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Abstract. This paper introduces Lynx, an incremental programmatic SAT solver

that allows non-expert users to introduce domain-specific code into modern

conflict-driven clause-learning (CDCL) SAT solvers, thus enabling users to guide

the behavior of the solver.

The key idea of Lynx is a callback interface that enables non-expert users to

specialize the SAT solver to a class of Boolean instances. The user writes special-

ized code for a class of Boolean formulas, which is periodically called by Lynx’s

search routine in its inner loop through the callback interface. The user-provided

code is allowed to examine partial solutions generated by the solver during its

search, and to respond by adding CNF clauses back to the solver dynamically

and incrementally. Thus, the user-provided code can specialize and influence the

solver’s search in a highly targeted fashion. While the power of incremental SAT

solvers has been amply demonstrated in the SAT literature and in the context of

DPLL(T), it has not been previously made available as a programmatic API that

is easy to use for non-expert users. Lynx’s callback interface is a simple yet very

effective strategy that addresses this need.

We demonstrate the benefits of Lynx through a case-study from computa-

tional biology, namely, the RNA secondary structure prediction problem. The

constraints that make up this problem fall into two categories: structural con-

straints, which describe properties of the biological structure of the solution,

and energetic constraints, which encode quantitative requirements that the solu-

tion must satisfy. We show that by introducing structural constraints on-demand

through user provided code we can achieve, in comparison with standard SAT ap-

proaches, upto 30x reduction in memory usage and upto 100x reduction in time.

1 Introduction

Conflict-driven clause-learning (CDCL) Boolean SAT solvers have had a huge impact

on a variety of domains ranging from program analysis to AI [3]. This success can

partly be attributed to their simple interface and powerful heuristics. In many cases, a

straightforward translation from a program analysis or AI problem into Boolean for-

mulas in CNF (conjunctive normal form) format is sufficient to leverage the power of

the solver. Unfortunately, there are many other important domains (e.g., biology) where

straightforward translation of problems to CNF clauses leads to formulas that are too
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large or complex for solvers to handle. For many of these domains, however, small

domain-specific modifications to the solver can make SAT-based solution feasible. The

challenge addressed by this paper is to enable users to make these small adaptations

with minimal effort and without breaking subtle invariants in the solver implementa-

tion. The solution we provide allows for the resultant specialized solver to be adaptive,

efficient for the problem-at-hand, and easy to build and maintain. Equally important,

users are not burdened with knowing too much about the internals of SAT solvers and

related technologies.

1.1 Our Contributions

– To address the problem described above, we created the solver Lynx that extends

CryptoMiniSat [23] with an API allowing user-provided code to examine partial

solutions generated by the SAT solver and add CNF clauses back to the solver in

response. The added code is called inside the inner loop of the SAT solver, allowing

the user to tightly integrate problem-specific clause-generation heuristics into the

solver.

We call solvers extended in this way programmatic, i.e., the user can program-

matically influence solver behavior and adapt it to their specific problem domain

in ways that are difficult to achieve otherwise. Programmatic solvers address the

“solvers are unpredictable black boxes” problem by giving users more control over

their search heuristics.

– Using Lynx we developed the first SAT based tool for solving the RNA-folding pre-

diction problem. We present a detailed experimental evaluation of our technique in

comparison with standard approaches. We use the above-mentioned callback inter-

face in efficiently translating the RNA prediction problem into Boolean formulas.

The interface allows Lynx to incrementally translate the RNA-folding structure in-

side the inner loop of the SAT solver, allowing a tighter, highly targeted and more

efficient integration of the SAT solver and the translator.

1.2 Existing Approaches to Incremental and Adaptive Solving

Incremental solvers, that use some form of abstraction-refinement [3], have been pro-

posed as a solution to the above-mentioned issue of simple but inefficient translations

from problems to Boolean formulas. Instead of translating the entire input problem-

instance into a potentially very large Boolean formula in one step, abstraction-refinement

approaches translate the input instance into Boolean formulas incrementally and call

the solver on these incrementally generated formulas. Such formulas are abstractions of

the input instance and are often easier to solve than the entire input instance. The solver

terminates if it gets the correct result to the input instance by solving an abstraction. Oth-

erwise the solver iteratively refines the abstractions as necessary until it gets the correct

result. Typically these abstractions and their refinements are performed by a layer outside

the inner loop of the SAT solver. For an excellent reference on abstraction-refinement

strategies refer to the Handbook of Satisfiability [3].

Such incremental SAT solvers with an outside abstraction-refinement loop are rela-

tively easy to build. However, the problem with such an approach is that it may not be
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the most efficient for the problem-at-hand. Indeed, Ohrimenko et al. [18] have proposed

incremental translation of problems to SAT where the integration of the solver and the

incremental translation is much tighter and more efficient than an outer layer translator.

However, their implementation is non-adaptive, and is specific to a class of difference

logic formulas — they do not provide an API for users to easily adapt or extend the

solver for a previously unknown class of Boolean formulas.

An example of an API that allows users to adapt or extend solvers is the powerful

idea of DPLL(T) [11] aimed at solving Boolean combination of formulas in rich theo-

ries such as integer linear arithmetic, uninterpreted functions and datatypes (aka SMT

solvers [3]). In this approach, there is a tight integration of a CDCL SAT solver with a

theory solver (aka a T-solver) that can handle conjunction of constraints represented in

a rich logic. The CDCL SAT solver does the search on the Boolean structure of the for-

mula without knowing the semantics of the literals, while the T-solver reasons about the

literals themselves adding any new derived literals back to the Boolean CDCL solver

appropriately. The tight integration enables the T-solver to influence the CDCL solver’s

behavior in ways not possible otherwise, and the resultant combination is typically a

solver than can handle arbitrary Boolean combination of theory formulas efficiently.

A lay non-expert user could implement a “T-solver” using the DPLL(T) framework

that reasons about a specific domain (say, theory of RNA folding) and adds constraints

incrementally to the SAT solver. The resultant combination can be a powerful incre-

mental domain-specific solver. However, the DPLL(T) API imposes strict requirements

on the user-specified code (T-solver) to ensure that the resultant combination is sound

and complete. Such requirements make perfect sense for constructing powerful SMT

solvers with complex T-solvers, the problem for which the DPLL(T) approach was

originally proposed. However, for the lay non-expert users such requirements may be

onerous, and may not be essential. Lynx, by contrast provides a simple interface which

is relatively easy to prove correct and is tailored for problem-specific extensions.

1.3 RNA-Folding with Lynx

To explore the benefits of using the Lynx’s callback interface, we applied the technique

to the problem of RNA folding. This is an application of significant practical relevance:

understanding RNA folding is crucial to understanding a number of biological pro-

cesses, including the replication of single-strand RNA viruses such as the poliovirus

which causes polio in humans. Moreover, RNA prediction actually shares important

similarities with other structure prediction problems of biological interest. This prob-

lem is particularly suitable to benchmark our approach. First, a SAT based solution to

this problem is desirable because it gives researchers the ability to easily experiment

with different formulations for the basic problem. Moreover, previous work in the liter-

ature has succeeded in formalizing the problem in a form that lends itself very naturally

to solution with a Boolean SAT solver. SAT based solutions, however, have been elu-

sive because the standard encoding leads to Boolean SAT instances that are too big for

solvers to handle. Using Lynx’s callback interface allowed us to encode instances of

the RNA folding problem in a memory efficient manner, producing the first successful

SAT based solution to this problem. The resultant incremental (or online abstraction-

refinement) solver led to a 30-fold reduction in the amount of memory required to solve
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some of these problems compared to standard SAT approach, and demonstrated dra-

matic time improvements over standard abstraction refinement techniques.

Paper Layout. In Section 2 we provide a detailed overview of our incremental

approach. In Section 3 we provide a self-contained description of the RNA-folding

structure prediction problem. In Section 4 we provide detailed description of our ex-

perimental setup and results. We review the related work in Section 5, and conclude in

Section 6.

2 Incrementality in Lynx

This section details how the callback interface in Lynx makes the solver incremental,

what we sometimes also refer to as online abstraction-refinement or OAR. In order to

facilitate the description, let us introduce a simple running example which shares some

features with the more complex biology application.

The running example is a formula of the form P (x) ∧ C(x) over a vector x =
〈x0, x1, . . . , xN 〉 of Boolean variables, where P (x) consists of some arbitrary set of

constraints and C(x) is a cardinality constraint that says that no more than 2 bits in x

can be set to 1.

C(x) ≡ ∀i�=j �=k(¬xi ∨ ¬xj ∨ ¬xk)

The above definition of C(x) can be trivially encoded as a set of N3 CNF clauses

— too many for large values of N . For this specific case, more efficient encodings exist

using only O(N) clauses, but they are more complicated and require the introduction

of additional SAT variables. By contrast, online abstraction refinement allows us to use

the simple encoding without having to pay the price of introducing N3 clauses.

The first step in using OAR is to divide the problem into a core set of clauses added to

the solver from the very beginning, and a different set of dynamic clauses added to the

solver incrementally by a callback function. The callback function is a user-provided

function M producing a set of clauses given a partial assignment to the variables of the

solver’s input instance. A partial assignment sets each variable in the problem to either

1, 0, or ⊥ (undefined), and is represented as a vector t ∈ {0, 1,⊥}N .

In the case of the example, we define P (x) to be the core clauses, and C(x) to be

the clauses added dynamically by a callback function defined as:

M(t) ≡ {(¬xi ∨ ¬xj ∨ ¬xk) | i 
= j 
= k ∧ ti = tj = tk = 1}

This callback function receives a partial assignment t, and returns a set of clauses of

the form (¬xi ∨ ¬xj ∨ ¬xk) where xi, xj and xk are variables set to 1 in the partial

assignment (i.e., ti = tj = tk = 1). The clauses produced by the callback function

eliminate those incorrect solutions that would have been eliminated by C(x), so running

the solver with constraintsP (x) and callback functionM is the same as solvingP (x)∧
C(x).

Lynx incorporates the callback function into the solution process by invoking it peri-

odically with the current partial assignment. If the callback function returns any clause,

these are incorporated into the problem. This process continues until an assignment q
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is found such that: a) q satisfies all the core constraints, b) q satisfies all the constraints

ever produced by the callback function, and c) the callback function produces an empty

set of clauses when applied to q indicating that the process can be terminated. If the

input problem is unsatisfiable, the solver with the callback function is guaranteed to

report unsatisfiable and terminate. It is possible for the user-code, without any restric-

tions, to render the combination of base solver plus user-code incomplete. However,

we can impose some minimal conditions on the user-code such that the combination is

guarateed to be a complete decision procedure. In particular, one such condition is as

follows: assume the desired input instance to be solved is P (x) ∧ C(x), and P (x) is

input to the base solver. Then, the user-code must ”encode” C(x) exactly. Imposing this

particular condition on the user-code is guaranteed to render the combination complete.

3 Biological Problem Overview

RNA is a versatile polymer essential to all of life. A chain of covalently bound nu-

cleotides, RNA classically acts as a cellular messenger which duplicates DNA sequence

information in the nucleus/nucleoid and transports that code to ribosomes for the con-

struction of proteins. However, this chain can also fold in on itself into a 3-dimensional

globular molecule which catalyzes biological reactions by itself. In fact, modern stud-

ies have suggested that such non-coding RNA (ncRNA) may play even a bigger cellular

role than messenger RNA, with significant effects on metabolism, signal transduction,

gene regulation, and chromosome inactivation. Such RNA function is determined by its

nucleotide composition and 3-dimensional structure, however, relatively little ncRNA

structural data is known [25], severely limiting our understanding of these mechanisms.

Therefore, algorithmic prediction of RNA structure from its nucleotide sequence has

been a longstanding computational goal.

3.1 Structure Prediction via SAT

The computational problem we address is “how to correctly attribute a unique struc-

tural state to each nucleic acid (or groups of nucleic acids) within an RNA polymer

sequence”. This problem has a long history of solutions based on many different al-

gorithmic models — the most successful of which using a recursive, grammatical ap-

proach introduced by Zuker [26]. In this biophysical model, each nucleotide is allowed

to form a pairwise bond with another, and each pair is assigned an energetic cost based

on spatially adjacent nucleotide types [16]. The most likely structure is predicted by

optimizing pairing configuration according to a fixed thermodynamic scoring system

(energy minimization). Efficient computation is made possible through the imposition

of specific, often biologically-inspired model restrictions — for example, limiting base-

pairs to be sequentially nested (i.e. no “pseudoknots”) and scoring only a subset of all

potential energetic interactions (i.e. only Watson-Crick or wobble base-pairs). Unfortu-

nately, this entangles the optimization techniques used with a particular set of biolog-

ical assumptions. While these methods have shown good predictive accuracy, changes

to the algorithm can be difficult to implement as new scientific data comes to light. For

example, it has been shown that a more complex description of the RNA interaction

energetics can lead to greatly improved results [19].
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We propose a declarative approach for the structure prediction problem, providing

a decoupled platform for reasoning about biological concepts in clear, succinct rules,

backed by the powerful generic optimization of CDCL SAT solvers. This allows bi-

ological models to be tested and flexibly refined using a constraint-based philosophy,

independent of performance improvements to the underlying solver.

To study this approach, we have implemented an RNA structure prediction algorithm

using Lynx. Rather than comparing the benefits and disadvantages of different biolog-

ical models, we base our implementation on an RNA scoring model recently proposed

by Kato, et al. for integer programming optimization [20]. Although other models out-

perform this scoring system’s accuracy, we believe our results are easily generalizable

to greater classes of RNA structures [4] and more complex (non-RNA) structure pre-

diction problems in general.

To implement energy minimization as a SAT-based decision procedure, we pose the

question of whether an assignment exists that is lower than a certain energy threshold

and perform iterative binary search. Despite this search routine, this approach can often

be more efficient than the dynamic programming methods used by grammatical models

as the problem can be finely partitioned into smaller jobs that are run in parallel. Further,

when a sub-optimal solution is sufficient, this method quickly short-circuits, along with

a guarantee of how near the solution is to optimality.

3.2 RNA Secondary Structure Prediction with Pseudoknots

The RNA prediction algorithm described here differentiates itself from classical pre-

diction methods in its goal of predicting pseudoknots. Earlier grammar-based predic-

tors allowed only base-pairs to occur in a recursively nested fashion (i.e. for every

base-pair i-j there exists no base-pair k-l such that i < k < j < l) to enable highly effi-

cient energy minimization via dynamic programming. However, pseudo-knotted struc-

tures which break this restriction are known to be essential to a number of functions,

such as the Diels-Alder ribozyme and mouse mammary tumor virus [24]. However,

predicting pseudoknotted structures is computationally much harder with fewer solu-

tions [17,20,21]. In fact, the prediction of truly arbitrary pseudoknots has been shown

NP-complete [14], and classes of pseudoknotted structures are often more easily defined

by the algorithms which recognize them rather than their biological significance [7].

This motivates the use of a declarative approach, allowing easy exploration of different

trade-offs between representation and optimization, especially if the underlying scoring

system is changed from the standard Watson-Crick/wobble base-pair models to more

complex interactions [19]. However, in the remainder of this work we restrict ourselves

to the model proposed by Kato, et al. [20].

3.3 Encoding RNA Structure Prediction in SAT

Our SAT encoding is formulated by two sets of constraints, structural and energetic, that

control the assignment of a vector of free variables which represent the final structural

solution. The assignment of each free variable indicates whether two nucleotides are

base-paired in the final RNA structure, fixed by structural constraints and an associated

energetic score. Figure 1 depicts this formulation.
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Solution Variables. The set of all properly-nested base-pairs within the final output

RNA structure is represented by the variables Xi,j : where i and j indicate the sequence

position of two nucleotides, a value Xi,j = T indicates a hydrogen bond base-pair

exists between nucleotides at i and j, and Xi,j = F indicates that no base-pairing

occurs between positions i and j. The set of pseudoknotted base pairs that cannot be

properly nested are similarly represented by the independent variables Yi,j . In this way

pseudoknots are represented solely by the alignment of properly-nested Xi,j pairs and

properly-nestedYi,j pairs. Since RNA structure permits any nucleotide position i to pair

with any other position j, a valid biological structure requires a complete assignment of

all Xi,js and Yi,js for every i, j (0 ≤ i, j < length(sequence)). Therefore, the number

of solution variables, the number of resultant constraints, and thus the difficulty of the

SAT problem depends directly on the sequence length of the input RNA.

Structural Constraints. The structural representation places requirements on the as-

signment of the solution bits Xi,j and Yi,j to ensure a biologically consistent structure.

Therefore, we declare the following constraints, which must be satisfied in any valid

solution:

– Every position i can at most pair with one other position j, independent of whether

that pairing is properly-nested or a pseudoknot (Figure 1(a-d)). Four straightfor-

ward constraints ensure this:

∀i, j, k, i < j < k

(Xi,j ∧Xj,k) = F ∧ (Yi,j ∧ Yj,k) = F ∧

(Xi,j ∧ Yj,k) = F ∧ (Yi,j ∧Xj,k) = F

– All base-pairs i, j are properly nested or a pseudoknot, but not both (Figure 1(e)):

∀i, j (Xi,j ∧ Yi,j) = F

– We define all Xi,j and Yi,j base-pairs to be independently knot-free (Figure 1(f-g)):

∀i, j, k, l, i < k < j < l

(Xi,j ∧Xk,l) = F ∧ (Yi,j ∧ Yk,l) = F

– We only permit bifurcations within the “normal” base-pairs in Xi,j since pseudo-

knots are rare and deserve distinct energetic treatment. Therefore (Figure 1(h):

∀i, j, k, l, i < k < j < l (Yi,j ∧ Yk,l) = F

– Finally, the class of structures with “double-crossing” pseudoknots are rare and

present unusual energetics which are not handled by the energy model we use, thus

we constrain pseudoknots to only cross at most once (Figure 1(i-j)):

∀i, j, k, l,m, n, i < m < j < k < n < l

(Xi,j ∧ Ym,n) =⇒ (Xk,l = F) ∧

(Xk,l ∧ Ym,n) =⇒ (Xi,j = F)
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Energetic Constraints. The total energy of an RNA structure is defined as the sum of

experimentally-derived energy parameters [26,20] for every constituent base-pair stack,

where a stack indicates two adjacent base pairs, e.g. Xi,j and Xi+1,j−1. Energy param-

eters are given in terms of base-pair stacks because nucleotide π-orbital overlap serves

as a dominant stabilizing factor in RNA structure. Thus, an energy value is assigned to

every base-pair stack Xi,jXi+1,j−1 according to the four nucleotide types at sequence

positions i, j, i+1, and j−1 (Parameters found in [20]). By including a logical adder of

all possible energetic assignments, we can then define a valid solution as an assignment

of Xi,j and Yi,j (subject to structural constraints), where the output of the adder over-

comes some minimum threshold energy Ethreshold (the energy bound). As a logical

declaration, we write:

∀i, j, i < j (Xi,j ∧Xi+1,j−1) = T ⇒ (EXi,j
= EnergyConstant(i,j,i+1,j−1)) ∧

(Yi,j ∧ Yi+1,j−1) = T ⇒ (EYi,j
= EnergyConstant(i,j,i+1,j−1)) ∧

(Xi,j ∧Xi+1,j−1) = F ⇒ (EXi,j
= 0) ∧

(Yi,j ∧ Yi+1,j−1) = F ⇒ (EYi,j
= 0),

where EnergyConstant(i, j, i+ 1, j − 1) indicates the energy score of the four nu-

cleotides found at positions i, j, i+ 1, and j + 1 base-pairing and stacking, and

∑

∀i,j

(EXi,j
+ EYi,j

) ≥ Ethreshold.

Finally, to enforce that all assigned base-pairs are accounted within the adder by stack-

ing energy parameters, we require:

∀i, j s.t. i < j

(Xi−1,j+1 ∧ Xi,j ∧Xi+1,j−1) = F ∧

(Yi−1,j+1 ∧ Yi,j ∧ Yi+1,j−1) = F
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4 Experimental Results

In this section we describe the results of our experimental evaluation of Lynx and com-

peting approaches over input tests obtained from a set of RNA sequences. As described

in detail in 3, we solve the two dimensional RNA optimum structure prediction problem

(where the structures may have pseudoknots). We ran all experiments on a 3GHz Intel

Xeon X5460 with 64GB of RAM and a 6MB L2 cache with 1 hour timeout per SAT

instance.

4.1 Description of Input Tests

We acquired a set of benchmark RNA sequences and structures from the PseudoBase

website [1]. These RNA sequences are widely used by computational biologists for a

variety of structure prediction tasks. The biological accuracy of our lowest-energy struc-

ture predictions were verified to agree with Kato, et al. [20], whose scoring model we

duplicate. Recall that the optimization problem is treated as a series of decision prob-

lems performing a binary search of the energy space. For each RNA sequence, a cor-

responding SAT instance is therefore constructed containing the energy and structural

constraints along with an energetic bound that captures the minimum and maximum al-

lowed energy for that step in the binary search. Given the precision of our energy model

a search depth of 10 sufficed to identify the minimum energy structure of any structure

tested.

4.2 Experimental Methodology

We solve the structure prediction problem using the following three methods:

– Baseline Approach Using CryptoMiniSat (BA): A standard encoding of our prob-

lem in SAT. We generate the complete SAT encoding (with XOR clauses as appro-

priate) of the RNA secondary structure prediction problem, then use CryptoMiniSat

to solve this problem. We also used MiniSat2 [9], and found that for this problem

its performance is similar to CryptoMiniSat [23].

– Offline Abstraction Refinement (OFFA): An encoding of our problem using es-

tablished refinement techniques. Starting with only the energy constraints from the

SAT encoding of the RNA structure prediction problem to form the abstracted con-

straint, we use offline abstraction refinement to obtain a solution to the complete

structure prediction problem. Each refinement step uses CryptoMiniSat to solve the

current SAT problem, computes the set of constraints from the complete structure

prediction problem that are inconsistent with this solution, and generates a new

problem by incrementally adding these constraints to the current problem in SAT.

The refinement process continues until it produces a solution to the complete input

problem.

– Online Abstraction Refinement (ONA): The methodology enabled by our tool

Lynx. Starting with only the energy constraints from the SAT encoding of the RNA

structure prediction problem to form the abstracted constraint, we use online ab-

straction refinement to obtain a solution to the complete structure prediction prob-

lem. After each CryptoMiniSat propagation step, the constraint manager examines
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the current partial solution to find the set of constraints from the full structure pre-

diction problem that conflict with the current solution. It then incrementally adds

these constraints to the current problem before CryptoMiniSat takes the next par-

tial solution step. The difference between the Offline (OFFA) and Online (ONA)

approaches is the granularity of the refinement steps. Each refinement step in the

OFFA version takes place only after CryptoMiniSat produces a complete solution

to the current problem. Each refinement step in the ONA version, in contrast, takes

place at the much finer granularity, every time CryptoMiniSat extends the current

partial solution.

Table 1. Comparison of running times between Baseline (BA), Offline (OFFA), and Online

(ONA) methods. Total cumulative time (across all solver instances during search) is reported,

broken down by the amount of time spent in the SAT solver versus the amount of time spent in

refinement. The number of refinement steps involved is also given. T.O. indicates that a timeout

occured after 1hr of an individual SAT solver instance.

RNA sequence Baseline Offline Online

length (sec) Tot(sec)=SAT+Ref (# steps) Tot(sec)=SAT+Ref (# steps)

PKB115 24 1.4 1.7 = 1.3+0.4 (205) 0.8 = 0.6+0.2 (2,538)

PKB102 24 1.3 1.0 = 0.7+0.3 (129) 0.6 = 0.5+0.1 (1,766)

PKB119 24 2.1 3.6 = 3.0+0.6 (266) 1.6 = 1.3+0.3 (4,108)

PKB103 25 3.1 6.6 = 5.4+1.2 (417) 3.5 = 3.1+0.4 (6,191)

PKB123 26 5.6 24.7 = 22.7+2.0 (597) 7.4 = 6.8+0.6 (8,980)

PKB154 26 2.5 3.8 = 3.2+0.6 (236) 1.9 = 1.7+0.2 (4,070)

PKB152 26 3.2 6.2 = 5.2+1.0 (255) 2.3 = 2.0+0.3 (5,528)

PKB126 27 4.0 6.6 = 5.5+1.1 (384) 2.8 = 2.5+0.3 (5,874)

PKB124 29 4.7 5.1 = 4.4+0.7 (262) 2.3 = 2.1+0.2 (4,635)

PKB100 31 11.0 52.3 = 49.4+2.9 (315) 6.8 = 6.0+0.8 (11,890)

PKB105 32 17.0 58.3 = 54.0+4.3 (1004) 18.1 = 17.0+1.1 (16,817)

PKB118 33 13.7 32.8 = 29.6+3.2 (591) 8.2 = 7.4+0.8 (12,878)

PKB120 36 36.1 571.1 = 560.6+10.5 (652) 24.1 = 21.9+2.2 (26,370)

PKB065 46 185.1 11,341.9 = 11,298.7+43.2 (1,344) 112.7 = 108.1+4.6 (50,508)

PKB205 48 388.6 T.O. 391.6 = 381.9+9.7 (72,922)

PKB147 51 1,917.3 T.O. 1,087.9 = 1,067.2+20.7 (131,321)

PKB248 66 T.O. T.O. T.O.

PKB072 67 5,352.6 T.O. 2,414.1 = 2,367.6+46.5 (286,881)

4.3 Results

Table 1 presents the total execution times required for the different methods to solve

the RNA structure prediction problems. We ran each method with a timeout of 3600

seconds for each SAT solution problem (i.e., each binary search step). Each row in the

table corresponds to a single RNA. The first column is the number of base pairs in the

RNA sequence. The next column presents the time (in seconds) required for the BA

method to solve the problem. Recall that each problem requires the solution of 10 SAT

instances; the reported total time is the sum of the 10 individual SAT solution times.

The next column presents data from the OFFA method and is of the form t = s+ c(r).
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Table 2. Comparison of memory usage between Baseline (BA), Offline (OFFA), and Online

(ONA) methods. Given is the maximum memory (in MB) required throughout all SAT solver

instances, along with the sum of the total number of clauses (in thousands) both input and gen-

erated during refinement. T.O. indicates that a timeout occured after 1hr of an individual SAT

solver instance.

RNA sequence Baseline Offline Online

length Mem(MB) / Clauses Mem(MB) / Clauses Mem(MB) / Clauses

PKB115 24 5.0 / 3,223k 5.0 / 94k 72.1 / 82k

PKB102 24 5.0 / 3,219k 5.0 / 86k 5.0 / 75k

PKB119 24 5.0 / 3,240k 5.0 / 130k 5.0 / 104k

PKB103 25 5.0 / 4,142k 16.5 /174k 5.0 / 136k

PKB123 26 43.4 / 5,244k 19.7 / 226k 74.7 / 168k

PKB154 26 5.0 / 5,204k 5.0 / 128k 5.0 / 106k

PKB152 26 5.0 / 5,220k 16.6 / 174k 5.0 / 128k

PKB126 27 72.1 / 6,544k 74.5 / 171k 5.0 / 129k

PKB124 29 5.0 / 10,076k 5.0 / 142k 5.0 / 108k

PKB100 31 90.5 / 16,937k 23.9 / 376k 90.0 / 231k

PKB105 32 157.4 / 20,584k 75.9 / 448k 95.7 / 260k

PKB118 33 131.9 / 24,870k 23.2 / 355k 22.8 / 227k

PKB120 36 276.0 / 42,698k 76.7 / 729k 75.3 / 369k

PKB065 46 1,011.8 / 196,236k 150.6 / 341k 122.9 / 595k

PKB205 48 1,221.3 / 255,861k T.O. 145.0 / 808k

PKB147 51 1,988.9 / 373,294k T.O. 188.7 / 1,322k

PKB248 66 T.O. T.O. T.O.

PKB072 67 9,046.5 / 2,031,362k T.O. 313.1 / 2,652k

Here t is the total time required to solve the structure prediction problem (the sum of

the solution times for the 10 SAT problems), s is the amount of time spent in the SAT

solver, c is the amount of time spent in the constraint manager, and r is the total number

of refinement steps (summed over all 10 SAT problems). The last column presents data

from the ONA method and is also of the form t = s+ c(r).
Up to problem PKB124, the solution times for all of the methods are roughly

comparable: each is less than ten seconds and within a factor of two for the same

RNA sequence. For larger problems the OFFA approach starts to exhibit substantially

larger solution times than either BA or ONA approaches; for the largest problems in

our benchmark set OFFA times out. For two of the largest three problem sizes BA is

roughly a factor of two slower than ONA; BA times out for PKB248.

We note that there is a substantial difference between the number of refinement steps

that the ONA and OFFA methods perform — OFFA typically performs hundreds of

(relatively coarse grain) refinement steps, while ONA performs thousands of (fine grain)

refinement steps. These data indicate that, as expected, the SAT solver can respond

much more quickly to fine grain than to coarse grain refinement steps, but that the ONA

method requires more fine grain steps to reach a solution.

Table 2 presents the maximum amount of memory required to solve the structure

prediction problem (this is the maximum over all runs of the SAT solver of the amount

of memory that the SAT solver consumes) and the total number of clauses for each
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RNA. For the OFFA and ONA methods, the total number of clauses is the sum over

all binary search steps of the number of clauses in the problem at the final refinement

step. Each entry of the table is in the form m/c, where m is the maximum memory

and c is the number of clauses. Both the OFFA and ONA methods generate problems

with substantially smaller numbers of clauses than the BA method (BA typically gen-

erates hundred to thousand times as many clauses OFFA and ONA typically generate).

For larger RNA sequences, these larger clause sizes translate into substantially larger

memory requirements for the BA method — OFFA and ONA never go above several

hundred Mbytes, while BA starts requiring more than 1Gbyte of memory for the larger

sequences.

4.4 Discussion

These data highlight how the ONA method is able to combine the benefit of small

memory requirements, which it shares with OFFA, and feasible execution times, which

it shares with BA (further note that ONA often exhibits roughly a factor of two perfor-

mance advantage over BA). We attribute these characteristics to, first, the ability of the

ONA method to effectively find relatively small problems whose solution also happens

to be a solution of the complete structure prediction problem, and second, the ability of

the ONA method to efficiently guide the SAT solver to the solution through fine-grain

corrections to partial solution missteps. A comparison with the OFFA method illus-

trates how quickly correcting any missteps on the part of the SAT solver (by operating

the refinement steps after every intermediate SAT solver decision rather than after every

complete solution) can deliver very efficient solution times even in situations where the

more coarse OFFA approach fails to solve the problem in an acceptable amount of time.

5 Related Work

There has been a lot of recent work on incremental SAT solvers [18], DPLL(T) [11],

abstraction-refinement based techniques in the context of model-checking and decision

procedures for SMT theories [2]. We summarize the related work, and contrast Lynx

with other tools.

Incrementality, Extensibility and SAT Solvers. The work that is closest to ours is by

Stuckey et al. [18] and the related idea of DPLL(T) [11]. Our work is different from

Stuckey et al. in the mechanism employed to implement incrementality, namely, a call-

back interface. Our approach is more flexible in the sense that it can be used to expose

other internals of SAT solvers (e.g., branching heuristics or restart triggers) to lay non-

expert users. While DPLL(T) is a very powerful idea, it places more requirements on

user-code (to ensure completeness and soundness) and is probably best used by experts.

Abstraction-Refinement in Decision Procedures. The idea of counter-example guided

abstraction refinement was originally developed in the context of model-checking [6].

Since then the basic idea has been adapted in different ways to solve the satisfiability

problems of SMT theories [2]. Kroening, Ouaknine, Seshia, and Strichman [13] were
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the first to adapt CEGAR to deciding quantifier-free Presburger arithmetic. More re-

cently, Brummayer and Biere give a new technique that allows early termination of

an under-approximation refinement loop even when the original formula is unsatisfi-

able [5]. Ganesh and Dill proposed the use of abstraction-refinement for deciding the

theory of arrays [10].

RNA Secondary Structure Prediction. Zuker introduced the first optimal algorithms

for RNA secondary structure prediction based on a dynamic programming solution

to energy minimization [26], although many improved predictors have followed [15].

Non-thermodynamic approaches have also met success through the use of phylogenetic

relationships [12], or via machine learning [8]. The first efficient thermodynamic-based

algorithm for predicting RNA pseudoknotted secondary structure was introduced by

Rivas and Eddy (PKNOTS [22]). Subsequent algorithms have recognized alternate

classes of pseudknots or improved upon the efficiency of solutions [17,4], including

the IP formulation focused on in this paper [20], and heuristics such as HotKnots [21].

6 Conclusions

We present Lynx, a programmatic incremental SAT solver that allows non-expert users

to easily introduce domain-specific or instance-specific code into modern CDCL SAT

solvers, thus enabling users to control the behavior of the solver in ways not possible

otherwise. While there has been work on incremental SAT [18] before and related ideas

such as DPLL(T), Lynx’s interface is simple to use and the requirements placed on

user code are minimal. The approach is a template on how to expose other internals of

the SAT solver to non-expert users in a easy-to-use and intuitive way. We demonstrate

the benefits of Lynx through a first-of-its-kind solver case-study from computational

biology, namely, RNA secondary structure prediction.
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