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Abstract

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a monogenic 

disorder caused by AIRE mutations, presents with several autoimmune diseases. Among these, 

endocrine organ failure is widely recognized, but the prevalence, immunopathogenesis, and 

treatment of non-endocrine manifestations such as pneumonitis remain poorly characterized. We 

enrolled 50 patients with APECED in a prospective observational study and comprehensively 

examined their clinical and radiographic findings, performed pulmonary function tests, and 

analyzed immunological characteristics in blood, bronchoalveolar lavage fluid, and endobronchial 

and lung biopsies. Pneumonitis was found in >40% of our patients, presented early in life, was 

misdiagnosed despite chronic respiratory symptoms and accompanying radiographic and 

pulmonary function abnormalities, and caused hypoxemic respiratory failure and death. 

Autoantibodies against BPIFB1 and KCNRG and the homozygous c.967_979del13 AIRE 
mutation are associated with pneumonitis development. APECED pneumonitis features 

compartmentalized immunopathology, with accumulation of activated neutrophils in the airways 

and lymphocytic infiltration in intraepithelial, submucosal, peribronchiolar, and interstitial areas. 

Beyond APECED, we extend these observations to lung disease seen in other conditions with 

secondary AIRE deficiency (thymoma and RAG deficiency). Aire-deficient mice had similar 

compartmentalized cellular immune responses in the airways and lung tissue, which was 

ameliorated by deficiency of T and B lymphocytes. Accordingly, T and B lymphocyte-directed 

immunomodulation controlled symptoms and radiographic abnormalities and improved pulmonary 

function in patients with APECED pneumonitis. Collectively, our findings unveil lung 

autoimmunity as a common, early, and unrecognized manifestation of APECED and provide 

insights into the immunopathogenesis and treatment of pulmonary autoimmunity associated with 

impaired central immune tolerance.

INTRODUCTION

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) or 

autoimmune polyglandular syndrome type 1 is a monogenic disorder most often caused by 

biallelic mutations in the thymus-enriched autoimmune regulator (AIRE) gene (1,2). Aire 

deficiency results in impaired central immune tolerance and the peripheral escape of self-

reactive CD4+ T lymphocytes, which are sufficient and necessary to promote end-organ 

damage (1). Aire deficiency also features breakdown in B lymphocyte tolerance (3); Aire−/− 

B lymphocytes have been implicated in contributing to organ-specific autoimmune damage 

via direct priming of T lymphocytes (4, 5). APECED manifests with chronic mucocutaneous 

candidiasis (CMC) and autoimmunity that targets endocrine and non-endocrine organs (2, 6, 

7). Among the non-endocrine manifestations, pneumonitis has been described in only a 
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small subset of all published patient cohorts (~2%, 15 of 698 reported patients with 

APECED) (7–26), albeit with reported fatal outcomes (7,21,26). Although autoantibodies 

against the lung-specific bactericidal/permeability-increasing fold-containing B1 (BPIFB1) 

and the potassium channel regulator KCNRG (22,27,28) have been associated with the 

development of APECED pneumonitis, the immunopathogenesis of APECED pneumonitis 

in humans remains elusive, and no effective treatment is known.

To fill these important knowledge gaps, we comprehensively examined clinical, 

radiographic, pulmonary, microbiological, genetic, autoantibody, laboratory, and 

immunological features of 50 patients with APECED enrolled consecutively in a prospective 

observational natural history study. These findings were recapitulated in a mouse model of 

Aire deficiency and led us to test an intervention in patients with APECED.

RESULTS

Pneumonitis is an early, common, and life-threatening APECED manifestation

Previous studies had indicated that pneumonitis is an uncommon, poorly characterized 

manifestation of APECED (7–26). In the course of the comprehensive evaluation of 50 

consecutive patients with APECED at the National Institutes of Health (NIH) Clinical 

Center, we found that 42% (n = 21) had pneumonitis. Females (16 of 30, 53.3%) were more 

commonly affected than males (5 of 20, 25%). Six (28.6%) were children with a mean age 

of 11.8 years (range, 9 to 16 years) (table S1). Eighteen were from the United States, and 

one each was from Canada, Argentina, and Australia. Seventeen were Caucasian, and four 

were Hispanic. Given the high prevalence of pneumonitis in our cohort, we sought to define 

the clinical, radiographic, and pulmonary characteristics of affected patients. Chronic cough 

was seen in all but one patient (n = 20; 95.2%) who was asymptomatic at the time of 

evaluation with radiographic abnormalities [ground-glass opacities (GGO)] and biopsy-

proven pneumonitis (table S2, patient 5). Among the 20 patients who presented with chronic 

cough, sputum production was seen in only 12 (60%). Nocturnal bouts of cough, frequently 

awakening patients from sleep, occurred in 12 (60%). Dyspnea on exertion, pleuritic chest 

pain, wheezing, and subjective fevers were seen less frequently (Fig. 1A).

Cough onset occurred at a mean of 13.5 years (median, 4 years; range, 0.17 to 50 years) and 

persisted for a mean of 12 years (median, 9 years; range, 0 to 47 years) before the diagnosis 

of pneumonitis was made. Pneumonitis developed in eight patients (38%) before meeting a 

classic diagnostic dyad for APECED (i.e., any two manifestations among CMC, 

hypoparathyroidism, and adrenal insufficiency); the mean interval between onset of 

pneumonitis and development of a classic diagnostic dyad in seven of these patients was 3 

years (median, 3 years; range, 0.17 to 5 years). The remaining patient developed 

pneumonitis at 18 months (currently 15 years old) and has a genetic diagnosis of APECED 

but has not yet developed a classic diagnostic dyad. The respiratory symptoms of these eight 

patients were attributed to asthma/bronchitis (n = 5; 62.5%) or pneumonia (n = 1; 12.5%); in 

two patients (25%), no diagnosis was established. In the 13 patients who developed 

pneumonitis after the classic diagnostic criteria for APECED were met, no diagnosis (n = 9; 

69.2%) or misdiagnoses of bronchitis/asthma (n = 2; 15.3%) and recurrent pneumonia (n = 
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2; 15.3%) were made. Only one patient (4.8%) carried the diagnosis of pneumonitis before 

enrollment in our study.

We prospectively performed chest CT imaging in all 50 patients to characterize all 

radiographic abnormalities, regardless of symptoms. Patients had a mean of four 

radiographic abnormalities (range, 1 to 7), with bilateral disease being the most common (n 
= 18; 85%). Bronchiectasis was the most common radiographic finding (81%) followed by 

GGO or mosaicism (76.2%), a tree-in-bud pattern, nodular opacities, or mucus plugging, 

each of which was seen in more than half of the patients (Fig. 1B). Bronchiectasis and/or 

GGO were seen in all patients with radiographic evidence of pneumonitis. Although 

evaluation of mediastinal lymphadenopathy was limited by the absence of intravenous 

contrast use in our chest CT imaging, 7 of 21 (33%) patients with pneumonitis still had 

evident mediastinal lymphadenopathy compared to 0 of 29 (0%) patients without 

pneumonitis (fig. S1).

Pulmonary function tests (PFTs) and 6-min walk were performed at the time of active 

disease in 12 and 7 patients, respectively. PFT results were notable for decreased DLCO in 

90.9% of patients (mean, 52.5%; range, 25 to 80%), whereas obstructive, restrictive, or 

mixed obstructive-restrictive ventilatory defects were each seen in 25% of patients. 

Decreased (i.e., <500 m) walk distance (mean, 371.6 m; range, 30 to 480 m) and oxygen 

desaturation (mean, 6.9%; range, 2 to 15%) were seen during the 6-min walk test, both in 

85.7% of patients (Fig. 1C).

In the course of the study evaluations, we encountered patients across the spectrum of 

pneumonitis severity, which provided an opportunity to characterize clinical and 

radiographic features of APECED pneumonitis at various stages in its progression. Dry 

cough associated with GGO and/or tree-in-bud radiographic pattern without bronchiectasis 

occurred in early-stage disease (Fig. 1, D to F). When untreated, pneumonitis appeared to 

progress to bronchiectasis-associated structural lung disease (Fig. 1, G and H) with 

associated productive cough and bacterial airway colonization. Progressively worsening 

bronchiectasis-associated lung disease occurred later in untreated pneumonitis, associated 

with Gram-negative or Gram-positive bacteria (n = 4) or NTM (n = 2). Hypoxemia requiring 

home oxygen therapy developed in four patients (19%), one of whom died at 14 years from 

recurrent infections and hypoxemic respiratory failure (mortality, 4.8%; Fig. 1H).

The progression from disease onset to end-stage lung disease was highly variable. A 54-

year-old man (table S2, patient 1) developed chronic cough at 5 years old and over the 

course of 40 years developed cavitary pulmonary NTM infection (Fig. 1I) complicated by 

bronchopulmonary fistula. In contrast, the aforementioned 14-year-old progressed from 

cough to home oxygen therapy and death in 5 and 7 years, respectively. Together, 

pneumonitis is a common, overlooked, and misdiagnosed manifestation of APECED that 

presents early as chronic cough with GGO and/or bronchiectatic radiographic abnormalities 

and can impair pulmonary function, leading to hypoxemic respiratory failure and death.
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BPIFB1 and KCNRG autoantibodies and AIRE c.967_979del13 homozygosity correlate with 

APECED pneumonitis

We sought autoantibody, genetic, laboratory, and/or peripheral blood immunological 

characteristics that might distinguish patients with APECED with and without pneumonitis. 

Autoantibodies against BPIFB1 and KCNRG have been associated with APECED 

pneumonitis in previous studies (6,22,27,28). In agreement, we found both autoantibodies to 

be highly specific for pneumonitis (~90 to 95%). Autoantibodies against BPIFB1 exhibited 

greater sensitivity (66.7%) compared to KCNRG (28.6%). Autoantibodies against both 

BPIFB1 and KCNRG were significantly (P < 0.0001 and P = 0.0225, respectively) 

associated with the time to development of pneumonitis (Fig. 2, A and B). Instead, no 

correlation was found with autoantibody positivity against 13 other tissue-specific antigens 

or cytokines and the time to development of pneumonitis (fig. S2). Collectively, BPIFB1 

and/or KCNRG autoantibodies were detected in 16 (76.2%) patients with pneumonitis, 

whereas the remaining 5 cases were negative for both autoantibodies, including the 

asymptomatic patient with GGO at the time of diagnosis. We tested our patients with 

APECED pneumonitis for autoantibodies against interferon-induced helicase C domain-

containing protein 1 (IFIH1)/melanoma differentiation-associated protein 5 (MDA5), which 

were reported in patients with polymyositis- and dermatomyositis-associated interstitial lung 

disease (29), but did not detect these autoantibodies (table S3).

We found an association between carrying the AIRE c.967_979del13 mutation in 

homozygosity and the time to development of pneumonitis (Fig. 2C); no other genotype-

phenotype correlations were observed, nor did we identify specific human leukocyte antigen 

(HLA) haplotype associations with the time to development of pneumonitis. Moreover, there 

was no significant enrichment in specific peripheral blood T or B lymphocyte subsets in the 

patients with pneumonitis (tables S4 and S5). In a subset, erythrocyte sedimentation rate, C-

reactive protein, and total immunoglobulin concentrations were increased (figs. S3 and S4). 

Together, chest CT was the most sensitive diagnostic test and identified all patients with 

APECED pneumonitis, including an early asymptomatic case. BPIFB1 and KCNRG 

autoantibodies, when combined, captured ~75% of affected patients with high specificity 

(Fig. 2D).

Compartmentalized neutrophil and lymphocyte accumulation in the airways and lung 

tissue underlies APECED pneumonitis in humans

The immunopathogenesis and treatment of APECED pneumonitis in humans are poorly 

defined. Therefore, we investigated the cellular immunophenotype in the airways and 

submucosal and deeper lung tissues of affected patients to gain insight into the 

immunopathology. We performed bronchoscopies with bronchoalveolar lavage fluid (BAL) 

harvesting and endobronchial biopsies in five patients with biopsy-proven APECED 

pneumonitis. Transbronchial and/or open lung tissue biopsies of patients with APECED 

pneumonitis were also examined when available.

We found a significant number of neutrophils in the absence of bacterial infection in the 

airways of patients with APECED pneumonitis (Fig. 3A and fig. S5) along with neutrophil-

targeted CXC chemokines in patient BAL (Fig. 3B). Neutrophils of patients with APECED 
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pneumonitis displayed an activated phenotype. This was determined by increased surface 

expression of the extracellular epitope of the reduced form of nicotinamide adenine 

dinucleotide phosphate oxidase b558; primary, secondary, and tertiary granule contents 

(CD18, CD63, and CD66b); and CD45 and by decreased surface expression of CD 16 (Fig. 

3C). Consonant with the increased number of activated neutrophils in patient airways, we 

found markedly elevated BAL concentrations of the neutrophil products myeloperoxidase 

(MPO) and matrix metallopeptidase-9 (MMP-9) (Fig. 3D), which have been implicated in 

the pathogenesis of bronchiectasis in patients with and without cystic fibrosis (30, 31), and 

significantly increased lactate dehydrogenase (LDH), indicative of airway tissue injury (Fig. 

3E).

Because airway neutrophil accumulation is not a consistent feature of all types of interstitial 

lung diseases, we corroborated these findings using Aire−/− and wild-type (WT) littermate 

mice. As seen in the human airways, we observed a marked accumulation of neutrophils and 

induction of neutrophil-targeted CXC chemokines in the BAL of Aire−/− mice in the absence 

of any infectious challenge (Fig. 3, F and G). Hence, APECED pneumonitis appears to be 

associated with an increase of activated neutrophils, neutrophil-related products, and tissue 

injury markers in the airways. These products may collectively contribute to the 

development of bronchiectasis, a hallmark abnormality in APECED.

Histological and immunohistochemical examination of patient endobronchial biopsies 

revealed two consistent findings: (i) thickened basement membrane (mean, 8.7 jam; range, 

7.8 to 9.5 jam), comparable to that reported in asthma (32) but without eosinophils (Fig. 4, A 

and B), and (ii) submucosal and intraepithelial lymphocytic inflammation, composed 

predominately of T lymphocytes with less infiltration by B lymphocytes. CD4+ T 

lymphocytes were more abundant than CD8+ T lymphocytes in most cases (80%) in the 

submucosa, whereas CD8+ T lymphocytes predominated in intraepithelial areas (Fig. 4, A 

and C to F). Consistent with the airway neutrophilia, neutrophils were occasionally seen as a 

purulent exudate on the bronchial epithelial surface but not invading the epithelium or the 

submucosa. Less often, squamous metaplasia was seen (40%).

All six available deep lung tissue samples showed lymphocytic or lymphoplasmacytic 

bronchiolitis and/or peribronchiolar inflammation dominated by CD4+ and CD8+ T 

lymphocytes, with the latter prominent within intraepithelial areas. Mild-to-moderate 

peribronchiolar fibrosis was also observed (5 of 6; 83.3%) (Fig. 5, A to E). Less often (2 of 

6; 33.3%), interstitial pneumonitis was seen consisting of lymphocytes, histiocytes with 

occasional poorly formed granulomas (Fig. 5F), and rare neutrophil accumulation without 

abscess formation; neither eosinophils nor vasculitis was observed. Deeper in peribronchial 

tissue, prominent B lymphocyte nodules were seen (4 of 6; 66.7%) (Fig. 5E), as were 

primary follicles (follicular bronchiolitis) (5 of 6; 83.3%) with occasional germinal center 

formation (1 of 6; 16.7%) (fig. S6).

Lung disease in secondary AIRE deficiencies displays common features with APECED 

pneumonitis

We next wondered whether the clinical, radiographic, histological, and autoantibody features 

of APECED pneumonitis are shared by other diseases that are associated with decreased 
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AIRE expression and lung disease because shared characteristics might imply common 

pathogenetic mechanisms.

Patients with thymoma have impaired thymic AIRE expression (33), and a subset of them 

exhibit clinical manifestations similar to APECED (i.e., CMC and endocrine organ failure) 

and have autoantibodies against T helper 17 cytokines, 21-hydroxylase, NACHT 

leucinerich-repeat protein 5, and glutamic acid decarboxylase 65. However, less is known 

about the presentation and autoantibody profile of patients with thymoma with lung disease. 

We identified patients with thymoma with (13 of 62) or without (49 of 62) lung disease. 

Those with lung involvement had chronic cough and shortness of breath with radiographic 

evidence of GGO and bronchiectasis; 46.2% (6 of 13) had autoantibodies against KCNRG 

(3 of 13), BPIFB1 (1 of 13), or both (2 of 13) (Fig. 6, A and B). Patients with thymoma with 

lung involvement appeared to have a similar compartmentalized immune response to 

patients with APECED. In two such patients who underwent bronchoscopy, we found 

airway neutrophilia (i.e., 77% of leukocytes) and intraepithelial and submucosal 

lymphocytic inflammation on endobronchial and transbronchial biopsy (Fig. 6, C and D).

Besides thymoma, thymic AIRE is decreased in patients with biallelic hypomorphic RAG 
mutations who manifest immune deficiency, dysregulation, and autoimmunity (34). Patients 

with RAG deficiency display broad-spectrum autoantibodies against cytokines and tissue 

autoantigens (35), but no information exists regarding the presence of bronchial-targeted 

autoantibodies in RAG deficiency. We identified 27 RAG-deficient patients with (19 of 27) 

or without (8 of 27) lung involvement. Those with lung disease had chronic respiratory 

symptoms with GGO and bronchiectasis (Fig. 6E): 15.8% (3 of 19) of them had 

autoantibodies against KCNRG (2 of 19) or BPIFB1 (1 of 19) (Fig. 6A). Collectively, these 

data indicate that patients with thymic dysfunction, whether from APECED, thymoma, or 

RAG deficiency, share clinical and biochemical characteristics in common. These features 

unify the underlying mechanisms and pathophysiology of these conditions, at least 

concerning lung disease.

Lymphocyte ablation in mice ameliorates the compartmentalized immunopathology of 

APECED pneumonitis

We next examined histological features of lung disease in Aire−/− mice and found that Aire
−/− mouse lung tissue exhibited histological abnormalities similar to those seen in patients 

with APECED pneumonitis. Specifically, we observed intraepithelial (fig. S7), submucosal, 

peribronchiolar, and interstitial infiltration composed of T and B lymphocytes in Aire−/− 

lung tissue, whereas B lymphocyte aggregates were more prominent deeper in the tissue 

(Fig. 7A). Given the importance of AIRE for central tolerance of lymphocytes, we asked 

whether Aire−/− T and/or B lymphocytes drive the compartmentalized neutrophilia in the 

airways and lymphocytic infiltration we observed in APECED pneumonitis. We generated 

Aire−/−Tcra−/− and Aire−/−Ighm−/− mice that lack αβ T or mature B lymphocytes, 

respectively, and compared their BAL neutrophil accumulation and lung histology with that 

of WT and Aire−/− littermate mice. The enhanced neutrophil accumulation seen in Aire−/− 

BAL was restored to WT levels in both Aire−/−Tcra−/− and Aire−/−Ighm−/− mice, indicating 

that Aire−/− αβ T and B lymphocytes promote airway neutrophilia (Fig. 7B).
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In contrast, Aire−/− αβ T and B lymphocytes exhibited differential effects in mediating 

lymphocyte subset lung infiltration and resultant tissue injury. Specifically, Aire−/−Tcra−/− 

mouse lungs had absent CD4+ and CD8+ T lymphocytes, as expected, which was associated 

with decreased B lymphocyte accumulation to levels comparable to WT mice; Aire−/−Tcra
−/− mouse lungs exhibited histological scores that were similar to those of WT mice (Fig. 7, 

A, C, and D). Aire−/−Ighm−/− mouse lungs had absent B lymphocytes, as expected, which 

was associated with CD8+ T lymphocyte accumulation at levels comparable to WT mice but 

with increased CD4+ T lymphocyte accumulation similar to Aire−/− lung tissue. CD4+ T 

lymphocytes are critical to promote pneumonitis (5), so as could be predicted, Aire−/−Ighn
−/− mice manifested only partial amelioration of lung tissue injury relative to Aire−/− mice 

(Fig. 7, A, C, and D). Together, these data indicate that although both Aire−/− αβ T and B 

lymphocytes drive airway neutrophilia, Aire−/− αβ T lymphocytes predominate over Aire−/− 

B lymphocytes in promoting autoimmune lung tissue injury.

Combination lymphocyte-directed immunomodulation remits APECED pneumonitis in 

patients

Our mouse data suggested that T lymphocyte depletion with an agent such as CD52-

targeting alemtuzumab would be promising, but it would also confer a high risk for 

opportunistic infections (36). Therefore, we elected to proceed with a T cell modulation 

strategy in combination with CD20-targeting rituximab to capitalize on the beneficial effects 

of B lymphocyte deficiency seen in mice. We chose to target T lymphocytes with the purine 

analog azathioprine because of its excellent safety profile in patients with APECED for 

autoimmune hepatitis. In patients with reduced thiopurine methyltrans-ferase (TPMT) 

activity, mycophenolate mofetil was used to target T lymphocytes to avoid azathioprine-

induced toxicity (fig. S8). Thus, we treated five consecutive patients with APECED with 

biopsy-proven evidence of lymphocytic inflammation and radiographic evidence of 

pneumonitis and performed clinical, radiographic, pulmonary function and autoantibody 

evaluations at baseline and at 1 and 6 months after initiation of treatment [three females and 

two males; mean, 26.8 years (range, 7 to 53 years)]. Three patients were naïve to 

immunomodulation, whereas two were on azathioprine for a history of biopsy-proven 

autoimmune hepatitis, and rituximab was added (table S2, patients 3 and 4).

This lymphocyte-directed treatment resulted in obvious clinical improvement at both 1 and 6 

months (Fig. 8A). Among the four patients who had chronic cough and shortness of breath 

at baseline, cough resolved in all four, and shortness of breath resolved in three and 

improved in one. In the two patients who had bronchiectasis-associated staphylococcal and 

pseudomonal infections before therapy (table S2, patients 1 and 2), no infection recurrences 

were observed after treatment. A marked improvement (mean, ~82 to 96%) was seen in 

pneumonitis-associated radiographic abnormalities at the 1- and 6-month evaluations using 

either a composite radiographic score or a three-dimensional (3D) volumetric assessment of 

radio-graphic abnormalities (Fig. 8, B and C; figs. S9 to S13; and table S2). The clinical and 

radiographic responses were accompanied by improved pulmonary functions, resolution of 

oxygen desaturation during the 6-min walk test, and increases in 6-min walk distance (Fig. 

8, D to G). As expected, CD19+ B lymphocytes were undetectable at 1 month and were still 

decreased at 6 months compared to baseline, whereas CD3+, CD4+, and CD8+ T lymphocyte 
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numbers did not significantly change (fig. S14). The clinical, radiographic, and functional 

responses after treatment occurred without a decline in the titers of BPIFB1 and KCNRG 

autoantibodies (Fig. 8H).

During the 6-month posttreatment evaluations, we also assessed the efficacy of the 

lymphocyte-directed therapy in ameliorating other non-pneumonitis APECED 

manifestations. All four patients with Sjogren’s-like syndrome reported subjective 

improvement in sicca symptoms, and three patients in whom salivary flow rates were 

measured before and after therapy produced more saliva after treatment (fig. S15). All three 

patients with previous history of autoimmune hepatitis remained in remission during 

treatment. One of the three patients with nail dystrophy (table S2, patient 2) had complete 

resolution of her dystrophic nails (fig. S16). CMC did not resolve in any of the five affected 

patients, nor was there improvement in hypoparathyroidism (0 of 5), adrenal insufficiency (0 

of 4), intestinal malabsorption (0 of 3), vitamin B12 deficiency (0 of 2), or alopecia (0 of 2). 

Together, these data indicate that beyond improving pneumonitis, lymphocyte-directed 

immunomodulation ameliorates APECED-associated autoimmunity in a manifestation-

specific manner.

DISCUSSION

In this prospective observational natural history study of patients with APECED, we 

identified pneumonitis as an early and common clinical manifestation, and we defined 

lymphocyte-driven compartmentalized lung immunopathology that is ameliorated by 

lymphocyte-targeted immunomodulation. Our findings provide insight into the prevalence, 

pathogenesis, diagnosis, and treatment of autoimmune lung disease in the setting of 

impaired central immune tolerance.

We found that >40% of our patients with APECED had autoimmune lung disease, typically 

early in the course of the syndrome and often before the classic APECED diagnostic criteria 

were met. Despite the presence of chronic respiratory symptoms in ~95% of affected 

patients and of radiographic and pulmonary function abnormalities in 100% of affected 

patients, the overwhelming majority (~95%) of patients with pneumonitis were undiagnosed 

or misdiagnosed at the time of our evaluation. Because of the potential devastating sequelae 

of untreated lung disease, all patients with APECED warrant evaluation with chest CT 

imaging to assess for bronchiectasis and/or GGO. These radiographic features, when 

combined, were 100% sensitive for capturing autoimmune pneumonitis, even in 

asymptomatic patients who were still early in the course of their lung disease. Pediatricians 

and pulmonologists should have a high index of suspicion for APECED in children who 

have not yet met the classic diagnostic criteria but present with chronic respiratory 

symptoms and have a history of oral thrush, hypoparathyroidism, enamel hypoplasia, 

intestinal malabsorption, and/or urticarial eruption. Together, our findings reinforce the need 

for increased clinical awareness that APECED does not present solely with endocrinopathies 

but is also characterized by immune dysregulation that affects non-endocrine tissues with 

potential life-threatening complications (6).
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Beyond chest CT, measurement of autoantibodies against BPIFB1 and KCNRG is a 

valuable, albeit less sensitive, screen for APECED pneumonitis (27,28). Both autoantibodies 

are highly specific, whereas autoantibodies against BPIFB1 have greater sensitivity. Some 

patients with pneumonitis are positive for either BPIFB1 or KCNRG auto-antibodies, 

indicating that both autoantibodies are useful screening tests. When combined, these 

autoantibodies captured the majority (~75%), but not all, of the affected patients. The 

identification of several patients with APECED with biopsy-proven autoimmune 

pneumonitis who were negative for both autoantibodies suggests that yet-unknown 

pulmonary autoantigens are the target of autoreactive AIRE-deficient lymphocytes in these 

patients.

An intriguing question arises with regard to the much greater prevalence of pneumonitis in 

our patients with APECED compared to other reported patient cohorts. We found an 

association between the homozygous c.967_979del13 AIRE mutation and development of 

pneumonitis. However, although this genotype may be partly contributing, the presence of 

homozygous c.967_979del13 AIRE mutations alone is unlikely to fully account for the 

greater prevalence of pneumonitis because in other APECED cohorts in which this genotype 

is enriched, such as the Norwegian and British, the reported frequency of autoimmune lung 

disease is low (16,21). It is possible that the uniform pulmonary evaluation of all our patients 

regardless of symptoms, including with CT chest imaging, by the same pulmonologists 

within our multidisciplinary team of specialists may have allowed us to diagnose 

pneumonitis with greater sensitivity in comparison to other APECED cohorts. Enrollment in 

our study and uniform pulmonary evaluation of European patients with APECED with c.

967_979del13 homozygosity will help address this possibility. In addition, non-AIRE 
genetic modifiers maybe present in our patients and may act in synergy with AIRE 

deficiency, as recently demonstrated between AIRE and peripheral immune tolerance 

checkpoint molecules (37–39). Differential pulmonary microbiome and/or environmental 

factors in our cohort may also contribute to the enrichment of pneumonitis. Investigation of 

these genetic and microbiome factors via whole-exome and microbial metagenomic 

sequencing was not included in this study.

APECED pneumonitis features a characteristic compartmentalized lung immunopathology 

with large numbers of activated neutrophils in the airways and infiltration of T and B 

lymphocytes in intraepithelial, submucosal, peribronchiolar, and interstitial lung tissue. The 

abundance of activated airway neutrophils may contribute to the development of 

bronchiectasis, as previously suggested in patients with CF and non-CF bronchiectasis. This 

could be accomplished via secretion of toxic products such as MMP-9 and MPO and/or 

formation of neutrophil extracellular traps (30, 31, 40). We did not determine whether 

hematopoietic (i.e., alveolar macrophages) and/or nonhematopoietic (i.e., alveolar epithelial 

cells) cells produced neutrophil-targeted CXC chemokines in AIRE-deficient human and 

mouse airways. The abrogation of airway neutrophilia in Aire−/−Tcra−/− and Aire−/−Ighm−/− 

mice demonstrates a requirement for both Aire−/− T and B lymphocytes in promoting 

neutrophil accumulation in the Aire-deficient airways, via mechanisms that remain to be 

determined. The excess of neutrophils in the airways of patients with APECED pneumonitis 

is of considerable diagnostic value because all six patients with biopsy-proven pneumonitis 

who also had induced sputum examination had abundant neutrophils in the sputum sample 
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during active disease. Therefore, induced sputum examination for neutrophil enrichment 

may be a noninvasive method to identify patients with APECED pneumonitis.

In the lung parenchyma, instead of activated neutrophils, a characteristic pattern of 

lymphocytic infiltration was evident. In endobronchial biopsies, a consistent pattern of CD8 

> CD4 intraepithelial lymphocytosis and CD4 > CD8 > B lymphocyte submucosal 

infiltration together with a thickened basement membrane was of diagnostic utility. Within 

the lung parenchyma, CD4 and CD8 lymphocyte peribronchial and bronchiolar infiltration 

with associated follicular bronchiolitis and large B lymphocyte aggregates deeper in the lung 

parenchyma was also consistently observed, whereas CD4 and CD8 interstitial tissue 

lymphocytosis was seen less often. The greater dependence on T over B lymphocytes for 

promoting deep lung injury in mice is consistent with previous studies (4,5). Our cellular 

immunophenotyping of unaffected enhanced CD4 T lymphocyte accumulation in Aire
−/−Ighm−/− mouse lungs, which have residual autoimmune pneumonitis, further supports a 

substantial role for CD4 T lymphocytes in driving lung parenchymal autoimmune disease. 

The relative contributions of effector versus regulatory CD4 T lymphocytes in promoting 

lung autoimmunity in AIRE deficiency (41, 42) and the effector mechanisms and T 

lymphocyte receptor repertoires of AIRE-deficient CD4 T lymphocytes in the lung remain 

important questions.

Beyond being useful for diagnosis, the compartmentalized myeloid and lymphoid cell 

accumulation in the airways and bronchioles/deeper lung of APECED pneumonitis, 

respectively, provides a roadmap for the potential categorization of interstitial lung diseases 

that may share common pathogenetic mechanisms and thus may benefit from the 

lymphocyte-directed immunomodulation that is effective in APECED pneumonitis. We 

found similar clinical, radiographic, autoantibody, and histological features in patients with 

interstitial lung disease in the setting of secondary AIRE deficiency seen in thymoma and 

RAG deficiency. These data collectively provide evidence for a fundamental unification of 

underlying mechanisms and pathophysiology of conditions that affect thymic function as it 

relates to pulmonary immunopathology, whether due to APECED, thymoma, or RAG 

deficiency. These findings suggest that the lymphocyte-targeted immunomodulation that is 

effective in APECED pneumonitis may also be effective in autoimmune lung disease seen in 

other conditions of thymic dysfunction. The fact that most thymoma and RAG-deficient 

patients with pneumonitis did not carry BPIFB1 or KCNRG autoantibodies indicates that 

other yet-unknown pulmonary autoantigens may be involved in the pathogenesis of 

autoimmune pneumonitis in secondary AIRE deficiency.

Other autoimmune disorders that present with interstitial lung disease and share the 

myeloid-lymphoid compartmentalized immunopathologies in the airways and lung 

parenchyma of APECED pneumonitis include lung diseases associated with ulcerative 

colitis, Sjogren’s syndrome, and, occasionally, lupus and rheumatoid arthritis (43–46). It is 

possible that these conditions involve BPIFB1 and KCNRG autoantibodies, and associated 

pneumonitis may respond to lymphocyte-directed immunomodulation.

We provide proof of concept that lymphocyte-directed immunomodulation in patients with 

APECED results in remission of autoimmune pneumonitis with resolution of chronic 
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respiratory symptoms, marked improvement in radiographic abnormalities, and improved 

pulmonary function. Our treatment data are based on a relatively small number of patients 

who received therapy in a nonrandomized, nonblinded study design; treatment of a larger 

number of patients with APECED pneumonitis will be required to validate our response 

data. In addition, longitudinal follow-up of our patients will be important to establish the 

durability of the observed pneumonitis remission and the proportion of treated patients who 

may require redosing with rituximab. Furthermore, because T lymphocytes predominate 

over B lymphocytes in driving the development of autoimmune pneumonitis, future 

comparison of T lymphocyte-targeted monotherapy with azathioprine versus combination 

therapy with azathioprine and rituximab will be important. The same lymphocyte-directed 

immunomodulation that we found effective in patients with APECED has been used 

successfully in granulomatous and lymphocytic interstitial lung disease seen in patients with 

common variable immunodeficiency (47), which suggests that this treatment approach may 

have broader applications in the treatment of autoimmune lung diseases in primary 

immunodeficiency disorders. We do not yet have several years of longitudinal follow-up in 

all patients with APECED to establish the precise natural history and the factors that 

influence patient-to-patient variation in the progression of autoimmune lung disease. 

Nonetheless, our findings represent an effective treatment regimen for autoimmunity in 

patients with APECED and form the foundation for future clinical trials that will determine 

the best therapy for APECED pneumonitis.

In summary, we show that lung autoimmunity is a common and early manifestation of AIRE 

deficiency that causes significant morbidity and mortality. Our work identifies a 

characteristic cellular immune response in the airways and lung parenchyma that has 

important diagnostic implications. This immunopathology is driven by T and B lymphocytes 

and is responsive to lymphocyte-directed immunomodulation in humans. Collectively, our 

shared findings in APECED and in conditions of secondary AIRE deficiency provide 

insights into the pathogenesis and treatment of lung autoimmunity in the setting of impaired 

central immune tolerance.

MATERIALS AND METHODS

Study design

In this observational natural history study, 50 consecutive patients with APECED 

prospectively underwent a comprehensive and uniform evaluation in a National Institute of 

Allergy and Infectious Diseases (NIAID) Institutional Review Board (IRB)-approved 

protocol to characterize the clinical, radiographic, pulmonary function, microbiologic, 

genetic, autoantibody, and laboratory features of APECED. Patients with APECED 

pneumonitis were offered bronchoscopy with BAL harvesting and endobronchial and lung 

tissue biopsies, which underwent flow cytometric, immunohistochemical, and Luminex 

analyses to characterize the cellular immunopheno-type underlying the autoimmune lung 

disease. Aire-deficient mouse lungs were evaluated in a similar manner as outlined in the 

Supplementary Materials and Methods. We generated Aire−/−Tcra−/− and Aire−/−Ighm−/− 

mice to gain insight into the T and B lymphocyte requirement for promoting airway and 

lung tissue immunopathology.
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We treated patients with biopsy-proven APECED pneumonitis in a nonrandomized, 

nonblinded fashion with combination lymphocyte-directed immunomodulation and 

evaluated clinical, radiographic, and pulmonary function and autoantibody responses at 

baseline and at 1 and 6 months after initiation of treatment. To extend our observations in 

lung disease beyond APECED, we evaluated patients with thymoma and RAG deficiency 

who have secondary AIRE deficiency and found shared features with APECED 

pneumonitis.

All mice were maintained at an American Association for the Accreditation of Laboratory 

Animal Care-accredited animal facility under specific pathogen-free conditions. All mouse 

studies were performed with adherence to the NIH Guide for the Care and Use of 
Laboratory Animals under a protocol approved by the NIAID Animal Care and Use 

Committee. The analysis of mouse histological and Luminex data was blinded with regard to 

the mouse genotype. Primary data are reported in data file S1.

Study participants

Fifty consecutive patients with APECED enrolled from 2013 to 2016 in a NIAID IRB-

approved protocol (11-I-0187). Inclusion criteria consisted of either a clinical APECED 

diagnosis based on developing any two manifestations within the classic triad of CMC, 

hypoparathyroidism, and adrenal insufficiency (n = 46) or a genetic diagnosis (i.e., biallelic 

AIRE mutations and/or deletions) without a classic diagnostic dyad (n = 4).

Four healthy volunteers enrolled in a National Heart, Lung, and Blood Institute (NHLBI) 

IRB-approved protocol (07-H-0142) during the same time period to undergo bronchoscopy 

with BAL. Healthy volunteers were 18 to 75 years who did not meet the following exclusion 

criteria: (i) smoking history of ≥10 pack-years, a current smoker, or tobacco free <1 year; (ii) 

positive HIV status by HIV polymerase chain reaction; (iii) acute or chronic hepatitis based 

on viral hepatitis serologies; (iv) pregnant or breastfeeding; (v) history of pulmonary 

disorders; (vi) history of bleeding disorders or significant bruising or bleeding with 

intramuscular injections or blood draws; (vii) anticoagulant use; and (viii) taking 

immunosuppressive medications, cytotoxic medications, inhaled corticosteroids, or long-

acting β-agonists within the last 3 months.

We obtained serum from and reviewed medical records of 62 patients with thymoma and 27 

patients with RAG deficiency who were enrolled in National Cancer Institute (NCI) (12-

CN-029) and NIAID (05-I-0213,16-I-N139,18-I-N128, and 18-I-0041) IRB-approved 

protocols, respectively. All study participants provided written informed consent in 

accordance with the Declaration of Helsinki.

Clinical evaluations

Irrespective of disease manifestations, all patients with APECED underwent comprehensive, 

uniform, prospective evaluation consisting of (i) a standardized pulmonary clinical history 

questionnaire (table S6); (ii) noncontrast chest CT; (iii) serum measurement of 

autoantibodies, inflammatory markers, and immunoglobulin concentrations; (iv) lymphocyte 

immunophenotyping from peripheral blood; (v) DNA extraction for AIRE and HLA 

sequencing; and (vi) consultations by the same multidisciplinary team of infectious disease, 
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immunology, and pulmonology specialists. Pneumonitis was defined as the presence of 

chronic (≥4 weeks) cough and radio-graphic evidence of interstitial, nodular and/or GGO, 

and/or bronchiectasis. The diagnosis was biopsy-confirmed by lymphocyte infiltration in 12 

of 21 pneumonitis patients, whereas the remaining 9 patients did not have biopsies at the 

time of active symptoms (table S7).

Patients with active respiratory symptoms and pulmonary radiographic abnormalities during 

the NIH visit underwent further pulmonary investigation including (i) PFT and 6-min walk 

test according to American Thoracic Society/European Respiratory Society guidelines, (ii) 

sputum induction, and/or (iii) bronchoscopy with BAL. Endobronchial biopsies were 

performed in some patients. BAL underwent microbiological, flow cytometric, autoantibody, 

enzyme-linked immunosorbent assay, and Luminex analyses, as outlined in the 

Supplementary Materials and Methods. Endobronchial, transbronchial, and/or open lung 

biopsies, performed at the NIH or outside hospitals, were subjected to histological and 

immunohistochemical analyses.

Lymphocyte-directed treatment and follow-up

Five patients with biopsy-proven pneumonitis were treated with the combination of 

rituximab and azathioprine (1 mg/kg per day) (n = 3) or 500 mg twice daily of 

mycophenolate mofetil in those with reduced TPMT activity (n = 2) (fig. S8). Four adults 

received 1-g rituximab every 2 weeks for a total of two doses, and one child received 187.5 

mg/m2 on week 1 followed by 375 mg/m2 weekly for three additional weeks. All patients 

were premedicated 1 hour before each rituximab infusion with acetaminophen, 

diphenhydramine, and methylprednisolone (1 mg/kg). Another 0.5 mg/kg dose of 

methylprednisolone was given 24 hours later to prevent delayed rituximab infusion 

reactions. We performed prospective clinical evaluations, noncontrast chest CT with blinded 

radiographic scoring, PFTs, peripheral blood immunophenotyping, and serum autoantibody 

measurements before treatment and at 1 and 6 months after treatment. PFT and 6-min walk 

testing were performed in three and four of five patients, respectively, because one patient 

was wheelchair-bound and suffered from intractable hiccups (table S2, patient 5) and was 

unable to perform both tests, whereas another patient with tracheostomy (table S2, patient 1) 

was unable to perform PFTs.

Statistical analyses

Comparison of the frequency and/or absolute numbers of different peripheral blood and 

BAL immune cell subsets between patients with APECED and healthy donors and between 

patients with APECED with pneumonitis and those without pneumonitis and comparison of 

chemoattractant and cell activation molecules in human and mouse experiments were 

performed using an unpaired t test (with Welch’s correction, where necessary), Mann-

Whitney test, or one-way ANO VA (with Tukey’s correction, as appropriate), where 

appropriate, using GraphPad Prism 7.0 and were presented as means ± SEM. Radiographic 

responses of patients with APECED at 1 and 6 months after lymphocyte-directed 

immunomodulation were compared to baseline using paired t tests. Kaplan-Meier curves 

and log-rank tests were used to analyze time to development to pneumonitis. A chi-square 

test (with or without Yates’ correction, where appropriate) was used in the analysis of (i) 
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pneumonitis frequency between genders and (ii) frequency of associated mediastinal 

lymphadenopathy in patients with or without pneumonitis. P < 0.05 was considered 

statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Clinical, radiographic, and pulmonary function abnormalities of APECED pneumonitis.

(A) Clinical symptoms associated with APECED pneumonitis assessed by a standardized 

questionnaire. Chronic cough is classified as dry (gray shaded area) and with sputum 

production (black shaded area) (n = 21). (B) Radiographic features of APECED pneumonitis 

assessed by noncontrast chest computed tomography (CT) (n = 21). (C) Abnormalities in 

pulmonary function testing (n = 12) and 6-min walk test (n = 7) in patients with active 

APECED pneumonitis. DLCO, diffusing capacity of the lungs for carbon monoxide. (D to I) 

Representative radiographic abnormalities of APECED pneumonitis on chest CT imaging. 

GGO predominate early on (D to F). As disease progresses, bronchiectasis is prominent (G 
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and H) and can lead to recurrent infections, including cavitary pulmonary nontuberculous 

mycobacteria (NTM) infection (I).
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Fig. 2. BPIFB1 and KCNRG autoantibodies and the homozygous c.967_979del13 AIRE mutation 
associate with the development of APECED pneumonitis.

(A and B) Kaplan-Meier curves illustrating the relationship between the presence of 

autoantibodies against BPIFB1 (A) or KCNRG (B) and the time to development of 

pneumonitis. P values are based on the log-rank test. The tables show the sensitivity and 

specificity of the corresponding autoantibodies (n = 50). (C) Kaplan-Meier curve illustrating 

the relationship between carrying homozygous c.967_979del13 AIRE mutations (group A), 

carrying a heterozygous c.967_979del13 AIRE mutation (group B), and carrying no c.

967_979del13 AIRE mutations (group C) with the time to development of pneumonitis (n = 

50). P1 represents the P value between groups A and B; P2 represents the P value between 

groups A and C, and P3 represents the P value between groups B and C. P values are based 

on the log-rank test. (D) Proposed diagnostic algorithm aimed at promoting earlier diagnosis 

of APECED pneumonitis. Aab, autoantibody.
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Fig. 3. Accumulation of activated neutrophils in the airways of patients with APECED 
pneumonitis.

(A) Neutrophils in the BAL of patients with APECED with pneumonitis (n = 5) and healthy 

controls (n = 4). Percentage of neutrophils within total CD45+ leukocytes (left) and total 

number of neutrophils per lavage (right). (B) Concentration of CXC neutrophil-targeted 

chemokines in the BAL of patients with APECED with pneumonitis (n = 5) and healthy 

controls (n = 4). (C) Neutrophil activation phenotype in BAL of patients with APECED with 

pneumonitis (n = 4 to 5) and healthy controls (n = 4). Shown are summary data (left) on 

mean fluorescence intensity and representative fluorescence-activated cell sorting 
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histograms (right) for CD45, CD66b, CD63, CD18, b558, and CD16. (D) Concentration of 

the neutrophil products MPO and MMP-9 in the BAL of patients with APECED with 

pneumonitis (n = 5) and healthy controls (n = 4). (E) LDH concentration in the BAL of 

patients with APECED with pneumonitis (n = 5) and healthy controls (n=4). (F) Neutrophils 

in the BAL of Aire+/+ and Aire−/− mice (n = 8 to 10 per group; three independent 

experiments). Percentage of neutrophils within total CD45+ leukocytes (left) and total 

number of neutrophils per lavage (right). (G) Concentration of the CXC neutrophil-targeted 

chemokines CXCL1 and CXCL2 in the BAL of Aire+/+ and Aire−/− mice (n = 7 to 10 per 

group; three independent experiments). Differences between groups in all panels were 

determined using Mann-Whitney test with the exception of the differences between groups 

in the left panel of (F) (% of neutrophils within total CD45+ leukocytes) and on the right 

side of the graph in (G) (CXCL2 concentration), which were determined using unpaired t 
test with Welch’s correction. *P < 0.05, **P < 0.01, and ***p< 0.001. All quantitative data 

represent means ± SEM.
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Fig. 4. Basement membrane thickening and lymphocyte infiltration in intraepithelial and 
submucosal tissue is seen in endobronchial biopsies of patients with APECED pneumonitis.

(A) Representative image of hematoxylin and eosin (H&E) staining of an endobronchial 

biopsy from a patient with APECED pneumonitis (patient 3; table S1). Black arrows 

indicate a thickened basement membrane. (B) Mean basement membrane thickness 

measured in micrometers (n = 4). The dotted lines outline the range of reported basement 

membrane thickness seen in patients with asthma (31). (C to F) Representative images of 

immunohistochemical staining with the lymphocyte markers CD3 (C), CD4 (D), CD8 (E), 

and CD20 (F) from the same endobronchial biopsy. Scale bars, 150 μm.
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Fig. 5. Lymphocyte infiltration in bronchiolar, peribronchiolar, and interstitial lung tissue 
underlies APECED pneumonitis.

Representative images of H&E staining (A and F) and immunohistochemical staining with 

the lymphocyte markers CD3 (B), CD4 (C), CD8 (D), and CD20 (E) obtained from resected 

lung tissue of a patient with APECED with pneumonitis (patient 1; table S1). Panel A is 

generated from the same data shown in (6). Scale bars, 50 μm.
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Fig. 6. Lung disease in patients with secondary AIRE deficiency exhibits shared features with 
APECED pneumonitis.

(A) Shown is the autoantibody immunoreactivity against BPIFB1 and KCNRG as light units 

(LU) using the luciferase immunoprecipitation systems (LIPS) immunoassay in 62 patients 

with thymoma with (n = 13) or without (n = 49) lung involvement, and in 27 recombination-

activating gene (RAG)-deficient patients with (n = 19) or without (n = 8) lung involvement. 

Dotted lines represent the cutoff values for determining autoantibody seropositivity. (B) 

Representative chest CT image from a patient with thymoma with lung disease. (C and D) 

Representative images from an endobronchial (C) and transbronchial (D) biopsy of the same 

patient with thymoma with lung disease. Shown are H&E and immunohistochemical 
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staining with the lymphocyte markers CD3, CD4, CD8, and CD20. Scale bars, 100 μm. (E) 

Representative chest CT image from a RAG-deficient patient with lung disease.
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Fig. 7. Lymphocyte deficiency ameliorates airway neutrophil accumulation and lung tissue 
injury in Aire−/− mice.

(A) Representative images of H&E staining of Aire+/+,Aire−/−,Aire−/−Tcra−/−, and Aire
−/−lghm−/− mouse lung and of immunohistochemical staining with the lymphocyte markers 

CD3 and B220 in Aire−/− mouse lung. Original magnification, 40×. Scale bars, 200 μm. n = 
6 to 10 per group; one to three independent experiments. (B) Neutrophils in the BAL. 

Percentage of neutrophils within total CD45+ leukocytes (top; *P < 0.05) and total number 

of neutrophils per lavage (bottom; **P< 0.01 and ***P< 0.001). n = 7 to 10 per group; three 

to four independent experiments. (C) Lymphocyte populations in lung tissue. *P < 0.05, **P 
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< 0.01, ***P < 0.001, and ****P < 0.0001. n = 7 to 10 per group; three independent 

experiments. (D) Lung histology scores. ****P < 0.0001. n = 6 to 10 per group; three 

independent experiments. Differences between groups were determined using one-way 

analysis of variance (ANOVA) with Tukey’s correction for multiple comparisons. 

Quantitative data represent means ±SEM.
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Fig. 8. Combination lymphocyte-directed immunomodulation remits pneumonitis in patients 
with APECED.

(A) Number of patients reporting cough at baseline and at 1 and 6 months after treatment 

initiation (n = 5). (B) Percent residual radiographic abnormalities calculated at 1 and 6 

months after treatment initiation relative to the pretreatment radiographic abnormalities (n = 

5). Statistical analysis of comparison data was performed by paired t test. (C) Representative 

coronal chest CT images at baseline and at 1 and 6 months after treatment initiation (patient 

2; table S2). (D) 3D reconstructed CT images at baseline and at 1 and 6 months after 

treatment initiation (patient 5; table S2). (E to H) Pulmonary function assessed by 
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measurements at baseline and after treatment initiation of % oxygen desaturation during the 

6-min walk (n = 4) (E), the 6-min walk distance in meters (n = 4) (F), the ratio of forced 

expiratory volume at 1 s to forced vital capacity (FEV1/FVC) (n = 3) (G), and DLCO (n = 3) 

(H). (I) Shown is the autoantibody immunoreactivity against BPIFB1 and KCNRG as light 

units (LU) using the LIPS immunoassay at baseline and at 1 and 6 months after treatment 

initiation (n = 4).
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