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Peripheral tolerance prevents self-reactive T cells 

that escape thymic negative selection from caus-

ing autoimmunity. Intrinsic mechanisms of pe-

ripheral tolerance lead to anergy (Redmond et al., 

2005) or deletion (Kurts et al., 1997; Hernandez 

et al., 2001; Liu and Lefrançois, 2004) when 

CD8 T cells encounter their cognate tissue- 

restricted self-antigens. In the prevailing model 

of this process, these antigens are acquired by 

quiescent tissue-resident DCs, which then 

migrate to regional LN and cross-present them 

to naive T cells (Hawiger et al., 2001; Belz et al., 

2002; Waithman et al., 2007). This presentation 

is limited to LN draining the tissues in which 

the self-antigen is expressed. Recently, we 

and others have described an alternative mech-

anism in which CD8 T cell peripheral tolerance 

is induced by LN-resident cells that directly 

express otherwise tissue-restricted proteins  

(Lee et al., 2007; Nichols et al., 2007; Gardner  

et al., 2008). Thus far, two nonoverlapping LN 

stromal cell populations have been associated 

with this mechanism. Using an antigen ex-

pressed under the control of the autoimmune 

regulator (Aire) promoter, Gardner et al. (2008) 

implicated a subset of EpCAM+ gp38neg Aire+ 

LN stromal cells. Two other studies using anti-

gens expressed under the control of intestinal 

epithelial and enteric glial cell promoters impli-

cated UEA-1+ LN stromal cells (Lee et al., 

2007; Magnusson et al., 2008). However, these 

studies relied on transgenic antigens expressed 

under the control of tissue-speci�c promoters, 

creating uncertainty about whether the ectopic 

expression observed in LN cells is physiologi-

cally relevant.

We have evaluated self-tolerance to a model 

antigen expressed in its native genetic context: 

the mouse homologue of a human HLA-A*0201- 

restricted epitope from the endogenously en-

coded protein tyrosinase (Tyr369; Colella et al., 

2000). This epitope is presented in the context 

of a transgenic HLA-A*0201-based chimeric 

MHC I molecule (AAD). The level of expression 

of AAD is comparable to that of endogenous 
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Peripheral immune tolerance is generally thought to result from cross-presentation of 

tissue-derived proteins by quiescent tissue-resident dendritic cells to self-reactive T cells 

that have escaped thymic negative selection, leading to anergy or deletion. Recently, we 

and others have implicated the lymph node (LN) stroma in mediating CD8 T cell peripheral 

tolerance. We demonstrate that LN-resident lymphatic endothelial cells express multiple 

peripheral tissue antigens (PTAs) independent of the autoimmune regulator (Aire). They 

directly present an epitope derived from one of these, the melanocyte-speci�c protein 

tyrosinase, to tyrosinase-speci�c CD8 T cells, leading to their deletion. We also show that 

other LN stromal subpopulations express distinct PTAs by mechanisms that vary in their 

Aire dependence. These results establish lymphatic endothelial cells, and potentially other 

LN-resident cells, as systemic mediators of peripheral immune tolerance.
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In this paper, we have identi�ed the cell that directly  

expresses the Tyr369 epitope as an LN-resident lymphatic  

endothelial cell. We have established that these cells express 

both tyrosinase and another tissue-restricted mRNA inde-

pendent of Aire. Finally, we show that other subpopulations 

of LN stromal cells express distinct peripheral tissue tran-

scripts, which di�er in their dependence on Aire. Our results 

suggest that ectopic expression of tissue-speci�c transcripts by 

multiple subsets of LN stromal cells is of general importance 

in establishing peripheral tolerance.

RESULTS AND DISCUSSION
We previously showed that FH T cells undergo deletional 

tolerance in all LN but not in either thymus or spleen (Nichols 

et al., 2007; Fig. S1). Tolerance is not mediated by conven-

tional DC or Langerhans cells in the periphery but instead 

depends on radioresistant LN-resident cells that express  

tyrosinase directly (Nichols et al., 2007). To identify the radio-

resistant cells expressing tyrosinase, pooled LN of tyrosinase-

expressing B6 mice were collagenase digested to yield single 

cell suspensions and CD45+ and CD45neg subsets were enriched 

mouse MHC I molecules (Newberg et al., 1996). Interest in 

this epitope is based on the fact that it and other epitopes de-

rived from pigmentation proteins are broadly recognized by  

T cells from melanoma and vitiligo patients, despite being un-

modi�ed self-proteins expressed in melanocytes (Slinglu� et al., 

2006). To study CD8 T cell tolerance induction to Tyr369, we 

generated a transgenic mouse expressing a TCR speci�c  

for Tyr369:AAD, designated “FH.” We previously demon-

strated that Tyr369 is constitutively presented in both peripheral 

and mesenteric LNs but not spleen, leading to abortive prolif-

eration and deletion of FH cells. Importantly, Tyr369 is not 

cross-presented by either radiosensitive DCs or radioresistant 

Langerhans cells under nonin�ammatory conditions, excluding 

cross-tolerance as an operative mechanism. Although tyrosinase 

expression is normally con�ned to melanocytes and retinal  

pigment epithelial cells, where it is involved in melanin bio-

synthesis, we found tyrosinase messenger RNA (mRNA) in the 

lymphoid compartments where CD8 T cell deletion occurred. 

This suggested that direct presentation of tyrosinase by a radio-

resistant LN-resident cell is entirely responsible for tolerance to 

this endogenous melanocyte di�erentiation Ag.

Figure 1. gp38+CD31+ LN stromal cells express and present Tyr369 in an Aire-independent manner. (a) Tyrosinase (Tyr) and -actin expression in 

CD45neg and CD45+ LN populations from B6 and albino animals was determined using 40-cycle RT-PCR. Data shown are representative of four indepen-

dent experiments. (b) Proliferation of CFSE-labeled naive Thy1.2+ FH T cells co-cultured with Thy1.1+ CD45neg (black bars) or CD45+ (white bars) cells puri-

�ed from the LNs of tyrosinase+ and albino animals was assessed after 86 h. Left, representative experiment; right, summary data for two independent 

experiments. (c) LN stromal cell populations de�ned based on expression of gp38 and CD31. The representative plot is gated on CD45neg cells. Numbers 

indicate percentage of total CD45neg cells. (d) Tyrosinase and -actin expression in CD45+ cells and four LN stromal cell subpopulations identi�ed by dif-

ferential expression of gp38 and CD31. Puri�ed populations were obtained by electronic cell sorting and 40-cycle RT-PCR was performed. Data shown are 

representative of six independent experiments. (e) Proliferation of CFSE-labeled naive Thy1.2+ FH T cells co-cultured with Thy1.1+ cells of the indicated 

puri�ed LN stromal cell subpopulations from tyrosinase+ (black bars) and albino (white bars) animals was assessed after 86 h. Left, representative experi-

ment; right, summary data for three independent experiments. Error bars indicate SEM.
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which we attribute to a small and variable number of con-

taminating gp38+CD31+ cells in di�erent cell sorts. To estab-

lish the relevance of this tyrosinase expression, we co-cultured 

naive CFSE-labeled FH T cells with each LN stromal cell 

subpopulation from either AAD+tyrosinase+ or albino mice. 

The gp38+CD31+ subpopulation stimulated robust antigen-

speci�c proliferation, whereas the others did not (Fig. 1 e). 

This proliferation was physiologically relevant, as the expres-

sion level of AAD was comparable to that of endogenous 

MHC class I molecules (Fig. S2). Thus, gp38+CD31+ LN 

stromal cells are the only subpopulation that both expresses ty-

rosinase and presents Tyr369 to FH T cells.

A previous study demonstrated expression of several 

melanocyte di�erentiation proteins by LN-resident cells and 

concluded that they were of the melanocyte lineage (Schuler 

et al., 2008). However, neither gp38 nor CD31 was detectible 

on melanocytes in the avascular epidermis (Fig. 2). In addition, 

although epidermal melanocytes expressed tyrosinase strongly, 

only a small number of cells in LN stained with anti-tyrosinase 

antibody, and a comparable number of these cells was also 

observed in albino mice with a full deletion of the tyrosinase 

gene (not depicted; Nichols et al., 2007). These data strongly 

suggest that the gp38+CD31+ LN stromal cells, the only subset 

which expresses tyrosinase, are not of melanocytic origin and 

that the level of tyrosinase protein expression in LN stromal 

cells is low. LN stromal cells include a subpopulation identi�ed 

using magnetic beads. RT-PCR of mRNA extracted from 

these cells reproducibly demonstrated that tyrosinase expres-

sion was con�ned to CD45neg LN stromal cells (Fig. 1 a). As 

expected, tyrosinase mRNA was not detected in the LN 

stromal cells of albino mice carrying a complete deletion of 

the tyrosinase gene. To assess the ability of LN stromal cells 

to present Tyr369, naive CFSE-labeled FH T cells were co-

cultured in vitro with AAD+ tyrosinase+ CD45neg or CD45+ 

LN cells. FH T cells proliferated when co-cultured with  

CD45neg LN cells but not with CD45+ LN cells (Fig. 1 b). 

This proliferation was antigen speci�c, as it was not induced 

by CD45neg LN cells from AAD+ albino mice. Thus, CD45neg 

LN cells express tyrosinase mRNA and, based on their ability 

to induce FH T cell proliferation in vitro, translate and pro-

cess tyrosinase protein for presentation in the context of 

MHC I molecules.

Consistent with an earlier study (Link et al., 2007), stain-

ing of CD45neg LN stromal cells for the cell surface markers 

CD31 and gp38 identi�ed four di�erent subpopulations 

(Fig. 1 c). Single cell suspensions of each of these subpop-

ulations were obtained by electronic cell sorting. RT-PCR 

demonstrated that tyrosinase was strongly and consistently 

expressed (six out of six experiments) in gp38+CD31+ LN 

stromal cells (Fig. 1 d). We inconsistently detected weak 

tyrosinase signals in either the gp38 or CD31 single-positive 

subsets (two and three out of six experiments, respectively), 

Figure 2. The gp38+CD31+ LN stromal cells responsible for mediating tolerance to Tyr369 are not related to melanocytes. Immuno�uores-

cence of a normal LN section (a and c) and epidermal ear sheets (b, d, and e) stained for the expression of LN stromal cell markers CD31 (100×; a and b) 

and gp38 (100×; c and d). Melanocytes in epidermal ear sheets were visualized by their tyrosinase staining (200×; e). Staining is representative of  

multiple magni�cations and �elds from two independent experiments consisting of two separate LNs and ears from three mice. Bars, 200 µm.

http://www.jem.org/cgi/content/full/jem.20092465/DC1
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Figure 3. The LN stromal cells responsible for mediating tolerance to Tyr369 have characteristics of lymphatic endothelial cells.  
(a) Staining of CD45neg LN stromal cells with antibodies against 10.1.1 and CD31. (b) RT-PCR for tyrosinase (Tyr) and -actin mRNA in CD45+  

cells and the indicated LN stromal cell subpopulations was evaluated as described in Fig. 1. Results shown are representative of five  

independent experiments. (c) Proliferation of CFSE-labeled naive Thy1.2+ FH T cells co-cultured with cells of the indicated LN stromal cell sub-

populations from Thy1.1+ tyrosinase+ and albino animals was assessed as in Fig. 1. Results are from two independent experiments performed  

with stromal cells isolated from six pooled mice each. (d, Top) Cells with dual staining of 10.1.1 and CD31 are located in the medulla (M) and in 

the interfollicular areas (arrows) but not in the T cell zone (T) or B cell follicles (B; 40×). Staining is representative of multiple magnifications  

and fields from two independent experiments consisting of two separate LNs from two mice. Bars, 1 mm. (d, Bottom) Higher magnification  

(400×) of the medulla (left) and the interfollicular region (right) showing intermingling of 10.1.1+ LEC and Thy1.1+ T cells. Staining is  

representative of multiple magnifications and fields from two independent experiments consisting of two separate LNs from one mouse.  

Bars, 400 µm.
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as lymphatic endothelial cells (LECs) based on staining with 

the antibody 10.1.1 (Ruddell et al., 2003; Link et al., 2007), 

and these are included within the gp38+CD31+ subset (Link 

et al., 2007). To determine if the tyrosinase-expressing cells 

in LN were LEC, we sorted LN stromal cells into 

10.1.1+CD31+, 10.1.1negCD31+, and 10.1.1negCD31neg sub-

populations (Fig. 3 a). Because of the species of the anti-

bodies, we were unable to determine if all of the gp38+  

CD31+ also stained positive for 10.1.1. However, virtually all 

10.1.1+ cells were positive for CD31. Moreover, their percent-

age of representation among LN stromal cells was comparable 

to that of the gp38+CD31+ population. In keeping with this, 

RT-PCR demonstrated that tyrosinase mRNA was expressed 

in 10.1.1+CD31+ cells but not in either 10.1.1negCD31+ or 

10.1.1negCD31neg cells (Fig. 3 b), although tyrosinase protein 

was not detected above background by �ow cytometry or 

immuno�uorescence (not depicted). In addition, naive CFSE-

labeled FH T cells proliferated robustly when co-cultured with 

10.1.1+CD31+ LEC but negligibly with the other two subpop-

ulations (Fig. 3 c). These results establish that the LN stromal 

cell that expresses tyrosinase and presents Tyr369 has lymphatic 

endothelial cell characteristics.

To con�rm that 10.1.1+CD31+ cells were LECs and to 

determine how they were positioned with respect to T cells 

within the LN, we examined normal LN sections by immuno-

histochemistry. All 10.1.1+ cells costained strongly with CD31 

(Fig. 3 d) and the LEC-speci�c markers Lyve-1 (lymphatic 

vessel endothelial hyaluronan receptor 1) and Prox-1 (pros-

pero homeobox protein 1; Fig. S3). These 10.1.1+CD31+ 

LEC were localized predominantly to the medulla and the 

interfollicular zones and were largely absent from the T and 

B cell zones (Fig. 3 d). In both medulla and interfollicular 

zones, a relatively small number of individual T cells was 

found to interdigitate with the LEC (Fig. 3 d). These results 

demonstrate that LECs are advantageously positioned to toler-

ize potentially autoreactive naive T cells as they exit the LN 

but likely not in the T cell zone.

To determine if LECs have the potential to play a more 

general role in deletional tolerance, we examined the ex-

pression of another melanocyte di�erentiation antigen, 

Mart1, and four other peripheral tissue antigens (PTAs) pre-

viously shown to be expressed in LN stromal cells (Lee et al., 

2007; Schuler et al., 2008). We found that A33, which is 

considered to be a de�nitive marker of intestinal epithelial 

cells (Johnstone et al., 2000), and the pancreatic polypeptide 

Ppy were also predominately expressed in LEC that had 

been puri�ed using CD31 and either gp38 or 10.1.1 (Fig. 4 and 

Fig. S4). In contrast to tyrosinase, a second melanocyte dif-

ferentiation protein, Mart1, was not expressed in LEC. In-

stead, it was predominantly expressed in the gp38+CD31neg 

�broblastic reticular cells (FRCs) and the 10.1.1negCD31neg 

population, which also contains FRC (Fig. 4). The expres-

sion of tyrosinase and Mart1 in mutually exclusive LN cell 

subpopulations further argues against a lineage of LN-resident 

melanoblasts (Schuler et al., 2008). Like Mart1, preproin-

sulin 2 (Ins2) was also predominantly expressed in the 

FRC (Fig. S4). Conversely, Gad67, which is normally ex-

pressed in pancreas and neuronal tissue (Yanagawa et al., 

1997), was not expressed in LEC but was also found in the 

gp38+CD31neg FRC and the 10.1.1negCD31neg population 

containing FRC, as well as gp38negCD31neg LN stromal cells 

and CD45+ LN cells (Fig. 4, a and b). Thus, FRC and one or 

more subsets of both gp38negCD31neg LN stromal cells and 

CD45+ LN express PTA distinct from those expressed by 

LEC. These data show that LEC and at least three other LN 

cell subpopulations have the potential to mediate tolerance to 

PTA from di�erent tissues.

Aire has been shown to regulate the expression of many 

PTAs in medullary thymic epithelial cells (mTECs), which 

can result in the deletion of single-positive thymocytes (DeVoss 

et al., 2006). Aire is also expressed in LN (Mathis and Benoist, 

2009), and it was recently shown that EpCAM+gp38neg LN 

stromal cells expressing a tissue-speci�c transgene under the 

control of the Aire promoter induced CD8 T cell deletional 

tolerance (Gardner et al., 2008). However, Aire was not ex-

pressed in gp38+CD31+ or 10.1.1+CD31+ LEC, although it 

was expressed in CD45+ LN cells and gp38negCD31neg LN 

stromal cells (Fig. 4). In addition, both tyrosinase and A33 

continued to be expressed by LEC of Aire/ mice (Fig. 4). 

Aire/ AAD+ tyrosinase+ LEC also continued to induce the 

proliferation of FH cells in vitro (Fig. S5 a), and FH cells still 

underwent deletion after adoptive transfer into Aire/ 

AAD+ tyrosinase+ recipients (Fig. S5 b). Similarly, Aire was 

not expressed in gp38+CD31neg FRC, and expression of both 

Mart1 and Gad67 was maintained in Aire/ mice. How-

ever, the expression of Gad67 in both gp38negCD31neg and 

CD45+ populations was Aire dependent (Fig. 4). This parallels 

Figure 4. LN stromal cell subsets express distinct groups of PTA 
that vary in their dependence on Aire. Tyrosinase (Tyr), A33, Mart1, 

Gad67, Aire, and -actin mRNAs were ampli�ed by 40-cycle RT-PCR from 

the indicated subpopulations of LN stromal cells isolated from either 

C57BL/6 or Aire/ mice. Data from C57BL/6 mice sorted with gp38 and 

CD31 are representative of six independent experiments. Data from 

C57BL/6 mice sorted with 10.1.1 and CD31 are representative of three 

independent experiments. Data from Aire/ mice sorted with gp38 and 

CD31 are representative of two independent experiments.

http://www.jem.org/cgi/content/full/jem.20092465/DC1
http://www.jem.org/cgi/content/full/jem.20092465/DC1
http://www.jem.org/cgi/content/full/jem.20092465/DC1
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subsets are capable of mediating self-tolerance. Nonetheless, 

these results collectively suggest that peripheral tolerance is 

mediated by the coordinated e�orts of CD45+ and di�erent 

LN stromal populations expressing distinct PTA that vary in 

their dependence on Aire.

Direct expression of PTA leading to tolerance has been 

most frequently associated with mTEC. In most cases, ex-

pression of PTA transcripts in mTEC has been shown to be 

Aire dependent (Derbinski et al., 2001, 2005). The expres-

sion of di�erent subsets of PTA has been associated with the 

progressive di�erentiation of mTEC to express CD80 and 

Aire (Farr et al., 2002; Derbinski et al., 2005; Gillard and 

Farr, 2005; Kyewski and Klein, 2006; Yano et al., 2008). In 

contrast, our results show that di�erent subsets of PTA are 

expressed by cell subpopulations in LN, at least some of which 

are not developmentally related. It is conceivable that sub-

sets of PTA-expressing cells in these compartments induce 

tolerance by distinct mechanisms or act on di�erent subsets 

of lymphocytes. Our results also emphasize the importance 

of Aire-independent expression of other PTA in that it  

can lead to tolerance in LN. The Aire-independent expres-

sion of tyrosinase and A33 by LEC, and of Gad67 and  

Mart1 by FRC, suggests that an alternative transcriptional 

regulator controls the expression of these PTA. Recent work 

has established that Deaf1 (deformed epidermal autoregula-

tory factor 1), a member of the SAND transcription factor 

family which includes Aire, regulates expression of PTA in 

pancreatic LN (Yip et al., 2009). Although we have found 

Deaf1 in all of the CD45neg subsets identi�ed in this paper 

(unpublished data), it is not yet clear to what extent it regu-

lates their expression of various PTA.

DC-mediated cross-presentation of self-antigen has been 

the established paradigm for peripheral tolerance induction. 

However, our results suggest that direct presentation of PTA 

in secondary lymphoid organs is a critically important process 

in subduing autoreactive T cells. Indeed, in situations where 

peripheral tolerance to a particular PTA is not mediated by 

conventional DC, such as Tyr369 (Nichols et al., 2007), LN 

stromal cell expression of PTA becomes vital to the deletion 

of self-reactive T cells. Because DCs that have acquired anti-

gen from tissue tra�c only to local LN (Kurts et al., 1997; 

Hawiger et al., 2001; Hernandez et al., 2001; Vermaelen et al., 

2001; Belz et al., 2002; Scheinecker et al., 2002; Waithman 

et al., 2007), DC-mediated tolerance is limited. Conversely, 

PTA-expressing LN stromal cells are found in all LN, en-

abling systemic peripheral tolerance induction. This increases 

the likelihood that rare circulating autoreactive T cells will 

encounter a tolerizing APC. It will be fascinating to deter-

mine the relative contribution of DC versus LN stromal cell–

mediated peripheral tolerance.

MATERIALS AND METHODS

Mice. C57BL/6 mice carrying the AAD transgene or a fully deleted tyrosi-

nase gene (c38R145L) have been previously described (Newberg et al., 1996; 

Colella et al., 2000). FH mice were generated using TCR genes from a 

Tyr369-speci�c T cell clone derived from an AAD+ albino mouse (Nichols et al., 

2007). Aire/ mice were purchased from The Jackson Laboratory and bred 

the expression of Aire in these populations and demonstrates 

that expression of PTA in both LEC and FRC is controlled 

by an Aire-independent mechanism.

In this paper, we demonstrate that LN-resident LECs di-

rectly present an endogenous antigen to CD8 T cells. We 

previously demonstrated that FH T cell deletional tolerance 

is mediated by a radioresistant LN-resident cell and not 

through cross-presentation by DC (Nichols et al., 2007). Be-

cause LECs are the only cells in the LN that express tyrosi-

nase and present Tyr369 to induce FH T cell proliferation, we 

conclude that they are responsible for FH T cell deletion  

in vivo. It was initially surprising to �nd that LECs, rather 

than FRCs, express tyrosinase because FRCs form the stromal 

network of the T cell zone and interact extensively with naive 

T cells. However, our results also suggest that FRC and at 

least two other LN-resident populations (gp38negCD31neg 

LN stromal cells and CD45+ LN cells) may also be involved 

in peripheral tolerance induction to di�erent PTA. It will be 

of signi�cant interest to determine the full breadth of PTA 

expression by these distinct subpopulations in comparison 

with one another to obtain a better understanding of their 

potential relevance in peripheral tolerance. It will also be of 

interest to determine how PTA expression patterns by LN 

populations compare with those of thymic mTECs to under-

stand the extent to which redundancy is built into central and 

peripheral tolerance pathways. It is signi�cant that in the case 

of the Tyr369 epitope, tolerance is based on peripheral rather 

than central presentation, despite expression of tyrosinase 

mRNA in both LN and the thymus (Nichols et al., 2007). 

Thus, a full evaluation of this issue must be based on the 

availability of TCR transgenic models that enable an assess-

ment of tolerance to endogenous antigens.

Several recent studies have demonstrated direct expres-

sion of PTA in LN. Schuler et al. (2008) suggested that ex-

pression of several melanocyte di�erentiation proteins in LN 

was the result of a resident population of melanocytic lineage 

cells. However, we �nd that tyrosinase and Mart1 are pre-

dominantly expressed by LEC and FRC, respectively. Based 

on their surface markers and expression of gut and pancreatic 

PTA, neither of these cell types is of melanocytic origin. 

Gardner et al. (2008) demonstrated that peripheral tolerance 

to a transgenic antigen expressed under the control of the 

Aire promoter was mediated by a subset of EpCAM+ gp38neg 

LN stromal cells. Consistent with their work, we showed 

that both gp38negCD31neg LN stromal cells and CD45+ LN 

cells expressed Aire and that expression of the PTA Gad67 in 

both populations was strongly Aire dependent. It has also 

been reported that two tissue-speci�c transgenes, Gad67 and 

A33, were expressed in LN stromal cells that bind to the lec-

tin UEA-1 (Lee et al., 2007; Magnusson et al., 2008). How-

ever, this lectin stains 40–50% of LN stromal cells and is 

expressed on all of the subpopulations evaluated in this paper 

(unpublished data). Importantly, our results show that Gad67 

and A33 are actually expressed in distinct LN stromal sub-

populations. This emphasizes the importance of using more 

discriminating markers to clarify which LN stromal cell  
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