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Abstract: Cellular membranes contain glycerophospholipids, which have important 

structural and functional roles in cells. Glycerophospholipids are first formed in the  

de novo pathway (Kennedy pathway) and are matured in the remodeling pathway (Lands’ 

cycle). Recently, lysophospholipid acyltransferases functioning in Lands’ cycle were 

identified and characterized. Several enzymes involved in glycerophospholipid biosynthesis 

have been reported to have important roles in adipocytes. However, the role of Lands’ 

cycle in adipogenesis has not yet been reported. Using C3H10T1/2, a cell line capable of 

differentiating to adipocyte-like cells in vitro, changes of lysophospholipid acyltransferase 

activities were investigated. Lysophosphatidylcholine acyltransferase (LPCAT), 

lysophosphatidylethanolamine acyltransferase (LPEAT) and lysophosphatidylserine 

acyltransferase (LPSAT) activities were enhanced, especially with 18:2-CoA and  

20:4-CoA as donors. Correspondingly, mRNA expression of LPCAT3, which possesses 

LPCAT, LPEAT and LPSAT activities with high specificity for 18:2- and 20:4-CoA,  
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was upregulated during adipogenesis. Analysis of acyl-chain compositions of 

phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) 

showed a change in their profiles between preadipocytes and adipocytes, including an 

increase in the percentage of arachidonic acid-containing phospholipids. These changes are 

consistent with the activities of LPCAT3. Therefore, it is possible that enhanced 

phospholipid remodeling by LPCAT3 may be associated with adipocyte differentiation. 

Keywords: glycerophospholipid; lysophospholipid acyltransferase; adipocyte; C3H10T1/2; 

LPCAT3; Lands’ cycle; arachidonic acid  

 

1. Introduction 

Glycerophospholipids are structural and functional components of cellular membranes, as well as 

precursors of a variety of lipid mediators. There are different classes of glycerophospholipids,  

such as phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipin (CL), 

which contain distinct compositions of fatty acids in different cell types and tissues [1–4]. 

Glycerophospholipids are initially generated and then matured in two distinct pathways. In the de novo 

pathway (Kennedy pathway), glycerophospholipids are formed from glycerol-3-phosphate [5]; the key 

enzymes functioning in the de novo pathways have been characterized [6,7]. In the remodeling 

pathway (termed Lands’ cycle), the concerted actions of phospholipase A2s (PLA2s) and 

lysophospholipid acyltransferases (LPLATs) function to establish the asymmetry and high diversity of 

glycerophospholipids [8–11]. Recently, several LPLATs functioning in the Lands’ cycle have been 

cloned and characterized by various laboratories, including ours [12,13]. These enzymes were found 

from the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and the membrane-bound  

O-acyltransferase (MBOAT) family, each with distinct motifs essential for their activities [14–17]. 

Lysophosphatidylcholine acyltransferase (LPCAT) 3 is a member of the MBOAT family and exhibits 

LPCAT, lysophosphatidylethanolamine acyltransferase (LPEAT) and lysophosphatidylserine 

acyltransferase (LPSAT) activities, with preference for 18:2- and 20:4-CoA [18–21]. 

Adipose tissues are not only places for fat storage, but are also important endocrine organs [22]. 

Research on adipose tissue development and adipocyte differentiation is therefore important. Several 

enzymes involved in glycerophospholipid biosynthesis have been reported to have important functions 

in adipocytes. Lysophosphatidic acid acyltransferase 2 (LPAAT2), an enzyme functioning in the  

de novo pathway, is known to have an important role in adipogenesis [23,24]; mutations in this gene 

cause Berardinelli-Seip congenital lipodystrophy [25]. CTP: phosphocholine cytidylyltransferase, an 

enzyme involved in the biosynthesis of PC in the de novo pathway, is reported to be important for lipid 

droplet expansion [26]. Phosphatidylethanolamine N-methyltransferase, which synthesizes PC from 

PE, was also reported to have roles in adipogenesis [27]. However, the role of the Lands’ cycle in 

adipocytes has not yet been reported. 

C3H10T1/2 [28] is a mesenchymal stem cell line that is capable of differentiating into  

adipocytes [29]. Using C3H10T1/2 cells, we investigated the changes of mRNA expression of 
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LPLATs and changes of phospholipid composition that occur during adipogenesis. We found  

LPCAT3 was selectively upregulated during adipogenesis, accompanied by changes in cellular  

phospholipid compositions consistent with the known activities of LPCAT3. Our results show a 

possibility that LPCAT3-mediated enhanced phospholipid remodeling may be associated with 

adipocyte differentiation.  

2. Results and Discussion 

2.1. Lysophospholipid Acyltransferase Activities Were Increased during Adipogenesis 

To examine the role of the Lands’ cycle in adipogenesis, C3H10T1/2 cells were differentiated into 

adipocytes. In this study, undifferentiated C3H10T1/2 cells are termed preadipocytes. LPCAT, LPEAT 

and LPSAT activities of day 0 preadipocytes and day 8 adipocytes were measured with 16:0-, 18:1-, 

18:2-, 20:4- and 22:6-CoA as donors. LPCAT, LPEAT and LPSAT activities were increased with all 

acyl-CoAs, especially with 18:2-CoA and 20:4-CoA (Table 1). These data suggest that the LPLAT 

activities in the Lands’ cycle enhance with adipocyte differentiation. 

Table 1. LPCAT activities, LPEAT activities and LPSAT activities of preadipocytes  

(day 0) and adipocytes (day 8) were measured using 16:0-, 18:1-, 18:2-, 20:4- and  

22:6-CoA as donors. Relative units indicate the signal intensity (area) of products, 

normalized by the signal intensity of internal standards. LPCAT, LPEAT and LPSAT 

activities increased especially with 18:2-CoA and 20:4-CoA. Three independent 

experiments were performed with similar results. The data represent the mean ± SD of 

triplicate measurements. Statistical analyses were performed with t-test. 

Substrate Preadipocyte (relative units) Adipocyte (relative units) p value 

LPCAT activity 

16:0-CoA 7.50 ± 0.29 12.36 ± 0.68 p = 0.0008 
18:1-CoA 3.13 ± 0.19 18.24 ± 0.61 p < 0.0001 
18:2-CoA 198.50 ± 13.60 1821.54 ± 80.62 p < 0.0001 
20:4-CoA 267.49 ± 11.45 1882 ± 63.12 p < 0.0001 
22:6-CoA 0.56 ± 0.04 2.30 ± 0.18 p = 0.0002 

LPEAT activity 

16:0-CoA 0.20 ± 0.02 0.82 ± 0.06 p = 0.0001 
18:1-CoA 0.09 ± 0.01 3.10 ±0.17 p < 0.0001 
18:2-CoA 1.36 ± 0.04 14.14 ± 0.63 p < 0.0001 
20:4-CoA 2.44 ± 0.12 14.44 ± 0.40 p < 0.0001 
22:6-CoA 0.02 ± 0.01 0.20 ± 0.02 p = 0.0002 

LPSAT activity 

16:0-CoA 0.61 ± 0.07 1.73 ± 0.05 p < 0.0001 
18:1-CoA 0.35 ± 0.03 1.93 ± 0.03 p < 0.0001 
18:2-CoA 2.65 ± 0.08 17.25 ± 0.24 p < 0.0001 
20:4-CoA 6.97 ± 0.07 28.97 ± 0.88 p < 0.0001 
22:6-CoA 0.043 ± 0.002 0.151 ± 0.007 p < 0.0001 
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2.2. LPCAT3 mRNA Was Increased during Adipocyte Differentiation 

To investigate the mechanism of the increase in LPLAT activities, mRNA expression of known 

enzymes, which posses LPCAT, LPEAT or LPSAT activities, were determined in C3H10T1/2 cells 

during adipocyte differentiation. Using quantitative PCR analysis, expression levels of LPCAT1, 

LPCAT2, LPCAT3, LPCAT4 and LPEAT1 were examined. The values were normalized by mRNA 

level of 36B4, a housekeeping gene. mRNA expression of LPCAT3 (Figure 1a), which has LPCAT, 

LPEAT, and LPSAT activities with high substrate specificities for 18:2-CoA and 20:4-CoA, was 

upregulated during differentiation. LPCAT3 mRNA was not enhanced when the induction mixture was 

not added to the medium (Figure 1d), showing that the effect on LPCAT3 expression was not caused 

by the confluency of the cells. LPEAT1 mRNA was decreased dramatically on day 2 and was 

gradually increased again (Figure 1b). LPCAT1, LPCAT2 and LPCAT4 mRNA were not detected 

(data not shown). mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ2), a 

marker for adipocyte differentiation, was not detected on day 0 and was gradually increased during 

differentiation (Figure 1c), which shows that the cells actually differentiated into adipocytes. 

Figure 1. mRNA expression of LPCAT3 (a), LPEAT1 (b) and PPARγ2 (c) during 

adipocyte differentiation. mRNA expression of LPCAT3 in day 0 cells and day 8 cells, 

with or without induction (d). mix (+) indicates cells cultured with the induction mixture, 

and mix (−) indicates cells cultured without the induction mixture. The data shown are 

values normalized by 36B4, a housekeeping gene. The arbitrary units were calculated as 

setting the maximum value as 100. The figures show the mean ± SE of three independent 

experiments. ND, not detected. 
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Our data suggest increased LPCAT3 expression leads to enhanced LPCAT, LPEAT and LPSAT 

activities important for adipocyte differentiation. The decreased expression of LPEAT1 with high 

substrate specificity for 18:1-CoA also supports that acyltransferase activities utilizing 18:2-CoA and 

20:4-CoA rather than 18:1-CoA may play important roles in adipocyte differentiation. 

2.3. Change in Phospholipid Composition during Adipocyte Differentiation 

To investigate whether the shift in LPLAT activities affect the fatty acid composition of 

phospholipids, PC, PE and PS species were compared between preadipocytes and adipocytes  

(Table 2). Lipids from day 0 preadipocytes and day 8 adipocytes were extracted and analyzed by liquid 

chromatography tandem mass spectrometry (LC-MS/MS). The signal intensities for each class of 

phospholipid were summed and the abundance of each species was calculated as the percentage of  

the sum. 

Table 2. Phospholipid composition of PC, PE and PS. The signal intensities for each 

species were summed up, and the percentage of each species was calculated. The data 

show the mean ± SE of three independent experiments. Statistical analyses were performed 

with t-test. ns, not significant; * p < 0.05; ** p < 0.01; *** p < 0.001. 

PC species Preadipocyte (%) Adipocyte (%) p value  

PC 

30:0 PC 3.13 ± 0.39 2.06 ± 0.17 ns  

30:1 PC 3.67 ± 0.21 2.45 ± 0.03 0.0086 ** 

32:0 PC 10.55 ± 0.71 5.32 ± 0.56 0.0092 ** 

32:1 PC 9.61 ± 0.28 18.83 ± 0.75 0.0007 *** 

32:2 PC 1.21 ± 0.17 2.95 ± 0.16 0.0037 ** 

34:0 PC 1.98 ± 0.11 1.06 ± 0.05 0.0031 ** 

34:1 PC 25.37 ± 1.37 22.74 ± 1.29 ns  

34:2 PC 6.49 ± 0.36 7.7 ± 0.66 ns  

34:3 PC 0.67 ± 0.08 1.13 ± 0.03 0.0114 * 

36:0 PC 0.18 ± 0.02 0.12 ± 0.01 ns  

36:1 PC 6.54 ± 0.56 7.32 ± 0.47 ns  

36:2 PC 12.34 ± 0.88 7.75 ± 0.17 0.0138 * 

36:3 PC 2.81 ± 0.12 3.51 ± 0.16 0.0452 * 

36:4 PC 2.09 ± 0.26 4.02 ± 0.31 0.0178 * 

36:5 PC 0.25 ± 0.04 0.73 ± 0.08 0.0144 * 

38:1 PC 1.78 ± 0.03 0.99 ± 0.03 p < 0.0001 *** 

38:2 PC 2.32 ± 0.08 1.71 ± 0.12 0.0298 * 

38:3 PC 1.12 ± 0.06 1.22 ± 0.12 ns  

38:4 PC 3.08 ± 0.17 4.36 ± 0.3 0.0395 * 

38:5 PC 1.75 ± 0.22 2.01 ± 0.24 ns  

38:6 PC 0.35 ± 0.04 0.37 ± 0.03 ns  

38:7 PC 0.04 ± 0.01 0.05 ± 0.01 ns  

40:1 PC 0.22 ± 0.07 0.11 ± 0.01 ns  

40:2 PC 0.27 ± 0.02 0.08 ± 0.01 0.0044 ** 

40:3 PC 0.19 ± 0.02 0.11 ± 0.01 ns  
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Table 2. Cont. 

PC species Preadipocyte (%) Adipocyte (%) p value  

40:4 PC 0.49 ± 0.05 0.34 ± 0.04 ns  

40:5 PC 0.72 ± 0.06 0.46 ± 0.06 ns  

40:6 PC 0.52 ± 0.05 0.35 ± 0.03 ns  

40:7 PC 0.24 ± 0.02 0.11 ± 0.02 0.0102 * 

PE 

30:0 PE 0.1 ± 0.01 0.05 ± 0.01 0.0237 * 

32:0 PE 0.31 ± 0.04 0.24 ± 0.01 ns  

32:1 PE 1.19 ± 0.12 5.74 ± 0.06 p < 0.0001 *** 

32:2 PE 0.18 ± 0.02 2.66 ± 0.16 0.0002 *** 

34:0 PE 0.32 ± 0.01 0.26 ± 0.01 0.0117 * 

34:1 PE 7.81 ± 0.25 9.71 ± 0.49 0.0487 * 

34:2 PE 2.95 ± 0.30 6.00 ± 0.23 0.0027 ** 

34:3 PE 0.20 ± 0.02 0.93 ± 0.07 0.001 *** 

36:1 PE 14.01 ± 0.06 7.02 ± 0.40 0.0001 *** 

36:2 PE 9.93 ± 0.69 7 ± 0.03 0.0254 * 

36:3 PE 1.05 ± 0.10 1.32 ± 0.02 ns  

36:4 PE 2.80 ± 0.11 4.78 ± 0.14 0.0009 *** 

36:5 PE 0.34 ± 0.02 1.64 ± 0.08 0.0002 *** 

38:1 PE 0.69 ± 0.04 0.21 ± 0.02 0.0009 *** 

38:2 PE 1.55 ± 0.24 1.09 ± 0.07 ns  

38:3 PE 5.09 ± 0.54 5.28 ± 0.02 ns  

38:4 PE 30.45 ± 1.32 29.95 ± 0.17 ns  

38:5 PE 5.32 ± 0.16 5.13 ± 0.20 ns  

38:6 PE 0.7 ± 0.06 1.05 ± 0.09 ns  

38:7 PE 0.06 ± 0.01 0.29 ± 0.02 0.0006 *** 

40:2 PE 0.81 ± 0.06 0.24 ± 0.03 0.0021 ** 

40:3 PE 1.14 ± 0.04 0.89 ± 0.15 ns  

40:4 PE 6.49 ± 0.49 2.88 ± 0.19 0.0048 ** 

40:5 PE 1.62 ± 0.10 1.37 ± 0.04 ns  

40:6 PE 3.53 ± 0.15 3.11 ± 0.06 ns  

40:7 PE 0.69 ± 0.16 0.74 ± 0.05 ns  

42:9 PE 0.38 ± 0.03 0.28 ± 0.01 0.0491 * 

42:10 PE 0.08 ± 0.01 0.08 ± 0.01 ns  

PS 

34:0 PS 0.67 ± 0.16 0.37 ± 0.05 ns 

34:1 PS 3.76 ± 1.87 5.65 ± 3.54 ns 

34:2 PS 0.79 ± 0.01 0.83 ± 0.1 ns 

36:1 PS 37.45 ± 1.23 34.94 ± 1.87 ns 

36:2 PS 6.82 ± 0.40 5.8 ± 0.4 ns 

36:4 PS 1.01 ± 0.04 1.27 ± 0.09 ns 

38:1 PS 2.37 ± 0.16 1.86 ± 0.08 ns 

38:2 PS 1.85 ± 0.26 1.77 ± 0.21 ns 

38:3 PS 6.64 ± 0.40 7.8 ± 0.38 ns 

38:4 PS 12.17 ± 0.96 14.7 ± 1.12 ns 

38:5 PS 1.30 ± 0.15 1.14 ± 0.08 ns 
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Table 2. Cont. 

PC species Preadipocyte (%) Adipocyte (%) p value 

40:1 PS 1.54 ± 0.10 1.11 ± 0.10 ns 

40:2 PS 1.28 ± 0.14 1.41 ± 0.16 ns 

40:3 PS 1.61 ± 0.32 2.95 ± 0.42 ns 

40:4 PS 9.86 ± 0.91 8.41 ± 0.36 ns 

40:5 PS 4.00 ± 0.80 4.05 ± 0.71 ns 

40:6 PS 4.27 ± 0.16 3.8 ± 0.15 ns 

40:7 PS 0.23 ± 0.02 0.19 ± 0.01 ns 

42:5 PS 0.77 ± 0.06 0.48 ± 0.07 ns 

42:7 PS 0.64 ± 0.07 0.49 ± 0.06 ns 

42:8 PS 0.54 ± 0.08 0.59 ± 0.05 ns 

42:9 PS 0.42 ± 0.02 0.39 ± 0.04 ns 

The phospholipid profiles showed many changes between preadipocytes and adipocytes, especially 

for PC and PE. We observed that the percentage of phospholipid species probably containing 

arachidonic acid, such as 36:4 PC, 38:4 PC and 36:4 PE, was increased during differentiation. This 

might have been caused by the activity of LPCAT3. Increases in 32:1 PC and PE might have been 

caused by a different enzyme, such as stearoyl-CoA desaturase, which is known to be induced during 

differentiation [30]. 

To confirm that species that were increased (36:4 PC, 38:4 PC and 36:4 PE) actually contain 

arachidonic acid, we determined fatty acid species of PC and PE (Table 3). The signal intensities for 

each species were summed up and the percentage was calculated. The percentage of 16:0/20:4 PC, 

18:0/20:4 PC and 16:0/20:4 PE were enhanced, which shows that arachidonic acid-containing species 

are increased during adipocyte differentiation. 

Table 3. Fatty acid composition of PC and PE. The signal intensities for each species were 

summed up, and the percentage of each species was calculated. The data show the mean of 

two independent experiments. 

PC species Preadipocyte (%) Adipocyte (%) 

PC 

16:0/16:0 PC 12.78  8.97  

16:0/16:1 PC 4.13 7.45  

16:0/18:0 PC 13.16 12.58  

16:0/18:1 PC 24.17  20.64 

16:0/18:2 PC 3.58  4.32 

16:0/18:3 PC 2.51  3.33  

16:0/20:4 PC 1.12 2.11 

16:0/22:6 PC 0.43  0.42  

18:0/18:1 PC 4.57  4.73 

18:0/18:2 PC 2.61  4.21  

18:0/18:3 PC 6.63  7.31  

18:0/20:4 PC 1.37  2.61  

18:0/22:6 PC 2.06 1.71  

18:1/18:1 PC 7.90  5.51  
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Table 3. Cont. 

PC species Preadipocyte (%) Adipocyte (%) 

18:1/18:2 PC 10.91  11.24  

18:1/18:3 PC 1.66  2.28  

18:1/20:4 PC 0.42  0.60 

18:1/22:6 PC 12.78  8.97  

PE 

16:0/16:0 PE 0.30  0.22  

16:0/16:1 PE 0.93  6.12  

16:0/18:0 PE 7.08  3.63  

16:0/18:1 PE 6.96  6.05  

16:0/18:2 PE 0.38  0.85  

16:0/18:3 PE 0.05  0.17  

16:0/20:4 PE 2.00  4.16  

16:0/22:6 PE 0.24  0.43 

18:0/18:1 PE 26.75  19.09  

18:0/18:2 PE 2.83  3.41  

18:0/18:3 PE 0.37  0.54 

18:0/20:4 PE 34.77  40.20  

18:0/22:6 PE 1.22  1.18  

18:1/18:1 PE 10.21  7.83  

18:1/18:2 PE 0.94  0.91  

18:1/18:3 PE 0.12  0.13  

18:1/20:4 PE 3.41 3.72  

18:1/22:6 PE 1.44  1.36  

2.4. Possible Role of LPCAT3 in Adipocyte Differentiation 

In this study, we found that LPCAT3 mRNA is upregulated during differentiation of adipocytes. 

This enzyme exhibits LPCAT, LPEAT and LPSAT activities with 18:2-CoA and 20:4-CoA. We also 

discovered that LPCAT, LPEAT and LPSAT activities are enhanced during adipocyte differentiation, 

especially with 18:2-CoA and 20:4-CoA, thus correlating with the activities of LPCAT3. Furthermore, 

the fatty acid compositions of phospholipids changed during adipocyte differentiation, including an 

increase in arachidonic acid-containing species. Taken together, these data suggest that induction of 

LPCAT3 expression during adipocyte differentiation leads to enhanced LPCAT, LPEAT and LPSAT 

activities and increased incorporation of arachidonic acid into membrane phospholipids. 

Arachidonic acid-containing phospholipids are important for synthesizing eicosanoids [10]. Some 

of these mediators, such as 15-deoxy-∆12,14-prostaglandin J2, are known to act as endogenous ligands 

for PPARγ [31]. LPCAT3-mediated arachidonic acid incorporation into membrane phospholipids may 

promote production of endogenous lipid ligands for PPARγ important for adipogenesis and adipocyte 

function. Arachidonic acid is also known to promote differentiation of preadipocytes and adipose 

tissue development through prostacyclin signaling [32]. There are several clinical reports suggesting a 

role of arachidonic acid content of glycerophospholipids for adipocyte function. One report shows a 

positive correlation between BMI and adipose tissue glycerophospholipids containing arachidonic acid 

in children [33]. Another report shows that high content of arachidonic acid in adipose tissue has an 
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increasing risk of metabolic syndrome in adults [34]. From these reports, we can speculate that 

incorporation of arachidonic acid into membrane glycerophospholipids is an important step leading to 

activation of PPARγ and enhancing adipocyte differentiation. The results of our study show a 

possibility that LPCAT3 might have a role for maintaining membrane phospholipids rich in 

arachidonic acid and, thereby, leading to activation of PPARγ (Figure 2). 

Although the changes we measured in LPCAT3 mRNA levels, acyltransferase activities and 

phospholipid compositions were associated with adipocyte differentiation, additional studies will be 

required to determine the roles of LPCAT3 and membrane phospholipid remodeling in preadipocytes 

and adipocytes in vivo. 

In conclusion, this study revealed a novel possibility that the regulation of the phospholipid 

remodeling pathway by LPCAT3 is associated with adipocyte differentiation.  

Figure 2. A proposed scheme for the role of LPCAT3 in adipocyte differentiation. 

LPCAT3 mRNA expression is induced during adipocyte differentiation, leading to 

increased PC, PE and PS containing arachidonic acid. Abundant arachidonic acid in 

membrane phospholipids enhances activity of PPARγ by producing endogenous ligands, 

thereby promoting adipocyte differentiation. 

 

3. Experimental Section 

3.1. Materials 

Fetal bovine serum was purchased from Invitrogen (Carlsbad, CA, USA),  

3-isobutyl-1-methylxanthine, dexamethazone, insulin and pioglitazone were purchased from Sigma 

(St. Louis, MO, USA). 14:0/14:0 PC and 14:0/14:0 PE standards were purchased from NOF 

Corporation (Tokyo, Japan). 17:0/20:4 PS standard, all lysophospholipids and all acyl-CoAs were 

purchased from Avanti Polar Lipids (Alabaster, AL, USA); 17:0-20:4 PS (Product number; LM-1302), 

16:0 D31 Lyso PC (860397), 16:0 Lyso PE (856705), 16:0 Lyso PS (858142), 16:0 Coenzyme A 

(870716), 18:1 Coenzyme A (870719), 18:2 Coenzyme A (870736), 20:4 Coenzyme A (870721) and 

22:6 Coenzyme A (870728). All organic solvents (methanol, chloroform and acetonitrile) used in this 

study are LC-MS grade, which were purchased from Wako (Osaka, Japan). 
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3.2. Cell Culture 

C3H10T1/2 cells (ATCC) were grown in Dulbecco’s modified Eagle’s medium (DMEM) with 10% 

fetal bovine serum at 37 °C. Cells were grown to confluence (day 0). On day 0, they were  

induced to differentiate by changing the medium to DMEM with 10% fetal bovine serum, 0.5 mM  

3-isobutyl-1-methylxanthine, 1 µM dexamethasone, 2.5 µM pioglitazone and 10 µg/mL insulin. On 

day 2, the medium was replaced with DMEM with 10% fetal bovine serum containing the same 

mixture. On day 4, the medium was changed to DMEM with 10% fetal bovine serum and 10 µg/mL 

insulin. From day 6, the medium was changed back to DMEM with 10% fetal bovine serum. 

3.3. Quantitative RT-PCR Analysis 

Total RNA was extracted from C3H10T1/2 cells on day 0, 2, 4, 6 and 8 using the RNeasy Lipid tissue 

Mini Kit (Qiagen GmbH, Hilden, Germany), and first-strand cDNA was subsequently synthesized using 

Superscript III (Invitrogen). PCRs (LightCycler System; Roche Applied Science, Mannheim, Germany) 

were performed using FastStart DNA Master SYBR Green I (Roche Applied Science). The mRNA 

levels were normalized to the 36B4, a housekeeping gene. The primers used are listed in Table 4. 

Table 4. Primers used for quantitative PCR analysis. 

Primers Sequence 
LPCAT1 forward GTGCACGAGCTGCGACT 
LPCAT1 reverse GCTGCTCTGGCTCCTTATCA 
LPCAT2 forward GTCCAGCAGACTACGATCAGTG 
LPCAT2 reverse CTTATTGGATGGGTCAGCTTTTC 
LPCAT3 forward TCAGGATACCTGATTTGCTTCCA 
LPCAT3 reverse GGATGGTCTGTTGCACCAAGTAG 
LPCAT4 forward TTCGGTTTCAGAGGATACGACAA 
LPCAT4 reverse AATGTCTGGATTGTCGGACTGAA 
LPEAT1 forward CTGAAATGTGTGTGCTATGAGCG 
LPEAT1 reverse TGGAAGAGAGGAAGTGGTGTCTG 
PPARγ2 forward TATGCTGTTATGGGTGAAACTCTGG 
PPARγ2 reverse GTCAAAGGAATGCGAGTGGTCT 

36B4 forward CTGAGATTCGGGATATGCTGTTG 
36B4 reverse AAAGCCTGGAAGAAGGAGGTCTT 

3.4. Microsomal Protein Preparation and Lipid Extraction 

C3H10T1/2 preadipocytes (day 0) and adipocytes (day 8) from 10 cm dishes were scraped into  

1 mL of ice-cold buffer containing 20 mM Tris-HCl (pH 7.4), 300 mM sucrose and Complete Protease 

Inhibitor Cocktail (Roche Applied Science). Cells were sonicated three times on ice for 30 s using a 

probe sonicator (10 watts). After centrifugation for 10 min at 800× g, the supernatant was collected 

and centrifuged at 100,000× g for 1 h. The resultant pellets were resuspended in buffer containing  

20 mM Tris-HCl (pH 7.4), 300 mM sucrose and 1 mM EDTA. Protein concentration was measured 

using a Bradford protein assay reagent (Bio-Rad, Hercules, CA, USA) and BSA (fraction V, fatty acid-free; 

Sigma) as a standard. For lipid analysis, 2 µg microsomal protein extracted, as mentioned before, from 
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day 0 and day 8 C3H10T1/2 cells were dissolved in 200 µL methanol, centrifuged at maximum speed 

for 5 min and analyzed by liquid chromatography and tandem mass spectrometry (LC-MS/MS). 

3.5. LPLAT Assays 

The acyltransferase activity was measured according to Hishikawa et al. [18], Koeberle et al. [35] 

and Gijon et al. [20]. 0.5 µg protein was added to reaction mixtures containing multiple  

acyl-CoAs (5 µM each of 16:0-, 18:1-, 18:2-, 20:4-, and 22:6-CoA), multiple lysophospholipids  

(25 µM each of 16:0 d31 lysophosphatidylcholine, 16:0 lysophosphatidylethanolamine, and 16:0 

lysophosphatidylserine; all lysophospholipids contain fatty acids at the sn-1 position), 100 mM  

Tris-HCl (pH 7.4) and 1 mM CaCl2, in a total volume of 0.1 mL. After incubation at 37 °C for 10 min, 

reactions were stopped by the addition of 0.3 mL of chloroform:methanol (1:2, v/v). Internal standards 

(14:0/14:0 PC, 14:0/14:0 PE and 17:0/20:4 PS) were added, total lipids were extracted by Bligh and 

Dyer method [36] and analyzed by LC-MS. For LPCAT activities, deuterium-labeled products  

(PC formed from d31 lysophosphatidylcholine and acyl-CoAs) were measured. For LPEAT and LPSAT 

activities, deuterium labeled lysophospholipids were not commercially available, so the products were 

calculated by subtracting endogenous lipids of the protein from the total. Endogenous lipids were 

measured by incubating the same protein (0.5 µg) in a reaction mixture that lacked acyl-CoA. 

3.6. Reversed Phase Liquid Chromatography 

Phospholipids were separated on an Acquity UPLC BEH C8 column (1.7 µm, 2.1 mm × 30 mm) 

using an Acquity Ultraperformance LC system (Waters, Milford, MA, USA). Flow rate was set at  

0.8 mL/min, and column temperature was set at 45 °C. For LPLAT assays, PC and PE were separated 

by using a gradient of 25% 20 mM acqueous ammonium bicarbonate (A) and 75% acetonitrile (B) to 

A/B = 5/95 within 5 min, and PS was separated by using a linear gradient of A/B = 80/20 to  

A/B = 5/95 within 5 min. For analysis of phospholipid compositions, the lipids were separated by a 

gradient of A/B = 80/20 to A/B = 5/95 within 13.5 min.  

3.7. Mass Spectrometry 

The LC system was coupled to a TSQ Vantage Triple Stage Quadrupole Mass Spectrometer 

(Thermo Scientific, Waltham, MA, USA) with a HESI-II electrospray ionization source. The capillary 

temperature was heated to 280 °C, the vaporizer temperature to 550 °C, the sheath gas (nitrogen) 

pressure to 50 psi, the auxiliary gas (nitrogen) pressure to 15 psi and the collision gas (argon) pressure 

to 0.7 mtorr. The other parameters were set as recommended. Phospholipid species were identified by 

the headgroups and were analyzed with selected reaction monitoring of all the major species. PC and 

PE were analyzed by positive ion mode, and PS was analyzed by negative ion mode. PC was identified 

by the product ion of m/z = 184, PE was identified by the neutral loss of m/z = 141 and PS was 

identified by the neutral loss of m/z = 87. The collision energy was set at 35 eV for PC, 20 eV for PE 

and 20 eV for PS. Fatty acid composition of PC and PE were determined by detecting fatty acid anions 

in the negative mode, using selected reaction monitoring (collision energy 45 eV). Data show the 



Int. J. Mol. Sci. 2012, 13 16278 

 

intensities divided by the intensity of the internal standard (for LPLAT activities) or the percentage of 

the sum of all species detected (phospholipid composition). 

3.8. Statistics 

Statistical evaluations were performed by using Student’s t-test. Calculations were performed by 

using Prism 4 (GraphPad Software Inc., La Jolla, CA, USA, 2003). 

4. Conclusions 

This is the first study indicating the importance of the Lands’ cycle during adipocyte differentiation. 

By using C3H10T1/2 cells as a model, we found that LPCAT, LPEAT and LPSAT activities were 

enhanced during differentiation, especially with 18:2-CoA and 20:4-CoA as donors. mRNA expression 

of LPCAT3, an enzyme which has LPCAT, LPEAT and LPSAT activities with high substrate 

specificities for 18:2-CoA and 20:4-CoA, was upregulated during differentiation. Analysis of 

phospholipid composition of preadipocytes and adipocytes showed that there were many changes in 

fatty acid compositions of phospholipids, including an increase in arachidonic acid-containing species. 

The changes in LPLAT activities and the increase in arachidonic acid-containing phospholipid species 

both correlate with activities of LPCAT3, which was expressed higher in adipocytes compared to 

preadipocytes. This study newly suggests that phospholipid remodeling is associated with adipocyte 

differentiation, and that LPCAT3 might be the key enzyme for incorporating arachidonic acid into 

cellular membranes during differentiation of adipocytes.  
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