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Editorial summary: 

The Archaea metalloproteinase LysargiNase increases proteome coverage, identifies more C-

terminal peptides from proteins and improves methylated peptide identification.  
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To improve proteome coverage and protein C-termini identification we characterized the 

Methanosarcina acetivorans thermophilic proteinase LysargiNase, which cleaves before 

lysine and arginine up to 55°C. Unlike trypsin, LysargiNase-generated peptides have N-

terminal lysine or arginine residues and fragment with b-ion dominated spectra. This 

improves protein C-terminal peptide identification and several arginine-rich phosphosite 

assignments. Uniquely, cleavage also occurs at methylated or dimethylated lysine and 

arginine, facilitating detection of these epigenetic modifications. 

 

Proteomic identification of proteins and posttranslational modifications requires proteolytic 

digestion of proteins into peptides for fragmentation by tandem mass spectrometry and 

identification through spectra-to-sequence matching. The cleavage specificity of the digestion 

enzyme determines peptide length, mass to charge ratio, and sequence and charge position. 

Trypsin is the most commonly used digestion enzyme in proteomics1. Cleaving after arginine 

and lysine, trypsin generates peptides having a C-terminal positively charged residue in addition 

to an N-terminal positive charge from the -amine. This charge distribution results in sequence-

informative collision-induced dissociation (CID) fragmentation spectra dominated by y-type 

ions1,2. However, not all peptides are identified following trypsin digestion: Protein C-terminal 

peptides inherently lack basic residues and are therefore rarely identified without selective 

enrichment3,4 leading to loss of biologically important information on protein structure and 

function5. In addition, cleavage after basic residues in the most common phosphosites, e.g. (R 

or K)n(X)(S or T), can result in ambiguous phosphosite localization. Tryptic cleavage is also 

blocked at modified (e.g. methylated) basic residues and such missed cleavages increase 

peptide length and charge resulting in complex fragmentation spectra that hinders identification 

of the peptide and methylation sites2. Lysine and arginine methylation is an important epigenetic 

and regulatory mechanism for protein-protein interactions and protein function in transcription, 

DNA repair, and signaling6. Hence, new approaches are needed to overcome the problems in 

detecting C-terminal peptides, protein methylation and certain phosphosites. 

 

 New proteases to complement trypsin are much sought after for identification of alternate 

splice forms and the 3,844 “missing” proteins that lack proteomic evidence for their occurrence 

in human tissues7. One such protease is LysN, which selectively hydrolyses peptidyl-lysine 

bonds and so leaves a lysine at the peptide N-terminus. This results in strong b-ion series 

during CID2 and c-ion series during electron transfer dissociation (ETD) fragmentation, enabling 

de novo ladder sequencing of peptides8. LysN also identifies peptides missed in tryptic digests9, 
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allows for enrichment of posttranslational modified peptides based on peptide charge10, and 

cuts before methylated lysines11. However, these benefits are restricted to those LysN-

generated peptides not containing internal arginines or peptides without lysine miscleavage, 

which is reported to be 13% (ref. 12). Moreover, only 71% of all LysN cleavage sites contain an 

N-terminal lysine pointing to poor specificity compared with trypsin12. Thus, we sought a 

protease to address these needs and report the characterization of LysargiNase, a 

metalloproteinase from the Archaea species Methanosarcina acetivorans. We changed the 

original name Ulilysin13 to reflect its exquisite N-terminal selectivity for lysine in addition to its 

previously described peptidyl-arginine specificity13,14. LysargiNase mirrors trypsin specificity and 

overcomes the limitations of LysN in controlled N-terminal placement of basic residues, with the 

added advantage of also cleaving N-terminal to methylated forms of arginine and lysine so 

generating shorter, less complex peptides. 

 

 We compared LysargiNase with trypsin digests of human breast cancer MDA-MB-231 cell 

proteome using high-resolution MS/MS. We identified cleaved peptides in a stringent and 

unbiased manner using non-specific database searches, i.e. spectra-to-sequence matching was 

not restricted by prior information on preferred cleavage sites. 1,096 unique peptides from 

LysargiNase-digests and 1,789 unique tryptic peptides were identified (n=4) (Supplementary 

Tables 1). By extraction of the sequence surrounding the peptide termini we derived 1,917 and 

3,235 unique LysargiNase and trypsin cleavage sites, respectively. LysargiNase showed 

exquisite sequence specificity: 93% of LysargiNase cleavage sites were before arginine (40%), 

as previously reported13,14, but importantly also before lysine (52%) (Fig. 1a). In contrast, 91% 

of tryptic cleavages were after arginine (39%) or lysine (52%). Thus, LysargiNase mirrors trypsin 

cleavage specificity. The number of peptide identifications was improved when we applied the 

new specificity information to restrict the search space during spectrum-to-sequence 

assignment with 2,956 LysargiNase peptides (Supplementary Table 2) and 4,203 tryptic 

peptides identified (Supplementary Table 3). Similar to trypsin15, basic residues in missed 

LysargiNase cleavage sites were frequently preceded or followed by proline (Supplementary 

Fig. 1). LysargiNase fidelity also compared favorably to the lysine content (71%) at cleavage 

sites reported for LysN12. However, as LysN peptides frequently contain internal arginine or 

miscleaved lysines experimentally observed LysN peptides are longer on average, 18.0 

residues in length12, versus 14.2 residues for LysargiNase. 

 

 Confirming the applicability of LysargiNase for proteomics we found that LysargiNase was 
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active in a variety of conditions and solvents commonly used in sample preparation and at 

dilutions down to 1:100 enzyme:proteome ratios (Supplementary Fig. 2). We used 1:50 since it 

represents a similar molar ratio as 1:100 trypsin, enabling a fair comparison. LysargiNase 

showed notable thermophilicity at 55°C retaining 100% activity compared to 25°C, which aids 

digestion by maintaining denaturation (Supplementary Fig. 2f). LysargiNase exhibited tri-, di- 

and moderate carboxypeptidase activity at lysine or arginine residues using synthetic peptides 

(Supplementary Fig. 3). Yet, when trypsin-digested BSA was used as substrate only 2 of 10 

peptides were processed at their carboxy terminus and no amino- or diaminopeptidase activity 

was observed (Supplementary Fig. 4). LysargiNase proved suitable for in gel digestion of β-

casein and bovine serum albumin (Supplementary Fig. 5). 

 

 LysargiNase aided peptide identification and hence proteome coverage by several means. 

Compared with trypsin, very different LysargiNase-fragment ion sequences retain the basic 

residue after CID ion trap fragmentation and so exhibited strong b-ion series (Fig. 1b, 

Supplementary Fig.6a). Corresponding spectra of tryptic peptides identified with identical 

cleavage site basic residues were dominated by y-type fragment ions (Fig. 1b, Supplementary 

Fig. 7). This led to different coverage of the precursor peptide sequence and resulted in 

different search engine scores. Secondly, corresponding peptides can differ where the cleavage 

site basic residue is different (Supplementary Fig. 8), which can also alter peptide ionization 

and fragmentation1. However, fragment ions of the y-series are more stable than b-ions16, 

resulting in more tryptic peptide identifications than from LysargiNase (Supplementary Fig. 6b). 

Indeed, we observed extensive a-ion fragments in a LysargiNase proteome digest analyzed by 

beam-type CID fragmentation (Supplementary Fig. 9a). Including these a-ions in Comet 

XCORR scoring significantly increased quality (P<0.0001), but not the number of LysargiNase 

peptide identifications (Supplementary Fig. 9b). Hence, complementary use of both proteases 

increased proteome coverage—1,347 unique peptide sequences were identified in LysargiNase 

digests that were not identified following trypsin cleavage (Supplementary Fig. 6b). A 

considerable overlap in peptide identifications resulted from the complementary fragmentation 

spectra (n=1,558), increasing confidence in identification of these sequences. Finally, 

LysargiNase peptides included significantly more protein C-terminal peptides in four 

independent experiments by now having a lysine or arginine at their N-terminus compared with 

those generated by trypsin, where all basic residues are lost (P<0.001, Fig. 1d, Supplementary 

Fig. 10, Supplementary Tables 4 and 5). 
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 We TiO2-enriched SILAC-labeled phosphopeptides from MDA-MB-231 cells. The identified 

phosphosites were stringently filtered for those with a MaxQuant localization site probability 

>0.75 (ref. 17) and phosphorylation motifs were determined using MotifX18. Compared with 

trypsin, LysargiNase phosphopeptides showed a higher representation of RxS and RxxSP sites 

and phosphorylation motifs containing proline (Fig. 1e and Supplementary Figures 11 and 12). 

Thus, LysargiNase benefits detection of sites phosphorylated by certain kinases e.g. protein 

kinase C, ERK and CDK5, which prefer RxS and RxxSP motifs17. After 5 and 20 min stimulation 

with 12-O-tetradecanoylphorbol-13-acetate, phosphopeptides with these sites accumulated 

(Supplementary Fig. 11) in agreement with stimulation of the protein kinase C family19. 

 

 We verified the LysargiNase cleavage specificity by PICS (proteomic identification of 

protease cleavage sites), which determines cleavage sites after incubation with database-

searchable proteome-derived peptide libraries generated by chymotrypsin (Fig. 2a) and GluC- 

(Fig. 2b) digestion and subsequent dimethylation of lysine -amines20. The dimethyl-lysine 

modification restricted trypsin cleavage to arginine residues as reported20, whereas LysargiNase 

also cleaved before the dimethylated lysines. Using MALDI-TOF-MS we verified this flexible 

specificity by demonstrating cleavage of synthetic peptide substrates containing dimethylated 

lysine, but not acetylated lysine (Fig. 2c). Further confirmation came from LysargiNase 

digestion of dimethylated E. coli proteome (n=2) in which 49% and 43%, respectively, of the 

beam type CID-identified peptides were cleaved before dimethylated lysine. In comparison, only 

5% and 6% of tryptic peptides had a C-terminal dimethylated lysine (Supplementary Table 6). 

In MDA-MD-231 cell proteomes we also identified natural mono-methylated (Supplementary 

Fig. 13) and dimethylated (Supplementary Fig. 14) N-terminal lysines following LysargiNase 

digestion. Thus, LysargiNase accepts unmodified, mono-methylated and dimethylated lysine at 

P1’ as shown in the structural model (Supplementary Fig. 15), but kinetically prefers 

unmodified lysine. 

 

 This unusual tolerance of methylated lysines is noteworthy as it is challenging to identify such 

peptides due to the presence of highly charged and often long tryptic peptides arising from 

missed cleavages6. Therefore, we posited that LysargiNase would also cut at methylated 

arginine. We found that LysargiNase cleaved mono-methylated and dimethylated arginines in 

MDA-MD-231 proteomes (Supplementary Figures 13 and 14). This was further characterized 

using synthetic peptides containing mono-methylated and asymmetric or symmetric 

dimethylated arginine (Fig. 2d), whereas trypsin cut essentially only after unmodified arginine. 
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Moreover, we observed a significantly higher number of peptides containing a methylated 

(P<0.05) or dimethylated (P<0.001) arginine or lysine in the LysargiNase-digested MDA-MD-

231 proteome as compared to trypsin (Supplementary Fig. 15b). Overall, the thermophilic 

LysargiNase is a powerful complement to trypsin in proteomics. 

 

 

METHODS 

Methods and any associated references are available in the online version of the paper at 

http://www.nature.com/naturemethods/. 

Note: Supplementary information is available on the Nature Methods website. 

Accession codes. The mass spectrometry raw data and associated peptide identification 

details are deposited in ProteomeXchange with the dataset identifiers <PXD001113, 

PXD001114, PXD001121, PXD001122, PXD001378, and PXD001379>. 

 

ACKNOWLEDGEMENTS 

We thank N. Stoynov and J. Rogalski for mass spectrometry data acquisition, N. Scott and A. 

Frankel (both University of British Columbia) for stimulating discussions and providing the R1 

peptides. We thank G. Butler for valuable editorial input. The German Academic Exchange 

Service (DAAD) and the Michael Smith Foundation for Health Research (MSFHR) supported 

P.F.H., P.F.L. was supported by	the Alexander von Humboldt Foundation, the Breast Cancer 

Society of Canada and the MSFHR, L.D.R. was supported by the Canadian Institutes for Health 

Research (CIHR) and the MSFHR, and U.E. was supported by the MSFHR. This work was 

supported by a Canada Research Chair in Metalloproteinase Proteomics and Systems Biology 

(C.M.O.), a grant from the CIHR as well as with an Infrastructure Grant from MSFHR and the 

Canada Foundations for Innovation (C.M.O.). Further support was provided by the European 

Union FP7 program, the Consolider Program of the Spanish Ministry of Science and 

Technology and the State Plan for Research in Science, Technology and Innovation of the 

Spanish Ministry of Economy and Competitiveness (F.X.G.-R.). 

 

AUTHOR CONTRIBUTIONS 

P.F.H. and C.M.O. conceived the experiments. T.G. and F.X.G.-R. produced the recombinant 

LysargiNase and structural models, P.F.H. performed all shotgun and PICS analyses, P.F.H. 

and L.D.R. performed the phosphosite experiments, N.S. and U.E. performed in-gel digests, 



 7

U.E. performed exopeptidase experiments. O.K. provided access to a QExactive instrument and 

performed mass spectrometer analysis of phosphopeptides, P.F.H., P.F.L., L.D.R., N.S. and 

C.M.O. analyzed the data, P.F.H., P.F.L. and C.M.O. designed the figures, L.D.R., N.S. and 

U.E. contributed to supplementary figures, P.F.H. and C.M.O. wrote the paper, and all authors 

edited the manuscript. C.M.O. supervised the project and provided grant support. 

 

COMPETING FINANCIAL INTERESTS 

The authors declare no competing financial interests. 

 

REFERENCES 

1. Tabb, D. L., Huang, Y., Wysocki, V. H. & Yates, J. R. Anal. Chem. 76, 1243–1248 (2004). 
2. Hohmann, L. et al. J. Proteome Res. 8, 1415–1422 (2009). 
3. Schilling, O., Barré, O., Huesgen, P. F. & Overall, C. M. Nat. Methods 7, 508–511 (2010). 
4. Van Damme, P. et al. Nat. Methods 7, 512–515 (2010). 
5. Gomis-Rüth, F. X. Crit. Rev. Biochem. Mol. Biol. 43, 319–345 (2008). 
6. Snijders, A. P. L., Hung, M.-L., Wilson, S. A. & Dickman, M. J. J Am. Soc. Mass Spectrom. 

21, 88–96 (2010). 
7. Lange, P. F., Huesgen, P. F., Nguyen, K. & Overall, C. M. J. Proteome Res. 13, 2028–2044 

(2014). 
8. Taouatas, N., Drugan, M. M., Heck, A. J. R. & Mohammed, S. Nat. Methods 5, 405–407 

(2008). 
9. Gauci, S. et al. Anal. Chem. 81, 4493–4501 (2009). 
10. Taouatas, N. et al. Mol. Cell. Proteomics 8, 190–200 (2009). 
11. Taouatas, N., Heck, A. J. R. & Mohammed, S. J. Proteome Res. 9, 4282–4288 (2010). 
12. Raijmakers, R., Neerincx, P., Mohammed, S. & Heck, A. J. R. Chem. Commun. 46, 8827–

8829 (2010). 
13. Tallant, C., Garcia-Castellanos, R., Seco, J., Baumann, U. & Gomis-Ruth, F. X. J. Biol. 

Chem. 281, 17920–17928 (2006). 
14. Tallant, C. et al. Biological Chemistry 388, 1243–1253 (2007). 
15. Vandermarliere, E., Mueller, M. & Martens, L. Mass Spectrom. Rev. 32, 453–465 (2013). 
16. Waldera-Lupa, D. M., Stefanski, A., Meyer, H. E. & Stühler, K. Biochim. Biophys. Acta 

1834, 2843–2848 (2013). 
17. Rogers, L. D., Brown, N. F., Fang, Y., Pelech, S. & Foster, L. J. Sci. Signaling 4, rs9–rs9 

(2011). 
18. Schwartz, D. & Gygi, S. P. Nat. Biotechnol. 23, 1391–1398 (2005). 
19. Mochly-Rosen, D., Das, K. & Grimes, K. V. Nat. Rev. Drug Discov. 11, 937–957 (2012). 
20. Schilling, O. & Overall, C. M. Nat. Biotechnol. 26, 685–694 (2008). 

 

Figure 1 |LysargiNase cleavage specificity and application in shotgun and phosphoproteomics. 

(a) Frequency distribution plots of cleavage sites identified by ion trap CID from human 

proteomes (n = 4) digested with LysargiNase (n = 1,917) and trypsin (n = 3,235). .Sequences 

were aligned at cleavage sites between P1 and P1’ and normalized to the natural human amino 

acid abundances. (b) Exemplary spectra of the peptide KAAIDWFDG (precursor [M+2H]2+ 
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511.7507 m/z) identified in a LysargiNase digested proteome and the corresponding peptide 

AAIDWFDGK (precursor [M+2H]2+ 511.7507 m/z) from a tryptic digest. (c) Sequence coverage 

by b-type and y-type fragment ions observed in 8,463 ion trap CID peptide spectra matches for 

trypsin and 5,474 for LysargiNase (FDR < 0.01). The centerlines show the medians, box limits 

indicate the 25th and 75th percentiles, whiskers extend to the 5th and 95th percentiles, and 

outliers are represented by dots. (d) Protein C- and N-terminal as a proportion of all peptides 

identified by shotgun proteomics after trypsin (white) or LysargiNase (grey) cleavage of 

proteomes (n = 4). (e) Phosphorylation motifs in trypsin and LysargiNase-digested proteomes 

identified by motif-x, number and proportion of matching high confidence phosphopeptides. 

having a localization probability > 0.75 identified by MaxQuant at an FDR < 0.01.. Phosphosites 

matching selected kinase specificity as extracted from the human protein reference database 

a43 shown as heatmaps. Significance of differences was tested using the two-tailed Student’s t-

test (*P < 0.05, **P < 0.01, ***P < 0.001). 

  

Figure 2 |LysargiNase cleavage at methylated and dimethylated Arginine and Lysine. (a) 

Frequency distribution plots of LysargiNase (n = 126) and trypsin (n = 54) cleavage sites 

identified in chymotrypsin-generated E. coli proteome peptide libraries by PICS. K* designates 

dimethylated lysine. (b) LysargiNase sites (n = 316) and trypsin cleavage sites (n = 190) 

identified from E. coli GluC libraries by PICS. Sequences were aligned at cleavage sites 

between P1 and P1’ and normalized to the natural E. coli amino acid abundances. (c) MALDI-

TOF MS LysargiNase cleavage assays of RSGTLTYEAV↓KQTTD: peptide K1 (unmodified 

lysine and N-terminus, theoretical [M+H]+ 1,669.83 m/z), peptide K1 with dimethylated lysine 

and N-terminus (K1-dm, [M+H]+ 1,725.89 m/z), and peptide K1 with acetylated lysine and N-

terminus (K1-ac, [M+H]+ 1,753.85 m/z). The N-terminal LysargiNase cleavage products are 

RSGTLTYEAV (unmodified K1, [M+H]+ 1,096.56 m/z; K1-dm, [M+H]+ 1,124.59 m/z; and K1-ac, 

[M+H]+ 1,138.59 m/z). The C-terminal cleavage product KQTTD is not observed. (d) MALDI-

TOF MS cleavage assays of WGGYS↓RGGYGGW by LysargiNase and WGGYSR↓GGYGGW 

by trypsin: peptide R1 ([M+H]+ 1,302.53 m/z), peptide R1 with mono-methylated arginine (R1-

MMA, [M+H]+ 1,316.53), peptide R1 with asymmetric arginine dimethylation (R1-aDMA, [M+H]+ 

1,330.56), and peptide R1 with symmetric arginine dimethylation (R1-sDMA, [M+H]+ 1,330.56). 

C-terminal LysargiNase cleavage products are RGGYGGW (R1, [M+H]+ 752.34; R1-MMA, 

[M+H]+ 766.36 m/z; R1-aDMA and R1-sDMA, [M+H]+ 780.37) and N-terminal tryptic cleavage 

products are WGGYSR (R1, [M+H]+ 725.33; R1-MMA, [M+H]+ 739.35 m/z; R1-aDMA and R1-

sDMA, [M+H]+ 753.36). The corresponding N-terminal LysargiNase cleavage product WGGYS 
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and the C-terminal tryptic fragment GGYGGW were not detected. For each peptide, overlaid 

MALDI-TOF MS spectra show control reactions (grey curve; bottom layer), LysargiNase digest 

(orange; top layer) and tryptic digest (light blue; middle layer). Substrate ion peak m/z is 

indicated in grey, product ion peaks in orange and light blue for cleavage by LysargiNase and 

trypsin, respectively. Spectra are normalized to the peak intensity of the most intense ion peak. 

 

ONLINE METHODS 

LysargiNase purification and activation. Wild-type LysargiNase (alias ulilysin) from 

Methanosarcina acetivorans was expressed and purified as the zymogen proform as described 

for the C269A mutant13. Aliquots of proLysargiNase were activated by stepwise addition 10 mM 

CaCl2 buffered in 50 mM HEPES, pH 7.5 and incubated for 12 to 16 h at 20 °C. 

 

Characterization of LysargiNase activity. LysargiNase activity was assayed with resorufin-

labeled casein (Universal Protease Substrate, UPS) at an enzyme: substrate ratio of 1:400 in 50 

mM HEPES, 10 mM CaCl2, pH 7.5, with varying concentrations of chemicals and solvents 

commonly used in proteomics added as indicated (Figures 1 and 2). Assays were performed 

for 30 min at 37 °C or at the temperatures shown in the figure and stopped by addition of 5% 

TCA, followed by neutralization with 1.5 M Tris-HCl, pH 9.0. Fluorescence was measured using 

an excitation wavelength 544 nm and emission wavelength 590 nm on a fluorescence 

microplate reader (Molecular Devices fmax). These assay conditions were designed to generate 

less than 50% of the maximal fluorescence in the control reactions without added chemicals 

(data not shown) so as to quantify the effect of the different conditions. For proteome digestion 

efficiency assays, human MDA-MB-231 cell proteome was digested with LysargiNase 

(enzyme:substrate ratio 1:100) at 37 °C, 18 h in 50 mM HEPES,10 mM CaCl2, pH 7.5, and the 

chemicals as indicated in the figure. Digestion efficiency was visualized by 12% SDS-PAGE and 

Coomassie brilliant blue R250 staining. 

 

MALDI-TOF based exopeptidase activity assay. Synthetic peptides were dissolved and 

diluted 1:100 in HPLC grade water to a final concentration of 10 ng/μl. A tryptic BSA library was 

prepared by incubating 100 μg of BSA (Sigma) with 1.0 μg of Trypsin Gold (Promega) in 50 μl of 

10 mM HEPES, 10 mM CaCl2, pH 7.5, 37 °C. The digestion was stopped before completion 

after 2 h by adding the serine protease inhibitor AEBSF (Sigma) to a final concentration of 1.0 

mM. LysargiNase was incubated with synthetic peptides (10 ng) or 1 μg of the tryptic BSA 

mixture in 10 mM HEPES, 10 mM CaCl2, pH 7.5 for 18 h at 37 °C. Reactions were stopped by 
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adding trifluoroacetic acid (TFA) to a final concentration of 0.1%. One microliter of sample was 

spotted in duplicate on a MALDI target plate and mixed with the equal volume of alpha-cyano-4-

hydroxycinnamic acid  (CHCA) (5 mg/ml in 70% acetonitrile and 0.1% TFA). Samples were 

desalted on-plate by two washes with 1.0 μl of ice cold 0.1% TFA. Samples were analyzed 

using a Voyager-DE STR MALDI-TOF mass spectrometer (Applied Biosystems). Baseline 

reduction and noise removal were performed using Data Explorer™ version 4.5. 

 

In vitro assays with synthetic peptide substrates. To test cleavage at modified lysine 

residues, synthetic peptide K1 (sequence RSGTLTYEAVKQTTD, obtained from Genescript) 

was modified by reductive dimethylation using isotopically light formaldehyde and sodium 

cyanoborohydride21 or acetylated using NHS-activated acetate (Pierce). Unmodified or modified 

K1 peptides were incubated with LysargiNase or trypsin at a molar ratio of 1:100 in 50 mM 

HEPES, 5 mM CaCl2 for 3h at 37°C. Cleavage at modified arginine residues was tested with 

peptide R1 (sequence WGGYSRGGYGGW), obtained with unmodified, monomethylated, 

asymmetric dimethylated or symmetric dimethylated arginine, was incubated with LysargiNase 

or trypsin at a molar ratio of 1:50 in 50 mM HEPES, 5 mM CaCl2, pH 7.5 for 16 h at 37 °C. All 

peptide cleavage reactions were terminated dilution with 25 x excess of 5 mg/ml CHCA 

dissolved in 80% ACN, 0.1% TFA. Cleavage assays with synthetic peptide substrates were 

spotted on a MALDI target (1 μl of reaction mixture in 5 mg/ml CHCA in 80% ACN, 0.1% TFA), 

air-dried and analyzed using a 4700 series MALDI-TOF/TOF mass spectrometer (Applied 

Biosystems) in positive ion reflector mode. 

 

Modeling of protein structure. Structural models of the LysargiNase are based on the 

experimental crystal structure of the enzyme with an arginine-valine dipeptide occupying the S1’ 

and S1’ pockets (Protein Data Bank access code 2CKI)13. Models were generated using the 

UCSF Chimera software suite22 with LysargiNase displayed in standard orientation23. 

 

Cell culture and proteome preparation. For shotgun experiments, MDA-MB-231 cells (ATCC), 

previously tested for mycoplasma contaminations, were cultured in DMEM (Gibco) 

supplemented with 10% Cosmic Calf Serum, 10,000 U/ml penicillin G and 100 µg/ml 

streptomycin and non-essential amino acids (Gibco). Cells were detached using Versene and 

gentle scraping, collected by centrifugation and lysed in 100 mM HEPES, 150 mM NaCl, 5 mM 

EDTA, 5 mM EDTA, pH 7.5 supplemented with protease inhibitors (Complete Protease 

Inhibitors, Roche) and phosphatase inhibitors (PhosStop, Roche). Protein concentrations were 
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determined using the BioRad protein assay (BioRad). For the 12-O-tetradecanoylphorbol-13-

acetate stimulation experiments, MDA-MB-231 cells were SILAC labeled with L-arginine (21 

mg/liter) and L-lysine (36.5 mg/liter) for light-labeled (Arg0, Lys0) cells (Sigma-Aldrich), L-

arginine-13C6 (21.75 mg/liter) and L-lysine-D4 (37.5 mg/liter) for medium-labeled (Arg6, Lys4) 

cells, L-arginine-13C6
15N4  (22.25 mg/liter) and L-lysine-13C6

15N2 (38.5 mg/liter) or heavy-labeled 

(Arg10, Lys8) cells (Cambridge Isotope Laboratories) as previously described for HeLa cells17. 

Labeled cells were serum starved for 16 h (six 15 cm dishes per condition; 95% confluent cells) 

before stimulation. Light-labeled cells were treated with 0.1% DMSO in serum-free medium for 0 

min (replicates 1 and 2) or 5 min (replicates 3 and 4) and medium- and heavy- labeled 

stimulated with 200 ng/ml 12-O-tetradecanoylphorbol-13-acetate, 0.1% DMSO in serum-free 

medium for 5 min and 20 min, respectively. 

 

E. coli proteome preparation and digestion. E. coli strain K12 was grown in LB broth before 

harvesting by centrifugation. Cells were washed with twice with 50 mM HEPES, pH 7.5 before 

snap freezing in liquid nitrogen. Cells were lysed by thawing in 50 mM HEPES with added 

protease inhibitor cocktail (100 μM PMSF, 1 μM 1,10-Phenantroline, 1 μM E-64, 1 μM pepstatin), 

pH 7.5, followed by sonication and centrifugation to remove cell debris. The soluble E. coli 

proteome was reduced and denatured in 2 M Guanidine hydrochloride and 1 mM TCEP (60 min, 

60 °C), followed by alkylation with 5 mM iodoacetamide (45 min, 60 °C, dark). Two aliquots of 

the E. coli proteome were further modified by reductive dimethylation with 25 mM sodium 

cyanoborohydride and 25 mM light formaldehyde24. Both modified and unmodified E. coli 

proteomes were digested with LysargiNase and trypsin in 50 mM HEPES, 10 mM CaCl2, pH 7.5 

at an enzyme:proteome ratio of 1:100 (w/w), 37 °C, 18 h. 

 

Shotgun proteome preparation. Generally, proteome aliquots of approximately 1 mg were 

denatured by addition of 3.5 M guanidinium-HCl, 10 mM DTT (30 min, 65 °C) and alkylated 

using 50 mM iodoacetamide (30 min, 20 °C, in the dark) and purified by chloroform/methanol 

precipitation25. For shotgun proteomics experiments, precipitated proteins were dissolved in 50 

mM NaOH, immediately diluted 10-fold and neutralized by addition of water and buffer to a final 

concentration of 50 mM HEPES, 10 mM CaCl2, pH 7.5. Proteins were digested with 

LysargiNase (proteome:enzyme ratio 50:1 w/w) or trypsin gold (Promega, 100:1 w/w) at 37 °C 

for 16 h. Note that this corresponds to an approximately equal mole enzyme/substrate ratio 

since the molecular mass of pro-LysargiNase (39 kDa) is almost twice that of trypsin (23.4 kDa). 

Digests were clarified by centrifugation, and an aliquot of 20 μg digested protein desalted using 
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C18 STAGE tips26. 

 

Phosphopeptide enrichment. For phosphopeptide analysis, protein pellets were dissolved in 8 

M urea, 2 M thioruea to avoid loss of phosphorylation at high pH, diluted 5-fold with 50 mM 

HEPES, 10 mM CaCl2, pH 7.5 and digested with LysargiNase (50:1 w/w) or trypsin gold 

(Promega, 100:1 w/w) for 16 h at 30 °C. Digests were clarified by centrifugation, peptides 

acidified and desalted with a C18 cartridge (SepPak, Waters). Phosphopeptides were enriched 

from four independent unstimulated MDA-MB-231 cell proteomes and from cell proteomes of 

four independent 12-O-tetradecanoylphorbol-13-acetate stimulation experiments at 5 min and 

20 min. At each point, two replicates were enriched from two independent MDA-MB-231 cell 

proteomes using custom made TiO2 tips as described17 and two replicates were enriched using 

commercial TiO2 phosphopeptide enrichment kit (Sigma). All peptide samples were desalted 

using C18 STAGE-tips26 and stored on-tip until mass spectroscopy analysis. 

 

Proteomic Identification of protease cleavage site specificity (PICS). PICS was performed 

as described27. In brief, E. coli-derived proteome peptide libraries were generated by digestion 

with GluC or chymotrypsin followed by amine-modification by reductive dimethylation. Libraries 

(200 μg) were incubated with trypsin or LysargiNase at an enzyme:peptide library ratio of 1:100 

(w/w). Free N-terminal amine groups of fragment peptides, generated by substrate peptide 

cleavage, were tagged with an N-terminal modification with a redox-cleavable biotin moiety and 

enriched by streptavidin capture, eluted and desalted with C18 OMIX tips (Varian). 

 

Mass spectrometry. For shotgun and phosphoproteomics experiments, peptides were eluted 

from STAGE tips in mobile phase 80% acetonitrile (ACN), 0.1 % formic acid, SpeedVac 

concentrated to near-dryness and dissolved in approximately 20 μl mobile phase 2% ACN, 

0.1% formic acid. Ten microliters were loaded on the column. Shotgun experiments were 

analyzed on a nanoHPLC systems (Thermo Scientific) coupled to an LTQ-Orbitrap hybrid mass 

spectrometer (LTQ-Orbitrap XL, Thermo Scientific, operated by the UBC Centre for High 

Throughput Biology) using a nanospray ionization source consisting of a fused silica trap 

column (length 2 cm, inner diameter 100 μm, packed with 5- μm diameter Aqua C-18 beads; 

Phenomenex), fused silica fritted analytical column (length 20 cm, inner diameter 50 μm, 

packed with 3 μm diameter Reprosil-Pur C-18-AQ beads; Dr. Maisch GmbH) and a silica gold 

coated spray tip (20 μm inner diameter, 6 μm diameter opening, pulled on a P-2000 laser puller; 

Sutter Instruments; coated on EM SCD005 Super Cool Sputtering Device; Leica Microsystems). 
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Buffer A consisted of 0.5% acetic acid, and buffer B consisted of 0.5% acetic acid and 80% 

acetonitrile. Gradients were run from 0% B to 15% B over 15 min, then from 15% B to 40% B in 

the next 65 min, then increased to 100% B over 10 min period, held at 100% B for 30 min. The 

LTQ-Orbitrap was set to acquire a full-range scan at 60,000 resolution from (m/z 350–1800) in 

the Orbitrap and to simultaneously fragment the top five peptide ions in each cycle in the LTQ 

(minimum intensity 200 counts). Parent ions were then excluded from MS/MS for the next 180 

sec. The Orbitrap was continuously recalibrated against protonated (Si(CH3)2O)6; at m/z = 

445.120025 using the lock-mass function28. 

 

Enriched phosphopeptides were analyzed by nanoHPLC-MS/MS using the LTQ-Orbitrap XL 

setup as above or with a hybrid quadrupole-Orbitrap mass spectrometer (QExactive, Thermo 

Scientific) coupled online with a RSLC nanoHPLC (Ultimate 3000, Thermo Scientific). Samples 

were loaded on a 100 μm, 2 cm nanoviper pepmap100 trap column (Thermo Scientific) in 2% 

ACN, 0.1% formic acid at a flow rate of 15 μl/minute. Peptides were eluted and separated at a 

flow rate of 300 μl/minute onto a RSLC nanocolumn 75 μm x 15 cm, pepmap100 C18, 3 µm 100 

Å pore size (Thermo Scientific), with a linear ACN gradient from 2% to 24% in 0.1% formic for 

25 minutes acid followed by a linear increase to 30% ACN in 0.1% formic acid over 5 minutes 

and additional increase up to 80% ACN in 0.1% formic acid over 5 minutes, followed re-

equilibration at 2% ACN. The eluent was nebulized and ionized using a nanoelectrospray 

source (Thermo Scientific) with a distal coated fused silica emitter (New Objective) with a 

capillary voltage of 1.8-2.2 kV. The QExactive instrument was operated in the data dependent 

mode to automatically switch between full scan MS and MS/MS acquisition. Survey full scan MS 

spectra (m/z 350–1850) were acquired in the Orbitrap with 70,000 resolution (m/z 200) after 

accumulation of ions to a 3 × 106 target value with maximum injection time of 120 ms. Dynamic 

exclusion was set to 30 sec. The 10 most intense multiply charged ions (z ≥ 2) were 

sequentially isolated and fragmented in the octopole collision cell by HCD with a fixed injection 

time of 60 ms 17,500 resolution and AGC target of 1 × 105 counts. A 2.7 Da isolation width was 

chosen. Underfill ratio was at 10% and dynamic exclusion was set to 30 sec. Typical mass 

spectrometric conditions were as follows: spray voltage, 2 kV; no sheath and auxiliary gas flow; 

heated capillary temperature, 275 °C; normalized HCD collision energy 27%. 

 

E. coli proteome digests and PICS assays were analyzed using a quadrupole time-of-flight 

mass spectrometer (QStar XL, Applied Biosystems, operated by the UBC Centre for Blood 

Research Mass Spectrometry Suite) coupled on-line to an LC Packings capillary LC system 



 14

(Dionex). Peptide samples were diluted in 0.3% formic acid, loaded onto a column packed with 

Magic C18 resin (Michrom Bioresources) and eluted using a 0–80% gradient of organic phase 

over 95 min. Buffer A was 2% ACN with 0.1% formic acid and buffer B was 80% ACN, 0.1% 

formic acid. ESI ionization tip ionization voltage was 25,000 V. MS data were acquired 

automatically using the Analyst QS software, v1.1 (Applied Biosystems) with information-

dependent acquisition based on a 1s MS survey scan from 350 m/z to 1500 m/z, followed by up 

to 3 MS/MS scans of 2 s each. Nitrogen was used as the collision gas.  

 

In gel digestion. The standard proteins BSA and β-casein were resolved by 12% SDS-PAGE. 

Bands were stained with Coomassie G-250 and then excised, destained thrice with 60% 

acetonitrile, 20 mM ammonium bicarbonate, washed in 100% acetonitrile and lyophilized. Gel 

bands were rehydrated with either 10 μL trypsin in 20 mM ammonium bicarbonate (12 ng/μL) or 

10 μL LysargiNase (40 ng/μL) by passive diffusion for 1 h, 4 °C. Excess solution was removed, 

and 10 μL 20 mM ammonium bicarbonate 10 mM CaCl2 was added to the gel plugs and 

digested overnight at 37 °C. Digests (1 μL on column) were analyzed by LC-MS/MS using an 

Agilent G4240A ChipCube interfaced directly to an Agilent G6550A Q-TOF mass spectrometer 

(Agilent Technologies). Peptides were diluted with buffer A (0.1% formic acid) and resolved by a 

35 min linear gradient on a reversed-phase chip (75 μm x 150 mm, Zorbax 300SB-C18) from 

3% buffer B (99.9% acetonitrile, 0.1% formic acid) to 60% buffer B at 300 nL/min. Peptides were 

ionized by ESI (1.8 kV) and mass spectrometry analysis was performed in positive polarity, with 

precursor ions detected from 350-1500 m/z. The top three ions per scan were selected for CID 

using a narrow (1.3 amu) exclusion window and an MS/MS scan rate of 2 spectra/second. 

Precursor ions were then excluded from further CID for 30 s. Data files were converted into .mgf 

files using Agilent MassHunter Qualitative Analysis B.06.00 and the files searched using Mascot 

v2.4 (Matrix Science). Search parameters included 0.3 Da tolerance for MS and MS/MS, 

UniProt-SwissProt database with 'all entries' enabled, variable oxidation of methionine, variable 

propionamide of cysteine, and a maximum of 2 missed cleavages. 

 

Spectrum-to-sequence matching. Shotgun and phosphoproteomics data acquired with the 

Orbitrap XL and QExactive spectra where matched to peptide sequences in the human UniProt 

protein database (October 2013) with appended standard laboratory and common 

contamination protein entries and reverse decoy sequences (in total 177,324 entries) using the 

Andromeda algorithm29 as implemented in the MaxQuant software package v1.4.12 (ref. 30), 

using an peptide FDR of 0.01. Search parameters included a mass tolerance of 5 ppm for the 
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parent ion, 0.5 Da for the fragment ions in LTQ-Orbitrap XL data and 20 ppm for fragment ions 

in QExactive data, carbamidomethylation of cysteine residues (+57.021464 Da), variable N-

terminal modification by acetylation (+42.010565 Da), and variable methionine oxidation 

(+15.994915 Da). Non-specific searches of proteome digest were performed to probe the 

cleavage site specificity of LysargiNase. Specific searches of the same datasets used {X|KR} 

and {KR|X} as simple cleavage site rules for LysargiNase and trypsin, respectively, additionally 

considered Arg and Lys methylation (+14.01565 Da) and dimethylation (+28.031300 Da) as 

variable modifications and allowed up to three missed cleavages. Phosphoproteome data 

analysis additionally considered variable phosphorylation (+79.966331 Da) at Ser, Thr and Tyr, 

and in the case of 12-O-tetradecanoylphorbol-13-acetate stimulation experiments triple SILAC 

labeling (Arg +6.020129, Lys +4.025107 and Arg+10.008269, Lys +8.014199 for medium and 

heavy labels, respectively). 

 

Peak lists of QSTAR XL data were created using the Analyst QS software v1.1 (Applied 

Biosystems) and converted to the mzXML format using msConvert. Spectra were matched to 

peptides sequences in the UniProt E. coli K12 proteome database (downloaded Nov 22, 2013) 

with appended standard laboratory and common contamination protein entries and reverse 

decoy sequences (9,134 entries total) using X!Tandem31 (E. coli proteome data) or Mascot v2.3 

and X!Tandem31 (for PICS data) in conjunction with PeptideProphet32 and iProphet33 as 

implemented in the Trans Proteomic Pipeline v4.6(ref. 34) at an estimated FDR of 0.05. Search 

parameters included a mass tolerance of 200 ppm for the parent ion and 0.2 Da for the 

fragment ions, semi-specific restriction enzyme cleavages for chymotrypsin or GluC (PICS) or 

specific enzyme cleavage with LysargiNase or trypsin (E. coli proteome) with up to two missed 

cleavages. E. coli proteome data searches considered the following peptide modifications: 

Carbamidomethylation of cysteine residues (+57.021464 Da), dimethylation of lysine ε-amines 

(+28.031300 Da) and variable methionine oxidation (+15.994915 Da). PICS data searches also 

considered thioacylation of peptide N-termini (+87.998285 Da). 

 

For analysis of a-ions in beam-type fragmentation data, QStar .wiff files were converted to 

.mzXML using msConvert and used as input for the TransProteomic Pipeline v4.7 rev1. Data 

was searched with Comet35 as part of TPP using 0.2 Da tolerance for MS and MS/MS, 

LysargiNase specificity {X|KR}, variable oxidation of methionine (+15.994915 Da), 2 missed 

cleavages and scoring for y-ions and b-ions. Additionally, an independent search was used with 

a-ions also included as part of the scoring. XCORR scores for peptide spectrum matches were 
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extracted from pepXML files and compared to determine the a-ion scoring effect. 

 

Data analysis. For shotgun proteomics peptide identifications the sequence context 

surrounding the N- and C-termini of the identified peptides was extracted from the database. For 

determination of the cleavage site specificity, all peptide termini identified by database searches 

without enzyme constraints were considered as LysargiNase or trypsin cleavage sites unless 

they mapped to protein termini. This resulted in the definition of {X|KR} as cleavage specificity of 

LysargiNase that was used in all subsequent searches. b-ion and y-ion counts were extracted 

from the MaxQuant result files, and fragment coverage calculated by dividing the number of 

matched ions by the sequence length. 

 

Phosphorylation motives were extracted using the motif-x webservice18,36. Phosphorylated 

peptide identifications obtained in all experiments after digestion with trypsin or LysargiNase 

were searched separately using the following settings: foreground format: pre-aligned; central 

character: S; width: 15; occurrences: 20; significance: 0.000001; background: IPI human 

proteome. The motifs identified by were merged and for each motif the number of occurrences 

within the pool of phosphorylated peptides identified in the LysargiNase and trypsin datasets 

counted by regular expression matching. For comparison of the proportion of each motif in the 

LysargiNase and trypsin datasets, the occurrence was calculated as percent difference and 

significance tested using Pearson’s chi-squared p-value. Only motifs describing at least 5% of 

the phosphorylated peptides identified by trypsin or LysargiNase digestion are reported.  

 

To link observed phosphorylation motifs to kinase activity we retrieved known kinase sequence 

specificities from HRPD v9(ref. 37). For each identified phosphorylation motif all corresponding 

phosphorylation sites in our joint trypsin and LysargiNase datasets were counted, matched to 

kinase specificity by regular expression search and the percentage of sites potentially targeted 

by a specific kinase calculated. Only kinases matching at least one of the phosphorylation site 

motifs identified in the dataset are reported. 

 

Protease cleavage sites were inferred by database searches from the peptides identified by 

mass spectrometry, which represent the prime side cleavage products of substrate cleavages, 

using a web-based tool (available at http://clipserve.clip.ubc.ca/pics) as described27. Cleavage 

site specificity logos were generated with the iceLogo web tool38 using standard settings. 

Boxplots were generated using the BoxPlotR web server39. 
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