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LyricSynchronizer: Automatic Synchronization
System Between Musical Audio Signals and Lyrics

Hiromasa Fujihara, Masataka Goto, Jun Ogata, and Hiroshi G. Okuno

Abstract—This paper describes a system that can automatically
synchronize polyphonic musical audio signals with their corre-
sponding lyrics. Although methods for synchronizing monophonic
speech signals and corresponding text transcriptions by using
Viterbi alignment techniques have been proposed, these methods
cannot be applied to vocals in CD recordings because vocals are
often overlapped by accompaniment sounds. In addition to a
conventional method for reducing the influence of the accompa-
niment sounds, we therefore developed four methods to overcome
this problem: a method for detecting vocal sections, a method for
constructing robust phoneme networks, a method for detecting
fricative sounds, and a method for adapting a speech-recognizer
phone model to segregated vocal signals. We then report exper-
imental results for each of these methods and also describe our
music playback interface that utilizes our system for synchro-
nizing music and lyrics.

Index Terms—Alignment, lyrics, singing voice, Viterbi algo-
rithm, vocal.

I. INTRODUCTION

S
INCE the lyrics of a song represent its theme and story, they

are essential to creating an impression of the song. This

is why music videos often help the audience enjoy the music

by displaying synchronized lyrics as a caption. When a song is

heard, for example, some people listen to the vocal melody and

follow the lyrics.

In this paper, we describe a system that synchronizes the poly-

phonic audio signals and the lyrics of songs automatically by

estimating the temporal relationship (alignment) between the

audio signals and the corresponding lyrics. This approach is dif-

ferent from direct lyrics recognition and takes advantage of the

vast selections of lyrics available on the web. Our system has a

number of applications, such as automatic generation of music

video captions and a music playback interface that can directly

access to specific words or passages of interest.

Wang et al. developed a system called LyricAlly [1] for

synchronizing lyrics with music recordings without extracting

singing voices from polyphonic sound mixtures. It uses the
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duration of each phoneme as a cue for synchronization but it is

not always effective because phoneme duration varies and can

be altered by musical factors such as the location in a melody.

Wong et al. [2] developed an automatic synchronization system

for Cantonese popular music. It uses the tonal characteristics of

Cantonese language and compares the tone of each word in the

lyrics with the fundamental frequency (F0) of the singing voice,

but because most languages do not have the tonal characteris-

tics of Cantonese, this system cannot be generalized to most

other languages. Loscos et al. [3] used a speech recognizer

for aligning a singing voice and Wang et al. [4] used a speech

recognizer for recognizing a singing voice, but they assumed

pure monophonic singing without accompaniment. Gruhne et

al. [5] worked on phoneme recognition in polyphonic music.

Assuming that boundaries between phonemes were given, they

compared several classification techniques. Their experiments

were preliminary, and there were difficulties in actually recog-

nizing the lyrics.

Since current speech recognition techniques are incapable

of automatically synchronizing lyrics with music that includes

accompaniment, we used an accompaniment sound reduction

method [6] as well as the following four methods: a method

for detecting vocal sections, a method for detecting fricative

sounds, a method for constructing a phoneme network that is

robust to utterances not in the lyrics, and a method for adapting

a phone model for speech to segregated vocal signals.

II. SYSTEM FOR AUTOMATICALLY SYNCHRONIZING

MUSIC AND LYRICS

Given musical audio signals and the corresponding lyrics, our

system calculates the start and end times for each phoneme of

the lyrics. The target data are real-world musical audio signals

such as popular music CD recordings that contain a singer’s

vocal track and accompaniment sounds. We make no assump-

tions about the number and kind of sound sources in the accom-

paniment sounds. We assume that the main vocal part is sung by

a single singer (except for choruses).

Because the ordinary Viterbi alignment (forced alignment)

method used in automatic speech recognition is negatively in-

fluenced by accompaniment sounds performed together with a

vocal and also by interlude sections in which the vocal is not

performed, we first obtain the waveform of the melody by ex-

tracting and resynthesizing the harmonic structure of the melody

using the accompaniment sound reduction method proposed in

[6]. We then detect the vocal region in the separated melody’s

audio signal, using a vocal activity detection method based on

a hidden Markov model (HMM). We also detect the fricative

1932-4553/$26.00 © 2011 IEEE
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Fig. 1. Overview of accompaniment sound reduction.

sound by using a fricative sound detection method and incorpo-

rate this information into the next alignment stage. Finally, we

align the lyrics and the separated vocal audio signals by using

a Viterbi alignment method. The language model used in this

alignment stage incorporates a filler model so that the system

becomes robust to inter-phrase vowel utterances not written in

the lyrics. We also propose a method for adapting a phone model

to the separated vocal signals of the specific singer.

A. Accompaniment Sound Reduction

To extract a feature that represents the phonetic information

of a singing voice from polyphonic audio signals, we need to

reduce the accompaniment sound, as shown in Fig. 1. We do this

by using a melody resynthesis technique based on a harmonic

structure [6] consisting of the following three parts:

1) estimate the fundamental frequency (F0) of the melody by

using Goto’s PreFEst [7];

2) extract the harmonic structure corresponding to the

melody;

3) resynthesize the audio signal (waveform) corresponding to

the melody by using a sinusoidal synthesis.

We thus obtain a waveform corresponding only to the melody.

Fig. 2 shows spectrograms of polyphonic musical audio sig-

nals, that of the audio signals segregated by the accompaniment

sound reduction method, and that of the original (ground-truth)

vocal-only signals. It can be seen that the harmonic structure of

a singing voice is enhanced by using the accompaniment sound

reduction method.

Note that the melody obtained this way contains instrumental

(i.e., nonvocal) sounds in interlude sections as well as voices in

vocal sections, because the melody is defined as merely the most

predominant note in each frame [7]. Since long nonvocal sec-

tions negatively influence the execution of the Viterbi alignment

between the audio signal and the lyrics, we need to remove the

interlude sections. Vocal sections are therefore detected by using

the method described in Section II-B. Furthermore, since this

method is based on the harmonic structure of the singing voice,

unvoiced consonants, which do not have harmonic structures,

cannot be separated properly. We try to partially overcome this

Fig. 2. Example of accompaniment sound reduction taken from [6]. (a) A spec-
trogram of polyphonic signals. (b) A spectrogram of segregated signals. (c) A
spectrogram of vocal-only signals.

issue by using the fricative sound detection method described in

Section II-C.

Since the accompaniment sound reduction method is exe-

cuted as a preprocessing of feature extraction for Viterbi align-

ment, it is easy to replace this with other singing voice sepa-

ration or an F0 estimation method [8]. In this paper, we adopt

the PreFEst-based accompaniment sound reduction method be-

cause it was reported that PreFEst achieved higher performance

in F0 estimation experiments of polyphonic singing voices [9].

1) F0 Estimation: We used Goto’s PreFEst [7] to estimate

the F0 of the melody line. PreFEst can estimate the most pre-

dominant F0 in frequency-range-limited sound mixtures. Since

the melody line tends to have the most predominant harmonic

structure in middle- and high-frequency regions, we can esti-

mate the F0 of the melody line by applying PreFEst with ade-

quate frequency-range limitations.

2) Harmonic Structure Extraction: By using the estimated

F0, we then extract the amplitude of the fundamental frequency
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Fig. 3. Hidden Markov model (HMM) for vocal activity detection.

component and harmonic components. For each component, we

allow cent1 error and extract the local maximum amplitude in

the allowed area. The frequency and amplitude of the

th overtone at time can be represented as

(1)

(2)

where denotes the complex spectrum, and denotes

F0 estimated by the PreFEst. In our experiments, we set to 20.

3) Resynthesis: Finally, we use a sinusoidal model to resyn-

thesize the audio signal of the melody by using the extracted

harmonic structure, and . Changes in phase are ap-

proximated using a quadratic function so that the frequency can

change linearly. Changes in amplitude are also approximated

using a linear function.

B. Vocal Activity Detection

We propose a vocal activity detection method that can control

the balance between the hit and correct rejection rates. There is

generally a tradeoff relationship between the hit and correct re-

jection rates, and a proper balance between them depends on the

application. For example, since our system positions the vocal

activity detection method before the Viterbi alignment, the hit

rate is more important than the probability of correct rejection

because we want to detect all the regions that contain vocals. No

previous studies on vocal activity detection [10]–[12] ever tried

to control the balance between the probabilities.

1) Basic Formulation: We introduce a hidden Markov model

(HMM) that transitions back and forth between vocal state, ,

and non-vocal state, , as shown in Fig. 3. Vocal state means

that vocals are present and non-vocal state means that vocals

are absent. Given the feature vectors of input audio signals, the

problem is finding the most likely sequence of vocal and non-

vocal states, :

(3)

where represents an output probability of state , and

represents a state transition probability for the tran-

sition from state to state .

1The cent is a logarithmic scale used for musical intervals in which the octave
is divided into 1200 cents.

The output log probability of each state is approximated with

the following equations:

(4)

(5)

where denotes the probability density function of

the Gaussian mixture model (GMM) with parameter , and

represents a threshold parameter that controls tradoff between

the hit and correct rejection rates. The parameters of the vocal

GMM, , and the nonvocal GMM, , are trained on feature

vectors extracted from vocal sections and nonvocal sections of

the training data set, respectively. We set the number of GMM

mixtures to 64.

2) Calculation of Threshold: The balance of vocal activity

detection is controlled by changing in (4) and (5), but there is

bias in the log likelihoods of the GMMs for each song, and it is

difficult to decide the universal value of . We therefore divide

into a bias correction value, , and an application-dependent

value, :

(6)

The bias correction value, , is obtained from input audio

signals by using Otsu’s method for threshold selection [13]

based on discriminant analysis, and the application-dependent

value, , is set by hand.

We first calculate the difference of log likelihood, , for all

the feature vectors in input audio signals:

(7)

We then calculate the bias correction value, , by using

Otsu’s method. The Otsu’s method assumes that a set of

contains two classes of values and calculates the optimum

threshold that maximizes their inter-class variance. When a

histogram of is denoted as , the inter-class variance

can be written as

(8)

(9)

(10)

(11)

In practice, the threshold, , can take only a finite number

of values since the histogram, , is a discrete function. Thus,

it is possible to calculate for all possible and

obtain the optimum value.

3) Novel Feature Vectors for Vocal Activity Detection:

The vocal activity detection after the accompaniment sound

reduction can be interpreted as a problem of judging whether

the sound source of the given harmonic structure is vocal or

nonvocal. In our previous system [6], we estimated the spectral

envelope of the harmonic structure and evaluate the distance

between it and the spectral envelopes in the training database.
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However, spectral envelopes estimated from high-pitched

sounds by using cepstrum or linear prediction coding (LPC)

analysis are strongly affected by spectral valleys between

adjacent harmonic components. Thus, there are some songs

(especially those sung by female singers) for which the vocal

activity detection method did not work well.

This problem boils down to the fact that a spectral enve-

lope estimated from a harmonic structure is not reliable ex-

cept for the points (peaks) around each harmonic component.

This is because a harmonic structure could correspond to dif-

ferent spectral envelopes: the mapping from a harmonic struc-

ture to its original spectral envelopes is a one-to-many associa-

tion. When we consider this issue using sampling theory, the

harmonic components are points sampled from their original

spectral envelope at the interval of F0 along the frequency axis.

The perfect reconstruction of the spectral envelope from the har-

monic components is therefore difficult in general. Because con-

ventional methods, such as Mel-frequency cepstral coefficient

(MFCC) and LPC, estimate only one possible spectral envelope,

the distance between two sets of the harmonic structure from the

same spectral envelope is sometimes inaccurate. Though several

studies have been proposed that have tried to overcome such in-

stability of cepstrum [14], [15] by interpolating harmonic peaks

or introducing new distance measures, such studies still have

been trying to estimate a spectral envelope from an unreliable

portion of the spectrum.

To overcome this problem, the distance must be calculated

using only the reliable (sampled) points at the harmonic com-

ponents. We focus on the fact that we can directly compare the

power of harmonic components between two sets of the har-

monic structure if their F0s are approximately the same. Our ap-

proach is to use the power of harmonic components directly as

feature vectors and compare the given harmonic structure with

only those in the database that have similar F0 values. This ap-

proach is robust against high-pitched sounds, because the spec-

tral envelope does not need to be estimated. The powers of first

to 20th overtones from the polyphonic audio signals are ex-

tracted and used as a feature vector.

To ensure that comparisons are made only with feature vec-

tors that have similar F0s, we also use the F0 value as a feature in

addition to the power of harmonic components. By using GMMs

to model the feature vectors, we can be sure that each Gaussian

can cover feature vectors that have similar F0s. When we cal-

culate the likelihood of a GMM, the weights of the Gaussians

that have large F0 values are minuscule. Thus, we can calcu-

late the distance only with harmonic structures that have similar

F0 values. There have been studies that used similar features in

the field of sound source recognition [16]. These studies con-

cern instrumental sounds, and it is not derived from an aspect of

spectral envelope estimation.

The absolute value of the power of the harmonic structure

is biased depending on the volume of each song. We therefore

normalize the power of all harmonic components for each song.

The normalized power of the th harmonic component at time

, , is given by

(12)

where represents the original power, is the total number of

frames, and is the number of harmonic components consid-

ered. In this equation, an average power of every frequency bin

of all the frames is subtracted from the original power in a log

domain.

C. Use of Unvoiced Consonants Based on Fricative Detection

The forced alignment algorithm used in automatic speech

recognition (ASR) synchronizes speech signals and texts by

making phoneme networks that consist of all the vowels and

consonants. However, since the accompaniment sound reduc-

tion, which is based on the harmonic structure of the melody,

cannot segregate unvoiced consonants that do not have harmonic

structure, it is difficult for the general forced alignment algo-

rithm to align unvoiced consonants correctly unless we intro-

duce a method for detecting unvoiced consonants from the orig-

inal audio signals. We therefore developed a signal processing

technique for detecting candidate unvoiced fricative sounds (a

type of unvoiced consonant) in the input audio signals. Here,

we focus on the unvoiced fricative sounds because their dura-

tions are generally longer than those of the other unvoiced con-

sonants and because they expose salient frequency components

in the spectrum.

1) Nonexistence Region Detection: It is difficult to accurately

detect the existence of each fricative sound because the acoustic

characteristics of some instruments (cymbals and snare drums,

for example) sometimes resemble those of fricative sounds. If

we take an approach such that we align /SH/ phoneme to frames

if and only if they were detected as fricative regions, detection

errors (no matter if they are false positive or false negative) can

degrade the accuracy significantly in the later forced alignment

step. We therefore take the opposite approach and try to detect

regions in which there are no fricative sounds, i.e., nonexistence

regions. Then, in the forced alignment, fricative consonants are

prohibited from appearing in the nonexistence regions. How-

ever, if the frames including the /SH/ sound are erroneously

judged as the nonexistence region, this kind of error affects the

performance even in this approach; we can ameliorate this influ-

ence by setting a strict threshold and having a fricative detector

to detect fewer regions as nonexistence regions.

2) Fricative Sound Detection: Fig. 4 shows an example

spectrogram depicting non-periodic source components such

as snare drum, fricative, and high-hat cymbal sounds in popular

music. The characteristics of these non-periodic source compo-

nents are depicted as vertical lines or clouds along the frequency

axis in the spectrogram, whereas periodic source components

tend to have horizontal lines. In the frequency spectrum at a

certain time, these vertical and horizontal lines, respectively,

correspond to flat and peaked (pointed) components.

To detect flat components from non-periodic sources, we

need to ignore peak components in the spectrum. We there-

fore use the bottom envelope estimation method proposed by

Kameoka et al. [17]. As shown in Fig. 5, the bottom envelope

is defined as the envelope curve that passes through spectral

valleys. The function class of the bottom envelope is defined as

(13)
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Fig. 4. Example spectrogram depicting snare drum, fricative, and high-hat
cymbal sounds.

Fig. 5. Bottom envelope ���� ���� in a spectrum ����.

where denotes the frequency in Hz, is the

Gaussian function, and represents the weights

of each Gaussian. This function class approximates arbitral

spectral envelopes by using the weighted sum of Gaussian

functions of which the means and variances are fixed. The

means of the Gaussians are set so that they equally align to the

frequency axis, and their variances are set so that the shape of

this function class becomes smooth.

The problem here is to estimate , which determines the en-

velope curve. We therefore estimate the that minimizes the

objective function

(14)

where represents the spectrum at each frame. This objec-

tive is derived by reversing and in the Itakura–Saito

distance. Unlike the Itakura–Saito distance that penalizes posi-

tive errors much more than negative ones and is used to estimate

the top envelope of a spectrum, this objective function penal-

izes negative errors much more than positive ones to estimate

the bottom envelope. From this objective function, we can de-

rive the following iterative equations to obtain :

(15)

(16)

where is the value estimated in the previous iteration. In this

way, the bottom envelope of the spectrum is obtained as

.

Among the various unvoiced consonants, unvoiced fricative

sounds tend to have frequency components concentrated in a

particular frequency band of the spectrum. We therefore detect

the fricative sounds by using the ratio of the power of that band

to the power of most other bands. Since the sampling rate in our

current implementation is 16 kHz, we deal with only the un-

voiced fricative phoneme /SH/ because we found from our ob-

servations that the other unvoiced fricative phonemes tended to

have much power in the frequency region above 8 kHz, which is

the Nyquist frequency of 16-kHz sampling. Since the phoneme

/SH/ has strong power in the frequency region from 6 to 8 kHz,

we define the existence degree of the phoneme /SH/ as follows:

(17)

Regions in which is below a threshold (0.4) are identified

as nonexistence regions, where phoneme /SH/ does not exist.

The threshold 0.4 was determined experimentally. Note that to

avoid any effect from bass drums, we do not use frequency com-

ponents below 1 kHz in the calculation of .

D. Viterbi Alignment

In this section, we describe our method of executing Viterbi

alignment between lyrics and separated signals. We first create

a language model from the given lyrics and then extract feature

vectors from separated vocal signals. Finally, we execute the

Viterbi alignment between them. We also describe our method

of adapting a phone model to the specific singer of the input

audio signals.

1) Lyrics Processing Using the Filler Model: Given the lyrics

corresponding to input audio signals, we create a phoneme net-

work for forced alignment. This network basically does not have

a branch. By using this network as a language model of a speech

recognition system and calculating the most likely path of a se-

quence of the feature vectors extracted from the audio signals

based on the Viterbi search algorighm, the start and end times

of each node of network, which correspond to a phoneme in

the lyrics, can be estimated. Note that nodes in the network

are replaced by the HMMs of corresponding phonemes in the

phoneme model. Thus, we can align the lyrics with the audio

signals. In our system, since we only have the phoneme model

for the Japanese language, English phonemes are substituted

with the most similar Japanese phoneme.

We first convert the lyrics to a sequence of phonemes and then

create a phoneme network by using the following rules:

• convert the boundary of a sentence or phrase into multiple

appearances of short pauses (SPs);

• convert the boundary of a word into one appearance of an

SP.

Fig. 6 shows an example of conversion from lyrics to the lan-

guage model.

Some singers often sing words and phrases not in the actual

lyrics, such as “Yeah” and “La La La,” during interlude sections

and rests between phrases in the lyrics. We found in our prelim-

inary experiments that such inter-phrase vowel utterances re-

duced the accuracy of the system because the system inevitably

aligned other parts of the lyrics to those utterances. This short-

coming can be eliminated by introducing the filler model [18],

[19], which is used in keyword-spotting research.

Fig. 7 is a filler model that we used in this paper. The

five nodes in the figure (a, i, u, e, and o) are Japanese vowel
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Fig. 6. Example of conversion from original lyrics to a phoneme network. Orig-
inal lyrics are converted to a sequence of the phonemes first, then a phoneme
network is constructed from the sequence. Note that sp represents a short pause.
This lyrics was taken from the song No. 100 in RWC-MDB-P-2001.

Fig. 7. Filler model inserted at each phrase boundary in the lyrics.

phonemes. This model is inserted in the middle of two consec-

utive phrases in the phoneme network. For example, in Fig. 6,

the multiple appearance of sp between the 12th phoneme and

13th phoneme (both are /NN/) will be replaced by the filler

model in Fig. 7. If there are utterances that are not written in

the lyrics at that part, vowel nodes of the filler model (a, i, u, e,

and o) appear here and reduce the influence of such utterances.

On the other hand, if there is not such utterance vowel nodes of

the filler model (a, i, u, e, and o) are ignored and the most likely

path connects the two phrases via the /SP/ model.

In our preliminary experiments without using this filler

model, we expected the SPs to represent short nonvocal sec-

tions. However, if the singer sang words not in the lyrics in

nonvocal sections, the SPs, which were originally trained using

nonvocal sections, were not able to represent them. Thus, lyrics

from other parts were incorrectly allocated to these nonvocal

sections. The vowels from the filler model can cover these

inter-phrase utterances.

2) Adaptation of a Phone Model: We adapt a phone model

to the specific singer of input audio signals. As an initial phone

model, we use a monophone model for speech, since creating a

phone model for a singing voice from scratch requires a large an-

notated training database and this type of a database of singing

voices has not yet been developed. Our adaptation method con-

sists of the following three steps:

Step 1) adapt a phone model for clean speech to a clean

singing voice;

Step 2) adapt the phone model for a clean singing voice to the

singing voice separated using the accompaniment

sound reduction method;

Step 3) adapt the phone model for separated speech to the

specific singer of input audio signals by using the

unsupervised adaptation method.

Steps 1 and 2 are carried out preliminarily, and step 3 is carried

out at runtime.

As an adaptation method, we use MLLR [20] and MAP [21],

which are commonly used in speech recognition research. We

manually annotated phoneme labels to the adaptation data for

Fig. 8. Example of phoneme labeling.

TABLE I
EVALUATION DATA SET

supervised adaptation. Fig. 8 shows an example of phoneme

labeling.

3) Alignment: Using the language model created from the

given lyrics, the feature vectors extracted from separated vocal

signals, and the adapted phone model for the specific singers, we

execute the Viterbi alignment (forced alignment). In this align-

ment process, we do not allow any phoneme except /SP/ to ap-

pear in the nonvocal region and do not allow the phoneme /SH/

to appear in the region of fricative sound nonexistence. MFCCs

[22] and derivatives of the MFCCs and power are used as fea-

ture vectors for the Viterbi alignment.

III. EXPERIMENTS

A. Experimental Condition

The performance of our system was evaluated experimen-

tally. As an evaluation data set ten Japanese songs by ten singers

(five male, five female) were used as listed in Table I. The songs

were taken from the “RWC Music Database: Popular Music”

(RWC-MDB-P-2001) [23]. They were largely in Japanese, but

some phrases in their lyrics were in English. In these experi-

ments, English phonemes were approximated by using similar

Japanese phonemes. We conducted a five-fold cross-validation.

We used as the training data for the vocal activity detection

method 19 songs also taken from the RWC-MDB-P-2001, sung

by the 11 singers listed in Table II. These singers differed from

the singers used for evaluation. We applied the accompaniment

sound reduction method to the training data and we set to

1.5.

Table III shows the analysis conditions for the Viterbi align-

ment. As an initial phone model, we used the gender-indepen-

dent monophone model developed by the IPA Japanese Dicta-

tion Free Software Project and Continuous Speech Recognition

Consortium (CSRC) [24]. To convert the lyrics to a sequence of

phonemes, we used Mecab [25], which is a Japanese morpho-

logical analysis system.

The evaluation was performed by using phrase level align-

ment. In these experiments, we defined a phrase as a section

that was delimited in the original lyrics by a space or a line feed.
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TABLE II
TRAINING DATA FOR VOCAL ACTIVITY DETECTION

TABLE III
CONDITIONS FOR ANALYSIS OF VITERBI ALIGNMENT

Fig. 9. Evaluation measure in the experiments on the synchronization of music
and lyrics.

Fig. 10. Experimental results: evaluation of the whole system.

The evaluation measure we used was the ratio of the total length

of the sections labeled correctly at the phrase level to the total

length of a song (Fig. 9).

B. Evaluation of the Whole System

We conducted experiments using a system in which all of

the methods described in this paper were implemented. Fig. 10

shows the results of these experiments.

When we compare the results in Fig. 10 between male and fe-

male singers, we see that the accuracy for the females is lower.

TABLE IV
EXPERIMENTAL RESULTS (%): EVALUATION OF ACCOMPANIMENT

SOUND REDUCTION METHOD

Song number in the RWC-MDB-P-2001.

This is because it is hard to capture the characteristics of voices

with a high F0 [26]. Analyzing the errors in each song, we

found that errors typically occurred at the sections in which the

lyrics were sung in English. Using similar Japanese phonemes

to approximate English phonemes thus seemed to be difficult.

To overcome this problem, we will try to use an English phone

model in combination with a Japanese one.

In addition to the above evaluation, we also conducted an-

other evaluation based on a morpheme label ground truth to see

how well the system performed at the morpheme level. We pre-

pared morpheme label annotations for songs No. 12 and No. 20,

calculated the accuracies using the results of the above exper-

iment. An evaluation measure is the same as that explained in

Fig. 9, except that morphemes were used instead of phrases. The

accuracy for No. 12 was 72.4% and that for No. 20 was 65.3%.

From these results, we can see that our system still achieved

performance above 65%, though there was a certain number of

inevitable decreases.

C. Evaluation of Accompaniment Sound Reduction Method

In our experimental evaluation of the accompaniment sound

reduction, we disabled the vocal activity detection, fricative de-

tection, and filler model and we enabled the three-step adap-

tation. We compared the following two conditions: 1) MFCC

extracted from segregated singing voice using accompaniment

sound reduction method and 2) MFCC extracted directly from

polyphonic music without using accompaniment sound reduc-

tion method. Note that condition 1) in this experiment is the

same as condition 4) in the experiment in Section III-F. We can

see in Table IV that the accompaniment sound reduction im-

proved the accuracy by 4.8 percentage points.

D. Evaluation of Vocal Activity Detection, Fricative Detection,

and Filler Model

The purpose of this experiment was to investigate the separate

effectiveness of the fricative detection, filler model, and vocal

activity detection. We tested our method under five conditions.

1) Baseline: Only the three-step adaptation was enabled.

2) VAD: Only vocal activity detection and the three-step

adaptation were enabled (Section II-B3).

3) Fricative detection: Only fricative sound detection and the

three-step adaptation were enabled (Section II-C).
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TABLE V
EXPERIMENTAL RESULTS (%): EVALUATION OF FRICATIVE DETECTION, FILLER

MODEL AND VOCAL ACTIVITY DETECTION

Song number in RWC-MDB-P-2001.

4) Filler model: Only filler model and the three-step adapta-

tion were enabled (Section II-D1).

5) Proposed: The fricative-sound detection, the filler model,

the vocal-activity detection, and the three-step adaptation

were enabled.

We see in Table V that vocal-activity detection, the fricative

detection, and the filler model increased the average accuracy

by 13.0, 0.7, and 1.0 percentage points, respectively, and that

the highest accuracy, 85.2%, was obtained when all three were

used. The vocal activity detection was the most effective of the

three techniques. Inspection of the system outputs obtained with

the filler model showed that the filler model was effective not

only for utterances not in the actual lyrics, but also for non-

vocal regions that could not be removed by vocal activity de-

tection. Since our evaluation measure was phrase-based, the ef-

fectiveness of fricative detection could not be fully evaluated.

Inspection of the phoneme-level alignment results showed that

phoneme gaps in the middle of phrases were shorter than they

were without fricative detection. We plan to develop a measure

for evaluating phoneme-level alignment.

E. Evaluation of Feature Vector for Vocal Activity Detection

In our experimental evaluation of the feature vectors for vocal

activity detection, we disabled the fricative detection and filler

model and enabled the three-step adaptation. We compared the

effectiveness of 1) the novel feature vector based on the power

of harmonic structure described in Section II-B3 with that of the

LPMCC-based feature vector proposed in [6]. We also compare

receiver operating characteristic (ROC) curves of these two con-

ditions. Note that condition 2) in this experiment is same as the

condition 3) in the experiment in Section III-D.

We can see in Table VI that the accuracy obtained with the

novel feature vector proposed in this paper was 4.0 percentage

points better than that obtained with the LPMCC-based feature

vector.

Fig. 11 shows the ROC curves of our vocal activity detec-

tion system. By changing the application-dependent threshold,

, to the various values, various pairs of the hit rates and

false alarm rates are plotted. The vertical and horizontal axes

represents the hit rate and false alarm rate, respectively. Note

that these rates are calculated by using all the ten songs. Also

from this figure, we can see that our new feature vector improves

the accuracy of vocal activity detection.

TABLE VI
EXPERIMENTAL RESULTS (%): EVALUATION OF ACCOMPANIMENT

SOUND REDUCTION METHOD

Song number in RWC-MDB-P-2001.

Fig. 11. Comparison of ROC curves.

F. Evaluation of Adaptation Method

In our experimental evaluation of the effectiveness of the

adaptation method, we disabled the vocal activity detection,

fricative detection, and filler model and we conducted experi-

ments under the following four conditions.

1) No adaptation: We did not execute phone model adapta-

tion.

2) One-step adaptation: We adapted a phone model for clean

speech directly to separated vocal signals. We did not exe-

cute an unsupervised adaptation to input audio signals.

3) Two-step adaptation: First, we adapted a phone model for

clean speech to clean vocal signals, and then we adapted

the phone model to separated vocal signals. We did not

execute an unsupervised adaptation to input audio signals.

4) Three-step adaptation (proposed): First, we adapted a

phone model for clean speech to clean vocal signals, then

we adapted the phone model to separated vocal signals, and

finally we adapted the phone model to the specific singer

of input audio signals.

We can see in Table VII that our adaptation method was effective

for all ten songs.

IV. LYRICSYNCHRONIZER: MUSIC PLAYBACK INTERFACE

WITH SYNCHRONIZED-LYRICS-DISPLAY

Using our method for synchronizing music and lyrics, we de-

veloped a music playback interface called LyricSynchronizer.

This interface can display the lyrics of the song synchronized



1260 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 6, OCTOBER 2011

TABLE VII
EXPERIMENTAL RESULTS (%): EVALUATION OF ADAPTATION METHOD

A song number of the RWC-MDB-P-2001.

Fig. 12. Screenshot of our music playback interface.

with the music playback. It also has a function that enables users

to jump to a phrase of interest by clicking on the lyrics. Fig. 12

shows a screen shot of the interface.

The diffusion of the personal computer and the portable music

player has increased our opportunities to listen to songs while

using devices that have a display. It might be natural to consider

using that display to enrich users’ experience in music appreci-

ation. Most devices with a display show bibliographic informa-

tion such as the name of the song and the performing artist, and

music players on personal computers sometimes have visualizer

functions that display animations created from the spectrum of

the music.

Focusing on lyrics as information that should be displayed,

we developed a music playback interface that has the following

two functions: displaying-synchronized-lyrics function, and

jump-by-clicking-the-lyrics function. The former function

displays the current position of the lyrics as shown in Fig. 12.

Although this function resembles the lyrics display for karaoke,

manually labeled temporal information is required in the lyrics

display in karaoke. By the latter function, users can change

the current playback position by clicking a phrase in the lyrics

that are displayed. This function is useful when users want to

listen only to sections of interest to them. This function can

be considered as an implementation of active music listening

interfaces [27].

V. CONCLUSION

We have described a system for automatically synchronizing

musical audio signals and their corresponding lyrics. For ac-

curate synchronization we segregate the singing voice and the

accompaniment sound. We also developed a robust phoneme

network using a filler model and developed methods for de-

tecting vocal activity and fricative sound detection for adapting

a phoneme model to the separated vocal signals of a specific

singer. Experimental results showed that our system can accu-

rately synchronize musical audio signals and their lyrics.

In our vocal activity detection method, the tradeoff between

hit rate and correct rejection rate can be adjusted by changing

a parameter. Although the balance between hit rate and correct

rejection rate differs depending on the application, little atten-

tion has been given to this tradeoff in past research. Our vocal

activity detection method makes it possible to adjust the tradeoff

based on Otsu’s method [13]. The novel feature vectors based

on the F0 and the power of harmonic components were robust

to high-pitched sounds because a spectral envelope did not need

to be estimated. The underlying idea of the fricative detection

(i.e., the detection of nonexistence regions) is a novel one. Ex-

perimental evaluation showed that synchronization performance

was improved by integrating this information, even if it was dif-

ficult to accurately detect each fricative sound. Although the

filler model is a simple idea, it worked very efficiently because

it did not allow a phoneme in the lyrics to be skipped and it

appeared only when it was needed. We proposed a method for

adapting a phone model for speech to separated vocal signals.

This method was useful for music and lyric alignment as well

as for recognizing lyrics in polyphonic music.

We plan to incorporate higher-level information such as song

structures and thereby achieve more advanced synchronization

between music and lyrics. We also plan to expand our music

playback interface, LyricSynchronizer, by incorporating other

element of music besides lyrics and develop more advanced ac-

tive music listening interfaces that can enhance music listening

experiences of users.
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