lying positions. Strong significant difference of waveform features appeared in 

“Results” section. On the other hand, we were trying to train the classifier with limited 

data. So that when putting into application, we could build a small database for patients, 

extracting ECG signals for only half an hour, to train the classifier. And then clinical 

automatic classification with high accuracy were achieved. In order to avoid the errors 

caused by selecting samples randomly, the training and classification processes were 

repeated for 10 times with different training data. At last, the average value and standard 

deviation of accuracy and κ statistic were calculated.

b. Subject independent scheme without feature normalization

For each specific subject to be analyzed, all the records from other 8 subjects were 

pooled together to form the training dataset. �is process repeated for 9 times. Finally, 

the same as the specific scheme, the average value and standard deviation of accuracy 

and κ statistic were calculated.

c. Subject independent scheme with feature normalization

However, because of the individual differences, all features need normalization before 

classifier training. One of the most widely used normalization method is to transform 

all the features scales to a new range, such as [0,1]. But when the outliers of data appear, 

the transformed data scale will be unsymmetrical. To solve this problem, we developed 

a normalization method based on quantile. �e 5% and 95% quantiles of data were 

selected firstly and the scale of these two samples was linearly transformed to [0,1], 

Fig. 5 the workflow of classification method in 3 classification schemes
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which covers 90% of the whole samples. �e rest samples were transformed with the 

same linear coefficients.

Results

A total of 5114 epochs of the overnight sleep data from 9 subjects were included in this 

study. Table 2 shows the frequency distribution of sleep stages and lying positions for 

these epochs. �e results part mainly includes significance analysis of features and clas-

sification performance.

Signi�cance analysis of features

�is study calculated the 30 waveform features of the overnight ECG sleep data from 

9 healthy subjects in the database, and calculated the means and standard deviations 

according to the four lying positions. �e calculation results and significant differ-

ences between the different lying positions are shown in Tables 3 and 4, respectively. 

Due to the fact that most subjects did not have prone, or only had several prone 

epochs in overnight sleep, the standard deviations of features in prone were not 

shown in Table 3. On the other hand, the waveform features significance level of only 

three conditions, including left–supine, left–right and right–supine positions, were 

calculated. �e P values of ECG waveform features significant level among different 

lying positions are shown in Table 4.

Classi�cation performance

After significance analysis, 12 features, which showed strong significant difference 

between lying positions including QT, RR, TP, ∠QSR, S/R, QR, P peak, R peak, T 

peak, T area, QRS area, T area/QRS area, were selected for classification. Table  5 

gives the confusion matrices of all individuals for subject specific scheme and subject 

independent scheme without or with feature quantile normalization. �e numbers in 

Table  5 refers to the amount of epochs of target position while classified as output 

position.

Table 6 shows the classification performance based on 12 features for subject spe-

cific scheme and subject independent scheme without or with feature normalization. 

�e process repeated 10 times, and the means and standard deviation were calcu-

lated and listed in Table 6. Figure 6 shows the classifier performance of three scheme: 

(a–c) show the ROC curve of 3 lying positions respectively, and (d–f ) show the AUC, 

Table 2 Sleep data epochs frequency distribution about sleep stages and postures

Wake REM Light sleep Deep sleep Sum

Left 244 336 960 827 2367

Supine 84 52 583 108 827

Right 158 292 770 473 1693

Prone 21 49 35 122 227

Sum 507 729 2348 1530 5114
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Sensitivity, Specificity and F1-scores of the classification result. �e AUC of three 

lying positions in subject specific scheme reached at 0.9886 ± 0.0043, 0.9725 ± 0.0106 

and 0.9925 ± 0.0019, respectively. While in subject independent scheme without fea-

tures normalization 0.6859 ± 0.0050, 0.3570 ± 0.0035, 0.6321 ± 0.0055, and in subject 

independent scheme with features normalization 0.7708 ± 0.0017, 0.6646 ± 0.0047, 

0.7132 ± 0.0040.

Because the results of subject specific scheme presented in Table  6 and Fig.  6 

include overall accuracy of 97.17% ± 2.74%, κ 0.9121 ± 0.1010 and AUC > 0.97 in 

three lying position classification), we tried to decrease the proportion of training 

data. The results are shown below in Table 7. In order to verify the absence of over-

fitting, the learning curve are shown in Fig. 7. The comparison of the classification 

performance between RF, SVM and ANN is shown in Fig. 8. We can see that RF and 

ANN perform better than SVM, and the accuracies of RF and ANN are close. The 

Table 3 Means and standard deviations of 30 ECG waveform features in 4 lying positions

In this table, the time-limit features are calculated in millisecond (ms), the amplitude features are calculated in millivolt (mV), 

and the angle indicator is calculated in degree. Due to the fact that most subjects did not have prone, or only had several 

prone epochs in overnight sleep, the standard deviations of features in prone were not shown in this table

Lying positions Left Supine Right Prone

QT 442.234 ± 4.763 434.916 ± 4.907 439.099 ± 5.361 427.654

QTc 446.541 ± 11.936 448.476 ± 10.903 453.259 ± 10.506 440.679

RR 985.050 ± 15.378 946.057 ± 17.053 942.002 ± 16.838 944.844

PR inter 139.201 ± 3.113 139.811 ± 3.233 139.574 ± 2.526 164.698

PR segment 21.708 ± 3.162 24.096 ± 2.731 23.382 ± 2.766 58.389

ST inter 341.285 ± 8.573 331.296 ± 8.029 327.401 ± 8.539 352.817

ST segment 77.024 ± 10.596 71.534 ± 9.446 71.020 ± 8.098 86.649

P wide 117.493 ± 2.397 115.715 ± 2.548 116.192 ± 2.580 106.308

QS wide 65.397 ± 2.820 70.183 ± 2.684 73.107 ± 2.848 54.014

T wide 264.261 ± 5.653 259.763 ± 4.260 256.381 ± 5.765 266.168

TP segment 382.120 ± 9.830 350.049 ± 11.086 342.160 ± 9.964 330.975

P peak 0.138 ± 1.414 0.233 ± 2.303 0.222 ± 1.739 0.112

R peak 1.808 ± 11.290 2.428 ± 16.243 2.291 ± 10.299 1.184

S peak 0.655 ± 4.970 0.533 ± 5.212 0.551 ± 3.110 0.206

T peak 0.547 ± 2.812 0.776 ± 3.427 0.696 ± 3.662 0.553

QRS area 266.365 ± 108.806 389.564 ± 158.961 387.565 ± 144.974 179.905

T area 165.776 ± 59.467 228.880 ± 67.021 200.339 ± 74.594 139.677

Ta/QRSa 1.129 ± 0.365 1.153 ± 0.381 0.848 ± 0.361 1.036

QRSa–Ta 100.588 ± 81.630 160.684 ± 120.856 187.226 ± 123.533 40.228

Rp-Tp x 301.607 ± 4.836 294.935 ± 4.940 295.938 ± 5.479 296.884

Rp-Tp y 21.477 ± 10.474 28.500 ± 15.368 27.279 ± 9.478 11.814

Tp-te 116.747 ± 1.705 115.795 ± 1.878 118.661 ± 2.742 108.543

QR 3.228 ± 18.543 4.661 ± 30.424 4.431 ± 20.729 2.678

RS 2.463 ± 14.825 2.961 ± 18.830 2.841 ± 12.079 1.390

RT slope 0.361 ± 0.185 0.489 ± 0.267 0.472 ± 0.180 0.199

RS slope 5.142 ± 2.698 5.600 ± 3.576 5.106 ± 3.137 3.527

ST slope1 0.106 ± 0.097 0.116 ± 0.108 0.080 ± 0.039 − 0.028

S/R 0.365 ± 0.151 0.232 ± 0.154 0.258 ± 0.122 0.174

T/R 0.245 ± 0.177 0.242 ± 0.090 0.220 ± 0.100 0.336

Angle qsr 106.798 ± 29.477 126.956 ± 25.830 127.175 ± 24.154 127.711
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Cohen’ k of ANN is slightly higher than RF. However, according to Table 8, the cal-

culation of RF is much faster. Consequently, RF performs best in general.

Discussion

Discussions of results

�e reason why we developed three kinds of schemes is that firstly we tried to estab-

lish a database which could be used for many subjects. However, because of the 

individual difference, the results were not acceptable. Consequently, we applied the 

normalization method to transform all the features scales to a new range. �e results 

Table 4 The P value of  ECG waveform features signi�cant level among  di�erent lying 

positions

The �rst column in this table includes 30 waveform features. To facilitate the observation, the amplitude features and 

double-direction features are marked by *. Columns 2, 3, and 4 show the signi�cant level of the waveform features between 

two lying positions. *** P ≤ 0.001 , ** P ≤ 0.01 , and * P ≤ 0.05

Left–supine Left–right Supine–right

QT 0.0059** 0.1341 0.2947

QTc 0.1148 0.0229* 0.1207

RR 0.0066** 0.0206* 0.4106

PR inter 0.3549 0.0881 0.9203

PR segment 0.1287 0.0222* 0.7313

ST inter 0.1023 0.1906 0.3491

ST segment 0.2737 0.3323 0.5255

P wide 0.1912 0.1905 0.2587

QS wide 0.1157 0.0975 0.3296

T wide 0.2199 0.0609 0.3164

TP segment 0.0111* 0.0182* 0.3068

P peak* 0.0028** 0.0039** 0.1516

R peak* 0.0143* 0.0235* 0.1003

S peak* 0.0360* 0.0831 0.6562

T peak* 0.0002*** 0.0180* 0.0004***

QRS area* 0.0063** 0.0228* 0.2293

T area* 0.0000*** 0.0814 0.0032**

T a/QRS a* 0.4441 0.0435* 0.0379*

QRSa–Ta* 0.0562 0.0369* 0.3981

Rp-Tp x 0.0191* 0.0696 0.4688

Rp-Tp y* 0.0307* 0.0316* 0.1696

Tpte 0.3207 0.3413 0.2490

QR* 0.0066** 0.0111* 0.1585

RS* 0.0418* 0.1086 0.0651

RT slope* 0.0244* 0.0205* 0.1921

RS slope* 0.2182 0.4109 0.0197*

ST slope* 0.0126* 0.4443 0.1886

S/R* 0.0014** 0.0207* 0.3539

T/R* 0.4710 0.2809 0.2560

Angleqsr* 0.0012** 0.0275* 0.4710
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of subject independent scheme with feature normalization were much better but the 

accuracy was still not enough for clinical application. Finally, we developed the sub-

ject specific scheme, which was similar to building a database with the ECG data from 

a specific subject and then classifying the lying positions for this subject based on the 

database. �at’s why the results were acceptable and this method could be applied in 

clinical monitoring.

As can be seen from Table 4, the lying positions have less influence on time-limit 

features, because most of the time-limit features show no significant differences 

between different body lying positions. Compared with supine, only QT interval, RR 

interval, and TP segment are significantly shorter when lying on the left side. �e rea-

son needs further exploration.

It can be seen that the influence of lying position on ECG waveforms is mainly 

reflected in the amplitude features and double-direction features. �e amplitude fea-

tures include the heights of P wave, R wave, and T wave. �e relative height features 

include QR potential difference, RS potential difference, R peak T peak potential 

Table 5 Confusion matrices based on 12 features

Confusion matrices based on 12 features for (a) subject speci�c scheme, (b) subject independent scheme without feature 

normalization, (c) subject independent scheme with feature normalization

Output position Target position

Left Supine Right Sum

(a) Subject specific scheme

 Left 1868 39 7 1914

 Supine 8 603 9 620

 Right 14 15 1336 1365

 Sum 1890 657 1352 3899

(b) Subject independent scheme without feature normalization

 Left 1492 458 247 2197

 Supine 716 203 1068 1987

 Right 79 166 378 623

 Sum 2287 827 1693 4807

(c) Subject independent scheme with feature normalization

 Left 1757 261 334 2352

 Supine 288 377 459 1124

 Right 312 176 892 1380

 Sum 2357 814 1685 4856

Table 6 Classi�cation performance based on 12 features

Classi�cation performance based on 12 features for (a) subject speci�c scheme, (b) subject independent scheme without 

feature normalization, (c) subject independent scheme with feature normalization

Left Supine Right Overall κ statistic

(a) Subject specific scheme

 98.71% ± 2.03% 72.22% ± 23.41% 98.46% ± 2.34% 97.17% ± 2.74% 0.9121 ± 0.1010

(b) Subject independent scheme without feature normalization

 55.22% ± 43.25% 38.38% ± 41.36% 24.21% ± 37.28% 44.73% ± 31.61% 0.0866 ± 0.2180

(c) Subject independent scheme with feature normalization

 75.04% ± 24.10% 46.40% ± 35.61% 44.34% ± 38.14% 63.87% ± 16.32% 0.3171 ± 0.1755
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a ROC of left lying d Evaluation for left lying

b ROC of supine e Evaluation for supine

c ROC of right lying f Evaluation for right lying

Fig. 6 The classifier performance of three schemes. Graphs (a–c) are the ROC curves of three kinds of 
lying position. The red line represents subject specific scheme, green line represents subject independent 
scheme without features normalization and blue line represents subject independent scheme with features 
normalization. Bar charts (d–f) present the mean value of AUC, Sensitivity, Specificity and F1-scores of 10 
experiments
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difference, and RT slope. Area features includes QRS complex area and T wave area. 

�ese three types of amplitude features were significantly smaller when lying on the 

left side than those in supine or right, or less than those in other two lying positions 

simultaneously. Only a few features show significant differences between supine and 

lying on the right side.

However, the S-wave-related waveform features are different. When lying on the left 

side, the depth of S wave is significantly greater than that in supine, and S/R is signifi-

cantly greater than that both in supine and right. �is feature reflects the decrease of R 

wave and the deepening of S wave in left-side lying. ∠QSR is significantly smaller in left 

than that in supine and right. �is feature reflects the difference between the relative 

depth of the Q wave and S wave.

�e influence of lying positions on ECG waveforms is mainly reflected in the ampli-

tude features. Since the ECG waveform directly reflects the potential difference of the 

leads, and the signal is extracted from the electrodes on body surface, the body posi-

tion changes will cause a change of relative position between the electrodes and heart. 

�us ECG waveform morphology changed. �is change can be embodied in two 

aspects. On the one hand, when the chest is under pressure, the distribution of body 

Table 7 Subject speci�c scheme with the training proportion of 0.2, 0.1 and 0.05

Left Supine Right Overall κ

(a) Subject specific scheme, the proportion of training is 0.2

 98.71% ± 2.03% 72.22% ± 23.41% 98.46% ± 2.34% 97.17% ± 2.74% 0.9121 ± 0.1010

(b) Subject specific scheme, the proportion of training is 0.1

 97.99% ± 2.74% 59.18% ± 34.50% 97.44% ± 3.02% 95.71% ± 3.38% 0.8418 ± 0.2156

(c) Subject specific scheme, the proportion of training is 0.05

 96.63% ± 6.41% 51.83% ± 37.91% 95.02% ± 4.55% 93.91% ± 4.87% 0.7902 ± 0.2546

Fig. 7 In order to verify the absence of overfitting, the learning curve are shown above. The blue line and red 
line represent the accuracy and Cohen’ K, respectively, of the classification result based on random forest with 
different proportion of training data
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fluids changes, so that the impedance of the chest changes. Also the heart is squeezed 

and deformed. On the other hand, the heart is affected by gravity when lying on the 

side. Different parts of heart have different degree of freedom, which results in heart 

rotation and swing.

�e significant differences of ECG waveform features in 3 lying positions could be 

utilized for automatic lying position classification during sleep. For three kinds of 

schemes, the overall classification accuracy of subject specific scheme reached 97.17%, 

κ statistic 0.91 and AUC > 0.97, which was almost perfect. �is can be used for clini-

cal lying position monitoring after setting up a subject specific dataset. Further study 

in Table 7 showed that such dataset didn’t need to be large, and the performance could 

a The comparison of accuracy

b The comparison of Cohen’ K 

Fig. 8 The comparison of the classification performance between RF, SVM and ANN. We can see that RM and 
ANN perform better than SVM, and the accuracies of RF and ANN are close. The Cohen’ k of ANN is slightly 
higher than RF. However, the calculation of RF is much faster. Consequently, RF performs best in general



Page 19 of 24Pan et al. BioMed Eng OnLine  (2018) 17:116 

be acceptable. �e results of subject independent scheme without or with feature nor-

malization were accuracy 44.73% and 63.87%, κ statistic 0.09 and 0.32, respectively. �e 

classification accuracy of three lying positions in subject independent scheme was much 

better with feature normalization when compared with the results without feature nor-

malization. On the other hand, the classification accuracy of lying on the left side was 

higher than those in supine and right. �is can be applied for avoiding left lying in some 

patients with specific diseases, clinically.

�e accuracy of classification results may be influenced by the ECG quality. Firstly, in 

order to distinguish the horizontal features (several time features were < 0.1 s), we chose 

the dataset with sampling rate 200  Hz. �is could make sure that the time resolution 

was 0.005 s. Secondly, when the subjects were turning over during sleep, the signal was 

disturbed severely and we had to discard this epoch. But when the subjects were not 

changing their lying position, the signal was stable. �irdly, we applied signal preproc-

essing based on wavelet transform, and it worked well. At last, the ECG signal acquisi-

tion technology is mature in recent years. As mentioned above, the ECG signal quality 

was good enough for this study, which could be reflected in the accuracy of character 

points detection.

The structure of heart and vectorcardiogram

�e bottom of heart in anatomical mainly consists of left atrium and a small part of right 

atrium, where the aorta and pulmonary artery cross [10]. Because of this structure, the 

bottom of heart in the thorax is comparatively fixed, while ventricular and the apex of 

heart are comparatively free. When the lying position changes or the diaphragm con-

tracts, the heart apex will swing to a limited extent. �is leads to the direction of electro-

cardial vector change, and so that it’s projection, ECG, changes.

In a complete cardiac cycle, action potential begins from the sinoatrial node firstly, 

and then passes through the anterior, middle and posterior inter-nodal tract to the atrio-

ventricular node. During this process the electrocardial vector is always from the upper 

right to the lower left. �e process of forming the P loop is shown in Fig. 9a. �en the 

action potential passes through the bundle of His to the ventricle, firstly from the left 

bundle branch to the inter-ventricular septum, and then from the left and right bundle 

Table 8 The comparison of  the  calculation time between  RF, SVM and  ANN in  subject 

speci�c scheme with the training proportion of 0.2

The mean time and standard deviation of 10 experiments were calculated in seconds. Each value represented the mean 

time of all epochs lying position classi�cation of one subject

Subject no. RF SVM ANN

1 3.22291 ± 0.19684 0.04193 ± 0.00423 3.34373 ± 1.16847

2 3.02385 ± 0.12278 0.03636 ± 0.00254 3.18128 ± 0.81556

3 3.13849 ± 0.15552 0.03429 ± 0.00262 4.72749 ± 1.02038

4 2.97439 ± 0.12926 0.02707 ± 0.00118 3.10264 ± 1.28542

5 3.06737 ± 0.15559 0.03440 ± 0.00151 3.76409 ± 0.76218

6 2.83269 ± 0.13927 0.00537 ± 0.00056 2.43798 ± 0.12534

7 3.18591 ± 0.12517 0.03952 ± 0.00134 5.70489 ± 0.26425

8 3.00057 ± 0.16294 0.03204 ± 0.00114 5.50479 ± 0.32688

9 2.92328 ± 0.18162 0.03034 ± 0.00091 3.57378 ± 1.14730
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branches to the left and right ventricular walls, respectively. Due to the left ventricular 

wall being much thicker than the right, the direction of the two vectors composition 

is to the lower left. �e formation of QRS loop is shown in Fig. 9b, c. After the action 

potential arrives at the apex, it travels upward along the Purkinje fiber. In this process, 

the direction of electrocardial vector is still to the left. Finally, after a period of time, ions 

reflux inside and outside the cell membrane. �e formation of T loop reflects the repo-

larization of ventricular. A complete ECG cycle ends.

The causes of this phenomenon

VCG intuitively reflects the direction and magnitude of the action potential vector in 

heart, and the ECG is actually the projection of the vector in different leads. �e rela-

tionship between frontal VCG and limb lead, transverse VCG and chest lead are shown 

in Fig. 10a, b, respectively. �e influence of lying positions on the heart can be reflected 

in VCG. Compared with the upright position, the position of the heart is in a relatively 

horizontal position when supine. As the heart rotates along the long axis (see this change 

in the direction from the apex to the bottom of heart, the heart rotates clockwise), the 

right atrium and right ventricle move left and slightly forward, and the left atrium and 

left ventricle are correspondingly shifted to the posterior position. �e ventricular sep-

tum is almost parallel to the frontal plane instead of the side plane. View this from the 

frontal plane, the apex moves to the upper left and back, and the heart rotates anticlock-

wise along the long axis. So that there is a left-leaning tendency on the electric axis. 

When subjects are lying on the left side, because of the position of the bottom of heart 

fixed, the apex is swinging to the left, and the VCG in frontal plane is rotating anticlock-

wise. So that the projection lengths of P loop and T loop in lead II direction are reduced, 

that means, the heights of P wave and T wave in ECG waveform decrease. Reflected 

in the waveform features, P peak as well as T peak were significantly reduced. On the 

other hand, the projection length of huge part of QRS loop decreases while the tiny 

Fig. 9 The formation of VCG (vectorcardiogram)
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part increases, so the R wave of the ECG waveform becomes lower and S wave becomes 

deeper. Reflected in the waveform features, S/R increased while the ∠QSR decreased.

�e accessible volume of heart in chest is larger when the subject is lying on the left 

side, because the left lung of human body is smaller than the right part and the heart is 

at the left side inside human chest. �erefore, the swing amplitude of heart is relatively 

larger. When subject is lying on the right side, the apex of the heart moves towards the 

mediastinum, and the heart rotates clockwise along the long axis. �ere shows a right-

leaning tendency on the electric axis (notes: �e left discussed here is the left of subject, 

not the left of observer). However, because the heart is upheld by the mediastinum, the 

range of motion is limited, so there is no obvious swing and rotation as lying on the left 

side. �is may explain the results that waveform features rarely show significant differ-

ences between supine and lying on the right side.

Discussions of other studies

�e changes of position and shape of heart in chest have drawn the researchers’ atten-

tion. Mincholé et  al. modeled the changes in the Karhunen–Loeve transform coeffi-

cients of the QRS complex and the ST–T waveform. It was found that the changes in 

body position can be reflected in the gradual changes of the two coefficients series. 

�en based on ECG, they determined the lying position changes of healthy people. �e 

resulting probability of detection reached 94%, and the probability of false alarm was 

0%, respectively. However, the false alarm rate in ischemia database was once per hour 

[11]. Since myocardial ischemia is widely judged by ST–T segment, the accuracy of lying 

position detection will decrease sharply, and the misjudgment as well as missed judg-

ment of myocardial ischemia may be more severe if the influence of lying position on S 

wave morphology is not taken into consideration. Li et al. compared the heart morphol-

ogy in supine and standing upright. When the subject was in supine, the heart rotated 

clockwise along the long axis. �e heart apex moved to the left and back position. But it 

moved in the opposite direction when standing upright. When the subjects were stand-

ing upright, the diaphragm muscles moved down, and the heart remained vertical. At 

this time the electrical axis shifted to the right, the SNS (sympathetic nerve system) 

activity increased. But PNS (parasympathetic nerve system) activity increased in supine 

a Frontal plane VCG and limb lead b Cross surface VCG and chest lead

Fig. 10 The relation between VCG and ECG
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position [12]. Sahakian et al. studied changes in frontal QRS loop and P axis in standing 

upright, sitting, walking, supine, and two kinds of side lying conditions, and specialized 

the difference between left-side, supine and right-side lying positions, which confirmed 

the body positions’ influence on VCG. �ey found that the change of P wave is greater 

[13]. Most of the results are consistent with the results in this study. By means of MRI, 

Mase et al. presented the frontal and horizontal cross sections images of the chest. From 

these images, it could be seen that when lying on the left side or left-prone side, due 

to the effect of gravity, the heart moved down remarkably. But when lying on the right 

side or right-prone side, the position of heart showed no obvious difference with that 

in supine [14]. Such changes can also be seen in CT imaging [15, 16]. �is could con-

firm the fact that the ECG waveform features rarely show significant differences between 

supine and right in this study.

Kutbay et al. study showed that the AHI (activity apnea-hypopnea index) and average 

minimum oxygen saturation (SOP) were significantly lower in supine than those in other 

lying positions, and the heart rate as well as average awakening index were higher [17]. 

George et al. found that lying on either side can significantly reduce OSA (obstructed 

sleep apnea) [18]. Garcia et al. found that the influence of body position on ECG wave-

form resulted in ST segment deformation. When lying on the left side, the R waves 

and T waves became larger and the S waves became deeper, which caused ST pattern 

misjudgment, and then led to false positive error or false negative error of myocardial 

ischemia determination [19].

Researchers have tried to classify lying positions form ECG, but most of them can 

only detect body position changes without lying position classification. Shinar et al. used 

the R wave duration (RWD) as indicator of body position changes for healthy subjects, 

who were asked to rotate between four body positions (back, left, prone and right). �ey 

could identify over 90% of the changes in body position. However, they couldn’t identify 

the exact body positions [2]. In their further study, the results showed over 90% correct 

identification of body position changes and up to sensitivity 79% and specificity 93% of 

body position classification when using any of the three leads, including leads I II and 

III. Lead II, which we used in this study, had the best performance for the classifica-

tion of body position and correctly classified 80% of heartbeats. Classification did not 

improve for a combination of two leads [3]. In 2003, García et al. investigated two ECG 

signal processing methods for detecting body position changes. �e spatial approach 

was based on VCG loop rotation angles and the scalar approach was based on the K–L 

transform coefficients. �ey could detected 95% of the body position changes by angle-

based detector, whereas the KLT-based detector produces values of 89% [20].

�e researchers also tried to classify lying position by other signals and sensors. In 

2011, Zachary et  al. presented a method for lying position classification using load 

cells placed under bed, which resulted in generalized accuracies of 0.68, 0.57, 0.69, 

and 0.33 for the back, right, left, and stomach positions respectively, and 0.92, 0.75, 

and 0.86 for the back/stomach, right, and left positions respectively [21]. �e result-

ing accuracies, especially for left and right, were not precise enough for clinical appli-

cation. In 2016, without differentiation of sitting and standing, 100% accuracy was 

achieved using random forest by Marcel et  al. However, the signals were recorded 

by a gyroscope from an iPhone fixed with a belt around the torso, which was very 
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intrusive for normal sleep. On the other hand, they couldn’t classify lying on the left 

or right, and the number of testing data segments were only 78 (sitting and standing 

were not included) [22]. In 2017, Timo et al. performed sleep position classification 

from a depth camera using bed aligned maps. �ey used Convolutional Neural Net-

works and achieved an accuracy of 94.0%. �is approach directly recorded the body 

positions of patients and achieved high accuracy, but the apparatuses needed were 

complicated, the complexity of operations and the costs were so high that may not 

suitable for clinical and home nursery [23].

Studies about the influence of human lying position on ECG waveform during sleep 

can be widely applied in different field. First of all, changes of S wave and T wave can be 

used to correct the shape of ST–T segment, which can improve the determination accu-

racy of myocardial ischemia, and warn the sudden death early and effectively. Secondly, 

when studying the changes of ECG waveform and the related features in different sleep 

stages, the influence from lying position should be taken into consideration. Further-

more, in the process of collecting body signals and studying changes in physical condi-

tions during sleep, if we can achieve lying positions determination based on ECG, the 

number of signal acquisition channels and the workload of researchers in monitoring 

process can be reduced. Also, patients will feel more comfortable. On the other hand, 

lying position monitoring can also prompt the patients to adjust their lying position dur-

ing sleep, consciously. So that the frequency of respiratory disorders and sleep apnea 

events can be reduced. �e occurrence of disease symptoms can probably be avoided 

and finally, sleep quality can be improved.

Conclusion

In conclusion, this study explored the influence of lying positions on the shape of ECG 

waveform during sleep, and then lying position classification based on ECG wave-

form features and random forest was achieved. When subjects were lying on the left 

side during sleep, due to the effect of gravity on heart, the position of heart changed, 

for example, turned and rotated, causing changes in the VCG of frontal plane and hori-

zontal plane, which lead to a change in ECG. When lying on the right side, the heart 

was upheld by the mediastinum, so that the degree of freedom is poor, and the ECG 

waveform is almost unchanged. �e overall classification accuracy of subject specific 

scheme reached 97.17%, κ statistic 0.91 and AUC > 0.97, while the results of subject inde-

pendent scheme with feature normalization were accuracy 63.87%, κ statistic 0.32 and 

AUC > 0.66, respectively. �e proposed method could be used as a technique for con-

venient lying position classification.
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