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ABSTRACT 
We present a prototype that automatically aligns acoustic musical 
signals with their corresponding textual lyrics, in a manner similar 
to manually-aligned karaoke. We tackle this problem using a 
multimodal approach, where the appropriate pairing of audio and 
text processing helps create a more accurate system. Our audio 
processing technique uses a combination of top-down and bottom-
up approaches, combining the strength of low-level audio features 
and high-level musical knowledge to determine the hierarchical 
rhythm structure, singing voice and chorus sections in the musical 
audio. Text processing is also employed to approximate the length 
of the sung passages using the textual lyrics. Results show an 
average error of less than one bar for per-line alignment of the 
lyrics on a test bed of 20 songs (sampled from CD audio and 
carefully selected for variety). We perform holistic and per-
component testing and analysis and outline steps for further 
development. 

Categories and Subject Descriptors 
H.5.5 [Information Interfaces and Presentation]: Sound and 
Music Computing – Methodologies and Techniques; H.3.1 
[Information Storage and Retrieval]: Content Analysis and 
Indexing 

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Audio/text synergy, music knowledge, vocal detection, lyric 
alignment, karaoke. 

1. INTRODUCTION 
We investigate the automatic synchronization between audio and 
text. Given an acoustic musical signal and corresponding textual 
lyrics, our system attempts to automatically calculate the start and 
end times for each lyric line. As this kind of an alignment is 
currently a manual process and a key step for applications such as 
karaoke, the system we propose here has a potential to automate 

the process, saving manual labor. Additionally, this information 
can also be used effectively in the field of music informational 
retrieval to facilitate random access to specific words or passages 
of interest. 
In contrast to other work that has been restricted to either the 
symbolic domain (MIDI and score) or synthesized audio, 
LyricAlly has been developed to operate on real-world musical 
recordings (sampled from CD audio) to maximize its practical 
applicability. 
We decompose the problem into two separate tasks, performed in 
series: alignment at a higher structural element level (e.g., verse, 
chorus, etc.) , followed by a lower level per-line alignment level. 
In comparison to a simpler single-level alignment model, we feel 
that this cascaded architecture boosts system performance and 
allows for a more meaningful evaluation to be done.  
The rest of this paper is organized as follows. In the next section, 
we review related work. We then introduce LyricAlly in Section 3 
and define terms used throughout the paper. Section 4 details the 
audio processing components followed by the text processing 
component in Section 5. We then detail our two-level integration 
of components in Section 6. We analyze system performance and 
conclude with comments on current and future work. 

2. RELATED WORK 
To the best of our knowledge, there has been no published work 
on the problem addressed in this paper. The works closest to ours 
are briefly surveyed in this section. A framework to embed lyric 
time stamps inside MP3 files has been previously proposed [5]. 
This approach addressed the representation of such time stamps, 
but not how to obtain them automatically. [14] describes a large 
vocabulary speech recognizer employed for lyric recognition. The 
system deals with pure singing voice, which is more limiting as 
compared to real-world acoustic musical signals handled by our 
approach. Our experience shows that the transcription of lyrics 
from polyphonic audio using speech recognition is an extremely 
challenging task. 
This difficulty has led us to re-examine the transcription problem. 
We recognize that transcription is often not necessary, as many 
lyrics are already freely available on the Internet. As such, we 
formulate the problem as one of lyric alignment rather than 
transcription. In a sense, our work is analogous to those in 
[1][4][12] which try to perform automatic alignment between 
audio recording and MIDI. However, their task is quite different 
from ours, as MIDI files provide some timing information which 
is not normally present in textual lyrics or in real-world acoustic 
environments. 
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3. SYSTEM DESCRIPTION 
In LyricAlly, the first round of integration performs a high-level 
alignment of the song’s structural elements detected by the text 
and audio streams. A second round performs the lower-level line 
alignment. The points in which the two streams interchange 
intermediate calculations are thus sources of synergy, which are 
discussed later in Section 6. LyricAlly aligns these two modalities 
in a top-down approach, as shown in Figure 1. 
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Figure 1: LyricAlly architecture. 

We now define the structural elements of music (also referred to 
as sections in this paper) used in our work: 

• Intro (I): The opening section that leads into the song, which 
may contain silence and lack a strong beat (arrhythmic). 

• Verse (V): A section that roughly corresponds with a poetic 
stanza and is the preamble to a chorus section.  

• Chorus (C): A refrain (lines that are repeated in music) 
section. It often sharply contrasts the verse melodically, 
rhythmically and harmonically, and assumes a higher level 
of dynamics and activity, often with added instrumentation.  

• Bridge (B): A short section of music played between the 
parts of a song. It is a form of alternative verse which often 
modulates to a different key or introduces a new chord 
progression. 

• Outro or Coda (O): A section which brings the music to a 
conclusion. For our purpose, an outro is a section that 
follows the bridge until the end of the song. This is usually 
characterized by the chorus section repeating a few times and 
then fading out.  

Based on an informal survey of popular songs, we introduce the 
following heuristics into our system: 

• Instrumental music sections occur throughout the song. 

• Intro and bridge sections may or may not be present and may 
or may not contain sung vocals. 

• Popular songs are strophic in form, with a usual arrangement 
of verse-chorus-verse-chorus. Hence the verse and chorus 
are always present and contain sung vocals. 

LyricAlly was developed using music data from a wide variety of 
sung music, spanning many artists over many years. Our current 
prototype is limited to songs which have a structure comprising of 
no sung intros, two verses, two choruses, bridge and an outro (i.e., 
“V1-C1-V2-C2-B-O”). This structure is the most common structure 
of popular songs based on our observations, accounting for over 
40% of the songs we surveyed, and thus are not overly restrictive. 
As we detail the workings of the components in the next sections 
we will use a running example of a V1-C1-V2-C2-B-O song, 25 

Minutes, performed by the group Michael Learns To Rock 
(MLTR).  

4. AUDIO PROCESSING 
Audio processing in LyricAlly has three steps: 
1. Determine the rhythm structure of the music. Knowledge of 

rhythm structure at the measure (bar level) helps to fine tune 
the time alignment of the other components. 

2. Determine the rough location of the chorus (refrain) 
segments in the song. This serves as an anchor for sub-
sequent line-level alignment in the chorus as well as the 
verse sections of the song. 

3. Determine the presence of vocals in the song. This is needed 
for the alignment results at the line-level. 

4.1 Hierarchical Rhythm Structure 
Determination 
Our rhythm detector extracts rhythm information in real-world 
musical audio signals as a hierarchical beat-structure comprising 
the quarter-, half-, and whole-note (measure/bar) levels. 
Rhythm can be perceived as a combination of strong and weak 
beats [11]. The beat forms the basic unit of musical time and in a 
meter of 4/4 (common time or quadruple time) there are four 
beats to a measure. The inter-beat interval (IBI) corresponds to 
the temporal length of a quarter note. We assume the meter to be 
4/4, this being the most frequent meter of popular songs and the 
tempo of the input song is assumed to be constrained between 40-
185 beats per minute (BPM) and almost constant. The audio 
signal is framed into beat-length segments to extract metadata in 
the form of quarter note detection of the music. The basis for this 
technique of audio framing is that within the quarter note, the 
harmonic description of the music expressed by musical chords 
can be considered as quasi-stationary. This is based on the 
premise that chord changes are more likely to occur on beat times 
in accordance with the rhythm structure than on other positions. 
A system to determine the key of acoustical musical signals has 
been demonstrated in [11]. The key defines the diatonic scale that 
the song uses. In the audio domain, overlap of harmonic 
components of individual notes makes it difficult to determine the 
individual notes present in the scale. Hence this problem has been 
approached at a higher level by grouping individual detected 
notes to obtain the harmonic description of the music in the form 
of the 12 major and 12 minor triads (chords with 3 notes). Then 
based on a rule-based analysis of these chords against the chords 
present in the major and minor keys, the key is extracted. 
As chords are more likely to change at the beginning of a measure 
than at other positions of beat times [6], we would like to 
incorporate this knowledge into the key system to determine the 
rhythm structure of the music. However, we observe that the 
chord recognition accuracy of the system is not sufficient to 
determine the hierarchical rhythm structure across the entire 
length of the music. This is because complexities in polyphonic 
audio analysis often results in chord recognition errors. We have 
thus enhanced this system with two post-processing stages that 
allow us to compute this task with good accuracy, as shown in 
Figure 2. The output of the beat detection is used to frame the 
audio into beat-length segments. This basic information is used by 



all other modules in LyricAlly, including subsequent steps in this 
module. 

 
Figure 2: Hierarchical rhythm structure block flow diagram. 

4.1.1 Chord Accuracy Enhancement 
Knowledge of the detected key is used to identify the erroneous 
chords among the detected chords. We eliminate these chords 
based on a music theoretical analysis of the chord patterns that 
can be present in the 12 major and 12 minor keys. 

4.1.2 Rhythm Structure Determination 
We check for start of measures based on premise that chords are 
more likely to change at the beginning of a measure than at other 
positions of beat times [6]. Since there are four quarter notes to a 
measure, we check for patterns of four consecutive frames with 
the same chord to demarcate all the possible measure boundaries. 
However, not all of these boundaries may be correct. This is on 
account of errors in chord detection. The correct measure 
boundaries along the entire length of the song are determined as 
follows: 
1. Along the increasing order on the time axis, obtain all 

possible patterns of boundaries originating from every 
boundary location that are separated by units of beat-spaced 
intervals in multiples of four. Select the pattern with the 
highest count as the one corresponding to the pattern of 
actual measure boundaries.  

2. Track the boundary locations in the detected pattern and 
interpolate missing boundary positions across the rest of the 
song.  

The result of our hierarchical rhythm detection is shown in Figure 
3. This has verified against the measure information in 
commercially-available sheet music [8]. 

 
Figure 3: Hierarchical rhythm structure in 25 Minutes. 

4.2 Chorus detector 
The audio chorus detector locates chorus sections and estimates 
the start and the end of each chorus. Our implementation is based 
on Goto’s method [7], which identifies chorus sections as the 

most repeated sections of similar melody and chords by the use of 
chroma vectors. 
We improve the original chorus detection algorithm by 
incorporating beat information obtained from the rhythm structure 
detector. This input allows us to significantly reduce the 
complexity of the algorithm. Since the chord is stable within an 
inter-beat interval, we extract chroma vectors from each beat, 
rather than for each 80ms frame as prescribed by the original 
algorithm. For a standard three-minute song at 100 BPM, our 
approach extracts only 300 vectors (as compared to 2250 in the 
original). As vectors are pairwise compared – a O(n2) operation – 
the savings scale quadratically. For an average song, our version 
uses only 2% of the time and space required by the original 
algorithm. We give an example of our chorus detector in Figure 4. 

 
Figure 4: (a) the song 25 Minutes (b) manually annotated 
chorus sections (c) automatically detected chorus sections. 

4.3 Vocal detector  
The vocal detector detects the presence of vocals in the musical 
signal. We use a Hidden Markov Model (HMM) classifier to 
detect vocals. In contrast to conventional HMM training methods 
which employ one model for each class, we create an HMM 
model space (multi-model HMMs) to perform vocal detection 
with increased accuracy. In addition, we employ an automatic 
bootstrapping process which adapts the test song’s own models 
for increased classification accuracy. 
Our assumption is that the spectral characteristics of different 
segments (pure vocal, vocal with instruments and pure 
instruments) are different. Based on this assumption, we extract 
feature parameters based on the distribution of energy in different 
frequency bands to differentiate vocal from non-vocal segments. 
The time resolution of our vocal detector is the inter-beat interval 
(IBI) described in the previous section.  
We compute a subband based Log Frequency Power Coefficients 
(LFPC) [10] to form our feature vectors. This feature provides an 
indication of energy distribution among subbands. We first train 
our models using manually annotated songs, and then perform 
classification between vocal and non-vocal segments. 
Most studies on vocals detection use statistical pattern classifiers 
[2][3][13]. To our knowledge, none have taken into account song 
structure information in modeling. An important observation is 
that vocal and non-vocal segments vary in their inter-song and 
intra-song signal characteristics. Signal strengths in different 
sections (verse, chorus, bridge and outro) usually differ. For 
example, chorus sections usually have stronger signal strength in 
comparison with verse sections since they may have busier 
drums, some additional percussion, a fuller string arrangement 
and additional melody lines [15]. The tempo and intensity of 
vocals are different among songs, accounting for inter-song 
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variation. These result in distinct single characteristics, as shown 
in Figure 5.  

 
Figure 5: Waveforms of 10-second segments extracted from 
the (a) intro, (b) verse, (c) chorus, (d) bridge, and (e) outro 
sections of the song 25 Minutes. 
Due to this, we integrate song structure, inter-song and intra-song 
variation into our model. Training data are manually classified 
based on the section type, tempo and intensity and a model is 
created for each class. This process results in a total of 2 (vocal or 
non-vocal) × 5 (section types) × 2 (high or low tempo) × 2 (loud 
or soft intensity) = 40 distinct HMMs. 
A test song is first segmented using these HMMs, then each 
section is classified with respect to section type. The probability 
distributions of the number of matched models for the test 
segments in Verse1 and Chorus1 sections are shown in Figure 6. 
As expected, segments from the verse section are more likely to 
match the verse models than others. In the same way, segments 
from the chorus section tend to match the chorus models better 
than others. With this step, we achieve about 80% classification 
accuracy. 

           
 

Figure 6: Probability distributions of the number of matched 
models for test segments in Verse1 (l), Chorus1 (r) sections. 
We then use this initial classification to build song-specific vocal 
and non-vocal models of the test song with a bootstrapping 
process. This process allows us to use a song’s own model for 
classification as shown in Figure 7. This bootstrapping process 
makes the algorithm adaptive, and achieves the vocal detection 
accuracy of 84%. An average improvement of 4% is 
demonstrated, which is statistically significant. Results of vocal 
detection by our vocal detector and manual annotation of the 
Verse1 section in our test song are shown in Figure 8. 
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Figure 7: Bootstrapped training and segmentation process. 

 
Figure 8: (a) The Verse1 segment of 25 Minutes. (b) Manually 

annotated and (c) automatically detected vocal segments. 

5. TEXT PROCESSING 
Text lyrics are analyzed in a two-stage cascade. The first phase 
labels each section with one of the five section types, and also 
calculates a duration for each section. A subsequent line processor 
refines the timings by using the hierarchical rhythm information 
to determine finer per-line timing. This simple model performs 
well for our system, and as such, other models (e.g., HMMs) have 
not been pursued. 

5.1 Section Processor 
The section processor takes as its sole input the textual lyrics. We 
assume that the input lyrics delimit sections with blank lines and 
that the lyrics accurately reflect the words sung in the song. 
Similar to the audio chorus detector described in Section 4.2, 
choruses are detected by their high level of repetition. Our model 
accounts for phoneme-, word- and line-level repetition in equal 
proportions. This model overcomes variations in words and line 
ordering that poses problems for simpler algorithms that use a 
variation of the longest common subsequence algorithm for 
detection. From music knowledge, we can further constrain 
candidate chorus sections to be interleaved with one or two other 
(e.g., verse and possible bridge) intervening sections and to be of 
approximately the same length in lines. The example song is 
classified in Figure 9. 

After some time 
I've finally made up my mind 
She is the girl
And I really want to make her mine
I'm searching everywhere 
To find her again 
To tell her I love her 
And I'm sorry about the things I've done
I find her standing in front of the church
The only place in town where I didn't search
She looks so happy in her wedding dress
But she's crying while she's saying this 

Boy I've missed your kisses 
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 

Against the wind 
I'm going home again 
Wishing me back 
To the time when we were more than friends
But still I see her in front of the church
The only place in town where I didn t search
She looked so happy in her wedding dress
But she cried while she was saying this
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Boy I've missed your kisses
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 

Out in the streets 
Places where hungry hearts have nothing to eat 
Inside my head 
Still I can hear the words she said 

Boy I've missed your kisses 
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 
Boy I've missed your kisses 
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 
I can still hear her say 

Boy I've missed your kisses
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 

Out in the streets 
Places where hungry hearts have nothing to eat 
Inside my head 
Still I can hear the words she said 

Boy I've missed your kisses 
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 
Boy I've missed your kisses 
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 
I can still hear her say 

After some time 
I've finally made up my mind 
She is the girl
And I really want to make her mine
I'm searching everywhere 
To find her again 
To tell her I love her 
And I'm sorry about the things I've done
I find her standing in front of the church
The only place in town where I didn't search
She looks so happy in her wedding dress
But she's crying while she's saying this 

Boy I've missed your kisses 
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 

Against the wind 
I'm going home again 
Wishing me back 
To the time when we were more than friends
But still I see her in front of the church
The only place in town where I didn t search
She looked so happy in her wedding dress
But she cried while she was saying this

After some time 
I've finally made up my mind 
She is the girl
And I really want to make her mine
I'm searching everywhere 
To find her again 
To tell her I love her 
And I'm sorry about the things I've done
I find her standing in front of the church
The only place in town where I didn't search
She looks so happy in her wedding dress
But she's crying while she's saying this 

Boy I've missed your kisses 
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 

Against the wind 
I'm going home again 
Wishing me back 
To the time when we were more than friends
But still I see her in front of the church
The only place in town where I didn t search
She looked so happy in her wedding dress
But she cried while she was saying this
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Boy I've missed your kisses
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 

Out in the streets 
Places where hungry hearts have nothing to eat 
Inside my head 
Still I can hear the words she said 

Boy I've missed your kisses 
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 
Boy I've missed your kisses 
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 
I can still hear her say 

Boy I've missed your kisses
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 

Out in the streets 
Places where hungry hearts have nothing to eat 
Inside my head 
Still I can hear the words she said 

Boy I've missed your kisses 
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 
Boy I've missed your kisses 
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 
I can still hear her say 

After some time 
I've finally made up my mind 
She is the girl
And I really want to make her mine
I'm searching everywhere 
To find her again 
To tell her I love her 
And I'm sorry about the things I've done
I find her standing in front of the church
The only place in town where I didn't search
She looks so happy in her wedding dress
But she's crying while she's saying this 

Boy I've missed your kisses 
All the time but this is 
Twenty five minutes too late 
Though you traveled so far 
Boy I'm sorry you are 
Twenty five minutes too late 

Against the wind 
I'm going home again 
Wishing me back 
To the time when we were more than friends
But still I see her in front of the church
The only place in town where I didn t search
She looked so happy in her wedding dress
But she cried while she was saying this

 
Figure 9: Section classification of 25 Minutes. Automatic and 
manual annotations coincide. 
An approximate duration of each section is also calculated. Each 
word in the lyrics is first decomposed into its phonemes based on 
the word’s transcription in an inventory of 39 phonemes from the 
CMU Pronouncing Dictionary [16]. Phoneme durations are then 
looked up in a singing phoneme duration database (described 
next) and the sum total of all phoneme durations in a section is 
returned as the duration, which is used in the forced alignment 
discussed later in this paper. 
As phoneme durations in sung lyrics and speech differ, we do not 
use information from speech recognizers or synthesizers. Rather, 
we learn durations of phonemes from annotated sung training 
data, in which each line and section are annotated with durations. 



We decompose each line in the training data into its phonemes 
and parcel the duration uniformly among its phonemes. In this 
way, a phoneme can be modeled by the distribution of its 
instances. For simplicity, we model phoneme duration 
distributions as normal distributions, characterized by mean and 
variance. We represent section’s duration by summing together 
the individual distributions that represent the phonemes present in 
the section. 
Analysis of the induced phoneme database shows that phonemes 
do differ in duration in our training data: the average phoneme 
length is .19 seconds, but vary on the individual phoneme (max = 
.34, min = .12, σ = .04). The use of a per-phoneme duration 
model versus a uniform model (in which every phoneme is 
assigned the average duration) accounts for a modest 2.3% 
difference in estimated duration in a sample of lines, but is 
essential for future work on phoneme level alignment.  

5.2 Line processor 
The rhythm structure detector discussed in Section 4.1 provides 
bar length and offsets as additional input. This allows the text 
module to refine its estimates based on our observation that each 
line must start on the bar (discussed in more detail later). We start 
with the initial estimate of a line’s duration calculated earlier and 
round it to the nearest integer multiple of bar. We calculate the 
majority bars per line for each song, and coerce other line 
durations to be either ½ or 2 times this value. For example, songs 
in which most lines take 2 bars of time may have some lines that 
correspond to 1 or 4 bars (but not 3 or 5). In our experience, this 
observation seems to increase system performance for popular 
music.  
The text model developed thus far assumes that lyrics are sung 
from the beginning of the bar until the end of the bar, as shown in 
Figure 10(a). When lyrics are short, there can be a gap in which 
vocals rest before singing again on the next bar, as shown in 
Figure 10(b). Thus, an ending offset for each line is determined 
within its duration. For lines that are short and were rounded up, 
vocals are assumed to rest before the start of the following line. In 
these cases, the initial estimate from the derived database is used 
to calculate the ending offset. For lines that are long and rounded 
down in the coercion, we predict that the singing leads from one 
bar directly into the next, and that the ending offset is the same as 
the duration. 
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Figure 10: Finding ending offsets in 25 Minutes, where the 
calculated bar length is 3.1 seconds: (a) case where the bar 
information overrides the initial estimate, (b) case in which 
the initial estimate are used.  

6. SYSTEM INTEGRATION 
In this section we integrate the audio and text components to align 
the audio file with its associated textual lyrics. Our alignment 
algorithm consists of two steps:  

• Section level alignment, which uses the measure, chorus, 
vocal detector and section processor as input to demarcate 
the section boundaries. 

• Line level alignment, which uses the vocal, measure and line 
processor as input to demarcate individual line boundaries. 

6.1 Section level alignment 
In section level alignment, boundaries of the verses are 
determined using the previously determined chorus boundaries. A 
key observation is that the detection of vocal segments is 
substantially easier than the detection of non-vocal ones. This is 
because both the audio and text processing can offer evidence for 
detecting and calculating the duration of vocal segments. 
We use a statistical method to build a static gap model based on 
manual annotation of 20 songs from our testbed. The gap model 
(the normalized histogram) of all sections in our dataset is 
depicted in Figure 11. It can be seen that the duration between 
verse and chorus (V1-C1, V2-C2) is fairly stable in comparison to 
the duration of the sections themselves. This observation allows 
us to determine verse starting points using a combination of gap 
modeling and positions of the chorus or the song starting point.  

 
Figure 11: Duration distributions of (a) non-vocal gaps, (b) 
different sections of the popular songs with V1-C1-V2-C2-B-O 
structure. X-axis represents duration in bars. 
This technique is embodied in LyricAlly in forward/backward 
search models, which use an anchor point to search for starting 
and ending points of other sections. For example, the forward 
search model uses the beginning of the song (time 0) as an anchor 
to determine the start of Verse1. From Figure 11(a), we observe 
that the intro section is zero to ten bars in length. Over these ten 
bars of the music, we calculate the Vocal to Instrumental 
Duration Ratio (VIDR), which denotes the ratio of vocal to 
instrument probability in each bar, as detected by the vocal 
detector. To determine the beginning of a vocal segment, we 
select the global minimum within a window assigned by the gap 
models, as shown in Figure 12.  

 
Figure 12: Forward search in Gap1 to locate Verse1 start.  

This is based on two observations: first, the beginning of the verse 
is characterized by the strong presence of vocals that causes a rise 
in the VIDR over subsequent bars; second, as the vocal detector 
may errorneously detect vocal segments within the gap (as in bars 
0-2), the beginning of the verse may also be marked by a decline 
in VIDR in previous bars. 

Assigned Verse1 start 

Gap1 



In a similar manner, a backward search model is used to 
determine the end of a vocal segment. As an example, the end of 
Verse1 is detected using the gap model and Chorus2 starting point 
as an anchor provided by the chorus detector (Figure 13). 

 
Figure 13: Backward search to locate the ending of a verse. 

6.2 Line level alignment 
The text processor is fairly accurate in duration estimation but is 
incapable of providing offsets. The vocal detector is able to detect 
the presence of vocals in the audio but not associate it with the 
line structure in the song. These complementary strengths are 
combined in line-level alignment. 
First, we try to derive a one-to-one relationship between the lyric 
lines and the vocal segments. We use the number of text lines as 
the target number of segments to achieve. As such, there are three 
possible scenarios (Figure 14) in which the number of lyric lines 
is smaller, equal to or greater than the number of vocal segments. 
In the first and last cases, we need to perform grouping or 
partitioning before the final step of forced alignment. 

 
Figure 14: (a) Grouping, (b) partitioning and (c) forced 
alignment. White rectangles represent vocal segments and 
black rectangles represent lyric lines. 
For the grouping process, all possible combinations of 
disconnected vocal segments are evaluated to find the best 
matching combination to the duration of the text lines. A similar 
approach is employed for the partitioning process, where the 
duration of the vocal segments and their combinations are 
compared with the estimated line duration from the text module.  
Once an optimal forced alignment is computed, the system 
combines both the text and vocal duration estimates to output a 
single, final estimate. We start by calculating a section’s duration 
given information from both detectors. We denote this as DTV, 
which combines DT and DV, the total estimated duration of the 
section given by the text and vocal detectors, respectively. 

VTVTTV DDDDD −−= α),max(          (4) 

Then, the durations of individual vocal segments D’
v(i) are re-

assigned: 

TV
T

T
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D
iDiD ×=′ )()(    i = 1,2,…, L    (5) 

where L is total number of lines. This is to force the ratio of the 
durations of the vocal segments to match those from the text, as 
we have found the text ratios to be more accurate. We assign a 

value for α such that the total duration of the vocal segments 
within each section is closest to the section estimates found earlier 
in Section 6.1. Example results of our automatic synchronization 
are shown in Figure 15. 

 

 
Figure 15: Line segment alignment. 

7. EVALUATION 
We perform both holistic and per-component evaluation of 
LyricAlly in order to assess its performance and understand its 
strengths and weaknesses. We evaluate over our dataset for which 
we manually annotated the songs with starting and ending time 
stamps of each lyric line.  
Past work in audio alignment [4] used random sampling to 
compute an alignment error, given in seconds. The average and 
standard deviation of starting point and duration error are 
computed. In contrast, we evaluate our system over our entire 
dataset. These results are presented in column 3 of Table 1 (as 
normal distributions, characterized by mean and variance) for 
high-level section alignment and lower-level line alignment, 
respectively. 

Alignment Error  Seconds Bars 
Starting Point N(0.80, 9.0) N(0.30, 1.44) Section 

Level 

(n = 80) 
Duration N(-0.50,10.2) N(-0.14, 1.44) 

Starting Point N(0.58, 3.6) N(0.22, 0.46) Line Level 
(n = 565) Duration N(-0.48,0.54) N(-0.16, 0.06) 

Table 1: Section- and line-level alignment error over 20 songs.  
Errors (in seconds) given as normal distributions: N (µ,σ2). 

Error given in seconds may not be ideal, as a one-second error 
may be perceptually different in songs with different tempos. We 
suggest measuring error in terms of bars as a more appropriate 
metric. Average error (in bars) is given in column 4. 
Most importantly, starting point calculation is more difficult than 
duration estimation for individual lines. This is likely because the 
starting point is derived purely by audio processing, whereas the 

Gap2 Chorus2 

Assigned end of Verse1 

(c) 

(b) 

(a) 



text processing greatly assists in the duration calculation. We also 
see that durations of entire sections are more variable than single 
lines, as sections are larger units. On the other hand, starting point 
calculation performance does not vary significantly between lines 
and sections.  

7.1 Error analysis of individual modules 
As LyricAlly is a prototype based on an integration of separate 
modules, we also want to identify critical points in the system. 
Which components are bottlenecks in system performance? Does 
a specific component contribute more error in localization or in 
determining duration?  
To answer these questions, we analyze each module’s 
contribution to the system. Due to space constraints, we have 
simplified each of the four modules’ performance to a binary 
feature (i.e., good performance on the target song or not). We re-
analyze the system’s performance over the same dataset and show 
our results in Table 2. As expected, the system works best when 
all components perform well, but performance degrades 
gracefully when certain components fail. 
Different modules are responsible for different errors. If we force 
starting point and duration calculations to be classified as either 
good or not, then we have four possible scenarios for a song’s 
alignment, as exemplified in Figure 16. 
Failure of the rhythm detector affects all modules as estimates are 
rounded to the nearest bar, but the effect is limited to beat length 
over the base error. Failure of the chorus detection causes the 
starting point anchor of chorus sections to be lost, resulting in 
cases such as Figure 16(c). When the vocal detector fails, both 
starting point and duration mismatches can occur, as shown in 
Figure 16(b, c and d). The text processor can only calculate 
duration, and its failure leads to less accurate estimations of the 
duration of sung lines, as in Figure 16(b). 

8. DISCUSSION 
These results indicate that each module contributes a performance 
gain in the overall system. Excluding any module degrades 
performance. If we weight starting point and duration errors 
equally, and equate minimizing the sum of squares of the per-line 
error as a performance measure, we can rank the modules in 
decreasing order of criticality: 

Vocal > Measure > Chorus > Text 
We believe that errors in starting point and duration are likely to 
be perceived differently. In specific, starting point errors are 

 

 
Figure 16: Alignment between manual (upper line) and 
automatic timings (lower line). (a) Perfect alignment, (b) 
Duration mismatch, (c) Starting point mismatch, (d) Both 
duration and starting point mismatches. 
more likely to cause difficulties for karaoke applications in 
comparison to duration errors. When we weight starting point 
errors five times as important, a different ranking emerges: 

Chorus > Vocal > Text > Measure 
We believe that this is a more realistic ranking of the importance 
of each of the modules. As the modules contribute differently to 
the calculation of starting point and duration calculation, their 
effect on the overall system is different.  
As can be seen by integration strategy in LyricAlly, the accurate 
detection and alignment of chorus sections is paramount as it 
allows an anchor for the subsequent development of verse 
alignment. As our solution to this subtask has significant 
limitations at this point, we intend to invest our resources in 
solving this subtask. 
We have emphasized error analysis in our evaluation, yet it is not 
the only criteria in assessing performance. Efficiency is also 
paramount, especially for applications that may be deployed in 
mobile devices. The text processing of the dataset requires 
magnitudes less computation to perform as compared to the audio 
components. It also helps to limit the problem for the audio 
processing: for example, knowing that there are two choruses in a 
song instead of three helps the chorus detector prune inconsistent 
hypotheses. As LyricAlly is scaled up to handle more complex 
song structures, we feel that the synergies between text and audio 
processing will play a larger role. 

Songs  
 

Systems 
do well 

System 
Fails 

Starting 
point (Sec) 

Duration 
(Sec) 

Starting  
point (Bar) 

Duration 
(Bar) 

Sample Song 

6 A,B,C,D -- N(-0.1, 0.49) N(-0.1, 0.01) N(-0.03, 0.09) N(-0.04, 0.04) [2001] Westlife – World of Our Own 

2 B,C,D A N(-0.4, 1.21) N(-0.3, >0.01) N(-0.18, 0.16) N(-0.09, >0.01) [1996] Michael Learns to Rock – Sleeping 
Child 

2 A,C,D B N(1.3, 1.00) N(-0.2, >0.01) N(0.6, 0.16) N(-0.02, >0.01) [1998] The Corrs - I never loved you anyway 

2 A,B,D C N(0.7,5.76) N(-0.5, 0.04) N(0.3, 0.81) N(-0.2, >0.01) [2000] Leann Rimes - Can't fight the 
moonlight 

2 A,B,C D N(-0.9, 0.04) N(-0.8, 0.04) N(-0.4, 0.01) N(-0.3, 0.04) [1996] R Kelly - I believe I can fly 

6 Other configurations N(1.4, 7.29) N(-0.8, 1.44) N(0.5, 0.81) N(-0.2, 0.16) [1997] Boyzone - Picture of you 

A=Measure detector, B=Chorus detector, C=Singing voice detector, D=Duration calculation of text processor 

Table 2: Average alignment error and standard deviation over all lines (n=565) in the 20 song dataset. Errors given as Nor (µ,σ2).



9. CONCLUSION AND FUTURE WORK 
We have outlined LyricAlly, a multimodal approach to 
automate alignment of textual lyrics with acoustic musical 
signals. It incorporates state-of-the-art modules for music 
understanding in terms of rhythm, chorus detection and singing 
voice detection. We leverage text processing to add constraints 
to the audio processing, pruning unnecessary computation and 
creating rough estimates for duration, which are refined by the 
audio processing. LyricAlly demonstrates that two modalities 
are better than one and furthermore, that the processing of 
acoustic signals on multiple levels places the solution for 
automatic synchronization of audio with lyrics problem in 
reach. 
Our project has lead to several innovations in combined audio 
and text processing. In audio processing, we have demonstrated 
a new chord detection algorithm and applied it to hierarchical 
rhythm detection. We capitalize on rhythm structure to vastly 
improve the efficiency of a state-of-the-art chorus detection 
algorithm. We develop a new singing voice detection algorithm 
which combines multiple HMM models with bootstrapping to 
achieve higher accuracy. In our text processing models, we use 
a phoneme model based on singing voice to predict the duration 
of sung segments. To integrate the system, we have viewed the 
problem as a two-stage forced alignment problem. We have 
introduced gap modeling and used voice to instrument duration 
ratios as techniques to perform the alignment. 
LyricAlly currently is limited to songs of a limited structure and 
meter. For example, our hierarchical rhythm detector is limited 
to 4/4 time signature. The performance of our chorus and vocal 
detectors is not yet good enough for real life applications. In our 
vocal detector, we could consider an implementation using 
mixture modeling or classifiers such as neural networks or 
support vector machines. These are two important areas in the 
audio processing module for future work. Furthermore, our 
observation shows that sung vocal are more likely to change at 
positions of half note intervals than at other positions of beat 
times. The starting time of each vocal line should be rounded to 
the nearest half note position detected by the rhythm detector. 
This will be implemented in the future version of LyricAlly. 
To broaden its applicability, we have started to remove these 
limitations, most notably in the text processing module. The text 
module handles the classification and duration estimates of all 
five section types. Obtaining lyrics for use in the text analysis is 
a bottleneck in the system, as they are manually input. Our 
current focus for the text module is to find and canonicalize 
lyrics automatically through focused internet crawling. 
Creating a usable music library requires addressing the 
description, representation, organization, and use of music 
information [8]. A single song can be manifested in a range of 
symbolic (e.g., score, MIDI and lyrics) and audio formats (e.g., 
mp3). Currently, audio and symbolic data formats for a single 
song exist as separate files, typically without cross-references to 
each other. An alignment of these symbolic and audio 
representations is definitely meaningful but is usually done in a 
manual, time-consuming process. We have pursued the 
alternative of automatic alignment for audio data and text lyrics, 
in the hopes of providing karaoke-type services with popular 
music recording. 
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