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ABSTRACT

Hydrogen Lyman α (Lyα) is our primary emission-line window into high-redshift galaxies.
Despite an extensive literature, Lyα radiative transfer in the most realistic case of a dusty,
multiphase medium has received surprisingly little detailed theoretical attention. We investigate
Lyα resonant scattering through an ensemble of dusty, moving, optically thick gas clumps.
We treat each clump as a scattering particle and use Monte Carlo simulations of surface
scattering to quantify continuum and Lyα surface scattering angles, absorption probabilities,
and frequency redistribution, as a function of the gas dust content. This atomistic approach
speeds up the simulations by many orders of magnitude, making possible calculations which are
otherwise intractable. Our fitting formulae can be readily adapted for fast radiative transfer in
numerical simulations. With these surface scattering results, we develop an analytic framework
for estimating escape fractions and line widths as a function of gas geometry, motion, and dust
content. Our simple analytic model shows good agreement with full Monte Carlo simulations.
We show that the key geometric parameter is the average number of surface scatters for escape
in the absence of absorption, N0, and we provide fitting formulae for several geometries of
astrophysical interest. We consider the following two interesting applications. (i) Equivalent

widths (EWs). Lyα can preferentially escape from a dusty multiphase interstellar medium if
most of the dust lies in cold neutral clouds, which Lyα photons cannot penetrate. This might
explain the anomalously high EWs sometimes seen in high-redshift/submillimetre sources. (ii)
Multiphase galactic outflows. We show the characteristic profile is asymmetric with a broad
red tail, and relate the profile features to the outflow speed and gas geometry. Many future
applications are envisaged.

Key words: line: profiles – radiative transfer – methods: analytical – methods: numerical –
galaxies: high redshift.

1 I N T RO D U C T I O N

The hydrogen Lyman α (Lyα) line is our primary emission-line win-
dow on the high-redshift Universe. It is almost invariably crucial
in securing redshift-identifications for the highest-redshift galax-
ies (e.g. Hu et al. 2002a, b; Ajiki et al. 2003; Kodaira et al. 2003;
Rhoads et al. 2003; Santos et al 2004). Besides yielding redshifts,
the shape of the line profile, equivalent width (EW), and offset from
other emission/absorption lines also encode information about the
geometry, kinematics and underlying stellar population of the host
galaxy. For instance, features in Lyα emission have been used to
suggest strong galactic outflows (Kunth et al. 1998), as a signature
of strong accretion shocks (Barkana & Loeb 2003), and as evidence
for an unusually strong ionizing continuum, perhaps due to Pop
III stars (Malhotra & Rhoads 2002). Even after escaping the en-
virons of the host galaxy, Lyα photons undergo processing in the
surrounding intergalactic medium (IGM), and the presence or ab-

⋆E-mail: peng@physics.ucsb.edu

sence of observed Lyα emission can be used to place constraints
on the epoch of reionization (Fan et al. 2002; Haiman 2002; Santos
2004). Because of the numerous factors which contribute to Lyα

radiative transfer, the interpretation of such features is fraught with
complexity. For instance, in a comprehensive set of ∼1000 Lyman-
break galaxies at z ∼ 3, a plethora of Lyα strengths and line shapes
were seen, ranging from pure damped absorption, to emission plus
absorption, to pure strong emission (Shapley et al. 2003). Because of
the tremendous potential returns for interpreting some rich data sets,
it is crucial to strive for a more detailed theoretical understanding
of Lyα emission-line features.

A very important factor in Lyα transmission is the presence
of dust. Since the massive stars which produce metals evolve on
a short time-scale, and indeed supersolar metallicities (Pentericci
et al. 2002) and CO emission (Bertoldi et al. 2003) have been ob-
served in the highest-redshift quasars at z ∼ 6, dust is likely to
be present in the interstellar medium (ISM) of even high-redshift
galaxies. Because of their long scattering path-lengths, Lyα pho-
tons are extremely vulnerable to dust attenuation (Neufeld 1990;
Charlot & Fall 1991), and it was thought that this could account
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for low observed Lyα EWs compared to that expected from optical
Balmer emission lines (Meier & Terlevich 1981; Hartmann et al.
1988), as well as early failures to detect high-redshift galaxies in
blank sky surveys. However, further work has shown that dust con-
tent is not strongly correlated with Lyα EW [where dust content can
be inferred from metallicity or submillimetre (submm) emission].
For instance, some dust-rich galaxies have significantly higher Lyα

photon escape fractions than less-dusty counterparts (Kunth et al.
1998, 2003). Indeed, Giavalisco, Koratkar & Calzetti (1996) found
a lack of correlation between the EW of Lyα and the ultraviolet
(UV) continuum slope β, which measures continuum extinction.
They interpreted this as evidence for decoupling of the extinction
of continuum and resonant-line photons.

Such decoupling could take place if the ISM is clumpy. Neufeld
(1991) and Charlot & Fall (1993) emphasized the importance of
the geometry and multiphase nature of the ISM in affecting the
observed Lyα line. In particular, Neufeld (1991) showed that in a
clumpy, dusty ISM, the emergent Lyα emission could have a higher

EW than the unprocessed spectrum of the underlying stellar pop-
ulation. For instance, if the dust survives primarily in cold neutral
clouds, Lyα photons scatter off the clouds and spend most of their
time in the intercloud medium (ICM), whereas continuum photons
propagate unhindered into the clouds and suffer greater extinction.
Observationally, the ISM of our Galaxy is known to be clumpy
down to small scales (Stutzki & Guesten 1990; Marscher, Moore
& Bania 1993), with a power-law cloud mass spectrum based on
CO (Sanders, Scoville & Solomon 1985) and 21-cm (Dickey &
Garwood 1989) emission data. From IRAS 100 µm, CO and 21-cm
data, there is evidence for a multi-scale fractal structure for both the
diffuse H I clouds (Bazell & Desert 1988) as well as the molecular
component (Elmegreen & Falgarone 1996). The clumpiness of the
ISM is well established and it must be taken into account in radiative
transfer calculations.

Surprisingly, there have been relatively few quantitative, three-
dimensional study of the effects of a dusty, clumpy, ISM on Lyα

radiative transfer. The pioneering work of Neufeld (1991) was a
semi-analytic calculation for a plane-parallel slab: many issues, such
as the detailed line profile and the effect of geometry, cannot be ad-
dressed with such an approach. Haiman & Spaans (1999) combined
similar estimates with a Press–Schechter based model to estimate
the cosmological abundance of Lyα emitters. However, the details
of multiphase Lyα radiative transfer in less-idealized settings have
remained unexplored. Recently, Richling (2003) made an attempt
at a quantitative, three-dimensional calculation, but the slow con-
vergence of the numerical technique employed restricted the study
to line-centre optical depths of τ � 100, corresponding to neutral
hydrogen column densities of N � 1016 cm−2 for velocities v ∼
100 km s−1: orders of magnitude too low to be applicable to high-
redshift galaxies. There have been many studies of the radiative
transfer of UV continuum photons in a clumpy, dusty ISM, using
a variety of techniques (e.g. Witt & Gordon 1996; Vársoi & Dwek
1999; Gordon et al 2001), but none with extensions to resonance
line photons. Conversely, while there have been Monte Carlo ra-
diative transfer studies of Lyα photons in both static media (Ahn,
Lee & Lee 2001, 2002) and expanding supershells (Ahn, Lee &
Lee 2003), all have only considered a uniform medium. This pa-
per therefore represents a first attempt at numerically investigating
Lyα radiative transfer incorporating both the effects of dust and gas
clumping.

A key motivation is understanding recent puzzling observations
of anomalous EWs in high-redshift galaxies. For instance, high-
redshift z = 4.5 and 5.7 sources observed by Rhoads et al. (2003)

in the Large Area Lyman Alpha (LALA) survey show anomalously
large Lyα EWs of EW � 150 Å (rest frame), many far in excess
of any known nearby stellar population. An active galactic nucleus
(AGN) origin is unlikely, as the observed upper limit on the X-ray to
Lyα ratio is about 4–24 times lower than the ratio for known type II
quasars (Wang et al. 2004). The radiative transfer effects studied
in this paper can produce an anomalously large Lyα EW from a
standard stellar population. Such an effect could also be at work in
the mysterious Lyα emitters observed at z ∼ 3.1 by Steidel et al.
(2000), which have enormous Lyα fluxes of ∼10−15 erg s−1 cm−2

(a factor ∼20–40 times larger than typical line emitters at the same
redshift), but no observed continuum. Finally, our calculation could
be of particular interest in interpreting the large (∼1000) sample
of Lyman-break galaxy spectra (Shapley et al. 2003), as well as
understanding the spectra of galactic starbursts with winds.

The outline of this paper is as follows. In Section 2, we derive the
basic multiphase Lyα scaling relations. We then consider radiative
transfer off opaque gas surfaces in Section 3, describing the Monte
Carlo simulations and obtaining fitting formulae for the absorption
probability, angular and frequency redistribution functions for both
continuum and resonant scattering. With these surface scattering
formulae in hand, we then develop a framework for multiphase ra-
diative transfer in Section 4, where we derive escape fractions and
Lyα line widths, discuss the role of the gas geometry, analyse sev-
eral geometries of astrophysical relevance, and discuss the effects of
dilute gas in between the opaque clumps. The surface scattering for-
mulae substantially reduce the computational cost of simulating Lyα

transfer, making otherwise intractable calculations feasible. We also
develop a simple analytic model with a single geometric parameter
that shows good agreement with the full Monte Carlo simulations.
In Section 5, we discuss some applications of our formalism. We
show how preferential absorption of continuum photons can lead to
strong enhancement of the Lyα EW. We also consider the typical
Lyα line profiles resulting from outflows/inflows of multiphase gas,
and relate the profile characteristics to the outflow/inflow speed and
the gas geometry.

2 S C A L I N G R E L AT I O N S F O R L yα
A B S O R P T I O N

In this section, we build some physical intuition, by making simple
order-of-magnitude estimates for the absorption of Lyα photons in
both homogeneous and multiphase media, and summarizing some
of the most important results from Sections 3 and 4. We will see
that for conditions prevailing in most galaxies, Lyα photons cannot
escape unless the medium is multiphase.

Before beginning, it is useful to define some terms. Let ν dop =
(V dop/c)ν 0 be the line Doppler width, whereν 0 is the Lyα line-centre
frequency, and V dop = (2k BT /m p)1/2 is the characteristic atomic
velocity dispersion times

√
2. We evaluate the frequency shift from

line-centre in Doppler units, x ≡ (ν − ν 0)/ν dop.1 The Lyα scattering
cross-section is σ (x) = σ 0�(x), where �(x) is the Voigt function,
which is characterized by a Gaussian Doppler core, and Lorentzian
damping wings due to quantum broadening. For frequencies in the
line wing, |x|> 3, the Voigt function is dominated by the Lorentzian:
�(x) ≈ a/(

√
πx2), where a ≡ νL/2ν dop = 4.72 × 10−4 T

−1/2
4 ,

νL = 4.03 × 10−8 ν 0 is the width of the Lorenztian profile, and

1 For gas at 104 K and a central frequency of 1216 Å, the rest-frame fre-
quency and wavelength conversions are: one Doppler width =12.85 km s−1

= 0.16 Å.
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Lyα radiative transfer in a multiphase medium 981

Table 1. Common radiative transfer parameters.

Parameter Value

H I line-centre resonant σ 0 5.90 × 10−14 T 4
−1/2 cm2

scattering cross-section
Dust-interaction cross-section σ d

per hydrogen nucleus

Dust-absorption cross-section σ a ǫdσ
d

per hydrogen σ a
−21 ≡ σ a/10−21 cm2/H

nucleus
Absorption parameter β σ a/(x H Iσ 0)
Damping parameter a νL/(2νdop) = 4.72 × 10−4 T 4

−1/2

Frequency in Doppler x (ν − ν0)/νdop

units
Voigt function �(x) ≈ a/(√πx2) |x | � 3
Doppler speed Vdop √

2kBT /mP = 12.85 T4
1/2 km s−1

Absorption albedo ǫ σ a/(σ a + σ s)
Scattering asymmetry g 〈cos θ scat〉
parameter

Note. σ s is the scattering cross-section, T 4 ≡ T /104 K, x H I is the hydrogen
neutral fraction, ν0 = 2.48 × 1015 s−1 is the Lyα line-centre frequency,
νdop = (V dop/c)ν0 is the doppler frequency, νL = 4.03 × 10−8 ν0 is the
width of the quantum broadening Lorentzian profile, and θ scat is the angle
between the incident and outgoing photon directions.

T 4 ≡ T /104 K. For ease of reference, we have listed the most
common radiative transfer parameters used in this paper in Table 1.

2.1 Homogeneous slab

We begin by reviewing the physics of radiative transfer of Lyα

photons through an optically thick slab, a problem that was first
correctly solved by Adams (1972), and subsequently verified and
explored in much greater detail (Harrington 1973; Bonilha et al.
1979; Frisch 1980; Hummer & Kunasz 1980; Neufeld 1990; Ahn
et al. 2002). We use these classical results to test our Monte Carlo
code in Appendix A.

2.1.1 Homogenous slab: dust free

Consider a Lyα photon escaping from a dust-free slab of pure H I

with line-centre optical depth τ0. When the photon is in the Doppler
core, its mean free path is very short, and it barely diffuses spatially.
It is always scattered by atoms with the same velocity along its di-
rection of motion as the atom that emitted it. On rare occasions,
it will encounter a fast-moving atom in the tail of the Maxwellian
velocity distribution, with large velocities perpendicular to the pho-
ton’s direction. When this photon is re-emitted, it will be far from
line-centre, where the slab is optically thin. For a line-centre opti-
cal depth of τ0 = 103, a frequency shift of x ≈ 2.6 is sufficient to
render the slab optically thin, τ ≈ τ0e−x2 ≈ 1, and the photon can
escape. So escape from the medium is dominated by rare scattering
events.

However, if the medium is sufficiently optically thick, τ0a > 103,
the non-negligible optical depth due to the damping wings still pre-
vents escape. In this case, the photon will suffer repeated scatterings
in the Lorentzian wings of typical atoms, and diffuse slowly in space
and frequency, executing a random walk. Each scatter induces an
rms Doppler shift of the order of x ∼ 1, and has a mean Doppler
shift per scatter of −1/|x| [with a bias to return to line-centre, due to
the large probability for photons to scatter in the core; Osterbrock

(1962)]. Between scattering events, a photon traverses an optical
depth �τ0�(x) ∼ 1, or a mean free path which is �τ0 ∼ 1/�(x) line-
centre optical depths. Hence, a photon at frequency |x| ≫ 1 returns
towards line-centre after N (x) ∼ x2 scatterings, having travelled
an rms line-centre optical depth τ rms

0 ∼
√
N (x)�τ0 ∼ |x |/�(x). If

on its single longest excursion, the photon diffuses an rms distance
of the order of the system size, τ rms

0 ∼ |x |/�(x) ∼ τ0, then the pho-
ton can escape. Since �(x) ∼ a/x2, this implies a critical escape
frequency:

xe = (aτ0)1/3 ≈ 30 T
−1/3

4 N
1/3
21 , (1)

or almost ∼400N
1/3
21 T 4

1/6 km s−1 away from line-centre, where
N 21 ≡ N H I/(1021 cm−2). This displacement of photons away from
line-centre can be seen in our Monte Carlo simulations in Fig. A1.

2.1.2 Homogeneous slab: dusty

Now let the gas contain dust, with a total (scattering plus absorp-
tion) interaction cross-section per hydrogen atom of σ d, and an ab-
sorption probability per dust interaction ǫd. The average absorption
probability per interaction with either dust or hydrogen is:

ǫ =
σabsorb

σtotal
=

ǫdσ
d

xH I�(x)σ0 + σ d

≈
β

�(x)
≈ 1.59 × 10−3 T4 σ a

−21

xH I

[

x

5

]2

, (2)

where xH I is the hydrogen neutral (H I) fraction (which must be
introduced because σ d is the cross-section per hydrogen nuclei).
In the third step we used the fact that, except very far from line-
centre, H I scattering dominates, x H I�(x)σ 0 ≫ σ d, and defined the
absorption parameter

β ≡ ǫdσ
d/xH Iσ0 = 1.69 × 10−8 [T4]1/2[xH I]

−1σ a
−21, (3)

where σ a ≡ ǫdσ
d. For the diffuse H I phase of the Milky Way,

σ a
−21 ≡ σ a/10−21 cm2/H ≈ 1, ǫd ≈ 0.5, and x H I ≈ 1 (Draine & Lee

1984; Draine 2003; Whittet 2003), and so β ≈ 10−8. The fourth
step in equation (2) uses the wing photon approximation �(x) ≈
a/

√
πx2.

Under what conditions can the Lyα photon escape from such a
dusty medium? While this has been the subject of detailed analytic
and numerical work (e.g. Frisch 1980; Hummer & Kunasz 1980;
Neufeld 1990), we can understand the basic scaling laws quite easily.
The probability that a photon will be absorbed at a given frequency
x is simply the number of scatterings at that frequency times the
probability of absorption per scattering:

P slab
abs ∼ N (x)ǫ(x) ∼ x2β

x2

a
. (4)

Thus, P slab
abs (x) ∼ 1 for

|x | > xabs ∼
(

a

β

)1/4

∼ 12.9

[

xH I

T4 σ a
−21

]1/4

. (5)

This implies that a photon will be absorbed before escape if it
has to diffuse far into the line wings in order to escape from the slab,
or if

xe > xabs,

with xe and xabs given by equations (1) and (5), respectively.2

Hence, if the line-centre optical depth exceeds a critical

2 Note that at xabs, the absorption probability per interaction is still small, ǫ ≪
1, and scatterings still strongly predominate. The scattering and absorption
cross-sections are comparable only at a much larger frequency, x(ǫ ∼ 0.5) ∼
(a/β)1/2 ∼ x2

absorb ≫ x absorb, by which time all photons have been absorbed.
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982 M. Hansen and S. P. Oh

value,

τ0 > τc ≈
(

1

aβ3

)1/4

≈ 4.6 × 106 T
−1/4

4

[

xH I/σ
a
−21

]3/4
, (6)

photons cannot escape from the medium. This simple criterion is
borne out by more detailed calculations [e.g. see Fig. 5 of Ahn, Lee
& Lee (2000), and references therein]. In terms of the H I column
density N 21, Lyα photons cannot escape from a homogeneous dusty
slab once

N21 > 0.08 T
1/4

4

[

xH I

/

σ a
−21

]3/4
. (7)

Since typical H I column densities in the Milky Way and other galax-
ies are N 21 ∼ 1, Lyα photons could not escape if most of the H I is
in a homogeneous dusty slab. In the next section, we see that if the
gas is instead inhomogeneous/multiphase, Lyα photons can escape
much more easily.

2.2 Multiphase gas

We will now estimate the absorption criteria for a multiphase dusty
H I distribution. It is worth first noting that a medium is always
more transparent when it is clumpy, for fairly generic and model-
independent reasons. The effective optical depth in an inhomoge-
neous medium is τclumpy = −ln(〈exp[−τ ]〉), where the average is
over all lines of sight. However, for a uniform medium, τ = con-
stant along all lines of sight, so that τuniform = 〈τ 〉. From the standard
triangle inequality,

〈exp[−τ ]〉 � exp [−〈τ 〉] , (8)

and applying the negative logarithm to both sides, we see that
τclumpy � τuniform. Thus, for instance, flux transmission in quasar
absorption spectra is increased for an inhomogeneous intergalactic
medium (IGM), where transmission is dominated by underdense
voids (e.g. Fan et al. 2002).

This effect is strongly exacerbated if most of the absorbing ma-
terial lies in dense clumps which are optically thick to scattering.
In this case, most of the photons scatter off the cloud surfaces with-
out penetrating the clouds, which effectively shields the absorbing
material. This situation naturally arises in a multiphase ISM, when
most of the dust lies in dense molecular/atomic clouds. For now, let
us assume that the ICM is highly ionized and relatively dust-free,
so that all of the dust and H I lies in dense clouds.

In Section 3.3, we show that we can calculate analytically the
escape probability of Lyα photons in a multiphase medium quite
accurately, given just two parameters: N0 and ǫ c. We define N0 as
the mean number of cloud surfaces a photon would encounter before
escape in the absence of absorption. It only depends on the geometry
of the multiphase medium (the trajectory of photons is independent
of frequency, provided clouds are very optically thick). For most of
the cases we will consider,N0 ∼ 1−30, with typical valuesN0 ∼ 5.
The cloud albedo ǫ c is the probability of absorption upon hitting a
cloud surface. In Section 3.3, we show that:

ǫc ∼ 2
√

ǫ, (9)

where ǫ is the absorption probability per interaction given by equa-
tion (2). Equation (9) is easily understood in the case where ǫ is
constant (e.g. for coherent scattering). The effective absorption op-
tical depth of a medium with scattering is τ∗ ≈

√
τa(τa + τs) (e.g.

Rybicki & Lightman 1979, p. 38), where τa and τs are the absorp-
tion and scattering optical depths, respectively. Hence, the albedo
is ǫc = τ∗/(τs + τa) ≈

√
τa/(τa + τs) =

√
ǫ. In Section 3.3, we

show this scaling still holds for Lyα photons, despite the fact that

ǫ(x) changes as the photon random walks in frequency whilst scat-
tering within the cloud. We find that the typical frequency shift after
scattering off an optically thick surface is �x ∼ 1.5, with most
of the redistribution in a symmetric profile about the incident fre-
quency xi. With ǫ(x) given by equation (2), the symmetric frequency
distribution about xi implies 〈

√
ǫ(x)〉 ≈

√
ǫ(〈x〉) ≈

√
ǫ(xi), since

〈x〉= x i. Therefore, the coherent scattering absorption law describes
the Lyα absorption when ǫ is evaluated at the incident frequency,
ǫc ∼ 2

√
ǫ(xi). We verify this explicitly in Section 3.3.2

Under the above approximations, the probability that a Lyα pho-
ton at frequency x will be absorbed is:

P
multiphase
abs ∼ N0ǫc ∼ 2N0

(

β

a

)1/2

|x |, (10)

which should be compared against equation (4) for a homogenous
slab. Note the much weaker scaling with frequency: P

multiphase
abs ∝

x , instead of P slab
abs ∝ x4. From equation (10), P

multiphase
abs ∼ 1 for

frequencies

|x | > xabs ≈
1

2N0

(

a

β

)1/2

(11)

≈ 16.7

[

N0

5

]−1 [

xH I

T4 σ a
−21

]1/2

. (12)

Comparing against equation (5), the cut-off absorption frequencies
for the slab and multiphase case are actually comparable, modulo the
value ofN0. However, there is an important difference: Lyα photons
have to diffuse far into the wings in order to diffuse spatially out
of an optically thick slab. Since escape requires x e > x absorb for a
very optically thick slab, the photons will inevitably be absorbed.
By contrast, there is generally much less diffusion into the line
wings when scattering off surfaces in a multiphase medium. Photons
typically only penetrate small optical depths, τ ∼ 1–10 in the cloud
surfaces before escaping, and the number of scatterings is much
less. Thus, the majority of photons need not necessarily stray far
from line-centre.

Clearly, the crucial parameter which determines if Lyα photons
can escape from a multiphase medium is xe, the characteristic escape
frequency; this must be small, x e < x absorb, for photons to escape.
Lyα photons in a multiphase medium acquire Doppler frequency
shifts in two ways: through the thermal motions of H I atoms, as be-
fore, and also through the bulk motions of the clouds/scattering
surfaces. For this reason, it is useful to rewrite xabs in units of
velocity:

V abs
2 = 2.1

[

N0

5

]−1
[

xH I/σ
a
−21

]1/2
, (13)

where V2 ≡ V /100 km s−1. In Section 4.3, we show that atomic
motions cause a net rms frequency shift of ∼0.5N0V dop after N0

surface scatterings, and consequently result in an escape frequency
of:

V
e,atomic

2 ∼ 0.5V
dop

2 N0 ∼ 0.3 [T4]1/2[N0/5]. (14)

By contrast, we find that cloud motions (either random motions or
bulk inflows/outflows) with characteristic velocity Vc cause a net
rms frequency shift of:

V
e,cloud

2 ∼ V c
2

√

N0 ∼ 2.2 V c
2 [N0/5]1/2. (15)

Note that V e,atomic ∝ N0, while V e,clouds ∝
√
N0, which we discuss

in Section 4.3. When both the frequency redistribution and surface
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Lyα radiative transfer in a multiphase medium 983

motion are combined, we find that the typical escape velocity is
simply given by the sum (rather than the sum in quadrature),

V e ∼ V e,atomic + V e,cloud. (16)

For absorption to be important, we require V e > V absorb, which
constrainsN0 to be

N0 � 5

[

0.38
(

T4 σ a
−21/xH I

)1/4 +
(

[

V c
2

]2
σ a

−21/xH I

)1/3
]−1

. (17)

If N0 satisfies this inequality then the Lyα photons will be signifi-
cantly absorbed. This approximate constraint has the correct limits
when either V e,atomic = 0 or V e,cloud = 0, but is off by a factor of ∼2
when V e,atomic ∼ V e,cloud. The geometric parameterN0 thus plays a
key role in determining if Lyα photons can escape in a multiphase
medium, and plays an analogous role to the column density N H I in
a homogeneous slab. In Section 4.2, we provide formulae for N0

for various different basic types of multiphase geometries.

3 S U R FAC E S C AT T E R I N G A N D A B S O R P T I O N

Multiphase radiative transfer typically involves photon propagation
through an optically thin ICM, and repeated scattering off optically
thick clouds. In a full-blown Monte Carlo simulation, the latter
consumes by far the lion’s share of computational time. This is
extremely inefficient: the same scattering/absorption problem off
cloud surfaces is being solved over and over again for each photon.
A better approach is to consider each cloud as a scattering/absorbing
particle with its own radiative transfer properties (for other applica-
tions of this viewpoint, see Neufeld 1991; Hobson & Padman 1993;
Vársoi & Dwek 1999). We characterize these cloud scattering prop-
erties in this section.

For Lyα photons, clouds are extremely optically thick and have
essentially the same radiative transfer properties as a semi-infinite
slab. This eliminates detailed dependence on the geometry of the
cloud: all that matters is its dust content and the initial photon fre-
quency. Surprisingly, the radiative transfer properties of a dusty
semi-infinite slab to Lyα photon scattering have not been charac-
terized in detail. We do so in this section. We derive formulae for
the net absorption probability (the ‘cloud albedo’) ǫ c, the exiting
photon angular distribution D(θ ), and the exiting photon frequency
redistribution R(xi, x), as a function of the initial photon frequency
xi and the gas composition. With these surface transfer formulae,
radiative transfer through regions containing opaque gas clouds can
be quickly estimated and/or simulated without performing any scat-
tering calculations within the individual gas clouds. This allows for
both vast speed-ups of Monte Carlo simulations (outlined in Sec-
tion 4.6) and a tractable analytic multiphase radiative transfer analy-
sis (Section 4). If a photon typically scattersN times before exiting
a cloud (where N ∼ 105−7 for incident frequencies xi ∼ 5 and
σ a

−21 ∼ 1 – see Section 3.2.4), then this allows a speed-up of order
∼N , making tractable multiphase calculations which would other-
wise be prohibitively expensive.

Our approach is to find fitting formulae to Monte Carlo simula-
tions of an ensemble of incident photons. Whenever possible, we
base the fits on known analytic formulae for simple cases, extending
the analytic formulae to encompass the more general cases that we
simulate. We begin by describing the Monte Carlo algorithm we
use. Surface radiative transfer of continuum photons, where scat-
tering by dust is effectively coherent, is discussed next. We then
consider the more complex case of Lyα surface scattering, where
resonant frequency redistribution effects must be dealt with. Lastly,

we discuss two kinematic aspects of surface scattering: the aver-
age scattering angle, and the frequency shift due to a bulk surface
velocity.

3.1 Monte Carlo code description

The Monte Carlo algorithm we use is similar to the code used
by Ahn et al. (2001, 2002, 2003) and Zheng & Miralda-Escudé
(2002). These papers provide a fuller description of the algorithm
than that which we give here. An ensemble of photons is run through
a medium with neutral H I and dust, and statistics are gathered. Each
photon is tracked until it either escapes the medium or is absorbed,
at which point the photon’s flight is terminated. The optical depth
τ between each interaction is drawn from the distribution exp(−τ ),
that is, τ = −ln u where u ∈ [0, 1] is a random variable drawn from
a uniform distribution (hereafter ‘univariate’), and the photon’s po-
sition is updated. The photon then interacts with either the H I or
the dust, resulting in either H I resonant scattering, dust scattering,
or dust absorption, all of which we describe next.

We model the dust as particles which can either absorb or co-
herently scatter photons. Although dust scattering is not necessarily
coherent, in practice ignoring frequency redistribution due to dust is
an excellent approximation. The trajectory of a continuum photon
is unaffected by small deviations from coherent scattering, since
the dust albedo ǫd only varies weakly with frequency. However,
the Lyα absorption probability is a strong function of frequency
(see equation 2), so for resonant scattering the effects of frequency
redistribution must be taken carefully into account.

A continuum photon only interacts with dust, with an absorption
probability ǫd per interaction. We determine if the photon is ab-
sorbed during a given interaction by drawing a random variable u ∈
[0, 1] from a uniform distribution; if u � ǫd, the photon is deemed
to be absorbed. If the continuum photon is not absorbed, then its di-
rection is changed by the scattering angle θ scat off the incident direc-
tion, with a random azimuthal angle. We use the Henyey–Greenstein
scattering angle distribution3 (e.g. Witt 1977)

PHG(θ ; gd) =
1 − gd

2

4π

(

1 + gd
2 − 2gd cos θ

)−3/2
, (18)

which is parameterized by the dust scattering asymmetry parameter
gd ∈ [−1, 1], and where we use the normalization 1 =

∫

π

0
dθ P(θ ).

The scattering asymmetry parameter is defined as g ≡ 〈cos θ scat〉.
To approximate dust absorption and scattering in the Milky Way
(Draine & Lee 1984; Witt & Gordon 1996; Draine 2003; Whittet
2003) at wavelengths near 1216 Å, we use ǫd = 0.5 and gd = 0.5,
unless otherwise noted.

If the photon is a Lyα photon, then the interaction can either be
with dust or with neutral H I. The probability of a dust interaction
is σ d/[σ d + x H I�(x)σ 0]; if a random univariate u is less than this,
then the interaction is identical to the ‘continuum’ dust interaction
described above. Otherwise, the Lyα photon scatters resonantly off
neutral hydrogen. In all our simulations we take the hydrogen in the
cold phase to be completely neutral, and so adopt x H I = 1 unless
otherwise noted. Although the velocity distribution of the hydrogen
is Maxwellian, the velocity distribution of atoms that scatter photons

depends upon the frequency of the photon. Let n̂ be the direction of

3 Draine (2003) shows that the Henyey–Greenstain distribution is inaccurate
for wavelengths λ � 4700 Å. However, since the surface scattering problem
we consider is essentially planar, the details of the dust scattering distribution
should not significantly affect the results.
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984 M. Hansen and S. P. Oh

the photon before scattering. In the two directions perpendicular to
n̂, the scattering atom’s velocity distribution is Gaussian,

f (w⊥) =
1

√
π

e−w⊥2
, (19)

where w⊥ = v⊥/V dop and v⊥ is a velocity component in one of
the two transverse directions to n̂. In the direction parallel to n̂ the
velocity distribution of scattering atoms is a Gaussian weighted by
a Lorentzian: the Gaussian is due to the thermal motion of the gas,
while the Lorentzian is due to the increased probability for scattering
in the wings from quantum mechanical broadening. The velocity of
the atom v z along the direction of the incident photon is determined
by drawing a random variable from the distribution:

f (wz) =
a

π

exp
(

−w2
z

)

(xi − wz)2 + a2

1

�(xi)
, (20)

where w z = v z/V dop [see Zheng & Miralda-Escudé (2002) for a
rapid algorithm for generating random numbers with this distribu-
tion] and xi is the photon’s incident frequency. In the rest frame of
the atom, the frequency of the outgoing photon is the same as the
incident frequency [strictly speaking it differs slightly due to the re-
coil effect (Field 1959), but for our purposes this is negligible]. The
new direction n̂

′ is given by a dipole distribution, with the symmetry
axis defined by the incident direction n̂:

P(θ ) =
3

8
(1 + cos2 θ ), (21)

where θ is the polar angle off the direction n̂. Although resonant
scattering can result in either isotropic or dipole scattering angle dis-
tributions, depending upon the intermediate excited quantum state
(Stenflo 1980; Ahn et al. 2002), the difference is immaterial for
calculating spectra and escape fractions; a more careful treatment
would be required, for instance, to accurately simulate Lyα po-
larization. Given the new photon direction n̂

′ and the scattering
atom Doppler velocity w, the new photon frequency x′ is given
by

x ′ = x − n̂ · w+ n̂
′ · w. (22)

3.1.1 Avoiding core scatters

Lyα photons spend most of their scatters in the line core, where spa-
tial diffusion is typically negligible. Essentially, each time a photon
enters the line core it scatters in place until it is scattered by a
high-speed atom which moves the frequency out of the core. The
frequency at the core-wing boundary, xc ≈ 3, is defined by:

a
√

πx2
c

= e−x2
c . (23)

Hence, it typically takes exp(x c
2) ∼ exp(9) ∼ 104 scatters to scatter

out of the core. Note that xc depends only logarithmically on the
gas temperature, through the damping parameter a. For a photon
that starts out at frequency xi in the line wing, the photon typically
returns to the core fairly quickly, after ∼x2

i = 25 (x i/5)2 scatters
(see discussion in Section 2.1). Consequently, most of the simulation
time is spent calculating core scatters. By circumventing the core
scatters, the simulation can be greatly sped up. We have adopted a
scheme to do so that is similar to that used by Ahn et al. (2002),
with the addition that we also consider absorption.

One might think that absorption whilst scattering in the line
core is negligible, due to the small physical path lengths tra-
versed whilst scattering in the core. We confirm this quantitatively
below.

For a photon with an initial core frequency xi where |x i| < x c,
let n̄c be the average number of scatters for the photon to leave
the core, x̃c ≡ 〈|x |〉 be the average frequency (absolute magnitude)
while in the core, and x̃w ≡ 〈|xw|〉be the average frequency (absolute
magnitude) of the first scatter that leaves the line core, x w > x c. We
ran simulations for gas at 104 K and adopted xc = 3. We find that
for any initial frequency in the core, n̄c ≈ 2.9 × 104, x̄c ≈ 0.57,
and x̄w ≈ 3.3 with an equal probability of leaving the core at x =
3.3 and x = −3.3. Thus, the probability of absorption during core
scatters can be approximated by (see equation 2):

ǫcore ≈ n̄cǫ ≈ n̄c β/�(x̄c)

≈ 4.0 × 104β = 6.8 × 10−4[xH I]−1σ a
−21. (24)

Since the typical photon scatters N ∼ 10 times before escaping
the surface (Section 3.3.4) and it takes N core ∼ 9(xi/3)2 scatters to
reach the core, a typical photon injected in the line wing will visit the
core perhaps once. The probability of a Lyα photon being absorbed
in the core during the surface scattering is, therefore, ∼10−4 σ a

−21

(ǫd/0.5), which is negligible.
We therefore devised the following acceleration scheme.4 (i) If a

photon starts off in the line core, we do the exact core scattering, and
only employ the approximation scheme on subsequent visits to the
core. This is computationally cheap, since an incident core photon
does not penetrate deep into the surface, and typically leaves after a
few scatters. (ii) If a photon enters the line core from the wing, the
probability of absorption is ǫ core. (iii) If the photon is not absorbed,
then it is given a wing frequency x = ±x̃w, with an equal probability
for plus and minus. The spatial position of the photon is exactly the
same as where it entered the line core, and the new angular direction
is randomly drawn from an isotropic distribution. In Section A2 we
compare this accelerated scheme to exact simulations of surface
scattering. In practice, it gives accurate results, and gives a vast
speed-up of the simulations, typically of the order of ∼105.

3.2 Surface scattering of continuum photons

In this section, we study the properties of coherent surface scattering
of continuum photons, using the three-dimensional scattering algo-
rithm described above in Section 3.1. It is very useful to understand
the properties of coherent scattering surface transfer in order to have
a baseline for comparison with Lyα surface transfer. As such, in this
section we do not use the Henyey–Greenstein scattering angle dis-
tribution, equation (18), but instead use the same distribution that
we use for Lyα scattering, which is the dipole distribution, equa-
tion (21).5 We begin by calculating how thick a slab of gas must
be before the surface scattering approximations apply. We then de-
scribe fits for the cloud albedo ǫ c, the exiting photon scattering angle
distribution D(θ ), and the typical number of scattersN .

3.2.1 The surface approximation

For a slab of material with a finite optical thickness τ , the radia-
tive transfer of photons incident on a surface will be approximately

4 For completeness, this scheme still takes core absorption into account. This
may be useful in other contexts when the core is revisited many times and
core absorption could be non-negligible – for example, for Lyα photons
escaping from an optically thick slab.
5 Note that when we actually perform Monte Carlo simulations of Lyα pho-
tons, we do use the Henyey–Greenstein distribution when the Lyα photon
scatters off dust.
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Lyα radiative transfer in a multiphase medium 985

Figure 1. Transmission of continuum photons. The fraction of incident
photons that are transmitted through a finite slab, f T, is shown as a function
of the slab’s total optical depth τ , for various values of ǫ. The circles are
simulation results; from lightest to darkest, ǫ = 0, 0.01, 0.1 and 0.5. The thin
lines are the fitting formula equation (25). The thick line is the limiting case
f T = exp(−τ ), which corresponds to ǫ = 1.

the same as for a semi-infinite slab if the fraction of photons that are
transmitted through the slab, f T, is small. In this limit, the surface is
not translucent but acts as an absorbing mirror, and all photons are
either reflected or absorbed. We define the penetration column den-
sity Npt such that when N > N pt the transmitted fraction is less than
10 per cent, f T < 0.1. From a series of Monte Carlo simulations,
we find that a decent fitting formula for f T is

f T = [(1 + τ ) cosh(0.55τ 5/4ǫ1/2)]−1, (25)

as shown in Fig. 1. The transmission will be negligible (f T � 0.1)
when either τǫ1/2 � 3 or τ � 9. The corresponding penetration
column density is

N
pt
21 = min

(

3

σ d
−21

√
ǫ
,

9

σ d
−21

)

. (26)

3.2.2 Surface absorption

To derive a formula for the cloud albedo ǫ c, we ran simulations for
an isotropic surface source and averaged the absorption over this
ensemble. For one-dimensional radiative transfer, an exact formula
for ǫ c can be derived for photons incident on a semi-infinite line of
material,

ǫc =
2
√

ǫ

1 +
√

ǫ
(27)

where each scatter is front–back symmetric (g = 0).6 As shown
by Fig. 2, equation (27) provides a very good fit for the three-
dimensional, semi-infinite plane case. When ǫ ≪ 1, we find ǫc ≈
2
√

ǫ, which is similar to the power law found by Neufeld (1991).

6 For a plane-parallel slab, the Eddington approximation with the two-stream
boundary condition gives a total absorption albedo ∝

√
ǫ/(1 +

√
ǫ) (see,

e.g. Rybicki & Lightman 1979, p. 320), and from our simulations we find
that the pre-factor is 2 for one-dimensional scattering.

Figure 2. Continuum photon surface absorption. Surface-absorption prob-
ability ǫ c for continuum photons, as a function of dust albedo ǫ. The dia-
monds are simulations for coherent scattering with a dipole scattering angle
distribution. The line is the fit equation (27).

Figure 3. Exiting angle distribution. The distribution of exiting angles
relative to the surface normal is shown for several incident angles θ i and
absorption albedos ǫ. The shaded region denotes the distribution D ss(θ ) =
sin 2θ . The thick lines are dipole scattering: from darkest to lightest, the lines
depict (ǫ, θ i) = (10−4, 0◦), (10−4, 45◦) and (0.1, 45◦). The thin line is for
isotropic scattering, (ǫ, θ i) = (10−4, 45◦).

3.2.3 Escape angles

To find a fit for the distribution of exiting angles for photons that
escape, we ran simulations for various incident angles θ i relative
to the surface normal. We find that for nearly all θ i, and for both
isotropic and dipole single-particle scattering, the distribution of
exiting angles θ is well fitted by

Dss(θ ) = sin 2θ, (28)

as shown in Fig. 3. This distribution can be understood as the combi-
nation of two effects. First, if photons scatter multiple times before
escape, the photons effectively lose all ‘memory’ of the incident an-
gle. This effect leads to a random exiting angle distribution, D ss(θ )
∝ sin θ . Secondly, photons that exit with angle θ will be attenuated
if the optical depth traversed during the exiting leg, τ , exceeds unity.
Let τ⊥ be the perpendicular optical depth at the point of last scat-
ter for a photon that would exit with an angle θ in the absence of
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986 M. Hansen and S. P. Oh

absorption. The condition τ � 1 implies a maximum perpendicular
depth of such a photon is τ⊥

max = cos θ (e.g. only shallow surface
layers contribute photons escaping nearly parallel to the surface).
Near the surface, the mean intensity is approximately constant for
τ⊥ � 1. This implies that the number of photons available to es-
cape at an angle θ scales as ∝τ⊥

max, which implies D ss(θ ) ∝ cos θ .
Including both the effect of randomization and attenuation gives a
distribution D ss(θ ) ∝ sin θ cos θ , which, when normalized over θ ∈
[0, π/2], gives equation (28). In the case of dipole scattering there
are deviations from this fit for grazing incident angles, but over-
all this fit is generic for surface scattering when the single-particle
scattering distribution is front–back symmetric. We also find that
there is very little dependence on the absorption albedo ǫ. When
the distribution D ss(θ ) holds, the distribution of azimuthal angles is
uniform over the interval [0, 2π). Finally, we note that if the slab is
viewed at an angle θ obs (from the outward surface normal), then the
observed intensity is ∝ D ss(θ obs) cos θ obs. The extra cos θ obs factor
is due to the dependence of the projected surface area on the viewing
angle.

3.2.4 Number of scatters for escape

In Section 4.1 we present a general derivation of the average number
of scatters,N , as a function of the escape fraction f e and the absorp-
tion albedo ǫ, given by equation (55). Application of this formula
to surface scattering, where the escape fraction is f e = 1 − ǫ c(ǫ),
gives

N = 1/
√

ǫ, (29)

which is shown by the solid line in Fig. 4. As the absorption albedo
goes to zero, the average number of scatters diverges, although the
median number of scatters does not seem to increase beyond ∼5.
Clearly, the average is dominated by the rare photons that wander
deep into the surface.

Figure 4. Number of scatters: continuum and Lyα photons. The number
of scatters for escape for coherently scattered photons (circles) and Lyα

photons (squares and triangles) as a function of the absorption albedo. For
Lyα photons the absorption albedo is evaluated at the incident frequency;
two initial frequencies are shown, xi = 10 (squares) and xi = 20 (triangles).
For each case, both the average (filled symbols) and median (open symbols)
number of scatters are shown. The analytic estimate for the number of scatters
for coherent scattering (solid line), given by equation (29), matches the data
very well.

3.3 Surface Lyα transfer

As in the case of coherent scattering considered above, we begin
by calculating how thick a finite slab of gas must be before the
surface scattering approximations apply. We then describe fits for
the net absorption ǫ c, scattering angle distribution D(θ ), the typical
number of scatters, and the Lyα frequency redistribution R(x i, x)
as a function of the incident frequency xi.

3.3.1 The Lyα surface approximation

The criterion for the surface scattering approximation to apply for
incident Lyα photons is similar to that defined for coherent scat-
tering. Consider Lyα photons with frequency xi incident on a finite
slab with optical thickness τi = τ0�(x i), evaluated at the incident
frequency. When xi is in the Lorentzian wing and if the slab is pure
H I, Neufeld (1990) analytically derived that the fraction transmitted
is:

f T
H I =

4

3τi
, (30)

when τi ≫ 1. Our simulations confirm this result when there is very
little dust, but find that f T can be substantially less than f T

H I when
a small amount of absorbing dust is present. To derive a fitting for-
mula for f T we ran simulations for various incident frequencies and
dust-absorption cross-sections. To a large degree, f T depends only
upon the incident single scattering albedo ǫ i and the incident slab
optical depth τi; almost all the frequency dependence is captured by
these two parameters. This is extremely convenient: the transmitted
fraction (and as we will subsequently see, the reflected fraction)
depends in a fairly simple way on the properties of the slab and the
incident frequency. One might worry that due to frequency redistri-
bution (which can be substantial; see Section 3.3.5), the frequency
dependence becomes extremely complicated, but that appears not
to be the case. In particular, the typical incident photon never ‘loses
memory’ of its initial frequency. Most photons that escape do so af-
ter a handful of scatters, ∼10. When xi � 4, the majority of photons
do not wander into the core before escaping, and so most photons
retain some memory of the incident frequency. As shown in Fig. 5,
a reasonable fit for photons initially in the line wing is:

f T =
{(

1 +
3τi

4

)

cosh
(

(τi
√

ǫi)
5/4

)

}−1

. (31)

When ǫ i → 0, the pure H I formula f T
H I, equation (30), is recovered

when τi ≫ 1. As can be seen in the figure, for photons initially in
the Doppler core the transmitted fraction is slightly larger than this
for τi ≫ 1. When τi ∼ 1, the transmitted fraction is slightly less
than the estimate given by equation (31). The transmission will be
negligible if either τi

√
ǫi � 3 or τi � 12. This corresponds to a

penetration column density

N
pt
21 = min

(

0.2 V2

[

σ a
−21

]−1/2
, 0.05 [V2]2

)

(32)

for any incident frequency |x i| � 3, with N
pt
21 substantially smaller

for photons in the Doppler core.

3.3.2 Surface Lyα absorption

To derive a fit for the surface albedo ǫ c, we ran again simulations
for a wide range of incident frequencies and dust cross-sections.
As in the coherent scattering case, we average ǫ c over an isotropic
incident direction. We find that ǫ c mainly depends upon the single
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Lyα radiative transfer in a multiphase medium 987

Figure 5. Transmission of Lyα photons. The fraction of escaping photons
that are transmitted through the slab f T as a function of ǫ i = ǫ(x i), for gas at
T = 104 K with dust parameters gd = 0.5 and ǫd = 0.5. Each shade is a dif-
ferent incident slab optical depth τi: from lightest to darkest τi = 1, 2, 4, 8, 16
and 32. Simulation data for three different incident frequencies xi are shown:
the diamonds, squares, and circles are x i = 1, 5 and 10, respectively. For
each xi and τi, simulations were run for three different dust-absorption cross-
sections: reading from left to right for each xi and τi, the dust values are σ a

−21
= 0.1, 1 and 10. The lines are generated from the fitting formula equation
(31).

Figure 6. Lyα surface absorption (1). The surface albedo ǫ c is plotted
against the single scattering albedo evaluated at the incident frequency, ǫ i,
for gas at T = 104 K with dust parameters gd = 0.5 and ǫd = 0.5. The
inset shows an enlargement of the ǫ = 0.01–1 region. Simulations were run
for four different dust-absorption cross-sections and seven different incident
frequencies. Each shade corresponds to a different σ a: from lightest to dark-
est σ a

−21 = 0.01, 0.1, 1 and 10. For each value of σ a, seven different incident
frequencies xi were run: from right to left, x i = 20, 10, 5, 4, 2, 1 and 0. Note
that for xi = 0, the value of ǫ i for σ a

−21 = 0.01 and 0.1 is less than 10−9, and
hence lies off the plot. The absorption probability ǫ c depends only on ǫ i; at
fixed ǫ i, there is no independent variation with dust content σ a

−21 or incident
frequency xi. The solid line is the fit equation (33), while the dashed line is
the fit equation (34).

scattering albedo at the incident frequency, ǫ i. As shown by the solid
line in Fig. 6, ǫ c is well fitted by

ǫc ≈
2
√

ǫi

1 + √
ǫi

, (33)

which has the same form as for coherently scattered photons, equa-
tion (27). A slightly better fit is shown by the dashed line in Fig. 6,

ǫc ≈
3ǫi

5/9

1 + 2ǫi
1/2

. (34)

Since equation (34) gives a slightly better fit only when ǫ c is negligi-
bly small, in practice we always use equation (33); this will simplify
the subsequent multiphase analysis somewhat, for only a small loss
in accuracy. Either of these formulae for ǫ c applies even when xi is
in the Doppler core [although equation (34) gives the better fit in
this case].

As long as the Lyα photon is in the line wing, the absorption
probability is independent of the gas temperature. To show this,
in Fig. 7 we calculate ǫ c using equation (33), as a function of the
incident velocity shift �V in physical units, rather than Doppler
units x. The figure shows the calculation for gas at temperatures
T = 100 and 104 K and for varying dust content σ a

−21. For photons
in the line wing, the temperature dependence of ǫ drops out:

ǫwing ≈
σ a

xH I�(x)σ0
≈

√
πx2σ a

axH Iσ0
∝

x2

axH Iσ0
. (35)

Focusing just on the temperature, a ∝ 1/
√

T , σ0 ∝ 1/
√

T , and
x = V /V dop ∝ 1/

√
T . Therefore, the combination x2/aσ 0 has

no dependence on the gas temperature. Physically, scattering in the
Lorenztian wing is dominated by the quantum broadening of the
cross-section, which does not depend upon the thermal motion of
the scattering atoms. Since we have shown that ǫ c mainly depends
upon ǫ(x), it follows that ǫ c is also temperature-independent. Thus,
the surface-absorption probability does not depend upon the gas
temperature

Figure 7. Lyα surface absorption (2). Analytical results for the net probabil-
ity of surface absorption plotted as a function of the incident Lyα frequency
shift off line-centre, in velocity units. The solid lines are for a gas tempera-
ture T = 104 K, while the dashed lines are for T = 102 K. We also show the
effect of varying the dust content: from the thickest line to the thinnest, σ a

−21
= 100, 10, 1, 0.1, 0.01 and 0.001. The cloud albedo ǫ c is independent of gas
temperature if the photon is in the line wing, though the core-wing bound-
ary is obviously temperature-dependent: Vc ≈ 3V dop ∝ T 1/2 (the vertical
dashed lines show the core-wing boundary at T = 100 and 104 K). The lines
flatten out once the incident frequency shift lies within the Doppler core,
because the Lyα scattering cross-section approaches its line-centre value
σ 0. This causes the single scattering albedo to asymptote as V → 0. Since
ǫc ∝

√
ǫ approximately holds even for incident photons in the Doppler core,

the surface albedo will also asymptote as V → 0.
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988 M. Hansen and S. P. Oh

3.3.3 Escape angles

As argued in Section 3.2.3 the scattering distribution Dss(θ ), equa-
tion (28) is fairly generic when the single-particle scattering is front–
back symmetric (g = 0). Since Lyα scattering – which is either
isotropic or dipole – is always front–back symmetric, the Lyα sur-
face scattering angle distribution is also given by D ss(θ ), indepen-
dent of the incident angle θ i.

3.3.4 Number of scatters for escape

The average number of scatters for Lyα photons to escape is more
complicated than for continuum photons mainly because Lyα can
be trapped in the Doppler core. As discussed in Section 3.1.1, Lyα

photons in the Doppler core must scatter ∼104 times before a rare
scattering event brings the frequency into the line wing. In Fig. 4, we
show exact Monte Carlo simulations of Lyα photons, where the core
scatters are directly calculated, that is, the Monte Carlo acceleration
scheme described in Section 3.1.1 is not used. The huge increase in
scatterings over the continuum scattering result is obviously due to
scattering in the Doppler core. The average number of scatterings
in the line wing is (analogous to the continuum scattering result)

N w ∼ 1/
√

ǫ(xi) ∼ 25 T
−1/2

4

[

xH I/σ
a
−21

]1/2
[xi/5]−1, (36)

while the average number of scatterings required to reach the
Doppler core is ∼25[x i/5]2 (see the discussion in Section 2.2).
Thus, although the typical photon does not reach the core, the prob-
ability of reaching the core is large enough that the the average N

is dominated by core scattering.

3.3.5 Surface Lyα frequency redistribution

In this section, we find a formula for the reflected frequency distri-
bution R(x i, x) as a function of the incident frequency xi, for the
pure dust-free H I case. When dust is added, we find that the distri-
bution Rdust(x) adheres closely to R(xi, x) as long as σ a

−21 x H I � 10.
Dust will have little effect on frequency redistribution, except for
extremely dusty or highly ionized clouds.

For photons incident at frequency xi on an optically thick slab,
aτ0 � 103, an analytic solution for the transmitted and reflected
emission profile has been derived by Neufeld (1990), extending the
earlier work of Harrington (1973) who obtained these results for
the case xi = 0. By taking the τ0 → ∞ limit of equation (2.33)
in Neufeld (1990), we derive the analytic result for the reflected
spectrum (normalized to unity):

Ranlyt(xi, x) =

√

3

2π2

x2xi
2

(

x3 − xi
3
)2/

6 + xi
4
. (37)

When compared to simulations, as shown in Fig. 8, Ranlyt(x) is in-
accurate in two respects. First, the actual peaks are shifted by an
amount −2/x i (towards line-centre) compared to Ranlyt. This can be
compensated for by using a shifted incident frequency x̃i in place
of xi, where

x̃i ≡ xi − 2/xi. (38)

Secondly, the peaks are significantly flatter than those given by
Ranlyt. It is not surprising that Ranlyt is inaccurate, since the analytic
results of Neufeld (1990) only hold when the photons traverse a
large line-centre optical depth, aτ0 � 103. The bulk of photons that
reflect off a surface do not traverse such a large optical distance,
and so the analytic result may not be accurate, which seems to be
the case. However, one can obtain an excellent approximation to

Figure 8. Dust-free H I frequency redistribution. Top panel: reflection-line
profiles for x i = 5, 10 and 20 are shown. The solid lines are simulations,
while the dashed lines are the analytic predictions Ranlyt(x), equation (37).
There are significant discrepancies, as discussed in the text. Middle panel:
the reflection-line profile for xi = 10 is shown. The jagged solid line is the
simulation, while the smooth solid line is the fit R(x̃i, x; α), equation (39),
with α = 45/2 and x̃i given by equation (38). This simple rescaling of the
analytic redistribution function gives accurate fits to the simulations. Bottom
panel: the same as the middle panel, but shown on a logarithmic scale and
over a larger frequency range. In all three plots, the sharp peaks at x ≈ ±3
are an artefact of the acceleration scheme that we use; we do not calculate
any core scatters, and photons which escape the core are all placed at x =
±3.3. Exact simulations indicate that there is indeed a ‘pile up’ of photons
just outside the core, but the peaks are not as sharp. In any event, the number
of photons in the peaks are relatively insignificant.

the redistribution function by modifying equation (37) to include an
additional fitting parameter α (see Appendix B for details):

R(x̃i, x ; α) =
3
√

α

π

x2 x̃2
i

α x̃4
i +

(

x3 − x̃3
i

)2 . (39)

Note that R(x̃ i, x ; α) is guaranteed to be normalized for all α. For
example, Ranlyt is recovered with α = 6 and x̃i = xi. We find that our
simulations for pure H I are well fitted by α = 45/2, with x̃i given
by equation (38). To generate random frequencies x that obey the
probability distribution R(x̃ i, x ; α), one draws a random univariate
u ∈ [0, 1], and sets

u =
∫ x

−∞
dx ′ R(x̃i, x ′; α) ≡ F(x). (40)

The frequency x is then given by functional inversion, x = F−1(u).
Carrying out these steps on equation (39), done in Appendix B,
we find that the exiting frequencies x which obey the probability
distribution R(x; α) can be generated by the equation

x =
[

x̃3
i − x̃2

i

√
α tan (πu)

]1/3
, (41)

where u ∈ [0, 1] is a random univariate.
When dust is included, the profile peaks become slightly sharper

and the tails fall off slightly faster. However, as shown in Fig. 9,
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Lyα radiative transfer in a multiphase medium 989

Figure 9. Dusty H I frequency redistribution. Top panel: the simulated
reflection-line profiles for xi = 10 and three different σ a

−21 are shown: the
thin line is σ a

−21 = 0, the light thick line is σ a
−21 = 1 and the dark thick line

is σ a
−21 = 10. Bottom panel: the same as the top panel but on a logarithmic

scale and over a larger frequency range. Over the frequency range 0 < x

< 15, the frequency redistribution function R(x, xi) differs by <20 per cent
between 0 < σ a

−21 < 1; hence, to lowest order it is independent of dust
content for the cases we are interested in.

the pure H I distribution closely matches the dusty distribution when
σ a

−21 < 10. In practice, we will therefore always adopt equation (39)
with α = 45/2 for frequency redistribution in the line wing, since it
is accurate except for galaxies with highly supersolar metallicities,
which is unlikely at high redshift.

When the incident frequency is in the Doppler core, the analytic
fit, equation (39), breaks down, and the emission profile takes on an
entirely different form. The emission profile roughly breaks down
into two principal components: photons that escape after only a few
scatters, and photons that scatter enough times that they reach line-
centre before escape. The former photons retain some ‘memory’ of
their incident frequency xi, and produce emission peaks at x = xi

and x = −x i. (the peak at −x i is from photons that have undergone
a single-particle back-scattering off atoms with velocity V = x iV

dop

along the photon-propagation direction). The latter photons lose all
memory of their initial frequency, and produce a broader emission
peak centred on x = 0. Accordingly, we fit the core redistribution
function Rcore(x i, x) with three Gaussians, centred on −x i, 0, and
xi, respectively. Let us define the Gaussian distribution with rms
frequency σ :

G(x, σ ) ≡
1

σ
√

2π
e−x2/2σ 2

. (42)

By comparing to exact simulations, shown in Fig. 10, we find that
a decent fit is given by

Rcore(xi, x) = [1 − P(xi)]

[

3

5
G(x + xi, A) +

2

5
G(x − xi, B)

]

+ P(xi)G(x, C), (43)

where

P(xi) = 0.7e−0.2xi

A = 0.4

B = 0.5

C = 1.25. (44)

Figure 10. Dust-free core redistribution. The simulated reflection-line pro-
files are shown for three different incident frequencies that lie within the
Doppler core. As indicated by the arrows, the panels from top to bottom
correspond to x i = 2, 1 and 0. In each panel, the thick line is the exact
simulation data and the thin line is the fitting formula equation (43).

The above fit works well when dust is included, since the effect of
dust on photons in the Doppler core is small in absolute terms (see
Section 3.1.1).

In summary, a simple analytic prescription for the surface fre-
quency redistribution function R(x i, x) is to use equation (39) with
α = 22.5 and x̃i = xi − 2/xi when the incident photon is in the line
wing |x i| � 3, while equation (43) can be used when the incident
photon is in the Doppler core |x i| < 3.

3.4 Surface kinematics

In this section we discuss two kinematic effects of surface scattering.
First, we calculate the average scattering angle cosine g =〈cos θ scat〉,
where θ scat is the angle between the incident and exiting direction.
Secondly, we calculate the net frequency shift �V due to the Doppler
shift induced by scattering off a moving surface. In each case, we
consider isotropic and perpendicularly incident photons, and use the
surface scattering angular distribution Dss(θ ), equation (28). The
case of perpendicularly incident photons is of interest because it
applies to photons bouncing around inside a spherical shell; most
photons that strike a point on the surface last reflected off the far
side of the shell, and hence incident photons have a strong bias to
lay along the surface’s perpendicular.

We use the following conventions. The outward normal to the
surface n̂s defines the ẑ direction, an incident photon has direction
n̂1 such that n̂s · n̂1 < 0 with polar angle θ 1 and azimuthal angle
φ1, an exiting photon has direction n̂2 such that n̂s · n̂2 > 0 with
polar and azimuthal angles θ 2 and φ2. For example, in Cartesian co-
ordinates, n̂1 = (cos φ1 sin θ1, sin φ1 sin θ1, cos θ1). The surface has
a bulk velocity V s, with a perpendicular component V⊥ ≡ n̂s · V s.
For an isotropic angular distribution of incident photons, the polar
angle distribution of incident photons is D iso(θ 1) = sin θ 1, which is

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 367, 979–1002
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990 M. Hansen and S. P. Oh

normalized to unity over θ 1 ∈ [π/2, π], and φ2 is uniformly dis-
tributed over 2π. For exiting photons, equation (28), the polar angle
distribution is given by D ss(θ 2) = 2 sin θ 2 cos θ 2, which is normal-
ized to unity over θ 2 ∈ [0, π/2], and φ2 is uniformly distributed
over 2π.

3.4.1 The average scattering angle

The scattering angle cosine, also called the scattering asymmetry
parameter, is defined by g ≡ 〈cos θscat〉 = 〈n̂1 · n̂2〉. For an isotropic
incident angle distribution, the average over the angles is

giso =
∫

π

π/2

dθ1

∫ 2π

0

dφ1

∫

π/2

0

dθ2

∫ 2π

0

dφ2

×{Diso(θ1)Dss(θ2) n̂1 · n̂2}. (45)

Azimuthal symmetry eliminates all the terms in n̂1 · n̂2 that have
an x̂ and ŷ contribution, leaving just the term cos θ 1 cos θ 2. The
integral over θ 1 and θ 2 separate, giving

giso = −
1

3
. (46)

The same steps can be carried out for perpendicularly incident pho-
tons, n̂1 = −ẑ, resulting in

g⊥ = −
2

3
. (47)

Surface scattering is characterized by a net average back-scatter,
g < 0.

3.4.2 Frequency shift due to a bulk surface velocity

If the surface has a bulk velocity, then the frequency of the scattered
photons suffers a net Doppler shift, due purely to the surface motion.
Consider a photon with frequency V striking a moving surface. In
the surface rest frame, the photon has incident frequency V ′ =
V − n̂1 ·V s. An exiting photon with frequency V ′′ in the surface rest
frame has an exiting frequency V ′′′ = V ′′ + n̂2 · V s in the original
(‘lab’) frame. Therefore, the surface motion induces a net frequency
shift

�Vsm = (n̂2 − n̂1) · V s, (48)

which is in addition to any frequency shift from scattering within
the surface. Averaging over an isotropic incident angle gives

〈n̂1〉iso = −
1

2
ẑ. (49)

For perpendicularly incident photons, we simply have 〈n̂1〉 = −ẑ.
For the exiting direction, averaging over D ss(θ 2) gives

〈n̂2〉 =
2

3
ẑ. (50)

Thus, the average frequency shifts for isotropic and perpendicularly
incident photons are, respectively,

〈�Vsm〉iso =
7

6
V⊥, (51)

and

〈�Vsm〉⊥ =
5

3
V⊥, (52)

where, as stated above, we define V⊥ ≡ n̂s · V s = ẑ · V s. If the
surface is moving away from (towards) the incident photons, V⊥ <

0, then surface scattering causes a net redshift (blueshift) of the
photon frequency.

4 A NA LY T I C M U LT I P H A S E T R A N S F E R

In this section, we build an analytic model for estimating the escape
fraction and line width for Lyα escaping from a multiphase re-
gion composed of dusty, optically thick clumps. Compared against
Monte Carlo simulations, these analytic estimates give remarkably
accurate results. We consider both stationary clumps and clumps
with a Maxwellian bulk velocity distribution, but postpone the dis-
cussion of bulk gas outflow/inflow until Section 5.2. We derive a
general photon escape fraction formula in terms of two parameters:
the mean number of surface scatters in the absence of absorption
N0, and the cloud albedo ǫ c, for the case of coherent scattering. The
parameter N0 is purely geometric and independent of photon fre-
quency, as long as clouds are very optically thick. We derive fits for
N0 for a variety of multiphase geometries of astrophysical interest,
and compare the resulting analytic escape fractions to Monte Carlo
simulations of coherent scattering.

Applying the coherent scattering formulae to Lyα radiative trans-
fer requires some care, since in this case ǫ c is frequency-dependent
through the frequency dependence of the Lyα scattering cross-
section. The cloud albedo, therefore, changes as the photon executes
a random walk in frequency. None the less, we find that the analytic
formula for coherent scattering can be extended to Lyα scattering as
long as ǫ c is evaluated at the characteristic escape frequency. In Sec-
tion 4.3, we study how the characteristic escape frequency depends
upon the frequency redistribution per surface scatter and the random
bulk motion of the clumps. We derive estimates of the escaping line
profile rms width and full width at half-maximum (FWHM), and
compare these to simulations of repeated surface scatterings.

4.1 Escape fractions

A more detailed prediction for the escape fraction can be given than
the simple scaling laws in Section 2. We derive a generic escape frac-
tion formula in terms of the probability of absorption per scattering,
ǫ, and the average number of scatters for escape in the absence of
absorption,N0. In the context of multiphase transfer, each ‘scatter’
refers to an entire surface scattering, in which case ǫ is the cloud
albedo: ǫ ≡ ǫ c.

Central to the analysis is the average number of interactions for
escaping photons, N . Let ǫ be the average absorption probability
per interaction, and define D(n) to be the probability distribution for
photons to interact n times before escaping, when ǫ = 0 (i.e. in the
absence of absorption). For a constant ǫ, the escape fraction can be
written

fe =
∞

∑

n=0

(1 − ǫ)n D(n). (53)

The average number of interaction for escaping photons can likewise
be written as

N =
1

fe

∞
∑

n=0

(1 − ǫ)n nD(n). (54)

From these two expressions, we derive

N = −(1 − ǫ)
d

dǫ
ln fe. (55)

This can be inverted to express f e in terms ofN :

fe = exp

(

−
∫ ǫ

0

dǫ ′N (ǫ ′)

1 − ǫ ′

)

. (56)
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Lyα radiative transfer in a multiphase medium 991

From equation (55),N0 ≡ N (0) is given by

N0 = lim
ǫ→0

−
d

dǫ
ln fe. (57)

To derive escape fractions in an arbitrary geometry, let us consider
two limits: narrowly beamed forward scattering, and front–back
symmetric scattering. The latter refers to the g ≡ 〈cos θ sct〉 = 0
case, where there is equal probability to scatter in the forward and
backward directions; both isotropic and dipole scattering satisfy
this, though dust grains (gd = 0.5) and cloud surfaces (g iso = −1/3,
from equation 46), do not. As we will show, however, the escape
fraction for scattering for any value of g < 1 can be based upon the
g = 0 case as long as there are sufficient scatters that the photon’s
trajectory is randomized.

The case of purely forward scattering is trivial: since the photon
does not change direction, we have

fe = e−τabs = e−ǫτ = e−ǫN0 , (58)

where we have used equation (57) in the final step. Note that the
escape fraction is the same as if there were no scatterers, since
scattering does not alter the photon trajectory. For front–back sym-
metric scattering (g = 0), the escape fraction is (see Fig. C1 in
Appendix C):

fe =
1

cosh(ǫ1/2
√

τ 2 + 2τ )
=

1

cosh(
√

2ǫN0)
, (59)

where we applied equation (57) to obtain N0 = (τ 2 + 2τ )/2
in the second step. Within the Eddington approximation, the es-
cape fraction from a source in the mid-plane of a slab is fe =
1/ cosh(

√
3 ǫ1/2τ ), as derived, for example, in Neufeld (1991). In-

stead, we propose equation (59), which from our simulations is
more accurate for one-dimensional scattering (see Appendix C).
Although this formula for the escape fraction is derived assuming
g = 0, we show in Appendix C that this formula is valid for any g

as long as there are enough scatters to randomize the photon’s di-
rection. Specifically, if N0 > n∗(g) [where n∗(g) is given by equa-
tion C3], then equation (59) can still be used. Otherwise, equation
(58) is a better approximation to the escape fraction – since a situ-
ation with such few scatters and/or a strongly peaked forward scat-
tering profile converges to the straight-line trajectory case. Note that
in both these limits, the escape fraction only depends upon a single
parameter, ǫN0. The average number of interactions required for a
photon to be absorbed isNa = 1/ǫ, so the controlling parameter is
equivalent to ǫN0 = N0/Na.

The average number of interactions for an escaping photon, N ,
can be derived by applying equation (55) to the appropriate escape
fraction formulae, equation (58) or equation (59). For straight-line
trajectories, the result is

N = (1 − ǫ)N0, (60)

while for the random walk trajectories

N = (1 − ǫ)N0
tanh(

√
2ǫN0)

√
2ǫN0

. (61)

In the limit
√

ǫN0 ≪ 1, we findN → N0 − ǫN0(2N0/3 + 1), and
in the limit

√
ǫN0 ≫ 1, we haveN → (1 − ǫ)

√
2ǫN0/2ǫ.

The entire effect of the cloud geometry is characterized by a single
number, N0. Directly calculating N0 from a given geometry is not
practical except for the simplest geometries. In general, given a
clump geometry,N0 must be computed via a simulation, where one
can use the exiting angle distribution, equation (28), for each surface
reflection. In practice, we find that for many generic geometries

expected to crop up in astrophysical applications, an appropriate
‘line of sight’ – averaged N0 can be accurately determined from
simple geometric parameters (such as the cloud covering factor f C).
We now proceed to do so.

4.2 Example geometries

We now test the accuracy of the analytic formula, equation (59), and
investigate its application in a variety of multiphase geometries. For
each geometry, we fit N0 as a function of the appropriate natural
geometric parameter (such as cloud covering factor of f C) using
Monte Carlo simulations of surface scattering with ǫ c = 0. We
then calculate the escape fraction using N0 and equation (59), and
compare this to simulations. In several cases, we find that we obtain
better fits by rescaling with an order of unity fitting parameter κ ,
where we use κǫcN0 in place of ǫcN0 in the escape fraction formulae,
equation (59). In general, even with no correction factor, equation
(59) is accurate to �10 per cent when f e � 10 per cent, and is
generally correct to within a factor of �2 for f e < 10 per cent.
When the escape fraction is very small, the photons that do escape
comprise the rare trajectories. As their transfer behaviour can depend
sensitively on the specifics of the geometry, it is not surprising that
equation (59) breaks down when f e is very small. In any case, Lyα

emission is undetectable for such small f e, so these cases are of little
observational consequence.

Some notes about our Monte Carlo simulations: for simplicity, we
assume that the region in between the scattering surfaces is empty
(we justify this assumption in Section 4.5). We also assume that
scattering surfaces are extremely optically thick, so that the surface
scattering approximations of Section 3 apply. In particular, when
a photon hits a gas surface, it has a net probability ǫ c of being
absorbed; if it survives, then its exiting angle relative to the surface
normal follows the distribution D ss(θ ) = sin 2θ , and the exit location
is the same as the point of incidence.

4.2.1 Spherical clumps

The canonical example of a multiphase geometry is a spherical
region populated by randomly placed, optically thick spherical
clumps. Such clumps tend to be cool-phase gas such as molecular
clouds, which arose via thermal instability. The natural geometric
parameter is the mean number of clouds intersected along a random
line of sight, called the cloud covering factor f C. The covering fac-
tor is analogous to the interaction optical depth τ for homogenous
media. For a central source, f C is measured from the region centre to
the edge. We computed N0 for various covering factors and clump
radii distributions. As shown by the solid line in the top panel of
Fig. 11, we find that a general fit for any clump radii distribution is

N0 = fC
2 +

4

5
fC. (62)

This highlights the fact that when surface scattering applies, the
spherical clump geometry does not depend upon the size distri-
bution of the clumps nor their volume filling fraction; the entire
geometry is characterized by a single parameter, f C. This was pos-
tulated by Neufeld (1991); we have confirmed this insight in our
simulations. The scalings in equation (62) can be compared against
the usual random walk formulae,N ≈ τ (for τ ≪ 1), andN ≈ τ 2

(for τ ≫ 1), for scattering with front–back symmetry g = 0 (e.g.
Rybicki & Lightman 1979, p. 35); here, f C plays the role of τ . Our
scalings are slightly different, since g = −1/3 for our clouds. For
one-dimensional scattering, N0 = (τ 2 + 2τ )/2 (shown as a dotted
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992 M. Hansen and S. P. Oh

Figure 11. Random spheres geometry. Spherical clouds of radius r ran-
domly populate a spherical region with radius R. The circles have clouds
with the same radius, r/R = 1/20. Top panel: the number of scatterings
N0 as a function of the cloud covering factor f C. The squares have clouds
with the same radius r/R = 1/40. The diamonds have a distribution of
cloud sizes with the distribution D(r ) ∝ 1/r2, with a minimum cloud radius
r/R = 3/200 and a maximum cloud radius r/R = 1/20. The solid line is the
fit equation (62), while the dotted line is the naive one-dimensional relation
N0 = ( fC

2 + 2 fC)/2, extrapolated from N0 = (τ 2 + 2τ )/2, and τ → f C

(in fact, τ →
√

2 fC is the appropriate substitution). Bottom panel: photon
escape fraction f e as a function of cloud albedo ǫ c. From top to bottom, the
covering factors are f C = 0.48, 1.34, 2.14 and 3.0. The lines are based on
equation (62).

line in Fig. 11). By comparison against equation (62), the spheri-
cal clump model is analogous to one-dimensional radiative transfer
with the substitution τ ≈

√
2 fC. In the bottom panel of Fig. 11 we

show that the escape fraction formula, equation (59), works well for
a variety of covering factors for constant ǫ c.

While the covering fraction is an unknown free parameter, it is
easy to see why f C ∼ 1 is reasonable. Suppose the cold clouds
constitute a mass fraction f M of the galaxy, and are overdense by
a factor of δ relative to the ICM. Assuming pressure balance, δ ∼
T ICM/T c ∼ 100, for T c ∼ 104 K and T ICM ∼ 106 K for the cloud
and ICM temperatures, respectively. The volume filling factor of
clouds is then f V = f M/δ. The number density of clouds is n c ∼
f V/Vc, where Vc ∼ r 3

c is the volume of a typical cloud. The cloud
covering factor is:

fC ∼ ncrc
2rgal ∼ fV

rgal

rc
∼ 3

(

fM

0.3

)(

δ

100

)−1(
rgal/rc

103

)

, (63)

where rgal is the size of the galaxy.

4.2.2 Random surfaces

An abstraction of the spherical clump geometry is to have the pho-
tons strike a surface after travelling a distance ℓ, where ℓ is drawn
from a given probability distribution, and where each surface is
randomly oriented with respect to the photon direction. We have
investigated the exponential distribution exp(− f Cℓ/R), where R is

Figure 12. Random surfaces geometry. Top panel: N 0 versus f C. Circles
are simulation results, while the solid line is the fit equation (64). As in the
top panel of Fig. 11, the dotted line is the naive one-dimensional power law
N0 = 1/2( fC

2 + 2 fC). Bottom panel: f e versus ǫ c. From top to bottom,
the covering factors are f C = 1, 3, 5 and 10. The solid lines use ǫcN0 in the
escape fraction formula equation (59), while the dashed line uses κǫcN0,
with a correction factor κ = 1.29.

the radius of the region and f C is the covering factor. The photon es-
capes once it leaves the spherical region of radius R. When a photon
travelling in the direction n̂p strikes a surface, the outward normal
of the surface n̂s is drawn from an isotropic distribution such that
n̂p · n̂s < 0. As shown by the top panel in Fig. 12, a good fit for the
scattering number is

N0 =
3

5
fC

2 + fC. (64)

The random surfaces model is faster to simulate, and any results
reliably apply to the spherical clump model when expressed in terms
of N0. The bottom panel of Fig. 12 compares the escape fraction
formula, equation (59) to simulations.

This procedure for generating random surfaces can in fact be used
to quickly simulate any arbitrary geometry, with a suitable charac-
terization of the probability distribution of path lengths ℓ and surface
orientations n̂s, though, of course, the fitting formulae for N0 will
depend on these quantities.

4.2.3 Shell with holes

Another geometry that frequently arises in astrophysics is that of
a shell of material surrounding a photon source – for instance, in
stellar and galactic outflows. Much work has been done on Lyα

radiative transfer through opaque shells (Tenorio-Tagle et al. 1999;
Ahn et al. 2003; Ahn 2004), but the effect of gaps in the shell has
not been investigated. Since a completely homogeneous shell of
gas is rarely, if ever, observed, a shell with holes is an interesting
geometry. The natural geometric parameter here is the fraction of
the solid angle covered by the shell, f cov (i.e. the gaps comprise a
total solid angle 4π(1 − f cov)). To estimateN0, assume that during
each bounce the photon has a probability of (1 − f cov) to escape
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Lyα radiative transfer in a multiphase medium 993

Figure 13. Shell with holes geometry. Top panel: the scattering numberN0

as a function of the shell covering factor f cov. Simulations were run for shells
with one gap (light circles) and five gaps (dark circles), which fall almost
exactly on the fit equation (65). As expected, the scattering numberN0 only
depends on f cov, and not the number of gaps. Bottom panel: f e versus ǫ c.
From top to bottom, the covering factors are f cov = 0.5, 0.7, 0.8 and 0.9.
The lines show the fitting formula equation (59), with κǫcN0 as the variable,
with κ = 1 (solid lines), and κ = 0.8 (dashed lines).

through a gap. This leads to the expression

N0 ≈
fcov

(1 − fcov)
, (65)

which is shown by the solid line in the top panel of Fig. 13. We com-
puted N0 for shells with a random placement of non-overlapping
circular gaps, and found that many small gaps were equivalent to
fewer large gaps with the same f cov, as to be expected. As shown in
the bottom panel of Fig. 13, the analytic form for f e does well where
expected, and only breaks down when f cov is near unity and ǫ c �

0.3. This agreement is quite remarkable, given that the escape frac-
tion formula (59) was derived assuming a very different scattering
particle geometry (homogeneous media). This gives us confidence
that the impact of geometry on the escape fraction can indeed be
encapsulated by a single parameter ǫcN0.

4.2.4 Open ended tube

To illustrate how well photons can escape through cracks and gaps
in optically thick material, we consider photons escaping from the
middle of an open-ended tube. This geometry may apply to star-
forming regions or AGNs where outflows have punched (bipolar)
cavities through a surrounding gas cloud, allowing the photons to
escape through the cavities (e.g. Shopbell & Bland-Hawthorn 1998),
although we do not investigate the dependence on the opening angle.
The natural geometric parameter is the ratio L/R, where L is the
total length of the tube and R is the tube’s radius. The average
length travelled along the tube per scatter is ℓ ∼ R. Therefore N0

is estimated from L/2 ≈
√
N0ℓ, which implies N0 ∼ (L/R)2. As

shown by the solid line in the top panel of Fig. 14, a decent fit for

Figure 14. Tube geometry Top panel: the solid line is the fit forN0, equation
(66), and the circles are simulation results. Bottom panel: from top to bottom,
the length-to-radius ratios are L/R = 2, 5, 10 and 20. The solid lines are given
by equation (59), with no correction factor (κ = 1).

the number of surface scatters is

N0 =
1

10
(L/R)2 +

13

20
(L/R). (66)

As shown in the bottom panel of Fig. 14, the escape fractions fit
the data very well, except as ǫ c → 1. As previously discussed, for
such low escape fractions, rare escaping photons follow unusual
trajectories not well captured by our formalism. In any case, for
such low escape fractions, Lyα emission cannot be observed, and
the results have no observational relevance.

4.3 Line widths

In this section we will consider two separate effects on the Lyα

frequency as it escapes: the frequency redistribution due to thermal
motion of atoms, as well as random bulk motion of the scattering
surfaces. The effect of global outflow/inflow on the line profile is
discussed separately, in Section 5.2. We consider two simple diag-
nostics of the profile: the rms frequency shift � and the FWHM Ŵ.
We ran simulations of dust-free surface scattering to determine �

and Ŵ as a function of the number of surface scatterings, nss. Al-
though escaping photons vary in the number of scattering surfaces
they encounter before escape, in practice we find that line profiles
can be accurately characterized by the average number of scatter-
ing surfaces encountered. We now derive formulae for �(nss) and
Ŵ(nss) for resonant scattering frequency redistribution and random
bulk surface velocities.

4.3.1 Resonant scattering

By using the analytic approximation to the surface frequency re-
distribution function R(xi, x) derived in Section 3.3.5, we simulated
repeated surface scattering for an ensemble of photons. Carrying
this out using the exact Monte Carlo simulation is not computa-
tionally feasible. For a few cases we compared the results of the
analytic approximation with an exact Monte Carlo simulation and
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994 M. Hansen and S. P. Oh

Figure 15. Line widths. Top left-hand panel: the rms frequency shift �

(filled circles) and the FWHM Ŵ (open circles) are shown as a function of
the nth surface scatter nss for pure atomic scattering. The lines are equation
(67). Top right-hand panel: the rms frequency shift � and the FWHM Ŵ

are shown as a function of the nth surface scatter for surface motion with a
Maxwellian distribution with rms speed Vc. Bottom left-hand panel: the rms
frequency shift � as a function of the nth surface scatter when both atomic
thermal scattering and random cloud motion effects are combined. The four
different symbols correspond to four different values of V c/V dop: the tri-
angles, circles, squares, and diamonds correspond to V c/V dop = 10, 5, 3
and 1, respectively. The lines are equation (69). Bottom right-hand panel:
the FWHM Ŵ as a function of nss; otherwise all symbols retain the same
meaning as the bottom left-hand panel.

a Monte Carlo simulation that approximates the core scatterings
(Section 3.1.1), and all three are in good accord. This gives us some
confidence that the inaccuracies in the analytic approximation do
not compound significantly for the number of scattering surfaces
we investigated. As shown in Fig. 15, decent fits for the resonant
scattering � and Ŵ are

�rs(nss) =
1

2
nss V dop,

and

Ŵrs(nss) = 3 nss
1+nss

V dop.

(67)

The behaviour can be easily understood. If atomic thermal motions
are responsible for frequency redistribution, then the line profile
quickly relaxes to a Gaussian whose FWHM is determined by the
width of the Doppler core. However, the profile also acquires non-
Gaussian tails from rare scattering events; these tails dominate the
rms line width �, hence � ∝ nss. For resonant scattering only, the
FWHM Ŵ is a more accurate measure of the line profile than �.
Examples of the spectra after repeated surface scatters are shown in
Fig. 16.

4.3.2 Surface motion

As shown in Section 3.4, when photons scatter off a moving surface
there is a net frequency shift per surface scatter of 〈�V 〉 ∼ V⊥,

Figure 16. Repeated surface scatters: atomic motion only. The normalized
frequency distribution after repeated scatters off a stationary, dust-free, sur-
face. Shown are nss = 1, 5, 10 and 15, which correspond to increasing widths
in the plot. An ensemble of photons are initially injected at line-centre, and
their frequencies are tracked after repeated cloud scatters. For each cloud
scatter, the analytic formula of Section 3.3.5 is used to generate the photon’s
exiting frequency.

where V⊥ is the velocity along the outward normal. If the moving
surfaces have a Maxwellian velocity distribution with rms speed
Vc, then we expect that the induced rms frequency shift after nss

scattering surfaces will scale as �sm(nss) ∼ √
nss V c. For a Gaussian

distribution, the FWHM and the standard deviation are related by
Ŵ ≈ 2.2�, and so we expect Ŵsm(nss) ≈ 2.2

√
nss V c. To check

this, we simulated repeated surface scattering assuming an isotropic
incident angle distribution and the surface scattering exiting angle
distribution, equation (28). We indeed find that

�sm(nss) =
√

nss V c

Ŵsm(nss) = 2.2
√

nss V c, (68)

which is shown in the top right-hand panel of Fig. 15.

4.3.3 Combined effect

In the two bottom panels of Fig. 15, we show the combined effects of
resonant-line broadening and surface motion. For most multiphase
geometries, V c ≫ V dop, so line broadening is dominated by cloud
motions. In this regime, the line width can be accurately estimated
by equation (68). Only if cloud motions are small and comparable to
atomic thermal motions, V c � V dop, does the behaviour change. In
this case, the FWHM does not increase with the number of scatters;
instead it ‘thermalizes’ to the characteristic Doppler width. The line
profile is more accurately described by equation (67). When V c �

V dop, the total rms width is (note that the dispersions add linearly
rather than in quadrature)

�(nss) = 2�rs(nss) + �sm(nss). (69)

The FWHM has a more complex behaviour because the Doppler
core tends to retard the increase in Ŵ beyond the size of the Doppler
core.

4.4 Lyα escape fractions

In this section, we show how Lyα multiphase transfer can be handled
analytically based on the results in the previous subsections. We
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Lyα radiative transfer in a multiphase medium 995

will first estimate the typical escape frequency of Lyα photons xe,
which provides the typical surface-absorption albedo ǫ c(x e). With
this estimate of ǫ c andN0, we can calculate the typical Lyα escape
fraction f e using equation (59).

We find that an adequate approximation for the typical escape
frequency is given by a slight modification of the rms line width
�(nss), equation (69), where the surface motion can be either a
random Maxwellian cloud velocity with rms speed Vc or a bulk
outflow with typical outflow speed Vc (see Section 5.2 below). It is
not correct to approximate the typical number of scattering surfaces
nss with the average number of scattering surfaces in the absence
of absorption, N0, since in general nss ≪ N0 once absorption is
taken into account. A more appropriate measure of nss is given
by N , equation (61), the average number of scattering surfaces
encountered before escape for a fixed cloud albedo ǫ c. However,
since ǫ c is frequency-dependent, we still need to estimate the escape
frequency xe. We do so iteratively. We first estimate xe assuming that
absorption is unimportant,

x0
e = �(N0), (70)

where�(N0) is given by equation (69) with nss = N0; this obviously
overestimates xe. We can then estimateN as:

nss ≈ N ≈
(

1 − ǫ0
c

)

N0

tanh
√

2ǫ0
cN0

√

2ǫ0
cN0

, (71)

where the surface-absorption albedo, equation (33), is

ǫ0
c ≡

2
√

ǫ
(

x0
e

)

1 +
√

ǫ
(

x0
e

)

(72)

with �(nss) given by equation (69).
With the above estimate of nss = N , a better approximation to

xe is given by the next iteration,

x ′
e = �(N ), (73)

which gives a better approximation for the typical cloud albedo

ǫ ′
c =

2
√

ǫ(x ′
e)

1 +
√

ǫ(x ′
e)

. (74)

At this point one could iterate again – using ǫ ′
c to find a better

approximation to nss – but we find that stopping after one iteration
provides escape fractions in good accord with simulations. From
equation (59), the escape fraction is given by

fe ≈
1

cosh
√

2ǫ ′
cN0

. (75)

In Fig. 17, we compare this analytic escape fraction to simu-
lations of radiative transfer through the random surfaces geometry
(see Section 4.2.2) for both random cloud motions and a bulk cloud
outflow, and for several amounts of dust. The bulk cloud outflow
is purely radial, with the same speed at all radii, which approxi-
mates galactic winds outside the initial acceleration zone. As can
be seen, the analytic approximation captures the simulated escaped
fraction to ∼20 per cent when cloud motion dominates atomic ther-
mal motion, V c � 3V dop ∼ 40 km s−1. As explained in Section 4.3,
once the effects of the Doppler core become important, the rms fre-
quency shift � is no longer a good measure of the typical frequency:
� will overestimate the typical escape frequency, and hence lead
to an overestimate of the absorption. This is seen in the figure for
V c � 40 km s−1. However, since the amount of absorption is typi-
cally not significant when the escape frequency is �40 km s−1, for

Figure 17. Analytic Lyα escape fraction examples. The Lyα escape fraction
f e as a function of the typical speed of the bulk cloud motion, Vc. Simula-
tions of Lyα transfer through the Random Surfaces geometry (Section 4.2.2)
with f C = 3 were run for two types of bulk cloud motion: a Maxwellian ve-
locity distribution with no bulk outflow (open symbols), and a purely radial
outflow with no random bulk motion (filled symbols). In the former case the
x-axis corresponds to the rms speed of the clouds, while in the latter case
the x-axis corresponds to the outflow speed, which is the same at all radii.
Two different dust contents were simulated, both with ǫd = 0.5: σ d

−21 = 2

(circles) and σ d
−21 = 0.2 (squares). In all cases the gas temperature is 104 K.

The analytic approximations (lines) are generated by the steps outlined in
the text.

most purposes using � allows one to accurately estimate f e. Note
that for bulk outflows with the same characteristic speed Vc, the
escape fraction is smaller than for random cloud motion. The line
profile for random cloud motion is approximately Gaussian centred
on the line-centre, with a standard deviation of Vc. In contrast, the
line profile for a bulk outflow has a mean at Vc. For a given Vc, a
bulk outflow produces more photons far from line-centre than ran-
dom cloud motion, and hence the bulk outflow causes more Lyα

absorption.
In summary, the escape fraction depends upon five parameters: the

typical cloud speed Vc, the number of surface scatters in the absence
of absorption N0, the gas temperature T , and the dust parameters
σ d and ǫd.

4.5 Dust and gas between the clumps

Thus far, we have only considered radiative transfer off opaque sur-
faces, and ignored absorption and/or scattering in the optically thin
hot ICM. We treat the hot ICM as having a very low neutral H I

fraction (for gas in coronal equilibrium at T ∼ 106 K, x H I ∼ 10−5),
as well as being dust-depleted, due to sputtering and other dust-
destruction processes. ICM resonant scattering and absorption is
easily incorporated in our Monte Carlo simulations at little compu-
tational cost, and we have experimented with various prescriptions
for the ICM in our runs. In most cases, we find that radiative transfer
within the ICM can be neglected, and here we show some simple
estimates demonstrating why this is the case.

Let us first consider dust absorption in the ICM, assuming that
resonant scattering in the ICM is negligible. It is easy to show that
for a multiphase medium, the relative fractional column densities of
a species i in phases X and Y are simply given by the relative mass
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996 M. Hansen and S. P. Oh

fraction of species i in that phase:

N i
X

N i
Y

=
f i
M,X

f i
M,Y

=
(

fM,X

fM,Y

)(

x i
X

x i
Y

)

, (76)

where f i
M,X is the total mass fraction of species i in phase X, f M,X

is the total mass fraction of all species in phase X, and x i
X is the

specific mass fraction of species i within phase X. Thus, for instance,
N H I

c /N
H I

ICM � f M,c[x
H I

ICM]−1 ≫ 1 for x
H I

ICM ≪ 1, and the observed H I

column density N H I
21,obs ∼ 1 is strongly dominated by gas in the cold

phase.
We can use this to estimate scattering in the ICM. Due to its

random walk as it scatters off optically thick surfaces, a Lyα photon
traverses an ICM column density ∼

√
N times larger than for a

straight-line path. At a characteristic escape frequency V e
2 ∼ 1, it

therefore encounters an ICM H I optical depth:

τH I
ICM = 0.07N H I

21,tot

(

fM,ICM

0.7

)(

N

5

)1/2(
xH I

ICM

10−4

)

[

V e
2

]−2
. (77)

Hence, resonant scattering in the ICM is negligible. It only becomes
important when the photon is within the Doppler core (V2 ∼ 0.26
for the parameters above). However, even in this rare case τ

H I

ICM is
at most a few, comparable to the number of surface scatteringsN .

What about dust absorption in the ICM? Let us suppose that due
to dust depletion, only f d

ICM ∼ 0.05 of all the dust in the galaxy is
in the ICM. If the total dust optical depth through the cold phase
is τ d

c ∼ N H I
21,totσ

a
−21, then the total dust optical depth through the

ICM is τ d
ICM ∼ f d

ICM τ d
c . The mean free path of a Lyα photon is

l ∼ rgal/
√
N . Hence, between each bounce, a Lyα photon traverses

an optical depth τ bounce
a ∼ τ d

ICM/
√
N , and has a probability of ab-

sorption in the ICM of Pabsorb
ICM ≈ 1 − e−τbounce

a ≈ τ bounce
a , or:

Pabsorb
ICM ≈ 0.02

(

N

5

)−1/2 (

f d
ICM

0.05

)(

τ d
c

1

)

. (78)

By contrast, during each surface scatter, the photon has an absorption
probability of:

Pabsorb
c = ǫc ≈ 2

√

ǫ(xe) ≈ 0.12V e
2

[

σ a
−21

]1/2
. (79)

Thus, photons are more likely to be absorbed on cloud surfaces,
rather than in the ICM, justifying our neglect of ICM dust absorption.

Obviously, all of these statements are parameter-dependent and
there are cases when scattering and absorption in the ICM cannot be
neglected (if the ICM dust or H I content is high). For instance, if the
H I fraction in the ICM is high, then Lyα can be strongly quenched.
This may be partly responsible for the variation in the Lyα EWs
amongst different galaxies (see discussion in Section 5.1).

4.6 Accelerated radiative transfer on a grid

The approach of this paper is to identify all optically thick surfaces
in a Monte Carlo simulation and apply the scattering properties
identified in Section 3 to them, thus affording vast computational
speed-ups. For this scheme to be accurate: (i) the surfaces must be
sufficiently optically thick that transmission is negligible; that is,
they should satisfy equation (32). (ii) The approximation that the
photon is either reflected or absorbed on the spot without significant
spatial diffusion must hold. We now discuss this second requirement.

For the ‘on the spot’ approximation to hold, the photon’s mean
free path ℓi should be significantly smaller than the grid cell size
Lcell. The photon typically moves a distance ∼

√
N surfℓi ∼ 5ℓi (see

Section 3.3.4 for discussion of N surf) whilst scattering within the
surface. Thus, we require ℓi � α L cell where α ∼ 1/10 is a constant

that designates the desired level of accuracy for the approximation.
The ‘on the spot approximation’ is accurate if the H I density is
larger than a critical density:

nH I
cell � n∗ =

13

(α/0.1)

V i
2

2

(Lcell/pc)
cm−3, (80)

where V i is the incident Lyα frequency shift off line-centre in the
rest frame of the H I in the cell (in velocity units).

Alternatively, if one is willing to sacrifice some spatial resolution,
one can consider a group of neighbouring cells which are opaque
across their total length [and thus satisfy equation (32)] even though
an individual cell may not be opaque. For cubic blocks of N blk cells
per side, the entire block surface will act like an absorbing mirror if

〈n〉H I
blk � n∗ =

13

(α/0.1)

V i
2

2

(Nblk Lcell/pc)
cm−3, (81)

where 〈n〉blk is the average H I density within the block. The surface
approximations break down if the block is strongly inhomogeneous,
that is, if the mean free path changes over a length-scale that is much
shorter than the block length. This is equivalent to |n cell/∇(n cell)| �
βN blk L cell, where β ∼ 10 is a constant that designates the desired
level of accuracy for the approximation. In terms of cells on a grid,
let n(2)cell and n(1)cell be any two neighbouring cells in the block.
The second condition on the absorbing mirror approximation takes
the form
∣

∣

∣

∣

n(2)cell

n(1)cell
− 1

∣

∣

∣

∣

� 0.1
1

(β/10)Nblk
. (82)

We look forward to implementing these ideas in numerical sim-
ulations in the future.

5 A P P L I C AT I O N S

We briefly discuss two examples of applications of our radiative
transfer framework. Many more extensive studies are possible.

5.1 Lyα EWs

Most Lyα photons are produced in the H II regions surrounding
sources of ionizing radiation, where roughly two-thirds of the ion-
izing photons are converted into Lyα photons (under case B re-
combination). Hence, in the absence of radiative transfer effects,
the EW measures the number of ionizing photons emitted rela-
tive to the UV continuum near 1200 Å. There are numerous ex-
amples of high-redshift sources which have EWs which are too
large to be produced by conventional stellar populations. Approx-
imately two-thirds of the Submillimetre Common-User Bolometer
Array (SCUBA) submm galaxies with accurate positions from ra-
dio detections have Lyα in emission, many with EWs too great
for stellar sources (Smail et al. 2004). The mysterious Lyα emit-
ters at z ∼ 3.1 observed by Steidel et al. (2000) have enormous
Lyα fluxes, but no observed continuum. Finally, the LALA sur-
vey detects many high-redshift z = 4.5 and 5.7 sources with
EWs � 150 Å, which is significantly in excess of any known
nearby stellar population (Rhoads et al. 2003). An AGN ori-
gin is unlikely because follow-up observations show no signs
of the X-rays and high-ionization lines expected for a type II
quasar source (Dawson et al. 2004; Wang et al. 2004). Another pos-
sibility is that the Lyα emission is due to an extremely top-heavy
population of massive PopIII stars. However, there are no signs of
the strong He II emission at 1640 Å expected from metal-free stars
(Dawson et al. 2004).
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Lyα radiative transfer in a multiphase medium 997

Another possibility for high Lyα EWs, originally suggested by
Neufeld (1991), is radiative transfer effects. If the continuum is more
absorbed than Lyα photons during the escape from the host galaxy,
then the EW of the transmitted spectra is larger than the EW of the
source. The initial and transmitted EWs are basically related by the
ratio of Lyα to continuum escape fractions,

EWout ∼
f Lyα
e

f ctm
e

EWsrc, (83)

where EW src is the source EW and EW out is the EW for the escaping
photons. In order for a ‘normal’ starburst initial mass function with
an intrinsic EW of EW src ∼ 150 Å to produce an observed EW of
EW out � 300 Å, then radiative transfer must account for a ‘boost’ by
a factor of at least 2–3. For sources where no continuum is observed,
the continuum must be preferentially extinguished by an even larger
factor.

Let us now estimate EW boosts in our multiphase model to see
if this is possible. For any multiphase medium where the gas re-
sides in clumps that are very opaque to Lyα, the surface scattering
approximations apply, and so the Lyα escape fraction can be analyt-
ically estimated as in Section 4.4. What about the continuum escape
fraction? For simplicity, assume that each gas clump is not opaque
to dust extinction: τ d

c � 1, where τ d
c is the dust extinction (scatter-

ing plus absorption) optical depth across a clump diameter.7 Since
the self-shielding effect of clumpy gas is therefore small for the
continuum photons, the effective dust distribution is approximately
homogenous for the continuum radiative transfer. The escape frac-
tion for a photon injected in the middle of a homogenous medium,
with an absorption albedo ǫd ≈ 1/2, is approximately that given by
equation (59),

f ctm
e ≈

1

cosh
√

ǫd[(τ d)2 + 2τ d]
, (84)

where τ d ≡ Nσ d is the average dust extinction optical depth through
a region with average H I column density N. Fig. 18 shows how
the ratio f Lyα

e / f ctm
e varies as a function of N0 for a fiducial set of

multiphase gas parameters. A substantial ‘boost’ in the transmitted
EW due to selective absorption of the continuum is quite reasonable,
as long as two basic conditions are met: (i) there must be enough dust
present to absorb a substantial fraction of the continuum; and (ii)
this dust must be predominantly located in dense neutral gas, so that
the Lyα photons are shielded from absorption. The latter condition
is discussed in Section 4.5 above, and so we turn to discussing the
first condition.

The Lyα escape fraction depends only weakly on the overall dust
content of the galaxy. In Fig 18, f Lyα

e ∼ 0.2–0.9 over a wide range
of parameters, with the escape fraction decreasing with the num-
ber of surface scatters N0 and bulk gas motion Vc. On the other
hand, because continuum photons are not shielded from dust by
resonant scattering, they see the full optical depth of dust absorp-
tion, and very approximately, f ctm

e ≈ exp(−τa). A significant boost
in the EW therefore requires that τ d � 1. If the average H I col-
umn density across the region is N, then τ d ∼ 1 requires σ d

−21 ∼
1/N 21. A damped Lyα-type system with an average column density
N ∼ 1022 cm−2 would require a dust extinction cross-section per
hydrogen of σ d ∼ 10−22 cm2/H, which roughly corresponds to a
metallicity of ∼1/10 solar. For sources in which these differential
radiative transfer effects are taking place, the EW should statistically

7 However, the total dust-absorption optical depth across the entire galaxy
(many clumps) can be significantly greater than unity.

Figure 18. Lyα/continuum escape fraction ratio. The Lyα-to-continuum
escape fraction ratio, f

Lyα
e / f ctm

e , as a function of the total dust-absorption
optical depth τ a

−21 = ǫdσ
d
−21 N 21, assuming the temperature of the neutral

phase is ∼104 K. From top to bottom,N0 is (1, 4, 10), for bulk gas motions
of 50 km s−1 (solid lines), and 250 km s−1 (dashed lines), respectively. For
these parameters, the Lyα escape fractions are f

Lyα
e = (0.94, 0.68, 0.38)

and (0.81, 0.43, 0.18), respectively, independent of the total dust optical
depth τa. Most of the EW boost comes from the low escape fractions for
continuum photons under optically thick conditions; very approximately,
f ctm

e ∼ exp(−τa).

have a positive correlation with the far-infrared flux. This correlation
could potentially break down in more developed galaxies at lower
redshifts, where the Lyα shielding effect of the H I can be broken
by higher gas speeds in deeper potential wells (rendering clumps
optically thinner in Lyα), as well as the build-up/survival of dust in
low-density interclump gas.

5.2 Multiphase outflows

We turn to discussing the effect of a multiphase gas outflow (or in-
flow) on the Lyα emission-line profile. The effects of an outflowing
shell (e.g. Tenorio-Tagle et al. 1999; Ahn et al. 2003; Ahn 2004)
and a Hubble-like expansion of a uniform gas sphere (e.g. Loeb
& Rybicki 1999; Zheng & Miralda-Escudé 2002) on the Lα emis-
sion line is a well-studied problem. In both the expanding-shell and
expanding-sphere scenarios, the generic effect is that a characteris-
tic outflow speed V f produces a redshifted emission peak at V peak ∼
−V f, with an asymmetric shape that has a longer tail on the red side
of the peak. The peak comprises photons that reflect off the far side
of the expanding gas, which Doppler shifts the frequency approxi-
mately by −V f (see Section 3.4). However, in order for these singly
back-scattered photons to escape, the intervening gas column den-
sity must be small enough for the photons to be transmitted, rather
than be reflected a second time. In the rest frame of the near-side
shell, the singly back-scattered photons have a frequency shift V ′peak

∼ −2V f. In Section 3.3.1, we showed that a non-negligible amount
of Lyα photons will be transmitted through a slab if N 21 < N

pt
21 ≈

0.05 [V2]2. Setting V ∼ −2V f, we see that an outflow with a speed
of 200 km s−1 will only allow a non-negligible amount of singly
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998 M. Hansen and S. P. Oh

back-scattered photons to be transmitted if the intervening column
density is N � 2 × 1020 cm−2. Observational estimates of the col-
umn density in galactic winds often exceed this, yet Lyα is still often
seen.

The main distinguishing feature of a multiphase outflow is that it
allows photons of any frequency to escape even when the intervening
gas column depth is very large, N � N pt. As in the homogeneous
gas outflow models with smaller column densities N < Npt, we
find that for multiphase outflows, the emission peak is redshifted by
∼V f . However, emission is still detectible even when N ≫ N pt, as
expected.

In particular, we investigated the emission profile for two basic
types of multiphase outflow geometries: an outflowing shell with
holes (Section 4.2.3) and an outflowing ensemble of gas clumps
modelled with the Random Surfaces geometry (Section 4.2.2). In
both cases, all surfaces were given a radial velocity with constant
speed. This choice is meant to reflect galactic winds, where the gas
reaches the asymptotic wind speed quickly. We placed a source of
line-centre photons in the centre of the region. Strictly speaking, the
source line profile can be both thermally and turbulently broadened.
However, if the characteristic speed of outflowing clouds exceeds the
line width of the Lyα source, and the covering factor of intervening
gas clouds is larger than a few, the photons will quickly random walk
towards the line wings and effectively lose all ‘memory’ of their
particular initial frequency. Generality is therefore still preserved if
we assume each photon to initially be at line-centre. On the other
hand, if the above conditions do not hold, then the simulations can
simply be rerun with a more realistic injection profile. It is important
to note that the fitting formulae of Section 3 are completely general
and work for any injection line profile, since they are always given
as a function of the incident photon frequency on a cloud.

Since the regime of optically thick gas has been given the least
attention, we assume that the extreme case holds, where none of
the photons penetrate through the gas. In this limit the surface scat-
tering approximations of Section 3.3 apply in the rest frame of the
scattering surface. The kinematics of Doppler shifts in and out of a
moving surface can be found in Section 3.4. In order to distinguish
the effects of outflow from the effects of random bulk gas motion,
we assume that there is no random bulk motion, so that each gas
surface has an exactly radial velocity, V s = V fr̂ .

5.2.1 Outflowing shell with holes

For photons perpendicularly incident on the inner side of the shell,
the net frequency shift induced by a moving scattering surface is
�V = −5/3V f (see Section 3.4.2). Since most photons escape after
encountering either zero or one scattering surface, the two dominant
peaks in the emission profile will be at V (0) = 0 and V (1) ≈ −5/3 V f.
The maximum frequency shift after encountering one scattering
surface is �Vmax = −2V f, and so the emission peak at V (1) should
have a sharp cut-off at V = −2V f. These emission peak features
are verified in Fig. 19. The series of secondary peaks are at integer
multiples of V(1), but tend to become blended together to form an
long red-side tail to the profile. A possible exception is the third
peak at V (2) = 2V (1) = −10/3 V f (composed mostly of photons that
encounter exactly two scattering surfaces before escaping), which
can also be prominent in the profile.

5.2.2 Outflowing clumps

For a simple model of outflowing gas clumps we used the Random
Surfaces geometry, which is described in detail in Section 4.2.2. In
Fig. 20, we show how the profile varies with the covering factor, for

Figure 19. Outflowing shell with gaps. The normalized emission profile as
a function of the frequency shift off line-centre, for an outflowing shell with
speed V f = 200 km s−1. Two dust amounts were simulated: σ a = 0 (thin
line, filled in) and σ a

−21 = 1 (thick line). In all simulations, we used a gas
temperature T 4 = 1. For high-redshift galaxies, the blue side of the profile
would be quenched by IGM absorption. The spike of photons that escape
at line-centre is easily scattered out of the line of sight by a small (N �
5 × 1013 cm−2) intervening column density of H I, and thus not likely to be
observed.

Figure 20. Outflowing clumps. The normalized emission profile as a func-
tion of the velocity shift from line-centre. The thick lines are σ a

−21 = 1
while the thin lines (filled in) are dust free, σ a = 0. The gas temperature and
outflow speed are the same as in Fig. 19. From top to bottom, each panel
is a different covering factor: f C = 1, 3 and 5. The escape fractions for the
σ a

−21 = 1 simulations are indicated. The delta function emission spike at
Ve = 0 is composed of all the photons that escape freely without striking a
clump. As noted in Fig. 19, exact line-centre photons are likely to be scattered
out of the line of sight before being observed.
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Lyα radiative transfer in a multiphase medium 999

Figure 21. Random Surfaces bounce history. Top panel: the radial position
r (in units of the mean free path between surfaces Lmfp), plotted against
the number of surface scatters nss. The thin line is a representative single
photon history, the thick solid line is the average over an ensemble of photons.
Middle panel: the frequency shift V (in units of the outflow speed Vf), plotted
against nss. The thin solid line is a representative photon history, the thick
solid line is the average history. Bottom panel: the Lyα surface-absorption
albedo ǫ c is plotted against nss, for V f = 200 km s−1 and a gas temperature
T 4 = 1. We use the approximation ǫ ≈ β/�(x), which breaks down when ǫ

≈ 1. The thin solid line is a representative photon history for β = 10−8. The
thick solid lines are the average histories for several different values of the
dust content β. From lightest to darkest, β = 10−10, 10−9 and 10−8.

dust free gas σ a = 0 and for a Milky Way type dust content σ a
−21 =

1. As for the case of an outflowing shell with holes, the inclusion of
dust suppresses photons which have redshifted far from line-centre
(so the H I no longer shields them from the dust), and sharpens the
line profile. To provide some insight into how a clumpy outflow
causes a redshift in the emission line, in Fig. 21 we show how the
photon radius, frequency, and cloud absorption albedo vary as a
function of nss.

6 C O N C L U S I O N S

Our main technical, radiative transfer results are as follows.

(i) With the aid of Monte Carlo simulations, we study the scatter-
ing properties of Lyα photons incident on an opaque, dusty, moving
cloud. We derive fitting formulae for the absorption probability, fre-
quency and angular redistribution functions of incident photons.

(ii) These formulae can be incorporated into radiative transfer
codes, affording a vast computational speed-up, and making feasible
otherwise intractable calculations.

(iii) Analytically, a multiphase gas geometry can be accurately
characterized by a single number,N0, the number of surface scatters
in the absence of absorption. Other factors – such as the cloud radii
distribution for fixedN0 – are generally unimportant.

(iv) We derive analytic formulae for the Lyα escape fraction and
line widths.

(v) Several archetypal geometries are explored: randomly placed
spherical clouds, randomly placed surfaces (an abstraction of the

prior geometry), a shell with holes, and an open-ended, cylindrical
cavity.

(vi) Constant speed, radial, outflows are analysed for broken
shells and random surfaces. The red-shifted peaks and widths are
connected to the geometry and outflow speed.

Our main results of direct observational relevance are as follows.

(i) Lyα can escape from multiphase dusty galaxies for H I column
densities where it would be strongly quenched in a single-phase
medium.

(ii) If most of the dust resides in a neutral phase which is opti-
cally thick to Lyα, the Lyα EW can be strongly enhanced: while
Lyα photons typically scatter off such surfaces (which shield the
dust), continuum photons penetrate inwards and are preferentially
absorbed.

(iii) When the characteristic bulk gas speed exceeds
∼100 km s−1, the Lyα line width is dominated by the gas motion,
and resonant scattering frequency redistribution is sub-dominant
effect.

(iv) Multiphase outflows generically produce Lyα line profiles
that have the characteristic asymmetric shape seen in many starburst
galaxies and Lyα emitters.

(v) Multiphase outflows can produce line widths several times
larger than the actual outflow speed.

The ISM of galaxies at both low and high redshift is almost certain
to be both dusty and multiphase: metal and dust production begin
very early, given the short lifetime of massive stars, and thermal
instability is almost inevitable under galactic conditions. None the
less, despite an extensive literature, to the best of our knowledge
this is the first detailed numerical study of resonance-line radiative
transfer in a multiphase dusty medium. The ground is surprisingly
rich, and many future applications are envisaged!
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Zheng Z., Miralda-Escudé J., 2002, ApJ, 578, 33

A P P E N D I X A : T E S T S O F T H E C O D E

In this appendix we show various tests of our Monte Carlo code.
First, we test the code against known analytic solutions for opti-
cally thick slabs. Secondly, we compare the acceleration scheme
described in Section 3.1.1 to exact simulations.

Figure A1. Spectra emergent from slab, central source. The surface mean
intensity J(x) as a function of frequency, for a central source of Lyα photons in
an optically thick slab. For three different values of aτ0 (labelled in the plot),
the analytic surface intensity (grey line) is compared to exact Monte Carlo
simulations (circles). The optical depth is fixed at τ0 = 106. Three different
gas temperatures are used: T = 10, 102 and 104 K, which correspond to aτ0 =
104.17, 103.67 and 102.67, respectively. The relative error for each frequency
bin is approximately 1/

√
Nbin, where N bin is the number of photons in the

bin.

A1 Comparison to analytic solutions

We tested the exact Monte Carlo code against known analytic solu-
tions for very opaque slabs with a source at the mid-plane. First, we
compared the emission frequency profile when the slab is pure H I, so
there is no absorption. Secondly, we compared the escape fractions
when the slab contains a small amount of absorbing dust, where the
absorption cross-section of the dust is frequency-independent.

For an optically thick (aτ0 > 103), uniform slab without dust,
where τ0 is the centre-to-surface hydrogen optical depth at line-
centre,8 Harrington (1973) derived the mean intensity emission
spectrum, J, for line-centre photons which are injected at the slab
centre [see Neufeld (1990) for various extensions]

J (±τ0, x) =
61/2

24π1/2

x2

aτ0

{

cosh

[

π
3/2

541/2

|x |3

aτ0

]}−1

. (A1)

Fig. A1 compares the simulation to the formula for slabs at three
different temperatures.

For an optically thick slab (aτ0 > 103) with a centre-to-surface
absorption optical depth τa, Neufeld (1990) derived the exact escape
fraction for a central source, in the limit (aτ0)1/3 ≫ τa, as well as
several approximation formulae. In particular, the escape fraction is
well approximated by

fe ≈ 1/ cosh

[

31/2

π5/12ζ
(aτ0)1/6 τa

1/2

]

, (A2)

where ζ is an order of unity fitting parameter. Neufeld (1990) found
that the choice ζ = 0.525 gives a good approximation to the ex-
act analytic escape fraction. For comparison, we have included in

8 In many papers on this subject, for example, Harrington (1973) and Neufeld
(1990), ‘τ0’ refers to the mean optical depth, τmean

0 , while we use the line-
centre optical depth. In our notation, φ(x)τmean

0 = �(x)τ0 where φ(x) is the
Voigt profile normalized to unity, which means τmean

0 = √
πτ0 when a ≪ 1.
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Lyα radiative transfer in a multiphase medium 1001

Figure A2. Dusty slab escape fraction, central source. The escape fraction
from the middle of an optically thick, dusty slab is compared for several
analytic and numerical methods. As has been shown analytically, the escape
fraction depends mainly upon the combination (aτ0)1/3 τa. Including dust
scattering, using ǫd = 0.5 and gd = 0.6, did not significantly affect the escape
fraction.

Figure A3. Accelerated Monte Carlo Comparison. The net surface-
absorption probability ǫ c is shown as a function of the incident absorption
probability per scatter ǫ, for Lyα photons incident on a semi-infinite plane of
dusty H I at 104 K. The dark symbols are simulations that use the accelerated
Monte Carlo scheme while the white symbols are exact simulations. The
circles, squares, and diamonds are for incident frequencies xi = 1, 5 and 20,
respectively. The dust has an absorption albedo ǫd = 0.5 and a scattering
asymmetry parameter gd = 0.5. For each incident frequency, simulations
for three values of σ a were run. For each frequency, from left to right (or
equivalently, bottom to top), the dust values are σ a

−21 = 0.01, 1, 100.

Fig. A2 the escape fractions found by Hummer & Kunasz (1980) us-
ing numerical integration techniques and the escape fractions found
by Ahn et al. (2000) using a Monte Carlo simulation similar to ours.
We find that the choice of fitting parameter ζ = 0.5 gives a good ap-
proximation to our Monte Carlo results. Both Ahn et al. (2000) and
our Monte Carlo simulations show slightly more absorption than
the analytic formula from Neufeld (1990). The analytic treatments
assume the Lorentzian wing profile all the way down to x = 0, ne-
glecting the Gaussian core. This will underestimate the number of

scatters spent in the core. Although the absorption probability per
interaction is small in the core, neglecting core bounces will cause
a slight underestimate of the overall absorption probability.

A2 Testing the acceleration scheme

We tested the acceleration scheme, described in Section 3.1.1, by
comparing the surface-absorption probability against exact simula-
tions. Exact simulations are computationally expensive, and so we
could only test the acceleration scheme against a handful of exact
cases. As shown in Fig. A3, the acceleration is quite accurate, even
for initial frequencies in the line core.

A P P E N D I X B : S U R FAC E LY M A N α

F R E QU E N C Y R E D I S T R I BU T I O N F O R M U L A

In this appendix, we first show that R(x̃i, x ; α) given in equation (39)
has a unit norm over x, as claimed. Secondly, we outline the steps
used to derive equation (41), the generating function for R(x̃i, x ; α).

To integrate R(x̃i , x ; α) over x ∈ (−∞, ∞), we first change vari-
ables to u ≡ x3 − x̃3

i . Then the integral becomes
∫ ∞

−∞
dx R(x̃i, x ; α) =

x̃2
i

√
α

π

∫ ∞

−∞
du

1

α x̃4
i + u2

. (B1)

The integral over the functional form (A + u2)−1 is a standard
integral:
∫

du
1

A + u2
=

1
√

A
arctan

(

u
√

A

)

. (B2)

Use of this formula in equation (B1) shows that the integral over
x equals one, and so R(x̃i, x ; α) is correctly normalized over x as
advertized.

To randomly generate exiting frequencies x that obey the prob-
ability distribution R(x̃i, x ; α), we use the transformation method
(Press et al. 1992). First, select a random univariate u ∈ [0, 1] and
set

u =
∫ x

−∞
dx ′ R(x̃i, x ′; α) ≡ F(x). (B3)

The frequency x is then given by functional inversion x = F−1(u).
As above, the integral is best carried out by changing variables to
u ≡ x3 − x̃3

i . Then F(x) is given by equation (B1), except that the
upper limit is ‘x3 − x̃3

i ’ rather than ‘∞’. By using equation (B2) to
complete the integration, we find that

F(x) =
1

π

[

arctan

(

x3 − x̃3
i

x̃2
i

√
α

)

+
π

2

]

. (B4)

The functional inversion gives the randomly drawn exiting fre-
quency x:

x =
[

x̃3
i −

√
α x̃2

i tan (πu)
]1/3

. (B5)

A P P E N D I X C : O N E - D I M E N S I O NA L
T R A N S F E R F O R A N A R B I T R A RY
S C AT T E R I N G A S Y M M E T RY PA R A M E T E R

The escape fraction for arbitrary g can be approximated by the g =
0 formula, equation (59), as we demonstrate next. Define n∗ to be
the average number of interactions required for a 50 per cent chance
of back-scattering. For interactions with scattering parameter g, the
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probability of a forward scatter is (1 + g)/2 and that of a back-scatter
is (1 − g)/2. Therefore n∗ is defined to satisfy

1

2
≡

n∗−1
∑

n=0

(

1 − g

2

)(

1 + g

2

)n

, (C1)

which leads to

1

2
=

(

1 + g

2

)n∗

, (C2)

or equivalently

n∗ =
[

1 −
ln(1 + g)

ln 2

]−1

. (C3)

Every n∗ interactions acts like a single g = 0 interaction. The prob-
ability of absorption after n∗ interactions is 1 − (1 − ǫ)n∗

. Conse-
quently, the escape fraction is approximately the same as the g = 0
formula, equation (59), with a re-scaledN0 and absorption albedo,
N ∗

0 and ǫ∗, given by

N ∗
0 ≡ N0/n∗, (C4)

and

ǫ∗ ≡ 1 − (1 − ǫ)n∗
. (C5)

The approximate escape fraction for arbitrary g is

fe = 1/ cosh(
√

Y ) (C6)

with

Y = 2N ∗
0 ǫ∗

= 2
N0

n∗

[

1 − (1 − ǫ)n∗]
,

(C7)

whereN0 = N0(g) is calculated for the given value of g and n∗ is a
function of g through equation (C3). Note that for one-dimensional
transfer when g = 0, then N0(g = 0) = 1/2(τ 2 + 2τ ), which we
have verified with simulations. If n∗ < N0 then there is enough
scattering for this approximation to hold. If ǫn∗ ≪ 1 also holds,
then ǫ∗ ≈ n∗ǫ and the rescaling leaves the product ǫN0 unchanged.
In this limit, the escape fraction given in equation (59) is valid for

Figure C1. One-dimensional escape fractions, arbitrary g. The simulated
escape fraction from the middle of a one-dimensional finite line, for scatter-
ing with several values of g, over a range of albedos ǫ. In all simulations,
the center-to-edge extinction (scattering plus absorption) optical depth is
constant, τ = 10. Three different values of g were simulated; from darkest
to lightest g = 0, 1/2 and −1/3. We computed N0(g) for each value of g:
N0(0) = 60.0,N0(1/2) = 35.0, and N0(−1/3) = 76.3. For each value of
g, there are five different values of ǫ; from left to right, ǫ = 0.01, 0.1, 0.3, 0.5
and 0.8. The line is given by equation (59).

any type of scattering, and represents, therefore, the generic escape
fraction form for any type of ‘random walk’ photon transfer. On
the other hand, if n∗ � N0 then this approximation breaks down,
and the trajectory of the photon is more accurately characterized by
straight-line motion, with negligible back-scattering, equation (58).
As shown in Fig. C1, the approximation that the escape fraction is
given by equation (59) works well when f e � 1 per cent, and gives
a decent order of magnitude estimate when f e is lower (such cases
are observationally unimportant).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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