
LyricAlly: Automatic Synchronization of Acoustic Musical
Signals and Textual Lyrics

Ye Wang Min-Yen Kan Tin Lay Nwe Arun Shenoy Jun Yin
Department of Computer Science, School of Computing

National University of Singapore, Singapore 177543
++ (65) 6874-2980

{wangye, kanmy, nwetl, arunshen, yinjun}@comp.nus.edu.sg

ABSTRACT
We present a prototype that automatically aligns acoustic musical
signals with their corresponding textual lyrics, in a manner similar
to manually-aligned karaoke. We tackle this problem using a
multimodal approach, where the appropriate pairing of audio and
text processing helps create a more accurate system. Our audio
processing technique uses a combination of top-down and bottom-
up approaches, combining the strength of low-level audio features
and high-level musical knowledge to determine the hierarchical
rhythm structure, singing voice and chorus sections in the musical
audio. Text processing is also employed to approximate the length
of the sung passages using the textual lyrics. Results show an
average error of less than one bar for per-line alignment of the
lyrics on a test bed of 20 songs (sampled from CD audio and
carefully selected for variety). We perform holistic and per-
component testing and analysis and outline steps for further
development.

Categories and Subject Descriptors
H.5.5 [Information Interfaces and Presentation]: Sound and
Music Computing – Methodologies and Techniques; H.3.1
[Information Storage and Retrieval]: Content Analysis and
Indexing

General Terms
Algorithms, Design, Experimentation.

Keywords
Audio/text synergy, music knowledge, vocal detection, lyric
alignment, karaoke.

1. INTRODUCTION
We investigate the automatic synchronization between audio and
text. Given an acoustic musical signal and corresponding textual
lyrics, our system attempts to automatically calculate the start and
end times for each lyric line. As this kind of an alignment is
currently a manual process and a key step for applications such as
karaoke, the system we propose here has a potential to automate

the process, saving manual labor. Additionally, this information
can also be used effectively in the field of music informational
retrieval to facilitate random access to specific words or passages
of interest.
In contrast to other work that has been restricted to either the
symbolic domain (MIDI and score) or synthesized audio,
LyricAlly has been developed to operate on real-world musical
recordings (sampled from CD audio) to maximize its practical
applicability.
We decompose the problem into two separate tasks, performed in
series: alignment at a higher structural element level (e.g., verse,
chorus, etc.) , followed by a lower level per-line alignment level.
In comparison to a simpler single-level alignment model, we feel
that this cascaded architecture boosts system performance and
allows for a more meaningful evaluation to be done.
The rest of this paper is organized as follows. In the next section,
we review related work. We then introduce LyricAlly in Section 3
and define terms used throughout the paper. Section 4 details the
audio processing components followed by the text processing
component in Section 5. We then detail our two-level integration
of components in Section 6. We analyze system performance and
conclude with comments on current and future work.

2. RELATED WORK
To the best of our knowledge, there has been no published work
on the problem addressed in this paper. The works closest to ours
are briefly surveyed in this section. A framework to embed lyric
time stamps inside MP3 files has been previously proposed [5].
This approach addressed the representation of such time stamps,
but not how to obtain them automatically. [14] describes a large
vocabulary speech recognizer employed for lyric recognition. The
system deals with pure singing voice, which is more limiting as
compared to real-world acoustic musical signals handled by our
approach. Our experience shows that the transcription of lyrics
from polyphonic audio using speech recognition is an extremely
challenging task.
This difficulty has led us to re-examine the transcription problem.
We recognize that transcription is often not necessary, as many
lyrics are already freely available on the Internet. As such, we
formulate the problem as one of lyric alignment rather than
transcription. In a sense, our work is analogous to those in
[1][4][12] which try to perform automatic alignment between
audio recording and MIDI. However, their task is quite different
from ours, as MIDI files provide some timing information which
is not normally present in textual lyrics or in real-world acoustic
environments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’04, October 10-15, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-893-8/04/0010…$5.00.

3. SYSTEM DESCRIPTION
In LyricAlly, the first round of integration performs a high-level
alignment of the song’s structural elements detected by the text
and audio streams. A second round performs the lower-level line
alignment. The points in which the two streams interchange
intermediate calculations are thus sources of synergy, which are
discussed later in Section 6. LyricAlly aligns these two modalities
in a top-down approach, as shown in Figure 1.

Section
Processor

Line
Processor

Chorus
Detector

Measure
Detector

Beat
Detector

Vocal
Detector

Alignment
Module

A
udio

(.w
av)

Lyrics
(.txt)

A
lignm

ents
<tstart , tend , line>

triples

Structural Element Level Alignment Line Level Alignment

Section
Processor

Line
Processor

Chorus
Detector

Measure
Detector

Beat
Detector

Vocal
Detector

Alignment
Module

A
udio

(.w
av)

Lyrics
(.txt)

A
lignm

ents
<tstart , tend , line>

triples

Structural Element Level Alignment Line Level Alignment
Figure 1: LyricAlly architecture.

We now define the structural elements of music (also referred to
as sections in this paper) used in our work:

• Intro (I): The opening section that leads into the song, which
may contain silence and lack a strong beat (arrhythmic).

• Verse (V): A section that roughly corresponds with a poetic
stanza and is the preamble to a chorus section.

• Chorus (C): A refrain (lines that are repeated in music)
section. It often sharply contrasts the verse melodically,
rhythmically and harmonically, and assumes a higher level
of dynamics and activity, often with added instrumentation.

• Bridge (B): A short section of music played between the
parts of a song. It is a form of alternative verse which often
modulates to a different key or introduces a new chord
progression.

• Outro or Coda (O): A section which brings the music to a
conclusion. For our purpose, an outro is a section that
follows the bridge until the end of the song. This is usually
characterized by the chorus section repeating a few times and
then fading out.

Based on an informal survey of popular songs, we introduce the
following heuristics into our system:

• Instrumental music sections occur throughout the song.

• Intro and bridge sections may or may not be present and may
or may not contain sung vocals.

• Popular songs are strophic in form, with a usual arrangement
of verse-chorus-verse-chorus. Hence the verse and chorus
are always present and contain sung vocals.

LyricAlly was developed using music data from a wide variety of
sung music, spanning many artists over many years. Our current
prototype is limited to songs which have a structure comprising of
no sung intros, two verses, two choruses, bridge and an outro (i.e.,
“V1-C1-V2-C2-B-O”). This structure is the most common structure
of popular songs based on our observations, accounting for over
40% of the songs we surveyed, and thus are not overly restrictive.
As we detail the workings of the components in the next sections
we will use a running example of a V1-C1-V2-C2-B-O song, 25

Minutes, performed by the group Michael Learns To Rock
(MLTR).

4. AUDIO PROCESSING
Audio processing in LyricAlly has three steps:
1. Determine the rhythm structure of the music. Knowledge of

rhythm structure at the measure (bar level) helps to fine tune
the time alignment of the other components.

2. Determine the rough location of the chorus (refrain)
segments in the song. This serves as an anchor for sub-
sequent line-level alignment in the chorus as well as the
verse sections of the song.

3. Determine the presence of vocals in the song. This is needed
for the alignment results at the line-level.

4.1 Hierarchical Rhythm Structure
Determination
Our rhythm detector extracts rhythm information in real-world
musical audio signals as a hierarchical beat-structure comprising
the quarter-, half-, and whole-note (measure/bar) levels.
Rhythm can be perceived as a combination of strong and weak
beats [11]. The beat forms the basic unit of musical time and in a
meter of 4/4 (common time or quadruple time) there are four
beats to a measure. The inter-beat interval (IBI) corresponds to
the temporal length of a quarter note. We assume the meter to be
4/4, this being the most frequent meter of popular songs and the
tempo of the input song is assumed to be constrained between 40-
185 beats per minute (BPM) and almost constant. The audio
signal is framed into beat-length segments to extract metadata in
the form of quarter note detection of the music. The basis for this
technique of audio framing is that within the quarter note, the
harmonic description of the music expressed by musical chords
can be considered as quasi-stationary. This is based on the
premise that chord changes are more likely to occur on beat times
in accordance with the rhythm structure than on other positions.
A system to determine the key of acoustical musical signals has
been demonstrated in [11]. The key defines the diatonic scale that
the song uses. In the audio domain, overlap of harmonic
components of individual notes makes it difficult to determine the
individual notes present in the scale. Hence this problem has been
approached at a higher level by grouping individual detected
notes to obtain the harmonic description of the music in the form
of the 12 major and 12 minor triads (chords with 3 notes). Then
based on a rule-based analysis of these chords against the chords
present in the major and minor keys, the key is extracted.
As chords are more likely to change at the beginning of a measure
than at other positions of beat times [6], we would like to
incorporate this knowledge into the key system to determine the
rhythm structure of the music. However, we observe that the
chord recognition accuracy of the system is not sufficient to
determine the hierarchical rhythm structure across the entire
length of the music. This is because complexities in polyphonic
audio analysis often results in chord recognition errors. We have
thus enhanced this system with two post-processing stages that
allow us to compute this task with good accuracy, as shown in
Figure 2. The output of the beat detection is used to frame the
audio into beat-length segments. This basic information is used by

all other modules in LyricAlly, including subsequent steps in this
module.

Figure 2: Hierarchical rhythm structure block flow diagram.

4.1.1 Chord Accuracy Enhancement
Knowledge of the detected key is used to identify the erroneous
chords among the detected chords. We eliminate these chords
based on a music theoretical analysis of the chord patterns that
can be present in the 12 major and 12 minor keys.

4.1.2 Rhythm Structure Determination
We check for start of measures based on premise that chords are
more likely to change at the beginning of a measure than at other
positions of beat times [6]. Since there are four quarter notes to a
measure, we check for patterns of four consecutive frames with
the same chord to demarcate all the possible measure boundaries.
However, not all of these boundaries may be correct. This is on
account of errors in chord detection. The correct measure
boundaries along the entire length of the song are determined as
follows:
1. Along the increasing order on the time axis, obtain all

possible patterns of boundaries originating from every
boundary location that are separated by units of beat-spaced
intervals in multiples of four. Select the pattern with the
highest count as the one corresponding to the pattern of
actual measure boundaries.

2. Track the boundary locations in the detected pattern and
interpolate missing boundary positions across the rest of the
song.

The result of our hierarchical rhythm detection is shown in Figure
3. This has verified against the measure information in
commercially-available sheet music [8].

Figure 3: Hierarchical rhythm structure in 25 Minutes.

4.2 Chorus detector
The audio chorus detector locates chorus sections and estimates
the start and the end of each chorus. Our implementation is based
on Goto’s method [7], which identifies chorus sections as the

most repeated sections of similar melody and chords by the use of
chroma vectors.
We improve the original chorus detection algorithm by
incorporating beat information obtained from the rhythm structure
detector. This input allows us to significantly reduce the
complexity of the algorithm. Since the chord is stable within an
inter-beat interval, we extract chroma vectors from each beat,
rather than for each 80ms frame as prescribed by the original
algorithm. For a standard three-minute song at 100 BPM, our
approach extracts only 300 vectors (as compared to 2250 in the
original). As vectors are pairwise compared – a O(n2) operation –
the savings scale quadratically. For an average song, our version
uses only 2% of the time and space required by the original
algorithm. We give an example of our chorus detector in Figure 4.

Figure 4: (a) the song 25 Minutes (b) manually annotated
chorus sections (c) automatically detected chorus sections.

4.3 Vocal detector
The vocal detector detects the presence of vocals in the musical
signal. We use a Hidden Markov Model (HMM) classifier to
detect vocals. In contrast to conventional HMM training methods
which employ one model for each class, we create an HMM
model space (multi-model HMMs) to perform vocal detection
with increased accuracy. In addition, we employ an automatic
bootstrapping process which adapts the test song’s own models
for increased classification accuracy.
Our assumption is that the spectral characteristics of different
segments (pure vocal, vocal with instruments and pure
instruments) are different. Based on this assumption, we extract
feature parameters based on the distribution of energy in different
frequency bands to differentiate vocal from non-vocal segments.
The time resolution of our vocal detector is the inter-beat interval
(IBI) described in the previous section.
We compute a subband based Log Frequency Power Coefficients
(LFPC) [10] to form our feature vectors. This feature provides an
indication of energy distribution among subbands. We first train
our models using manually annotated songs, and then perform
classification between vocal and non-vocal segments.
Most studies on vocals detection use statistical pattern classifiers
[2][3][13]. To our knowledge, none have taken into account song
structure information in modeling. An important observation is
that vocal and non-vocal segments vary in their inter-song and
intra-song signal characteristics. Signal strengths in different
sections (verse, chorus, bridge and outro) usually differ. For
example, chorus sections usually have stronger signal strength in
comparison with verse sections since they may have busier
drums, some additional percussion, a fuller string arrangement
and additional melody lines [15]. The tempo and intensity of
vocals are different among songs, accounting for inter-song

(beat)

0 357108 140 204 236 268 300 332
(a)

(b)

(c)

variation. These result in distinct single characteristics, as shown
in Figure 5.

Figure 5: Waveforms of 10-second segments extracted from
the (a) intro, (b) verse, (c) chorus, (d) bridge, and (e) outro
sections of the song 25 Minutes.
Due to this, we integrate song structure, inter-song and intra-song
variation into our model. Training data are manually classified
based on the section type, tempo and intensity and a model is
created for each class. This process results in a total of 2 (vocal or
non-vocal) × 5 (section types) × 2 (high or low tempo) × 2 (loud
or soft intensity) = 40 distinct HMMs.
A test song is first segmented using these HMMs, then each
section is classified with respect to section type. The probability
distributions of the number of matched models for the test
segments in Verse1 and Chorus1 sections are shown in Figure 6.
As expected, segments from the verse section are more likely to
match the verse models than others. In the same way, segments
from the chorus section tend to match the chorus models better
than others. With this step, we achieve about 80% classification
accuracy.

Figure 6: Probability distributions of the number of matched
models for test segments in Verse1 (l), Chorus1 (r) sections.
We then use this initial classification to build song-specific vocal
and non-vocal models of the test song with a bootstrapping
process. This process allows us to use a song’s own model for
classification as shown in Figure 7. This bootstrapping process
makes the algorithm adaptive, and achieves the vocal detection
accuracy of 84%. An average improvement of 4% is
demonstrated, which is statistically significant. Results of vocal
detection by our vocal detector and manual annotation of the
Verse1 section in our test song are shown in Figure 8.

Test
Song

Vocal / Non-
Vocal
Segments

Bootstrapped
Samples

Bootstrapped
Training

Bootstrapped
Vocal Detector

Multi-Model
HMM Classifier

Figure 7: Bootstrapped training and segmentation process.

Figure 8: (a) The Verse1 segment of 25 Minutes. (b) Manually

annotated and (c) automatically detected vocal segments.

5. TEXT PROCESSING
Text lyrics are analyzed in a two-stage cascade. The first phase
labels each section with one of the five section types, and also
calculates a duration for each section. A subsequent line processor
refines the timings by using the hierarchical rhythm information
to determine finer per-line timing. This simple model performs
well for our system, and as such, other models (e.g., HMMs) have
not been pursued.

5.1 Section Processor
The section processor takes as its sole input the textual lyrics. We
assume that the input lyrics delimit sections with blank lines and
that the lyrics accurately reflect the words sung in the song.
Similar to the audio chorus detector described in Section 4.2,
choruses are detected by their high level of repetition. Our model
accounts for phoneme-, word- and line-level repetition in equal
proportions. This model overcomes variations in words and line
ordering that poses problems for simpler algorithms that use a
variation of the longest common subsequence algorithm for
detection. From music knowledge, we can further constrain
candidate chorus sections to be interleaved with one or two other
(e.g., verse and possible bridge) intervening sections and to be of
approximately the same length in lines. The example song is
classified in Figure 9.

After some time
I've finally made up my mind
She is the girl
And I really want to make her mine
I'm searching everywhere
To find her again
To tell her I love her
And I'm sorry about the things I've done
I find her standing in front of the church
The only place in town where I didn't search
She looks so happy in her wedding dress
But she's crying while she's saying this

Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late

Against the wind
I'm going home again
Wishing me back
To the time when we were more than friends
But still I see her in front of the church
The only place in town where I didn t search
She looked so happy in her wedding dress
But she cried while she was saying this

V
erse

2
V

erse
1

C
horus

1

C
horus

2
O

utro
B

ridge

Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late

Out in the streets
Places where hungry hearts have nothing to eat
Inside my head
Still I can hear the words she said

Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late
Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late
I can still hear her say

Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late

Out in the streets
Places where hungry hearts have nothing to eat
Inside my head
Still I can hear the words she said

Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late
Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late
I can still hear her say

After some time
I've finally made up my mind
She is the girl
And I really want to make her mine
I'm searching everywhere
To find her again
To tell her I love her
And I'm sorry about the things I've done
I find her standing in front of the church
The only place in town where I didn't search
She looks so happy in her wedding dress
But she's crying while she's saying this

Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late

Against the wind
I'm going home again
Wishing me back
To the time when we were more than friends
But still I see her in front of the church
The only place in town where I didn t search
She looked so happy in her wedding dress
But she cried while she was saying this

After some time
I've finally made up my mind
She is the girl
And I really want to make her mine
I'm searching everywhere
To find her again
To tell her I love her
And I'm sorry about the things I've done
I find her standing in front of the church
The only place in town where I didn't search
She looks so happy in her wedding dress
But she's crying while she's saying this

Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late

Against the wind
I'm going home again
Wishing me back
To the time when we were more than friends
But still I see her in front of the church
The only place in town where I didn t search
She looked so happy in her wedding dress
But she cried while she was saying this

V
erse

2
V

erse
1

C
horus

1

C
horus

2
O

utro
B

ridge

Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late

Out in the streets
Places where hungry hearts have nothing to eat
Inside my head
Still I can hear the words she said

Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late
Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late
I can still hear her say

Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late

Out in the streets
Places where hungry hearts have nothing to eat
Inside my head
Still I can hear the words she said

Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late
Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late
I can still hear her say

After some time
I've finally made up my mind
She is the girl
And I really want to make her mine
I'm searching everywhere
To find her again
To tell her I love her
And I'm sorry about the things I've done
I find her standing in front of the church
The only place in town where I didn't search
She looks so happy in her wedding dress
But she's crying while she's saying this

Boy I've missed your kisses
All the time but this is
Twenty five minutes too late
Though you traveled so far
Boy I'm sorry you are
Twenty five minutes too late

Against the wind
I'm going home again
Wishing me back
To the time when we were more than friends
But still I see her in front of the church
The only place in town where I didn t search
She looked so happy in her wedding dress
But she cried while she was saying this

Figure 9: Section classification of 25 Minutes. Automatic and
manual annotations coincide.
An approximate duration of each section is also calculated. Each
word in the lyrics is first decomposed into its phonemes based on
the word’s transcription in an inventory of 39 phonemes from the
CMU Pronouncing Dictionary [16]. Phoneme durations are then
looked up in a singing phoneme duration database (described
next) and the sum total of all phoneme durations in a section is
returned as the duration, which is used in the forced alignment
discussed later in this paper.
As phoneme durations in sung lyrics and speech differ, we do not
use information from speech recognizers or synthesizers. Rather,
we learn durations of phonemes from annotated sung training
data, in which each line and section are annotated with durations.

We decompose each line in the training data into its phonemes
and parcel the duration uniformly among its phonemes. In this
way, a phoneme can be modeled by the distribution of its
instances. For simplicity, we model phoneme duration
distributions as normal distributions, characterized by mean and
variance. We represent section’s duration by summing together
the individual distributions that represent the phonemes present in
the section.
Analysis of the induced phoneme database shows that phonemes
do differ in duration in our training data: the average phoneme
length is .19 seconds, but vary on the individual phoneme (max =
.34, min = .12, σ = .04). The use of a per-phoneme duration
model versus a uniform model (in which every phoneme is
assigned the average duration) accounts for a modest 2.3%
difference in estimated duration in a sample of lines, but is
essential for future work on phoneme level alignment.

5.2 Line processor
The rhythm structure detector discussed in Section 4.1 provides
bar length and offsets as additional input. This allows the text
module to refine its estimates based on our observation that each
line must start on the bar (discussed in more detail later). We start
with the initial estimate of a line’s duration calculated earlier and
round it to the nearest integer multiple of bar. We calculate the
majority bars per line for each song, and coerce other line
durations to be either ½ or 2 times this value. For example, songs
in which most lines take 2 bars of time may have some lines that
correspond to 1 or 4 bars (but not 3 or 5). In our experience, this
observation seems to increase system performance for popular
music.
The text model developed thus far assumes that lyrics are sung
from the beginning of the bar until the end of the bar, as shown in
Figure 10(a). When lyrics are short, there can be a gap in which
vocals rest before singing again on the next bar, as shown in
Figure 10(b). Thus, an ending offset for each line is determined
within its duration. For lines that are short and were rounded up,
vocals are assumed to rest before the start of the following line. In
these cases, the initial estimate from the derived database is used
to calculate the ending offset. For lines that are long and rounded
down in the coercion, we predict that the singing leads from one
bar directly into the next, and that the ending offset is the same as
the duration.

To find her again (estimated 2.8 sec)
30.3 s 33.4 s

33.4 s 36.5 s

To tell her I love her (estimated 3.2 sec)

33.1 s

duration

duration

ending
point

ending
point

starting
point

starting
point

(a)

(b) To find her again (estimated 2.8 sec)
30.3 s 33.4 s

33.4 s 36.5 s

To tell her I love her (estimated 3.2 sec)

33.1 s

duration

duration

ending
point

ending
point

starting
point

starting
point

(a)

(b)

Figure 10: Finding ending offsets in 25 Minutes, where the
calculated bar length is 3.1 seconds: (a) case where the bar
information overrides the initial estimate, (b) case in which
the initial estimate are used.

6. SYSTEM INTEGRATION
In this section we integrate the audio and text components to align
the audio file with its associated textual lyrics. Our alignment
algorithm consists of two steps:

• Section level alignment, which uses the measure, chorus,
vocal detector and section processor as input to demarcate
the section boundaries.

• Line level alignment, which uses the vocal, measure and line
processor as input to demarcate individual line boundaries.

6.1 Section level alignment
In section level alignment, boundaries of the verses are
determined using the previously determined chorus boundaries. A
key observation is that the detection of vocal segments is
substantially easier than the detection of non-vocal ones. This is
because both the audio and text processing can offer evidence for
detecting and calculating the duration of vocal segments.
We use a statistical method to build a static gap model based on
manual annotation of 20 songs from our testbed. The gap model
(the normalized histogram) of all sections in our dataset is
depicted in Figure 11. It can be seen that the duration between
verse and chorus (V1-C1, V2-C2) is fairly stable in comparison to
the duration of the sections themselves. This observation allows
us to determine verse starting points using a combination of gap
modeling and positions of the chorus or the song starting point.

Figure 11: Duration distributions of (a) non-vocal gaps, (b)
different sections of the popular songs with V1-C1-V2-C2-B-O
structure. X-axis represents duration in bars.
This technique is embodied in LyricAlly in forward/backward
search models, which use an anchor point to search for starting
and ending points of other sections. For example, the forward
search model uses the beginning of the song (time 0) as an anchor
to determine the start of Verse1. From Figure 11(a), we observe
that the intro section is zero to ten bars in length. Over these ten
bars of the music, we calculate the Vocal to Instrumental
Duration Ratio (VIDR), which denotes the ratio of vocal to
instrument probability in each bar, as detected by the vocal
detector. To determine the beginning of a vocal segment, we
select the global minimum within a window assigned by the gap
models, as shown in Figure 12.

Figure 12: Forward search in Gap1 to locate Verse1 start.

This is based on two observations: first, the beginning of the verse
is characterized by the strong presence of vocals that causes a rise
in the VIDR over subsequent bars; second, as the vocal detector
may errorneously detect vocal segments within the gap (as in bars
0-2), the beginning of the verse may also be marked by a decline
in VIDR in previous bars.

Assigned Verse1 start

Gap1

In a similar manner, a backward search model is used to
determine the end of a vocal segment. As an example, the end of
Verse1 is detected using the gap model and Chorus2 starting point
as an anchor provided by the chorus detector (Figure 13).

Figure 13: Backward search to locate the ending of a verse.

6.2 Line level alignment
The text processor is fairly accurate in duration estimation but is
incapable of providing offsets. The vocal detector is able to detect
the presence of vocals in the audio but not associate it with the
line structure in the song. These complementary strengths are
combined in line-level alignment.
First, we try to derive a one-to-one relationship between the lyric
lines and the vocal segments. We use the number of text lines as
the target number of segments to achieve. As such, there are three
possible scenarios (Figure 14) in which the number of lyric lines
is smaller, equal to or greater than the number of vocal segments.
In the first and last cases, we need to perform grouping or
partitioning before the final step of forced alignment.

Figure 14: (a) Grouping, (b) partitioning and (c) forced
alignment. White rectangles represent vocal segments and
black rectangles represent lyric lines.
For the grouping process, all possible combinations of
disconnected vocal segments are evaluated to find the best
matching combination to the duration of the text lines. A similar
approach is employed for the partitioning process, where the
duration of the vocal segments and their combinations are
compared with the estimated line duration from the text module.
Once an optimal forced alignment is computed, the system
combines both the text and vocal duration estimates to output a
single, final estimate. We start by calculating a section’s duration
given information from both detectors. We denote this as DTV,
which combines DT and DV, the total estimated duration of the
section given by the text and vocal detectors, respectively.

VTVTTV DDDDD −−= α),max((4)

Then, the durations of individual vocal segments D’
v(i) are re-

assigned:

TV
T

T
V D

D
iDiD ×=′)()(i = 1,2,…, L (5)

where L is total number of lines. This is to force the ratio of the
durations of the vocal segments to match those from the text, as
we have found the text ratios to be more accurate. We assign a

value for α such that the total duration of the vocal segments
within each section is closest to the section estimates found earlier
in Section 6.1. Example results of our automatic synchronization
are shown in Figure 15.

Figure 15: Line segment alignment.

7. EVALUATION
We perform both holistic and per-component evaluation of
LyricAlly in order to assess its performance and understand its
strengths and weaknesses. We evaluate over our dataset for which
we manually annotated the songs with starting and ending time
stamps of each lyric line.
Past work in audio alignment [4] used random sampling to
compute an alignment error, given in seconds. The average and
standard deviation of starting point and duration error are
computed. In contrast, we evaluate our system over our entire
dataset. These results are presented in column 3 of Table 1 (as
normal distributions, characterized by mean and variance) for
high-level section alignment and lower-level line alignment,
respectively.

Alignment Error Seconds Bars
Starting Point N(0.80, 9.0) N(0.30, 1.44) Section

Level

(n = 80)
Duration N(-0.50,10.2) N(-0.14, 1.44)

Starting Point N(0.58, 3.6) N(0.22, 0.46) Line Level
(n = 565) Duration N(-0.48,0.54) N(-0.16, 0.06)

Table 1: Section- and line-level alignment error over 20 songs.
Errors (in seconds) given as normal distributions: N (µ,σ2).

Error given in seconds may not be ideal, as a one-second error
may be perceptually different in songs with different tempos. We
suggest measuring error in terms of bars as a more appropriate
metric. Average error (in bars) is given in column 4.
Most importantly, starting point calculation is more difficult than
duration estimation for individual lines. This is likely because the
starting point is derived purely by audio processing, whereas the

Gap2 Chorus2

Assigned end of Verse1

(c)

(b)

(a)

text processing greatly assists in the duration calculation. We also
see that durations of entire sections are more variable than single
lines, as sections are larger units. On the other hand, starting point
calculation performance does not vary significantly between lines
and sections.

7.1 Error analysis of individual modules
As LyricAlly is a prototype based on an integration of separate
modules, we also want to identify critical points in the system.
Which components are bottlenecks in system performance? Does
a specific component contribute more error in localization or in
determining duration?
To answer these questions, we analyze each module’s
contribution to the system. Due to space constraints, we have
simplified each of the four modules’ performance to a binary
feature (i.e., good performance on the target song or not). We re-
analyze the system’s performance over the same dataset and show
our results in Table 2. As expected, the system works best when
all components perform well, but performance degrades
gracefully when certain components fail.
Different modules are responsible for different errors. If we force
starting point and duration calculations to be classified as either
good or not, then we have four possible scenarios for a song’s
alignment, as exemplified in Figure 16.
Failure of the rhythm detector affects all modules as estimates are
rounded to the nearest bar, but the effect is limited to beat length
over the base error. Failure of the chorus detection causes the
starting point anchor of chorus sections to be lost, resulting in
cases such as Figure 16(c). When the vocal detector fails, both
starting point and duration mismatches can occur, as shown in
Figure 16(b, c and d). The text processor can only calculate
duration, and its failure leads to less accurate estimations of the
duration of sung lines, as in Figure 16(b).

8. DISCUSSION
These results indicate that each module contributes a performance
gain in the overall system. Excluding any module degrades
performance. If we weight starting point and duration errors
equally, and equate minimizing the sum of squares of the per-line
error as a performance measure, we can rank the modules in
decreasing order of criticality:

Vocal > Measure > Chorus > Text
We believe that errors in starting point and duration are likely to
be perceived differently. In specific, starting point errors are

Figure 16: Alignment between manual (upper line) and
automatic timings (lower line). (a) Perfect alignment, (b)
Duration mismatch, (c) Starting point mismatch, (d) Both
duration and starting point mismatches.
more likely to cause difficulties for karaoke applications in
comparison to duration errors. When we weight starting point
errors five times as important, a different ranking emerges:

Chorus > Vocal > Text > Measure
We believe that this is a more realistic ranking of the importance
of each of the modules. As the modules contribute differently to
the calculation of starting point and duration calculation, their
effect on the overall system is different.
As can be seen by integration strategy in LyricAlly, the accurate
detection and alignment of chorus sections is paramount as it
allows an anchor for the subsequent development of verse
alignment. As our solution to this subtask has significant
limitations at this point, we intend to invest our resources in
solving this subtask.
We have emphasized error analysis in our evaluation, yet it is not
the only criteria in assessing performance. Efficiency is also
paramount, especially for applications that may be deployed in
mobile devices. The text processing of the dataset requires
magnitudes less computation to perform as compared to the audio
components. It also helps to limit the problem for the audio
processing: for example, knowing that there are two choruses in a
song instead of three helps the chorus detector prune inconsistent
hypotheses. As LyricAlly is scaled up to handle more complex
song structures, we feel that the synergies between text and audio
processing will play a larger role.

Songs

Systems
do well

System
Fails

Starting
point (Sec)

Duration
(Sec)

Starting
point (Bar)

Duration
(Bar)

Sample Song

6 A,B,C,D -- N(-0.1, 0.49) N(-0.1, 0.01) N(-0.03, 0.09) N(-0.04, 0.04) [2001] Westlife – World of Our Own

2 B,C,D A N(-0.4, 1.21) N(-0.3, >0.01) N(-0.18, 0.16) N(-0.09, >0.01) [1996] Michael Learns to Rock – Sleeping
Child

2 A,C,D B N(1.3, 1.00) N(-0.2, >0.01) N(0.6, 0.16) N(-0.02, >0.01) [1998] The Corrs - I never loved you anyway

2 A,B,D C N(0.7,5.76) N(-0.5, 0.04) N(0.3, 0.81) N(-0.2, >0.01) [2000] Leann Rimes - Can't fight the
moonlight

2 A,B,C D N(-0.9, 0.04) N(-0.8, 0.04) N(-0.4, 0.01) N(-0.3, 0.04) [1996] R Kelly - I believe I can fly

6 Other configurations N(1.4, 7.29) N(-0.8, 1.44) N(0.5, 0.81) N(-0.2, 0.16) [1997] Boyzone - Picture of you

A=Measure detector, B=Chorus detector, C=Singing voice detector, D=Duration calculation of text processor

Table 2: Average alignment error and standard deviation over all lines (n=565) in the 20 song dataset. Errors given as Nor (µ,σ2).

9. CONCLUSION AND FUTURE WORK
We have outlined LyricAlly, a multimodal approach to
automate alignment of textual lyrics with acoustic musical
signals. It incorporates state-of-the-art modules for music
understanding in terms of rhythm, chorus detection and singing
voice detection. We leverage text processing to add constraints
to the audio processing, pruning unnecessary computation and
creating rough estimates for duration, which are refined by the
audio processing. LyricAlly demonstrates that two modalities
are better than one and furthermore, that the processing of
acoustic signals on multiple levels places the solution for
automatic synchronization of audio with lyrics problem in
reach.
Our project has lead to several innovations in combined audio
and text processing. In audio processing, we have demonstrated
a new chord detection algorithm and applied it to hierarchical
rhythm detection. We capitalize on rhythm structure to vastly
improve the efficiency of a state-of-the-art chorus detection
algorithm. We develop a new singing voice detection algorithm
which combines multiple HMM models with bootstrapping to
achieve higher accuracy. In our text processing models, we use
a phoneme model based on singing voice to predict the duration
of sung segments. To integrate the system, we have viewed the
problem as a two-stage forced alignment problem. We have
introduced gap modeling and used voice to instrument duration
ratios as techniques to perform the alignment.
LyricAlly currently is limited to songs of a limited structure and
meter. For example, our hierarchical rhythm detector is limited
to 4/4 time signature. The performance of our chorus and vocal
detectors is not yet good enough for real life applications. In our
vocal detector, we could consider an implementation using
mixture modeling or classifiers such as neural networks or
support vector machines. These are two important areas in the
audio processing module for future work. Furthermore, our
observation shows that sung vocal are more likely to change at
positions of half note intervals than at other positions of beat
times. The starting time of each vocal line should be rounded to
the nearest half note position detected by the rhythm detector.
This will be implemented in the future version of LyricAlly.
To broaden its applicability, we have started to remove these
limitations, most notably in the text processing module. The text
module handles the classification and duration estimates of all
five section types. Obtaining lyrics for use in the text analysis is
a bottleneck in the system, as they are manually input. Our
current focus for the text module is to find and canonicalize
lyrics automatically through focused internet crawling.
Creating a usable music library requires addressing the
description, representation, organization, and use of music
information [8]. A single song can be manifested in a range of
symbolic (e.g., score, MIDI and lyrics) and audio formats (e.g.,
mp3). Currently, audio and symbolic data formats for a single
song exist as separate files, typically without cross-references to
each other. An alignment of these symbolic and audio
representations is definitely meaningful but is usually done in a
manual, time-consuming process. We have pursued the
alternative of automatic alignment for audio data and text lyrics,
in the hopes of providing karaoke-type services with popular
music recording.

10. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments
in structuring the paper and Yuansheng Wu for helping us
annotate the manual training data.

11. REFERENCES
[1] Arifi, V., Clausen, M., Kurth, F., and Muller, M.

Automatic Synchronization of Music Data in Score-,
MIDI- and PCM-Format. In Proc. of Intl. Symp. on Music
Info. Retrieval (ISMIR), 2003.

[2] Berenzweig, A. and Ellis, D.P.W. Locating singing voice
segments within music signals. In Proc. of Wrkshp. on App.
of Signal Proc. to Audio and Acoustics (WASPAA), 2001.

[3] Berenzweig, A., Ellis, D.P.W. and Lawrence, S. Using
voice segments to improve artist classification of music. In
Proc. of AES-22 Intl. Conf. on Virt., Synth., and Ent.
Audio. Espoo, Finland, 2002.

[4] Dannenberg, R. and Hu, N. Polyphonic Audio Matching
for Score Following and Intellegent Audio Editor, In Proc.
of Intl. Computer Music Conf. (ICMC), Singapore, 2003.

[5] Furini, M. and Alboresi, L. Audio-Text Synchronization
inside MP3 files: A new Approach and its Implementation.
In Proc. of IEEE Consumer Communication and
Networking Conf., Las Vegas, USA, 2004.

[6] Goto, M. An Audio-based Real-time Beat Tracking System
for Music With or Without Drum-sound. J. of New Music
Research, 30(2):159-171, June 2001.

[7] Goto, M. A Chorus-Section detection Method for Musical
Audio Signals. In Proc. of IEEE Intl. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), 2003.

[8] Minibayeva, N. and Dunn, J-W. A Digital Library Data
Model for Music. In Proc. of ACM/IEEE-CS Joint Conf. on
Digital Libraries (JCDL), 2002.

[9] Musicnotes.com. Commercial sheet music resource.
http://www.musicnotes.com.

[10] Nwe T.L., Wei, F.S. and De Silva, L.C. Stress
Classification Using Subband Based Features, IEICE
Trans.on Info. and Systems, E86-D (3), pp. 565-573, 2003.

[11] Shenoy, A., Mohapatra, R. and Wang, Y. Key
Determination of Acoustic Musical Signals. In Proc. of the
Int’l Conf. on Multimedia and Expo (ICME), Taipei,
Taiwan, 2004.

[12] Turetsky, R. J. and Ellis, D.P.W. Ground Truth
Transcriptions of Real Music from Force-aligned MIDI
Syntheses. In Proc. of Intl. Symp. On Music Info. Retrieval
(ISMIR), 2003.

[13] Tzanetakis, G. Song-specific bootstrapping of singing
voice structure. In Proc. of the Int’l Conf. on Multimedia
and Expo (ICME), Taipei, Taiwan, 2004.

[14] Wang , C.K., Lyu, R.Y. and Chiang, Y.C. An Automatic
Singing Transcription System with Multilingual Singing
Lyric Recognizer and Robust Melody Tracker. In Proc. of
EUROSpeech, Geneva, Switzerland, 2003.

[15] Waugh , I. Song Structure. Music Tech Magazine, 2003.
[16] Weide, R. CMU Pronouncing Dictionary (release 0.6,

1995). http://www.speech.cs.cmu.edu/cgi-bin/cmudict

