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Neurodegenerative diseases are (i) characterized by a selective neuronal vulnerability to
degeneration in specific brain regions; and (ii) likely to be caused by disease-specific protein
misfolding. Parkinson’s disease (PD) is characterized by the presence of intraneuronal
proteinacious cytoplasmic inclusions, called Lewy Bodies (LB). α-Synuclein, an aggregation
prone protein, has been identified as a major protein component of LB and the causative
for autosomal dominant PD. Lysosomes are responsible for the clearance of long-lived
proteins, such as α-synuclein, and for the removal of old or damaged organelles, such as
mitochondria. Interestingly, PD-linked α-synuclein mutants and dopamine-modified wild-
type α-synuclein block its own degradation, which result in insufficient clearance, leading to
its aggregation and cell toxicity. Moreover, both lysosomes and lysosomal proteases have
been found to be involved in the activation of certain cell death pathways. Interestingly,
lysosomal alterations are observed in the brains of patients suffering from sporadic
PD and also in toxic and genetic rodent models of PD-related neurodegeneration. All
these events have unraveled a causal link between lysosomal impairment, α-synuclein
accumulation, and neurotoxicity. In this review, we emphasize the pathophysiological
mechanisms connecting α-synuclein and lysosomal dysfunction in neuronal cell death.
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INTRODUCTION
Neurodegenerative diseases are (i) characterized by a selective
neuronal vulnerability to degeneration in specific brain
regions; and (ii) likely caused by disease-specific protein
misfolding. Parkinson’s disease (PD), the second most common
neurodegenerative disorder after Alzheimer’s disease, is notably
characterized by the loss of dopaminergic neurons in the
substantia nigra pars compacta (SNpc). Loss of dopamine
perturbates the cortico-basal ganglia-cortical control of voluntary
movements. Current treatments have no proven protective or
restorative effect and are only symptomatic. Moreover, their
long-term use is associated with the onset of dramatic side
effects i.e., fluctuated responses and L-Dopa induced dyskinesia.
The important of understanding the mechanisms of neuronal
death underlying neurodegenerative diseases is crucial for
identifying targets for disease-modifying/curative strategies.
In addition to dopaminergic neuronal cell loss, the main
pathological hallmark of PD is the presence of intraneuronal
proteinaceous cytoplasmic inclusions, named Lewy bodies (LB).
α-Synuclein (α-syn), a major protein component of LB, has
been identified as autosomal dominant cause of PD, which is
found increased in expression in patients (Goedert et al., 2013;
Lashuel et al., 2013). The presence of LB in PD suggests that
defective protein handling contributes to the pathogenesis of
the disease. Proteasomal and autophagic proteolysis are the
two major pathways for degradation of cellular constituents in

eukaryotic cells. Mounting evidence indicates that alterations in
autophagy-lysosomal pathways (ALP) may be preferentially
involved in PD. In this article, we review the close relationship
between α-syn and the lysosome, two players involved in neuronal
cell death in PD.

THE HARMFUL α-SYNUCLEIN
α-Syn has a central role in the pathogenesis of PD and other
synucleinopathies, as dementia with Lewy bodies (DLB) and
Multiple System Atrophy (MSA; Spillantini and Goedert, 2000).
In 1997, the first link between PD and α-syn was described
with the identification of point mutations -A53T- in the SNCA
gene in autosomal-dominant forms of PD (Polymeropoulos
et al., 1997; Athanassiadou et al., 1999; Spira et al., 2001; Ki
et al., 2007; Choi et al., 2008; Puschmann et al., 2009). To
date, the list of missense mutations continues to grow with
A30P, E46K, H50Q, G51D, A53E (all classified as PARK1 locus)
(Krüger et al., 1998; Zarranz et al., 2004; Appel-Cresswell et al.,
2013; Lesage et al., 2013; Proukakis et al., 2013; Pasanen et al.,
2014). The subsequent identification of families with multipli-
cation (duplication or triplication) of its allele (PARK4 locus)
strengthen the link between α-syn and PD (Singleton et al.,
2003; Chartier-Harlin et al., 2004), suggesting that increased
expression levels of the normal α-syn can be causal for PD and
others synucleinopathies. Furthermore, genome-wide association
studies (GWAS) have linked single nucleotide polymorphisms
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FIGURE 1 | Lysosomes and α-synuclein are involved in a vicious
pathogenic loop eventually leading to cell death and LB formation. On
the one hand, lysosomes have been shown to be involved in cell death
activation through canonical or non-canonical pathways. On the other hand,
α-synuclein (α-syn) can also trigger cell death through several distinct
pathways including membranes permeabilization. Lysosomes and α-syn
display a bidirectional relationship. While lysosomes predominantly degrade
α-syn, α-syn aggregation can lead to lysosomal dysfunction in return.
α-Syn-mediated lysosome impairment can lead to alterations of one of
lysosomal main function: protein degradation, lysosome-to-nucleus
signaling, and secretion. This pathogenic loop can be worsened with age
and in particular ROS production, which can induce both LMP and α-syn
aggregation. Interestingly, α-syn aggregation, especially specific oligomeric
species, can increase ROS production. We previously suggested that this
loop might be the template for the formation of LB, which remains currently
unknown.

(SNPs) in the SNCA gene with increased susceptibility of
developing PD (Simón-Sánchez et al., 2009; Edwards et al., 2010;
International Parkinson Disease Genomics et al., 2011). α-Syn is a
14 kDa neuronal protein consisting of 140 amino acids mainly
localized to presynaptic terminals. While the exact physiologi-
cal function of α-syn remains to be fully understood, several
studies have implicated its capacity to interact directly with
cellular membranes, such as vesicles (Auluck et al., 2010) or
mitochondria-associated membrane, which is an endoplasmic
reticulum subdomain involved in lipid and calcium homeostasis
(Guardia-Laguarta et al., 2014). Nevertheless, substantial evi-
dence suggests that α-syn function is related to vesicle dynamics,
neurotransmission and synaptic plasticity, the mechanisms of
which have been reviewed elsewhere (Bellani et al., 2010). In
its native state, the previous paradigm was that α-syn behaves
as an unfolded monomer. However, a recent report now hints
at a more complex picture as the predominant physiological
species of α-syn is a helically folded tetramer (Bartels et al.,
2011). α-Syn is, however, intrinsically defined as an aggregation-
prone protein. In PD brains, α-syn antibodies strongly react in
LB (Spillantini et al., 1997) and Lewy neurites (Takeda et al.,
1998). Biochemical analyses have shown that α-syn is a major
protein component of LB and may be part of the β-sheet enriched
fibrillar structure of these inclusions (Crowther et al., 2000).

α-Syn can undergo several post-translational modification such
as truncation, nitration, oxidation, sumoylation, ubiquitinylation
and phosphorylation (Giasson et al., 2000; Fujiwara et al., 2002;
Tofaris et al., 2003; Anderson et al., 2006; Dorval and Fraser,
2006; Krumova et al., 2011). Interestingly, post-translationally
modified α-syn has been found in LB and some post-translational
modifications, such as oxidation or nitration, have been shown
to impact its aggregation process in favor to oligomeric species
(Fujiwara et al., 2002; Norris et al., 2003; Yamin et al., 2003). In
the past few years, substantial progress has been made not only at
elucidating how α-syn undergoes spontaneous self-aggregation,
but also in its highly heterogenous aggregation process that turns
its monomers into multiple oligomeric forms, then protofibrils,
fibrils and aggregates. The identification of pathological species
of α-syn involved in the perturbation of cellular function is
an expanding area of research. Recent studies support the con-
cept of soluble oligomers as the prominent toxic α-syn species
in in vitro and in vivo settings, although the precise size and
type of the toxic oligomeric species remains to be determined
(Auluck et al., 2010; Winner et al., 2011; Cremades et al., 2012).
Recent evidence piles up for prion-like propagation mechanisms
in synucleinopathies, including PD. Indeed, α-syn might behave
as a prion, responsible for initiating and spreading the patho-
logical process in PD. Supporting this concept, α-syn can be
transmitted to neighboring neurons and neuronal precursor cells
(Puschmann et al., 2009; Hansen et al., 2011). In vivo studies
have added a further piece to the puzzle with the observation
that intracerebral inoculation of synthetic recombinant α-syn
fibrils (Pffs) can mimic α-syn pathology in mice (Luk et al.,
2012). More recently, through an innovative strategy based on the
purification of aggregated α-syn from the SNpc of PD patients,
intranigral or intrastriatal inoculations of PD-derived LB extracts
resulted in progressive nigrostriatal neurodegeneration in both
mice and monkeys (Recasens et al., 2014), which were found
to originate at striatal dopaminergic terminals, Overall, these
results demonstrated that human α-syn species contained in PD-
derived LB are pathogenic and have the capacity to initiate a
PD-like pathological process, not only in rodents but also in
non-human primates (Recasens et al., 2014). Taken together, α-
syn has multiple ways to cause cellular perturbations and lead
to cell death. The presence of undegraded proteinaceous inclu-
sions led the research community to wonder how is handled α-
syn degradation? It is now understood that this involves both
the ubiquitin-proteasome system (UPS) and the ALP. α-Syn
is, however, predominantly degraded inside lysosomes, through
chaperone-mediated autophagy (CMA) or endocytosis (Webb
et al., 2003; Cuervo et al., 2004; Martinez-Vicente and Vila,
2013). The signals responsible for targeting α-syn (although it
contains a KFERQ-like sequence, i.e., a motif recognized by heat
shock cognate70 (hsc70) allowing direct lysosomal import) to a
given degradation pathway are not yet fully understood, but may
heavily depend on its folding state. Aggregated proteins will be
preferentially routed for degradation to the lysosome through
macroautophagy, whereas soluble forms would be both targeted
to the proteasome or to the CMA. Overall, defective α-syn pro-
tein degradation can be recognized as an important pathogenic
factor.
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LYSOSOME: WHITE KNIGHT OR TWO-FACE
Lysosomes are dynamic acidic organelles that contain hydrolytic
enzyme capable of degrading intracellular components, which
were discovered by Christian de Duve more than 50 years ago (De
Duve et al., 1955; Luzio et al., 2007). Acidic pH (around 4.6) is
maintained in the lumen by proton-pumping vacuolar ATPases.
Around 200 proteins have been reported as lysosomal membrane
proteins such as proton pumps, secretory, plasma membrane,
signaling or transport proteins (Schröder et al., 2007). The
most abundant proteins are the lysosomal-associated membrane
protein (LAMP)-1 and LAMP-2 as well as the lysosomal integral
membrane protein (LIMP)-2 and CD63 (Saftig et al., 2010).
Interestingly, lysosomes have a high intravesicular Ca2+ concen-
tration (around 500-600 µM). Defective lysosomal Ca2+ uptake
has been associated with human diseases, such as Niemann-Pick
type C (Lloyd-Evans and Platt, 2011). Several lysosomal storage
disorders are caused by lysosomal membrane dysfunctions (Ruivo
et al., 2009). These defects are mostly due to non-enzymatic
transport defects, highlighting the importance of transport and
channel proteins in lysosome physiology (Ruivo et al., 2009). As
mitochondrial outer membrane permeabilization (MOMP) is a
major checkpoint of apoptosis pathway, lysosomal membrane
permeabilization (LMP) has also been shown to induce cell death
(Boya and Kroemer, 2008). Following LMP, cell death can occur
through several pathway including canonical MOMP/caspase
pathway but also MOMP- and caspase-independent pathways
(Boya and Kroemer, 2008). The two main effects of LMP are
the release of lysosomal proteases, such as cathepsins B or D
(CSTB/CTSD), and cytosolic acidification. CTSD or CTSB could
then directly or indirectly promote cytochrome C release from
mitochondria (Boya and Kroemer, 2008). Currently, the principal
inducer of LMP remains to be reactive oxygen species (ROS),
although Bcl-2-associated X protein (Bax) has also shown to
initiate this process (Kågedal et al., 2005).

Several pathways converge to the lysosome: phagocytosis,
endocytosis, and autophagy through three different means
respectively named microautophagy, CMA and macroautophagy.
Autophagy (which comes from the Greek: “self-eating”) is an
evolutionary conserved mechanism that allows cells to degrade
their own components and recycle important molecules (Wong
and Cuervo, 2010; Cuervo, 2011; Boya et al., 2013). Briefly,
CMA involves selective recognition by a chaperone and import
through LAMP-2a, while microautophagy and macroautophagy
involve direct sequestration of a portion of the cytosol (including
proteins and organelles). While microautophagy requires the
direct invagination of lysosomal membrane, macroautphagy
involves the formation of a vesicle named autophagosome
that will then fused with lysosomes to allow degradation of
the sequestered material. In regards to protein aggregation,
macroautophagy has been suggested to be the mammalian
counterpart of the cytosolic-to-vacuole (Cvt)-pathway in yeast
responsible for cargo-selective degradation (Yamamoto and
Simonsen, 2011). Selective degradation of protein aggregates,
named aggrephagy, has been characterized based on the
observation of autophagosomes specifically containing aggregates
(Filimonenko et al., 2010). Moreover, a phosphatidylinositol
3-phosphate-binding protein, Alfy, has been shown to specifically

recognize and promote degradation of huntingtin aggregates
(Filimonenko et al., 2010). For several decades, lysosomes have
been only considered as terminal degradative compartments.
However, recent studies suggest that lysosomes are involved in a
vast number of cellular functions including lysosome-to-nucleus
signaling, secretion, energy metabolism and cell death pathways
(Rodriguez et al., 1997; Settembre et al., 2012, 2013).

Impairment of ALP, which is essential to maintain proper
protein and organelle quantity and quality within cells, is increas-
ingly regarded as a major pathogenic event in neurodegener-
ative diseases, including PD. The presence of LB in brains of
PD patients made the first connection with ALP and led to
the hypothesis that defective protein handling system might
contribute to the pathogenesis of the disease. Several studies
from independent groups reported ALP impairment associated
with lysosomal depletion in brain tissue from idiopathic PD
patients (Chu et al., 2009; Alvarez-Erviti et al., 2010; Dehay et al.,
2010). More precisely, accumulation of undegraded microtubule-
associated protein light chain 3 (LC3)-positive vesicles, decreased
cytosolic hsc70, LAMP-1 and LAMP-2a have been reported (Chu
et al., 2009; Alvarez-Erviti et al., 2010; Dehay et al., 2010). Genetic
studies further strengthen the connection between PD and ALP
dysfunction, which have indicated that lysosomal impairments
may play a primary pathogenic role in the disease process.
Interestingly, both CMA and proteasome can degrade the two
proteins associated with autosomal dominant inheritance of PD,
i.e., α-syn (PARK1/PARK4 locus) and Leucine-rich repeat kinase
2 (LRRK2–PARK8 locus) (Webb et al., 2003; Cuervo et al., 2004;
Orenstein et al., 2013). However, PD-linked α-syn mutants (as
well as post-translationally dopamine-modified wild-type α-syn)
and mutant forms of LRRK2 block CMA activity, resulting in
insufficient clearance and subsequent accumulation and aggre-
gation of α-syn (Cuervo et al., 2004; Martinez-Vicente et al.,
2008; Mak et al., 2010; Orenstein et al., 2013). Notably, two
other genes encoding for lysosomal proteins have been linked
to PD: the lysosomal type 5 P-type ATPase (ATP13A2—PARK9
locus) (Ramirez et al., 2006) and the enzyme glucocerebrosidase
(GBA; Aharon-Peretz et al., 2004; Di Fonzo et al., 2007; Sidransky
et al., 2009). While the former has been characterized in rare
families with prominent parkinsonism (Ramirez et al., 2006; Di
Fonzo et al., 2007), the latter has been identified as risk factor in
multicenter genetic analysis of patients (Sidransky et al., 2009).
Recently, genetic analysis suggested that lysosomal dysfunction
may play an important role in the etiology of DLB (Bras et al.,
2014). Relevant to PD, these two proteins have been reported to
be components of LB (Goker-Alpan et al., 2010; Dehay et al.,
2012). Defects in one of these two proteins may result in insuf-
ficient clearance of α-syn through lysosomes, hence leading to
the accumulation of this protein in both cytosol and lysosome
lumen (Dehay et al., 2012). Such vicious pathogenic loop has
been reported between GBA and α-syn (Mazzulli et al., 2011).
One can thus imagine a similar scenario in which toxic species
of α-syn “damage” lysosomes, hence leading to an impairment
of α-syn clearance that subsequently favor α-syn-aggregation.
Such aggregates then cause, in return, other damages, while con-
comitantly accumulating in lysosomes/autolysosomes to form LB
(Dehay et al., 2012).
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In addition to the aforementioned genes, hereditary parkin-
sonism has been identified in families carrying mutations for
ALP-related pathways. For instance, mutations in parkin (PARK2
locus), in the phosphatase and tensin homolog (PTEN)-induced
putative kinase 1 (PINK1) (PARK6 locus) or in DJ-1 (PARK7
locus), which are all involved in mitophagy, lead to autosomal
recessive forms of PD (Corti et al., 2011). While PINK1 and
parkin belong to the same pathway, DJ-1 has been shown to be
involved in an independent parallel pathway, which can rescue
a loss of function of PINK1 (Hao et al., 2010; Thomas et al.,
2011). A defective degradation of dysfunctional mitochondria
leads to maintaining those in the neuron and hence promotes the
mitochondrial dysfunctions that have been characterized in PD
patients (i.e., decrease in complex I activity and accumulation of
large-scale mitochondrial DNA mutations) (Schapira et al., 1989;
Bender et al., 2006). Mutations in the PD-associated gene UCH-
L1 (PARK5) abnormally interact with LAMP-2A, also causing an
increase amount of α-syn (Kabuta et al., 2008). From a genetic
point of view, all genes that have been positively associated with
PD (Corti et al., 2011) are also connected to ALP, which shed
light on the lysosome as an important player in PD-induced cell
death.

NEURONAL CELL DEATH: THE THIRD PARTNER
Lysosomal function impairment and α-syn aggregation can both
induce cell death either on their own or through a dramatic
additive effect. Of importance, α-syn seems to induce cell toxicity
through its different pathological α-syn species, which include
post-translationally modified, mutant, oligomeric and aggregated
forms. These can (i) disrupt its typical function in neurotrans-
mission release (Abeliovich et al., 2000; Jenco et al., 1998);
(ii) impair mitochondrial dynamics, structure and function
(Martin et al., 2006; Nakamura et al., 2011; Stefanovic et al.,
2014); and (iii) disrupt ER-Golgi vesicle trafficking (Cooper et al.,
2006; Gitler et al., 2008) and mitochondria-associated ER mem-
brane (Mercado et al., 2013; Guardia-Laguarta et al., 2014), which
results in ER stress. Further supporting the α-syn species toxicity,
CMA inhibition by either PD-linked α-syn mutants or dopamine-
modified wild-type α-syn results in an accumulation of α-syn, but
also of undegraded CMA-substrates, involved for instance in the
regulation of neuronal survival through the degradation of the
neuronal survival factor myocyte enhancer factor 2D (MEF2D;
Yang et al., 2009).

Regarding the lysosome, LMP is one mechanism for the
induction of certain cell death pathways. As mentioned above,
disruption of lysosomal membrane provokes cell death through
release of CTSs and other hydrolases from the lysosomal lumen
to the cytosol. These lysosomal proteases can remain active at
cytosolic pH and induce cellular damages by degradation of
vital proteins or activation of caspases. In relation to PD patho-
physiology, mechanistic studies using the 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD have
reported a lysosomal dysfunction, characterized by lysosomal
depletion and autophagosome accumulation. Such lysosomal
deficiency was secondary to abnormal LMP induced by Complex
I inhibition-mediated ROS production (Dehay et al., 2010; Vila
et al., 2011). Recent studies reported that the pro-apoptotic Bax

protein, which mediates MOMP, is activated in PD patients (Bové
et al., 2014). In experimental PD mouse model, Bax translo-
cates to the lysosome and mediates LMP before MOMP (Bové
et al., 2014). Interestingly, pharmacological inhibition of Bax-
mediated LMP and MOMP results in an overall attenuation of
MPTP-mediated cell death, even if the treatment is adminis-
tered once pathogenic neuronal changes are already in motion
(Bové et al., 2014), suggesting that the phenomenon at work is
reversible.

One of the meeting points between α-syn and lysosome
involves ROS. Recent reports suggest that α-syn oligomers can
induce both MOMP and in particular LMP (Freeman et al., 2013;
Stefanovic et al., 2014). α-Syn aggregation underlies a bidirec-
tional relationship with ROS production. Specific α-syn oligomers
increase ROS production, whereas oxidized α-syn inhibits fibril
formation in favor to toxic species (Norris et al., 2003; Cremades
et al., 2012). Hence, α-syn-mediated ROS production can lead to
LMP, as previously characterized in PD, and subsequently to cell
death. All these studies suggest that oxidative stress impact both
lysosomes and α-syn aggregation. In the past few years, another
piece has been added to the puzzle, suggesting that α-syn might
potentially spread in a prion-like manner, from cell to cell and
region to region. Although mechanisms of α-syn release are not
yet elucidated, α-syn may be released by exocytosis in a calcium-
dependent manner (Lee et al., 2005; Emmanouilidou et al., 2010),
a phenomenon exacerbated after lysosomal inhibition (Alvarez-
Erviti et al., 2011), subsequently enhancing disease progression
and the lysosomal contribution to the pathology. Non-genetic fac-
tors, however, cannot be excluded as important risks to PD. This
includes ageing for instance which remains the most compelling
risk factor for PD. Ageing is also associated with mitochondrial
and lysosomal impairments as well as ROS production (Dufour
and Larsson, 2004; Mattson and Magnus, 2006), linking the
several key events that occur in neuronal cell death in PD.

Of interest, pharmacological or genetic enhancement of
autophagy has been shown to be beneficial in PD models. For
example, in the MPTP-treated mouse model, pharmacological
activation of ALP with the mammalian target of rapamycin
(mTOR) inhibitor, rapamycin, attenuates neurodegeneration and
lysosomal dysfunction (Dehay et al., 2010; Malagelada et al.,
2010). Consistent with this approach, viral-mediated overexpres-
sion of ALP components, such as transcription factor EB (TFEB),
LAMP2a or Beclin-1, provided neuroprotection in viral-mediated
α-syn-overexpressing rodent models of PD (Spencer et al., 2009;
Decressac et al., 2013; Xilouri et al., 2013). With regards to
the development of therapeutic approaches, we must keep in
mind that a balance needs to be maintained between boosting
and inhibiting processes of autophagy. Indeed, autophagy has
been shown to have both survival promoting and death pro-
moting roles (Eskelinen, 2005). Hence, enhancement of lyso-
somal biogenesis or specific activation of late steps of the
autophagy machinery might provide more successful approach
compared to a broad activation of the whole autophagy machin-
ery, potentially leading to a deleterious effect and eventu-
ally cell death. Increasing the ability of neurons under attack
to degrade protein aggregates remains a promising strategy
for PD.
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CONCLUDING REMARKS
Seventeen years after its association with PD, α-syn is now con-
sidered as a central player in PD pathogenesis, linking genetic
and idiopathic forms of parkinsonism. Two key elements strongly
associate α-syn aggregation and lysosomal dysfunction: (i) aggre-
gated or post-translationally modified forms of α-syn can directly
or indirectly inhibit lysosomal function; and (ii) the occurrence
of a lysosomal depletion in brains from PD patients as well
as in several experimental models of PD. Consistent with these
evidences, LB formation might be the result of the combination of
both α-syn aggregation and lysosomal failure, as key components
of autophagy and α-syn have been localized in LB. Altogether,
this suggests that α-syn aggregation and lysosomal impairment,
enhanced with ageing, could play a deleterious duet leading to
dopaminergic cell death (Figure 1).
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