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Abstract

It has become evident that the microenvironment – lympho-

cytes, macrophages, fibroblasts as well as the extracellular 

matrix, cytokines, chemokines, and a plethora of other cells, 

structures and substances residing in the vicinity of tumor 

cells – plays an important part in the maintenance of cancer 

growth and survival. This is also relevant in lymphomas. In this 

review, we give an outline on the importance of the microen-

vironment for tumors in general and lymphomas in particular, 

by highlighting certain basic principles of tumor-microenvi-

ronment interaction. The relationship of lymphomas and 

their microenvironment is multifaceted: lymphoma cells 

need growth factors and cytokines derived from microenvi-

ronmental cells for their sustenance and growth. On the con-

trary, many lymphomas silence or at least deregulate the im-

mune system to escape recognition and subsequent elimina-

tion by immune cells, while giving advantage to suppressive 

microenvironmental compounds such as M2 polarized mac-

rophages, regulatory T-cells, mast cells, and immunosuppres-

sive fibroblasts. We also give a detailed insight across differ-

ent lymphoma types to show the variety of tumor-microenvi-

ronment interactions. Due to its tremendous importance, the 

microenvironment has also become a new target for onco-

logic therapy. The most important finding concerning lym-

phomas with a focus on immunomodulatory substances is 

also, therefore, highlighted. © 2019 S. Karger AG, Basel

Introduction: The Role of Microenvironment in 

Cancer

A perception of the importance of tumor microenvi-
ronment (TME) in cancer dates back to the 19th century 
in contributions by Rudolph Virchow and James Paget, 
who described the presence of leukocytes in tumors and 
suggested that metastases of certain tumors depend on 
the properties of the involved organs [1]. Since the 1970s, 
due to newly emerging research techniques and investi-
gations, the TME has come back into the focus of atten-
tion in cancer research. Many current therapeutic strate-
gies not only aim at eliminating the tumor cells them-
selves but also influence the TME, the latter being vital for 
support of tumor growth and survival. It has also been 
shown that the composition of the TME is a predictive 
marker for the patients’ outcome [2].

A few examples of how the TME protects the tumor 
and impedes therapy efficacy include expanding vascula-
ture in the tumor areas to increase oxygen and nutrient 
supply [3], desmoplastic fibrosis, and altered extracellular 
matrix to hinder the influx of chemotherapeutic drugs and 
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immune cells [4] as well as the presence of local hypoxia 
and acidity to reduce the efficacy of drugs [5]. Further-
more, it has become evident that tumor cells deploy cer-
tain mechanisms to alter the cellular composition of the 
TME to evade recognition and subsequent elimination by 
the immune system [6] (see Fig. 1 for a schematic over-
view). Probably the most prominent and best-investigated 
pathway of this strategy is the programmed cell death 1 
(PD1)/programmed cell death ligand 1 (PDL1) axis [7, 8].

Interaction of Lymphomas and Surrounding 

Reactive Cells

Lymphomas, as cancers of cells of the immune system, 
also display a TME, with huge differences regarding the 
various entities [9]. Hodgkin lymphomas (HL), both clas-
sic HL (cHL) and nodular lymphocyte predominant HL 
as well as several T-cell lymphoma entities such as angio-
immunoblastic T-cell lymphomas (AITL) predominantly 
(> 80% of the tumor mass) consist of TME cells, the latter 
even defining the morphological components. In indo-
lent B-cell lymphomas such as follicular lymphoma (FL) 
or marginal zone lymphomas, the TME constitutes about 

50% of the cellular mass. In aggressive lymphomas such 
as diffuse large B-cell lymphomas (DLBCL), the propor-
tion of the TME varies and is generally lower, while in 
Burkitt lymphoma, plasmablastic lymphoma and lym-
phoblastic T-cell and B-cell lymphomas, the TME is bare-
ly non-existent.

In the following sections of this review, we will high-
light the importance of the TME in various lymphoma 
entities, starting with HL, followed by the so-called “non-
Hodgkin” B-cell lymphomas (B-NHL) and T-cell lym-
phomas.

Hodgkin Lymphomas

cHL is defined by the presence of Hodgkin and Reed-
Sternberg (HRS) cells within a background of reactive 
cells primarily composed of B- and T-lymphocytes, plas-
ma cells, macrophages, and eosinophils in various de-
grees (Fig. 2a). Before the introduction of radiotherapy 
and chemotherapy as treatment strategies, most patients 
died of the disease – not due to tumor progression but 
rather due to infections caused by the immunosuppres-
sive abilities of the cHL [10].
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Fig. 1. Schematic overview of interactions between lymphoma cells 
and the TME. Lymphoma cells deploy different mechanisms in 
regard to the TME to foster their survival: while silencing effector 
immune cells and trying to avoid recognition by the immune sys-
tem on the one hand (upper right), they activate and manipulate 

other cell types such as regulatory T-cells, CAFs, dendritic cells and 
macrophages via secretion of various cytokines and receptor-li-
gand interactions (upper left and lower left and right). DC, den-
dritic cells; PDL1, programmed cell death ligand 1; IL, interleukin; 
NK, natural killer; TGF-β, transforming growth factor beta.
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The question of how HRS cells interact with the TME 
has been investigated for several decades [11], with the 
main focus on T-cells. HRS are surrounded by T-cells, 
which are not capable of eliminating them. It has been 
shown more than 40 years ago in vitro that these T-cells 
are attenuated and are less responsive to mitogenic stim-
uli [12]. This effect is achieved by skewing the differen-
tiation of T-cells towards Th2 cells and regulatory T-cells 
(Tregs) as well as driving effector T-cells in a state of ex-
haustion; here the expression of PDL1 is a main instru-

ment used by HRS cells (Fig. 1, 2b) [13]. HRS cells also 
induce PDL1 expression in macrophages to boost the im-
munosuppressive environment (Fig. 2b) [14]. We have 
shown that FOXP3-positive Tregs are associated with im-
proved survival in cHL and other lymphoma entities [15] 
in contrast to larger amounts of PD1-positive T-cells [16] 
and CD68-positive macrophages [17] (Fig. 2c). Interest-
ingly, higher expression levels of PDL1 were associated 
with lower levels of FOXP3 Tregs and larger amounts of 
macrophages (see later) and PD1- and GATA3-positive 

a b

c d

Fig. 2. cHL. a Composition of cHL showing one binuclear tumor 
giant cell and a mixed TME composed of small lymphocytes, eo-
sinophils, and macrophages. b Double staining for MUM1 
(brown), marking HRS cells, and PDL1 (red membranous stain), 
showing PDL1 expression both by HRS cells and TME-associated 
smaller (MUM1-negative) macrophages. c Abundance of macro-
phages marked by CD68 (PGM1) next to fewer, but larger HRS 
cells and smaller polymorphonuclear (neutrophilic) granulocytes. 

d Positivity for SMAD1, a signal transducer and transcriptional 
modulator that mediates multiple signaling pathways but particu-
larly TGF-β-related signaling, in a cHL case; note that while al-
most all tumor-infiltrating reactive lymphocytes are SMAD1 pos-
itive, the HRS cells remain negative, thus being resistant to the 
tumor suppressive effects of TGF-β, while the latter’s immuno-
suppressive activity on the microenvironmental T-cells is likely 
unaffected.
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Tregs, which have all been linked to poorer prognosis, in 
further studies of the TME in cHL [18].

The role of B-cells in cHL – in contrast to nodular lym-
phocyte predominant HL – is less investigated so far. B-cells 
are described to be competing with HRS cells for survival 
signals such as CD40 ligand (CD40L) derived from T-cells, 
which may explain why high amounts of B-cells have been 
correlated with a better overall outcome of cHL [19]. Re-
cently, Gholiha et al. [20] explored the role of plasma cells 
in cHL showing an association of their increased numbers 
with inferior prognosis and presence of B-symptoms, which 
might be the final “net readout” of interleukin (IL) 6 over-
production. Another bystander cell type involved in the 
pathogenesis of cHL is the mast cells [21]. They are attract-
ed to the microenvironment by IL9 and/or chemokine li-
gand 5 produced by the HRS cells or tumor-infiltrating T-
cells [22, 23], and increase angiogenesis [24], and – more 
importantly – directly stimulate HRS cells via CD30 [25].

Macrophages can be further subdivided into M1 mac-
rophages, which represent the proinflammatory subtype 
promoting Th1 T-cells, in contrast to M2 macrophages 
(Fig.  1), which have tumor- and Th2 T-cell promoting 
activity by inducing angiogenesis, tumor cell prolifera-
tion, and immunosuppression [26]. HRS cells are known 
to be able to induce the M2 phenotype of macrophages in 
vitro [27]. Some studies reported an association of in-
creased amounts of M2 macrophages with inferior out-
come [17, 27]; however, results are conflicting [28].

Epstein-Barr virus (EBV), which is present in 30% of 
cHL in the Western world and in a much higher proportion 
in pediatric cases and HIV-related cases [29], is associated 
with certain distinct features of the TME of cHL. This is ap-
preciable by mere H&E morphology as EBV-association is 
mainly found in the subtypes of mixed cellularity and lym-
phocyte-depleted cHL containing more histiocytes and 
macrophages than EBV-negative cases. Indeed, EBV nucle-
ar antigen 1 (EBNA1) is able to recruit regulatory and Th2 
T-cells [30]. In total, the numbers of regulatory and cyto-
toxic T-cells as well as natural killer (NK) cells are higher in 
EBV-related cHL than in non-EBV-related cHL [31]. The 
biggest differences are seen in the number of macrophages 
[32]. Interestingly, in the respective instances they consist 
mainly of the proinflammatory and immunostimulating 
M1 macrophages. This rather counterintuitive effects of 
EBV are balanced by several mechanisms to impair im-
mune defense and destruction of EBV-infected cells such 
as latent membrane protein 1 (LMP1) [33] and the induc-
tion of Fas ligand, which result in the destruction of attack-
ing T-cells [34]. In addition, PDL1-expression in respective 
cHL (while in EBV-negative cHL this expression is mainly 

due to the amplification of the PDL1 locus; out of the scope 
of the present review [35]) can be induced by LMP1 via ac-
tivation of signal transducer and activator of transcription 
(STAT) proteins (particularly, STAT3)- and activated pro-
tein 1-mediated pathways [36].

The TME is also manipulated by HRS cells to provide 
“paracrine” proliferation and survival-promoting factors 
[11]. The genuine lack of functioning B-cell receptors in 
HRS cells is compensated by the activation of the NF-κB 
pathway via CD30 – a pathognomonic feature of HRS 
cells – stimulated by the expression of CD30L by eosino-
phils in the TME, which on their turn are stimulated by 
eotaxins, IL5 and 13 secreted by the HRS cells [37]. Fur-
thermore, the production of CD40L by T-cells is in-
creased by IL-10 released from the HRS cells [38]. Trans-
forming growth factor beta (TGF-β) secreted by the HRS 
cells and cancer-associated fibroblasts (CAFs) also stimu-
late tumor-infiltrating T-cells to differentiate into immu-
nosuppressive Tregs (Fig.  1) [39], while the HRS cells 
themselves remain resistant to the tumor suppressive at-
tributes of TGF-β as they do not express its intracellular 
second messenger SMAD1 (Fig. 2d). In EBV-associated 
cHL, several viral proteins such as LMP1 and LMP2A 
take over a part of these tumor-TME-interaction func-
tions.

So-Called “B-NHLs”

As mentioned before, there are substantial differences 
between various B-cell lymphoma entities concerning 
their composition and their dependence on the TME. The 
TME only plays a minor role or barely any role in very ag-
gressive and rapidly evolving lymphomas such as Burkitt 
lymphoma and lymphoblastic lymphomas, while within 
the group of so-called “indolent” B-NHL, TME seems to 
play a crucial role, which is best investigated in FL.

Similar to cHL, the relationship between B-NHL and the 
TME is split between the needs of the tumor cells for sup-
portive (cytokine) signaling by the TME and the needs of 
the tumor cells for immune escape. Like cHL, B-NHL cells 
are dependent on several cytokines and growth factors de-
rived from TME cells (Fig. 1) such as IL10, which promotes 
B-cell survival and induces an immunosuppressive TME, 
as does TGF-β [40]. Another important member of the IL-
family is IL6, which also contributes to the proliferation, 
migration, and invasion of tumor cells [41]; IL6 can also 
activate and act via matrix metalloproteinases, another 
subgroup of enzymes shaping the microenvironment [42]. 
FL also needs the supporting structures of the follicular ar-
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chitecture to maintain survival; the need for these struc-
tures gets lost in the process of transformation to overt 
DLBCL shown by a lack of dependence of Gα13-dependent 
signaling [43, 44]. FL is rich in T-cells, constituting up to 
50% of the total cell count. CD4-positive follicular helper 
(TFH) T-cells provide vital survival signals for FL cells as 
they do for non-neoplastic germinal center cells by secret-
ing IL2, IL4, interferon-γ, and CD40L [45]. CAF of FL se-
crete several chemokines such as CXCL12 and CXCL13, 
which are a prerequisite for lymphocyte homing and reten-
tion [46], as well as hedgehog ligands, which help to pre-
clude spontaneous or chemotherapy-induced apoptosis 
[47]. Macrophages also foster FL growth and survival via 
the CD40 axis [48] and can activate the B-cell receptor [49]. 

FL cells can also prime and manipulate the composition of 
the TME due to TNFRSF14/HVEM loss-of-function muta-
tions [50]: besides autonomous activation of B-cell receptor 
signaling in mutant cases, the TME composition is skewed 
to an abundance of TFH cells and increased CAF activity, 
which fosters tumor growth and survival. The finding of 
HVEM mutations has led to a new therapeutic approach by 
administering HVEM-chimeric antigen receptor T-cells, 
which have shown a therapeutic effect in xenograft models 
by reactivating B- and T-lymphocyte attenuator receptors.

FL also uses immune escape and immune silencing 
mechanisms to foster its survival: although not express-
ing PDL1 themselves, increased numbers of PDL1-ex-
pressing macrophages and PD1+ T-cells (Fig. 1, 3a) are 

a b

c d

Fig. 3. FL and DLBCL. a FL with an abundance of PD1-positive T-cells. b DLBCL evolving from FL with FOXP3-
positive regulatory T-cells. c DLBCL showing expression of the IL10 receptor in almost all tumor cells. d VEGF-
receptor 2 expression of some DLBCL cells.
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noted in FL [51]. The induction and promotion of TFH-
cells also helps to create an immunosuppressive environ-
ment besides providing growth stimulation and survival 
signals for FL cells as mentioned above [45]. Further-
more, TFH-cells induce the migration of Tregs, further 
promoting silencing and attenuation of the immune sys-
tem [52]. FOXP3-positive Tregs (Fig. 3b) are known to be 
of negative prognostic impact and at a higher risk of 
transformation in FL, which is explained by their immu-
nosuppressive abilities [53]. They do not only act on their 
own but in cooperation with the M2 macrophages pres-
ent in the TME.

The complexity of the importance and predictive value 
of the TME in FL is further complicated by the impact of 
different therapy approaches. Addition of rituximab 
seems to have neutralized the negative prognostic role of 
macrophages [54]. Other groups [55] as well as our own 
studies (unpublished data) demonstrate that therapy with 
different agents has an impact on the prognostic value of 
different TME T-cell subsets.

In DLBCL, less is known about the interaction be-
tween tumor cells and the TME. Activation of the B-cell 
receptor in DLBCL is mainly due to mutations in MYD88, 
CD79B, BCL10, CARD11 or CD79A and other mecha-
nisms of tumor promotion are active, such as activation 
of JAK-STAT signaling due to SOCS1 and STAT6 muta-
tions, and immune escape due to B2M, CIITA, CD58, 

CREBBP and EP300 mutations, such that DLBCL cells 
seem to be less dependent on the TME (Fig. 1) [56–58]. 
However, there is also evidence that some DLBCL sub-
groups are dependent on TME interactions. CD4- and 
CXCR5-positive T-cells support tumor growth and sur-
vival via secretion of IL10, and in some more aggressive 
instances DLBCL display IL10RA or IL10RB gene ampli-
fications, being sensitive to IL10R blocking [59, 60] 
(Fig. 3c). DLBCL cells can also shape their microenviron-
ment by secreting vascular endothelial growth factor 
(VEGF) and recruiting VEGF-receptor positive macro-
phages [61, 62]; in addition, isolated DLBCL cases ex-
press VEGF-receptors and, thus, some autocrine and 
paracrine loops related to intratumoral hypoxia might 
play a role in such instances (Fig. 3d). Interestingly, a so 
far rather neglected group of cells – neutrophils – has 
been shown to be very relevant in DLBCL. DLBCL cell 
line survival is improved by co-culturing with neutro-
phils [63]. This is thought to be achieved by the secretion 
of a proliferation-inducing ligand (APRIL), a ligand of 
tumor necrosis factor family [64]. APRIL activates sev-
eral vital proteins related to B-cell survival such as B-cell 
maturation antigen and the transmembrane activator 

and calcium modulator cyclophilin ligand interactor. 
APRIL has furthermore been shown to be a negative 
prognostic marker for DLBCL [65]. DLBCL cells can at-
tract neutrophils by secretion of IL8 and induces the for-
mation of neutrophil extracellular traps [66], which then 
leads to the activation of Toll-like receptor-induced 
pathways inducing NF-κB, STAT3 and p38 related sig-
naling [67]. As in cHL, mast cells are associated with in-
creased angiogenesis in DLBCL [68] as well as in other 
B-cell lymphoma subtypes [69, 70]. Increased angiogen-
esis has been shown to be linked to poorer outcome in 
R-CHOP-treated FL [70] and, in historic collectives, with 
lymphoma progression [71]. In addition, mast cells seem 
to be a major source of IL17A in germinal center derived 
lymphomas [72].

The PD1/PDL1 axis is also of importance in DLBCL 
and, thus, a potential point of action for new therapy ap-
proaches [18, 35, 73]. Particularly applying to DLBCL, 
but most likely valid in general, it is becoming increas-
ingly clear that expression patterns of various markers of 
immunologic interactions including PDL1 must be eval-
uated very carefully in regard to the question, which cells 
are expressing them: while PDL1-expression on DLBCL 
cells is associated with better survival, PDL1-expression 
on tumor-associated macrophages seems to be related to 
adverse outcome.

T-Cell Lymphomas

Compared to cHL and B-NHL, knowledge of the TME 
in general and its importance for tumor growth and sur-
vival in T-cell lymphomas is lacking. This is mainly due 
to the less common incidence and heterogeneity of this 
disease group.

The TME of AITL is comparably well investigated. 
Due to their descent of TFH-cells, AITL have a promi-
nent TME, which is also part of the disease definition: it 
consists of an increased number of high endothelial ve-
nules, increased networks of follicular dendritic cells 
(FDCs), and a mixed inflammatory infiltrate consisting 
of reactive, both CD4- and CD8-positive T-cells, plasma 
cells, EBV-infected B-immunoblasts, eosinophils, and 
macrophages (Fig. 4a, b). The set-up of the TME resem-
bles that of the surroundings of non-neoplastic TFH cells 
and is mainly due to the secretion of CXCL13 (Fig. 4c) 
and IL21 by the lymphoma [74]. B-cells are stimulated by 
CXCL13 secreted by the tumor cells, which also spurns 
their differentiation into abnormal plasma cells. This re-
lationship can explain the paraneoplastic phenomena of 
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AITL such as hypergammaglobulinemia, presence of 
various autoantibodies, and Coombs-positive hemolytic 
anemia. Hypereosinophilia in the bone marrow and pe-
ripheral blood is also a common finding in AITL, and it 
is still unclear whether the neoplastic cells or reactive Th2 
T-cells are responsible for the activation and growth 
stimulation of eosinophils. The expanded FDC networks 
are also due to the secretion of lymphotoxin β by B-cells 
stimulated by CXCL13 (Fig. 4b, c) [75]. VEGF secretion 
by both neoplastic cells, endothelial cells themselves, and 
FDC cells is responsible for the enriched vasculature of 
high endothelial venules (Fig.  4d) [76, 77]. Similar to 
transformed FL, the importance of the TME as well as its 

spatial extent gets reduced in the course of progressive 
disease indicating that with time the neoplastic cells of 
AITL become less dependent on the microenvironment 
[78]. Mast cells also play a role in AILT as they are pref-
erentially accumulated at lymphoma sites through 
CXCL13 interactions with CXCR3 and CXCR5 expressed 
on them and, reciprocally, synthesize IL6 within the tu-
mor [79], molding the immunological microenviron-
ment of AITL towards the maintenance of pro-inflam-
matory conditions prone to Th17 generation and auto-
immunity.

Other T-cell lymphomas with TFH-like phenotypes 
such as peripheral T-cell lymphomas (PTCL), not other-

a b

c d

Fig. 4. AITL. a AITL showing medium-sized tumor cells in close 
interaction with high endothelial venules and TME cells composed 
of small lymphocytes, non-tumoral T-cells, eosinophils, and plas-
ma cells. b CD21 staining shows the dense network of FDCs as a 

part of the TME of AITL. c Expression of CXCL13 by lymphoma 
and endothelial cells. d High expression of VEGF in endothelial 
and dendritic cells vessels as well as histiocytes, and low expression 
by lymphoma cells.
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wise specified, PTCL follicular variant, some of the so-
called “T-zone lymphomas”, and primary cutaneous 
CD4+ small/medium-sized T-cell lymphoproliferative 
disease show similarities of their TME to AITL.

The most common group of cutaneous T-cell lym-
phomas are Mycosis fungoïdes (MF) and Sézary syn-
drome; the latter is characterized by the presence of 
blood, skin and lymph node spread as well as systemic 
B-symptoms [80]. In both MF and Sézary syndrome, 
the neoplastic T-cells are mature CD4-positive memo-
ry T-cells. It has been shown in vitro that these neoplas-
tic cells can manipulate – along with disease progres-
sion – reactive T-cells and change their profile from Th1  
to Th2 [81]. In progressive disease, gaining additional 
mutations, the tumor cells start expressing different im-
munosuppressive molecules such as IL10, Fas ligand, 
PD1 and CTLA4, overcoming immunosurveillance and 
promoting dissemination [82]. Th2-related cytokines 
and eotaxins might be the cause of eosinophilia, eryth-
roderma and immunosuppression observed in ad-
vanced instances, which is, however, also the point of 
counteraction by interferon α2b- and extracorporeal 
photopheresis-therapy, both known to reduce Th2 ac-
tivity [81]. MF-cells also need the TME for their sur-
vival: they are in close contact with Langerhans cells, 
which provide survival signals mainly through CD40-
CD40L interaction, and MF’s reliance on these cells has 
also been shown in vitro [83]. Mast cells seem to be im-
portant for cutaneous T-cell lymphomas as well as cu-
taneous B-cell lymphomas, and their increased number 
is correlated with disease progression and angiogenesis, 
the effects being most probably linked to multiple in-
flammatory cytokines and chemokines produced by 
these cells [84].

Several different T-cell lymphoma entities express 
PDL1, thus, promoting an immunosuppressive TME 
[85], yet its therapeutic utility is unclear with one excep-
tion. Similar to cHL, EBV can induce upregulation of 
PDL1 in extranodal NK- and T-cell lymphoma of the na-
sal type, a lymphoma with a very aggressive and often fa-
tal outcome. PD1 blockade as “salvage therapy” has been 
reported to be very effective in a small series of otherwise 
hopeless relapsed cases [86].

Similar to FL of the pre-rituximab era, high numbers 
of macrophages are associated with worse outcome in 
several T-cell lymphomas, in ALK-positive anaplastic 
large cell lymphoma, a specific subtype, namely the lym-
phohistiocytic variant, which bears a description of its 
TME in the name, is generally known to be associated 
with a worse prognosis [87].

Use of Immunomodulatory Therapy in Lymphomas

For a deeper insight into this clinical topic, we refer to 
other reviews [88–92]. In this review, we would like to 
focus on the PD1/PDL1 axis of checkpoint inhibition and 
the use of immunomodulatory drugs such as lenalido-
mide.

The discovery of the PD1/PDL1 axis as a new point of 
action for targeted therapy is a major achievement in on-
cology in the last years [93]. This concept – immune 
checkpoint blockade inhibiting antibodies – has been 
transferred from solid tumors to lymphomas (reviewed 
in [94, 95]), the paradigm in the field of lymphomas being 
cHL. The igniting study comprised a cohort of 18 patients 
with refractory/relapsing cHL, who had been received 
nivolumab and demonstrated complete remissions (CR) 
in 17% and partial remissions (PR) in 70% [96]. Further 
studies showed similar promising results (n = 31, CR 16%, 
PR 48%/n = 210, CR 22%, PR 47%) [97, 98]. Two different 
anti-PD1-antibodies (nivolumab and pembrolizumab) 
are now approved for treatment of relapsed and/or re-
fractory cHL [94, 95]. Combinatory/additive approaches 
of radio- and chemotherapy together with PDL1-cen-
tered immunotherapy have also been successfully tested 
[99]. These therapy regimens are based on the hypothesis 
that damage induced by radio- and chemotherapy ren-
ders tumor cells more “visible” to immune cells (re)acti-
vated by immune checkpoint inhibition [100]. In prima-
ry mediastinal B-cell lymphoma, which shares PDL1 am-
plifications with cHL, first clinical trials using similar 
approaches have also been published, yet the overall re-
sponse rates are approximately 40% (heavily pretreated 
patients, n = 18) [101]. In DLBCL, immune checkpoint 
inhibition focusing on the PD1/PDL1 axis is still evolving 
with several trials being planned currently [88]. Such 
treatment strategies will mainly be applied in second re-
lapse settings, which affect 10–15% of DLBCL patients. 
After the initial phase I studies, there is currently one run-
ning phase II study (CheckMate 139, NCT02038933) 
showing an overall response rate of 10% in the patient 
cohort with relapse after autologous stem cell transplan-
tation and 2.3% in patients ineligible for autologous stem 
cell transplantation [88]. In FL, mantle cell lymphoma, 
and CLL, immunotherapy in general has not been inves-
tigated at a larger scale. Yet, in relapsed FL, a first study 
combining PDL1-centered immunotherapy and ritux-
imab has shown promising results (n = 29, CR 52%, PR 
14%) [102]; further studies showed overall response rates 
of up to 40% [103]. In T-cell lymphomas, the use of bren-
tuximab vedotin showed a significant effect in different 
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series. Besides directly targeting CD30, the additional 
monomethyl auristatin E payload helps to attenuate pro-
tumoral macrophages, thus, facilitating the effect of bren-
tuximab vedotin [104]. With the impressive exception of 
EBV-related T-cell lymphomas, the use of PD1-blockade 
might prove difficult. It might lead to the removal of in-
hibitory signals for tumor cells and promote tumor 
growth [105]. Taken together, the most important con-
clusion derived from various studies so far is that immune 
checkpoint inhibition in lymphomas has to be seen as an 
additive therapy in combination with other treatment 
modalities as there is mostly only limited treatment re-
sponse if given as a single agent [95]. PDL1 inhibition in 
lymphomas of immunoprivileged also needs further eval-
uation (5 investigated cases) [106].

Another option to influence the immune system to tack-
le tumor cells is the use of immunomodulatory drugs such 
as lenalidomide. Lenalidomide acts by promoting the deg-
radation of 2 transcription factors, Aiolos and Ikaros, which 
are part of the cereblon-mediated signaling [107, 108]. Le-
nalidomide facilitates apoptosis of lymphoma cells and ac-
tivates T-cells of the TME by enhanced secretion of IL2. 
Lenalidomide has been tested in several trials of FL so far 
and the combination of lenalidomide and rituximab 
showed similar results as rituximab and conventional che-
motherapy [109, 110]. The effect on the restoration of im-
mune synapses has also been shown by in vitro analysis of 
patients’ immune cells of the RELEVANCE trial [111]. In 
DLBCL, several studies have been undertaken for analyzing 
the benefit of lenalidomide [112]. It has been shown to sup-
port the efficacy of other drugs activating the immune sys-
tem such as MOR208, a humanized monoclonal anti-CD19 
antibody [113], which primarily renders lymphoma cell 
“visible” for NK-cells and macrophages. Very promising 
results have been obtained from several studies testing the 

use of lenalidomide in maintenance therapy of DLBCL, its 
addition to classical R-CHOP therapy (R2-CHOP), and 
even as monotherapy [114–116].

Conclusion

The TME has left its niche of being merely regarded as 
the background for neoplastic cells to become a focus of 
our understanding of cancer development, cancer pro-
gression and point of action for new therapeutic concepts.

We have demonstrated the role of TME in the patho-
genesis of various lymphoma subtypes, however many 
questions still need to be answered. The plasticity of the 
microenvironment makes it difficult to be studied in stat-
ic circumstances and, for obvious reasons, in animal 
models as the constitution of the TME and its interactions 
might differ from that in humans. Nevertheless, many 
breakthroughs have already been achieved regarding the 
contribution of TME to lymphoma development and 
progression, and this knowledge has been transferred 
into therapeutic strategies. Future work will help to get 
better insights with regard to inter- and intracellular sig-
naling, metabolomics of the TME, the impact of therapy 
on the TME and its predictive implications.
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