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Abstract Lysyl oxidase (LOX) family oxidases, LOX and
LOXL1-4, oxidize lysine residues in collagens and elastin,
resulting in the covalent crosslinking and stabilization of
these extracellular matrix (ECM) structural components,
thus provide collagen and elastic fibers much of their tensile
strength and structural integrity. Abnormality in LOX ex-
pression and/or activity results in connective tissue disorders
and fibrotic diseases. Despite LOX family oxidases have
been reported to function as tumor suppressors, recent stud-
ies have highlighted the roles of LOX family oxidases in
promoting cancer metastasis. LOX family oxidases are
highly expressed in invasive tumors, and are closely asso-
ciated with metastasis and poor patient outcome. Consistent
to their roles in connective tissue homeostasis, LOX family
oxidases expedite tumorigenesis and metastasis through ac-
tive remodeling of tumor microenvironment. LOX family
oxidases are also actively involved in the process of
epithelial-mesenchymal transition (EMT), an event critical
in cancer cell invasion and metastasis. In this review, we
will summarize the recent progress on LOX family oxi-
dases, with much of the focus on the roles and mechanism
of LOX in tumor progression and metastasis.
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Introduction

In the past decades, majority efforts of cancer research have
focused on the functional consequences of oncogene and
tumor suppressor gene mutations. However, cancer is hetero-
geneous entity dependent on reciprocal interactions between
cancer cells and their dynamic microenvironment, provided
by fibroblasts, endothelial cells, pericytes, inflammatory
cells, and extracellular matrix [1]. The temporal-spatial
changes of microenvironment and the interplay between
cancer cells and their microenvironment are critical in all
different aspects of cancer development, including mainte-
nance of cancer cell dormancy, cancer progression and
metastasis, as well as drug resistance [1]. Microenviron-
ment of cells, via cell-cell contact, cell-extracellular matrix
(ECM) interaction and growth factor, retains the character-
istics of cells, as well as their response to stimuli. The
importance of microenvironment to pathogenesis is becom-
ing much more recognized, from the role of ECM and
matrix rigidity in determining polarity and growth poten-
tial of tissues, to the extracellular metabolism of growth
factors and matrix molecules during cancer progression
and metastasis. ECM remodeling is a common feature of
diverse pathological processes, including tissue fibrosis
and cancer [2, 3]. ECM components, closely associated
with cancer prognosis and therapy response, are promising
therapeutic targets under extensive investigation [4–6].
Lysyl oxidase (LOX) and its family members LOXL1-4,
the copper-dependent amine oxidases playing critical roles
in ECM crosslinking and remodeling, are implicated in
cancer progression and metastasis [7, 8]. In this review,
we will summarize the recent progress on aberrant expres-
sion and activity of LOX family oxidases in cancers, with
much of the focus on the roles and mechanism of LOX in
tumor progression and metastasis.
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LOX Family Oxidases, Regulation and Functions

LOX Family Oxidases

LOX and its family members LOX-like proteins (LOXL) 1–
4 are copper-dependent amine oxidases that oxidize ε-amino
group of peptidyl lysine to reactive peptidyl aldehydes,
followed by formation of the dehydrolysinonorleucine and
aldol condensation products from peptidyl aldehydes and
lysine residues [9, 10]. LOX family members are highly
conserved at their C- terminal mature catalytic domains,
including the copper binding site, the lysyl tyrosyl quinine
(LTQ) cofactor residues, and the cytokine receptor like
(CRL) domain. Both copper and LTQ cofactor are required
for the oxidase activity. Copper, which may not be directly
involved in LOX catalytic activity, is believed to be essen-
tial for the maintenance of protein conformation and LTQ
cofactor. The LTQ cofactor, formed by covalently linked
Lys314 and Tyr349 residues, functions in electron transmis-
sion [9, 10]. LOX family oxidases differ significantly at
their N- terminal pro-peptides that LOXL1 pro-peptide con-
tains a proline-rich domain, and LOXL2, LOXL3 and
LOXL4 each contain four scavenger receptor cysteine-rich
(SRCR) domains [9, 10] (Fig. 1). The SRCR domains,
frequently found in cell surface proteins associated with
the immune system, are suggested to be involved in
protein-protein interaction [10]. Based on sequence similar-
ity and domain structure, LOX and LOXL1 form a subfam-
ily, while LOXL2, 3, and 4 exist as a separate subfamily.
LOX family oxidases are synthesized as zymogens or pro-
enzymes. Removal of the NH2-terminal pro-peptide of LOX
by bone morphogenetic protein-1 (BMP-1)/Tolloid metal-
loproteinases in the extracellular space is necessary for
enzyme activation and the exhibition of its oxidase activity

[11, 12]. It remains somewhat unclear whether LOX-like
oxidases undergo similar cleavage/activation events in vivo,
as LOXL1 is present predominantly in its full length form in
vivo [13]. Collagens and elastin are well characterized
physiological substrates of LOX family oxidases. The resul-
tant crosslinked collagen and elastic fibers provide the con-
nective tissues much of their tensile strength and structural
integrity. It was also reported that LOX can utilize histone
H1, PDGFR-β, as well as bFGF as substrates in regulating
transcription and cell migration [14–16]. LOX utilizes mul-
tiple lysine residues in collagens and elastin as substrates
[10]. However, the sequences surrounding these lysine res-
idues lack obvious consensus. Purified LOX readily oxi-
dizes basic globular proteins, e.g. histone H1 [14], and non-
peptidyl amine substrates, e.g. 1,5-diaminopentane [17], but
not acidic proteins. The electrostatic potential between LOX
and its substrates, rather than a consensus sequence, might
be essential to its catalytic activity. LOX and LOXL1 are
tethered to the sites of elastogenesis via binding to fibulin-4
and −5 respectively [18, 19]. The temporal-spatial localiza-
tion and the vicinity to its substrates, together with the
electrostatic potential, may determine the substrate spec-
ificity of LOX.

Regulation of LOX Family Oxidases

Precisely regulated expression and activity of LOX family
oxidases are prerequisite to their critical functions in con-
nective tissue homeostasis. This is achieved not only by the
transcriptional regulation, but also by temporal-spatial dis-
tribution and the modulation of oxidase activity of LOX
family oxidases (Fig. 2). Aberrant expression of LOX family
oxidases and/or deregulated oxidase activity is responsible to
the pathogenesis of many types of diseases, e.g. tissue fibrosis

Fig. 1 Schematics of LOX family oxidases. LOX and LOX-like
proteins (LOXL) 1–4 are synthesized as proenzymes. LOX family
oxidases are highly conserved at their C- terminal mature domains,
including the copper binding site, the lysyl tyrosyl quinine (LTQ)
cofactor residues, and the cytokine receptor like (CRL) domain, but

differ significantly at their N- terminal pro-peptides. The pro-peptides,
especially the proline-rich domain in LOXL1 and the scavenger-
receptor cysteine-rich (SRCR) domains in LOXL2-4, are possibly
involved in protein-protein interactions. Si: Signal peptide
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and cancer. TGF-β is one of the key cytokines in regulating
ECM, not only by regulating expression of ECM structural
proteins, but also by affecting enzymes involved in ECM
biosynthesis and degradation. TGF-β increased steady state
LOX mRNA level in a dose- and time-dependent manner,
through integrated Smad3, PI-3 kinase, and MAPK signal-
ing [20]. Chronic inflammation plays pivotal roles in the
pathogenesis of fibrotic diseases. High dose proinflamma-
tory factor TNF-α stimulated LOX expression, which may
play an important role in progressive cardiac fibrosis [21].
LOX is highly expressed in invasive basal breast cancer, but
not in non-invasive ductal breast cancer. GATA-3, a tran-
scriptional factor essential for normal mammary gland de-
velopment and luminal cell differentiation, negatively
regulates the expression of LOX through methylation of
the LOX promoter [22]. The forkhead box M1b (FoxM1b)
transcription factor, overexpressed in human cancers and
correlated with poor prognosis, directly binds to the pro-
moters of LOX and LOXL2 genes. FoxM1b, by inducing
LOX and LOXL2 expression and activating the Akt-Snail
pathway, drives epithelial-mesenchymal transition (EMT),
hepatic fibrosis and metastasis of hepatocellular carcinoma
[23]. Hypoxia has been proposed as an important micro-
environmental factor in the development of many types of
diseases, including tissue fibrosis and cancer. Hypoxia-

inducible factor-1 (HIF-1) is the key regulator of the cellular
response to hypoxia. LOX mRNA level is highly up-
regulated under hypoxic conditions, mediated by HIF-1 at
transcriptional level [7]. Notch and tumor suppressor LKB1
also regulate LOX expression through HIF-1 [8, 24].

The observation that increased LOX enzyme activity
upon TGF-β stimulation was delayed and was of lower
magnitude than the increase in its mRNA level suggested
rate-limiting post-transcriptional regulation of LOX. Indeed,
LOX family oxidases are synthesized as zymogens or pro-
enzymes. The proteolytic removal of LOX pro-peptide by
BMP-1/Tolloid metalloproteinases after secretion is essen-
tial to the exhibition of its oxidase activity [11, 12]. The
activation of LOX, however, should be a tightly regulated
process. Both LOX and BMP-1 bind to cellular fibronectin,
an abundant component of the ECM that regulates manifold
cellular functions through its interaction with various ECM
and cell surface proteins [25, 26]. Impaired LOX processing
and oxidase activity were evident in FN-null MEFs, com-
pared to wild-type MEFs [25]. Despite several studies sug-
gested LOXL1 undergoes similar BMP-1-mediated
proteolytic activation in vitro, this has to be further con-
firmed, as almost exclusive full-length LOXL1 protein was
detected in vivo [13]. Nevertheless, LOXL1 is tethered to
the sites of elastogenesis via interaction between its pro-

Fig. 2 Transcriptional and post-transcriptional regulation of LOX
family oxidases. LOX family oxidases are temporal-spatially regulated
at both transcriptional and post-transcriptional levels. TGF-β upregu-
lates LOX mRNA level through Smad3 transcription factor. Hypoxia-
inducible factor-1 (HIF-1), in response to hypoxic stress or deregulated
mammalian target of rapamycin (mTOR) kinase downstream of tumor
suppressor LKB1, directly binds to LOX and LOXL2 promoters, and
initiates LOX and LOXL2 transcription. The forkhead box M1b
(FoxM1b) transcription factor, in addition to direct binding to the
promoters of LOX and LOXL2 genes, activates LOX and LOXL2
transcription through enhanced PI3-kinase-Akt-mTOR signaling.
LOX enhances HIF1α expression by activating the PI3-kinase-Akt

signaling, thus providing a fast-forward regulatory circuit of LOX
expression. GATA-3 transcriptional factor, on the other hand, negative-
ly regulates LOX expression through LOX promoter methylation. At
post-transcriptional level, the proteolytic removal of LOX pro-peptide
by BMP-1/Tolloid metalloproteinases is essential to the exhibition of
its oxidase activity, faciliated by the colocalization of LOX and BMP-1
to fibronectin matrix. LOX and LOXL1 interact with fibulin-4 and
fibulin-5 respectively through cognate pro-peptides. The interaction of
LOX family oxidases with ECM components determines their spatial
distribution, substrate specificity, oxidase activity and their physiolog-
ical and pathological functions
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peptide and fibulin-5 to exert its oxidase activity [19].
LOXL1 binding to fibulin-5 may also have a regulatory role
on its oxidase activity. Interaction between fibulin-4 and the
pro-peptide of LOX efficiently promotes assembly of LOX
onto tropoelastin [18]. Thus, the pro-peptides of LOX fam-
ily oxidases and possibly their mature domains, via interac-
tion with ECM components, exert regulatory roles in
determining the spatial distribution, substrate specificity,
oxidase activity and their physiological and pathological
functions.

Physiological Functions of LOX Family Oxidases

LOX family oxidases crosslink collagen and elastin, and are
essential to the biogenesis of connective tissues [11]. Lox-
null mice are perinatal lethal with cardiovascular fragility,
burst arterial aneurysms, ruptured diaphragm, and frag-
mented elastic fibers, suggesting that LOX has an essential
role in the development and function of the cardiovascular
system [27, 28]. The Lox null mice also display impaired
development of the distal and proximal airways [29]. Elastic
and collagen fibers were markedly more disperse in the
mesenchyme surrounding the distal airways, bronchioles,
bronchi, and trachea, and in pulmonary arterial walls in
Lox null mice than in the wild type mice [29]. Although
viable, Loxl1-null mice are featured with enlarged pulmo-
nary alveoli, redundant skin, prolapse of pelvic viscera, and
vascular abnormalities [19], similar to that observed in the
fibulin-5 knockout mice [30]. The LOXL2-4 knockout mice
are yet not available to study their physiological functions.

Despite lack of substrate specificity in vitro, the largely
non-overlapping phenotypes, and the inability of LOX and
LOXL1 to compensate for each other in the knockout mice
have shed light on potentially distinct substrate spectrum
and physiological functions of LOX family oxidases in
vivo. The phenotypic difference could only be partially
attributed to the tissue expression pattern of LOX family
oxidases. In contrast to the restricted and low level expres-
sion of LOXL2-4, LOX and LOXL1 are broadly expressed
with overlapping expression domains [31]. Immunohisto-
chemical staining suggested LOXL1 to be solely associated
with elastic lamina, whereas LOX was broadly distributed
[19]. This is consistent to the observation that reduced
crosslinks in both collagen and elastic fibers were detected
in Lox-null mice, whereas aberrant elastic, but not collagen,
fibers were evident in Loxl1 mice, suggesting spatially de-
fined roles of LOXL1 in guiding elastin deposition. Unlike
proteolytically processed LOX, LOXL1 is present largely as
full-length protein in vivo [13]. LOXL1 interacts with
fibulin-5 through its pro-peptide, and is targeted to elastic
fibers [19]. Therefore, besides the roles of retaining the
oxidase in the latent format, the divergent pro-peptides,
along with their cognate mature domains, may determine

the spatial distribution, substrate specificity and function of
LOX family oxidases via distinct interacting proteins. In-
deed, LOXL2 inhibits keratinocyte differentiation via the
function of its fourth SRCR domain, independent of its
oxidase activity [32]. In addition to well documented roles
in connective tissue homeostasis, LOX family oxidases are
participated in many other critical biological functions, in-
cluding cell migration [16, 33–37], cell polarity and
epithelial-mesenchymal transition (EMT) [24, 38–42], as
well as angiogenesis [43], possibly mediated by less well
characterized substrates/binding proteins of LOX family
oxidases.

LOX Family Oxidases in Cancer and Other Diseases

X-linked fatal disorder Menkes’ disease and autosomal re-
cessive disorder Wilson’s disease are two widely studied
genetic diseases of copper metabolism in humans [44].
Remarkably low LOX activity, as the pathophysiological
consequence of copper deficiency, accounts in part for the
connective tissue disorders observed in Menkes’ disease and
Wilson’s disease [44–46]. LOX is involved in a variety of
pathological process related to connective tissue. In contrast
to reduced LOX activity in cutis laxa [47], Menkes’ disease
[46], and spontaneous coronary artery dissection [48],
which show abnormalities and deficiency of elastic fibers,
LOX expression is markedly elevated in atherosclerosis,
scleroderma, and liver cirrhosis, featured with prominent
symptom of fibrosis [6, 49, 50]. Other family members, e.g.
LOXL1 and LOXL2 also play critical roles in elastic fiber
homeostasis and maintenance at adult age [19, 51, 52].

The role of LOX family oxidases in cancer emerges from
the up-regulated LOX expression in spontaneous revertants
of H-ras-transformed rat fibroblasts [53]. Reduction of LOX
expression in head and neck squamous cell carcinomas [54]
and gastric cancers [55], of LOXL2 expression in head and
neck squamous cell carcinomas [54], and of LOXL1 and
LOXL4 expression in bladder cancer via epigenetic silenc-
ing have been reported [56] (Table 1). The pro-peptide of
LOX is responsible for its anti-tumor effect through inter-
acting with Hsp70 and c-Raf to reduce ERK activation [57],
and to repress Bcl-2 [58]. Despite LOX has been implicated
as a tumor suppressor, LOX is now more widely accepted as
a poor prognosis factor (Table 1), especially in promoting
cancer metastasis in breast [7, 59, 60], head and neck squa-
mous cell [7, 61], lung [8], prostatic [62], and bronchogenic
[63] carcinomas. LOX is highly expressed in invasive basal
breast cancer, but not in non-invasive ductal breast cancer
[7]. Tumor suppressor LKB1 contributes to ~30 % lung
cancer [64]. LOX is highly expressed in LKB1-deficient
lung adenocarcinomas, and is responsible to the enhanced
cancer cell proliferation and invasiveness [8]. Elevated
LOXL4 expression has been reported in head and neck
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Table 1 Expression of LOX Family Members in Tumor Tissues and/or Cell Lines

Cancer Type Expression System Function References

LOX

Basal and squamous cell
carcinomas

Pa: ↓ Tb; Cc [103]

Breast cancer R, Pd: ↑ T; C Poor distant metastasis-free and overall survivals; activate HIF1-Akt pathway;
mediate hypoxic control of metastasis; regulate actin filament formation;
contribute to mechanotransduction- mediated regulation of TGF-β signaling;
recruit bone marrow cell to form the pre-metastatic niche

[7, 74, 85, 104]

Breast cancer R, P: ↓ C Repress ERK activation and Bcl-2 expression [57, 105–109]

Bronchogenic carcinoma R, P: ↓ T [63]

Choriocarcinoma R: ↓ C [110]

Colorectal cancer R, P: ↑ T; C Correlated with absence of lymphovascular invasion; activate the PI3K-Akt
pathway to upregulate HIF-1α protein synthesis

[66, 75, 111]

Gastric cancers R: ↓ T; C Loss of heterozygosity and promoter methylation [55]

Head and neck squamous
cell carcinoma

P, P: ↑ T; Strongly associated with increased metastasis, progression, and death [7, 61]

Head and neck squamous
cell carcinomas

R: ↓ T; C [54]

Lung adenocarcinoma R, P: ↑ T; C ECM remodling; associated with advanced stage and metastasis [8, 112]

Melanoma R: ↑ C Correlate to invasive/metastatic potential [74]

Oral and oropharyngeal
squamous cell
carcinoma

R, P: ↑ T Independent prognostic biomarker and predictor of lymph node metastasis [113]

Prostate adenocarcinoma R: ↑ T Marker of hypoxia in prostate cancer [62, 74]

Prostate cancer R, P: ↓ C Inhibit FGF2 signaling [114]

Renal cell carcinoma R: ↑ T [115]

LOXL1

Bladder cancer R: ↓ C Silenced predominantly by promoter methylation; inhibit Ras/ERK signaling
pathway

[56]

Lung adenocarcinoma R: ↑ C [116]

Renal cell carcinoma R: ↓ C [117]

Salivary gland adenoid
cystic carcinoma

R: ↑ T Hypomethylated CpG islands [118]

LOXL2

Breast cancer R, P: ↑ T; C Promote deposition onto elastic fibers; highly expressed in the basal/
myoepithelial mammary cell lineage; increase in disease-associated stroma;
maintains the mesenchymal phenotype of basal-like carcinoma cells

[5, 33, 40, 74,
82, 83, 119]

Colorectal
adenocarcinomas

R, P: ↑ T Correlate with absence of lymphovascular invasion; increase in disease-associated
stroma

[5, 66]

Gastric cancer R, P: ↑ T; C Associate with tumor invasion, lymph node metastasis and poor overall survival [69]

Head and neck squamous
cell carcinomas

R: ↓ T; C [54]

Hepatocellular carcinoma R: ↑ T; Increase in disease-associated stroma [5]

Lung Squamous Cell
Carcinoma

R, P: ↑ T; Increase in disease-associated stroma; decreased overall and disease-free
survival

[5, 68]

Melanoma R: ↑ C Correlate to invasive/metastatic potential [74]

Pancreatic carcinoma R, P: ↑ T; C Increase in disease-associated stroma; epithelial– mesenchymal transition [5, 70]

Prostate adenocarcinoma R: ↑ T Correlate to invasive/metastatic potential [74]

Renal cell carcinoma R: ↑ T Increase in disease-associated stroma [5]

LOXL3

Breast cancer R: ↑ C Interact and cooperate with Snail to downregulate E-cadherin expression [38]

Melanoma R: ↑ C Correlate to invasive/metastatic potential [38, 74]

LOXL4

Bladder cancer R: ↓ C Epigenetically silenced by promoter methylation; somatic mutations [56]

Colorectal
adenocarcinomas

R: ↑ T Correlate with absence of lymphovascular invasion [66]
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cancer [65], and colorectal adenocarcinomas [66]. Breast
cancer, lung cancer or head and neck cancer patients with
high LOX-expressing tumors have poor distant metastasis-
free and overall survival [7, 8], while LOXL2 is a novel
poor prognosis marker of lung squamous cell carcinomas,
lung adenocarcinomas and pancreatic carcinoma [5, 40,
67–70]. LOX family oxidases are necessary and sufficient
to repress E-cadherin, and are required for EMT and meta-
static dissemination of basal-like breast carcinomas [41].
Pharmacological inhibitors or therapeutic antibodies of
LOX family oxidases satisfactorily impede the disease pro-
gression and metastasis in breast cancer and lung cancer
mouse models [5, 7, 8, 71].

Role of LOX Family Oxidases in Cancer

Hypoxia

Tumors often encounter hypoxic, hypoglycemic and acidic
microenvironment. Hypoxia, present in solid tumors larger
than 1 cm3 due to inadequate blood supply, has received
considerable attention as an inducer of tumor metastasis,
and is strongly correlated to poor patient outcome. Hypoxia
promotes tumor angiogenesis, EMT, invasion, metastasis,
and de-differentiation, largely mediated by the targets of
hypoxia-inducible factors (HIFs) [72]. LOX, among the
hypoxia gene signature [73], has been shown to be directly
regulated by HIF1α transcription factor, and is essential for
hypoxia-induced metastasis in breast cancer and head and
neck cancer [7]. Hypoxia-induced cancer cell invasion was
severely impaired by inhibiting LOX expression or oxidase
activity [74]. The decreased invasive ability could be res-
cued by over-expression of mature LOX or treatment of
conditioned medium from cancer cells, suggesting secreted
LOX plays key roles in this process [74]. Besides hypoxia,
we have previously reported that LOX expression is ele-
vated in tumor suppressor LKB1-deficient lung cancers
[8]. The deregulated LOX expression, however, is medi-
ated by HIF1α as well [8]. Under normoxic conditions,
HIF1α expression is promoted by disrupted regulation of

mammalian target of rapamycin (mTOR) kinase and sub-
sequent increased HIF1α translation. Indeed, gain-of-
function of oncogenes, e.g. H-Ras, or loss-of-function of
tumor suppressors, e.g. LKB1, leads to the accumulation
of HIF1α in both normoxic and hypoxic conditions [8,
72]. Converge of hypoxia, oncogene gain-of-function, and
tumor suppressor loss-of-function at HIF1α transcription
factor has placed HIF1α at the central position in LOX
expression regulation. Interestingly, LOX induction in hu-
man colorectal carcinoma cell lines enhanced HIF1α expres-
sion, by activating the PI3-kinase-Akt signaling pathway and
upregulating HIF1α protein synthesis, in which LOX-
mediated hydrogen peroxide production is necessary [75].
Cancer cell proliferation was stimulated by LOX in an
HIF1α-dependent manner both in vitro and in vivo. Thus,
the regulatory circuit between LOX and HIF1α act in synergy
to foster tumor formation in the adaptation of tumor cells to
hypoxia. Hypoxia is one of the key drivers of angiogenesis
[76]. Under hypoxic conditions, HIF1α induces expression of
pro-angiogenic factors and endothelial cell mitogens, e.g.
vascular endothelial growth factor A (VEGF-A), thus induces
proliferation, sprouting and tube formation of endothelial cells
and sustained angiogenesis [77]. LOXL2 is accumulated in
the endothelial ECM and regulates sprouting angiogenesis
through assembling type IV collagen in the endothelial base-
ment membrane in zebrafish [43]. LOX family oxidases there-
fore play manifold roles in cancer progression and metastasis,
promoting not only cancer cell migration and invasion, but
also angiogenesis in concert with proangiogenic factors under
hypoxia (Fig. 3).

Extracellular Matrix Remodeling

LOX family oxidases have been implicated to be associated
with cancer metastasis and shorter overall survival. Over-
expression of LOX family oxidases potentiates tumor pro-
gression and metastasis in breast cancer and lung cancer [7,
8, 71]. Inhibition of LOX family oxidase activity by phar-
macological inhibitors, therapeutic antibodies or reduced
LOX expression impeded tumor progression [5, 7, 8, 71].
Consistent to their roles in connective tissue homeostasis,

Table 1 (continued)

Cancer Type Expression System Function References

Head and neck squamous
cell carcinoma

R, P: ↑ T; C Correlate to local lymph node metastases and higher tumour stages; suitability
as a vaccination strategy

[65, 120, 121]

Mesothelioma R: ↑ T Alternatively spliced in an anatomic site-specific manner [122]

Ovarian carcinoma R: ↑ T Alternatively spliced in an anatomic site-specific manner [122]

Serosal cavities-breast
carcinoma

R: ↑ T Alternatively spliced in an anatomic site-specific manner [122]

Abbreviations: aP protein; b T tumor tissues; cC cell lines; dR RNA
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LOX family oxidases modulate tumor behavior in part
through ECM remodeling and stiff microenvironment
(Fig. 3). In solid tumors, there is evident pervasive growth
of dense fibrous tissues, featured with accumulation of
fibroblasts and excess and/or disordered ECM deposition,
a phenomenon named desmoplasia. In clinical practice, the
correlation between tissue fibrosis and cancer has attracted
much attention. Indeed, high mammographic density, char-
acterized by dense type I collagen accumulation, increases
breast cancer risk [78].

Collagens, the most abundant ECM proteins in the stro-
ma, contribute most significantly to the tensile strength and
rigidity of tissues [79]. Increased expression and excess
deposition of collagens, as well as disordered ECM organi-
zation and turnover have been implicated in tumor progres-
sion [80]. An extracellular matrix gene cluster is closely
associated with breast cancer prognosis and endocrine ther-
apy response [60]. Despite that breakdown of surrounding
matrix is believed to be prerequisite for tumor metastasis,
histopathological analyses had clearly shown correlation of

Fig. 3 Pathological functions of LOX family oxidases during cancer
progression and metastasis. LOX, as a potent chemokine, orchestrates
FAK/Src, Rho GTPases and p130Cas/Crk/DOCK180 signaling path-
way and cytoskeleton rearrangement to regulate cell-matrix adhesion
and cell motility. Cells sense the mechanical force from stiff extracel-
lular matrix, resultant from increased LOX expression and collagen
crosslinking, through cell surface integrin receptors and downstream
activation of FAK and Src kinases and cytoskeleton rearrangement to
acquire the invasion ability. LOX family oxidases are actively involved
in the regulation of cell polarity and epithelial-mesenchymal transition,

by interacting with Snail transcription factor and protecting Snail from
GSK3β-dependent phosphorylation and degradation to induce
mesenchymal-like morphological changes and enhanced cell motility.
LOX and LOXL2 secreted by primary tumors accumulate at the
premetastatic sites, crosslink basement membrane type IV collagen
and generate chemotactic cue for bone marrow-derived cells (BMDCs)
to form the premetastatic niche to facilitate tumor cell metastasis.
LOXL2 regulates angiogenesis through assembling type IV collagen
in the endothelial basement membrane, in concert with other proangio-
genic factors, e.g. VEGF-A under hypoxia
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poor outcome in patients with fibrotic lesions in a variety of
cancers, underscoring the essential roles of ECM remodel-
ing during tumor progression and metastasis. Cancer inva-
sion is facilitated by stromal collagen re-organization and
this behavior is significantly increased in collagen-dense
tissues [81]. Many ECM modifying enzymes, including
matrix metalloproteinases (MMPs) and LOX family oxi-
dases are aberrantly expressed during malignant transforma-
tion, progression and metastasis of cancers. Over-expression
of active LOX could increase tissue tension and ECM
rigidity by crosslinking collagens and elastin [8, 71].
LOXL2 expression in non-invasive breast cancer cells pro-
motes tumor fibrosis and tumor invasiveness simultaneously
in a xenograft model, indicating intrinsic connection between
these two processes [82]. Reduced collagen crosslinking by
downregulation of LOX impeded tumor progression [8, 71].
Genetic, chemical or antibody-mediated inhibition of LOXL2
resulted in marked reduction in activated fibroblasts, desmo-
plasia, and metastasis [5, 83]. The matrix stiffness, as well as
the ECM composition and architecture, play fundamental
roles in cell fate determination. Normal breast epithelial cells
in stiff 3D microenvironment share characteristics with trans-
formed breast cancer cells in disrupted cell adherens junction,
enhanced cell proliferation, and failure in lumen formation
[84]. Cancer cells in stiff microenvironment are more prolif-
erative and invade into surrounding matrix [8, 71, 84]. Cells
sense the mechanical force from stiff ECM through cell sur-
face integrin receptors [8, 71, 84]. The dense collagen matrix
microenvironment provokes the increase of cancer cell inva-
sion ability through activation of FAK and Src kinases and
cytoskeleton rearrangement downstream of β1 integrin,
whereas β1 integrin blocking antibody or depletion of FAK
significantly decreased cancer cell proliferation and invasive-
ness in the stiff microenvironment [8, 71, 84].

On the other hand, LOX family oxidases affect tumor
progression and metastasis beyond simply stiffening sur-
rounding tissues by impacting other aspects of microenvi-
ronment (Fig. 3). Inhibition of LOXL2 resulted in a marked
reduction in activated fibroblasts, endothelial cells, and de-
creased production of growth factors and cytokines [5].
Increasing extracellular matrix rigidity promoted the prolif-
eration of malignant MECs, which was abrogated by inhib-
iting the activities of TGF-β1 or LOX [39]. Inactivating
LOX activity impaired TGF-β1-mediated EMT and inva-
sion in breast cancer cells, suggesting LOX may serve as a
potential mediator that couples mechanotransduction to
TGF-β signaling [39]. Tumor cell metastasis is facilitated
by premetastatic niches formed in the destination organs by
invading bone marrow-derived cells (BMDCs). LOX and
LOXL2 secreted by primary tumors accumulate at the pre-
metastatic sites, crosslink basement membrane type IV col-
lagen, and recruit CD11b+myeloid cells to form the
premetastatic niche. LOX inhibition prevents CD11b+cell

recruitment and metastatic tumor growth [23, 85, 86]. More
broad microenvironmental changes triggered by LOX fam-
ily oxidases, in synergy with stiff ECM, promote cancer cell
proliferation and invasion.

Epithelial-Mesenchymal Transition (EMT), Cell Migration
and Invasion

Accumulating evidences indicate the importance of the
LOX family oxidases in promoting epithelial neoplasms
towards their more aggressive forms. LOX expression is
up-regulated in distant metastatic tumors compared with
primary tumors in breast cancer [36]. LOX family oxidases
are only expressed in the invasive and/or metastatic breast
cancer cells, but not in the non-invasive cells [87]. Expres-
sion of LOXL2 in non-invasive MCF-7 cells promoted
mesenchymal morphological change and migratory ability
[33]. On the one hand, LOX is a potent chemokine inducing
directional migration of varied cell types. LOX, secreted by
vascular smooth muscle cells (VSMCs), strongly induces
directional migration of VSMCs. LOX-dependent chemo-
taxis was abolished by β-aminopropionitrile (BAPN), an
active site inhibitor of LOX, or by catalase, indicating that
the hydrogen peroxide product of amine oxidation by LOX
is critical to its chemotactic activity [88]. In invasive breast
cancer cells [36] and malignant astrocytoma cells [34],
hydrogen peroxide-mediated FAK/Src signaling is required
to facilitate cell-matrix adhesion formation and cell migra-
tion. LOX, by orchestrating the activities of Rho GTPases
and p130Cas/Crk/DOCK180 signaling, regulates cell motil-
ity through changes in actin filament polymerization [89]. In
addition, LOX oxidizes cell surface PDGFR-β receptor, and
is essential to generate optimal chemotactic sensitivity of rat
aortic smooth muscle cells to the chemoattractant PDGF [16].
Moreover, LOX crosslinks basement membrane type IV col-
lagen and generates chemotactic cue for CD11b+myeloid
cells to form the premetastatic niche [85, 86].

On the other hand, LOX family oxidases are actively
involved in the regulation of cell polarity, and in the process
of EMT (Fig. 3). EMT, initially discovered as a critical event
during embryogenesis and gastrulation, is believed to be a
critical step in cancer cell dissemination and metastasis
[90–92]. EMT is characterized by decreased expression of
epithelial markers, e.g. E-cadherin, loss of cell-cell adhesion
and cell polarity, as well as increased expression of mesen-
chymal markers, e.g. vimentin and N-cadherin, reorganiza-
tion of cytoskeleton and gain of cell motility [91].
Numerous intracellular signaling pathways trigger the
EMT process, including TGF-β [92], Wnt [93], Notch [94,
95], receptor tyrosine kinases (RTKs) [96] pathways and
hypoxia [97]. This is mediated by the transcriptional factors
including Snail, Slug, Twist, and ZEB1/2, which repress the
expression of adherens junction component E-cadherin [91].
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Snail protein stability and cellular localization is finely
controlled by GSK3β-dependent phosphorylation and sub-
sequent ubiquitination [93, 98]. LOXL2 and LOXL3 were
found to interact with Snail and attenuate GSK3β-
dependent Snail degradation. LOXL2 and Snail cooperate
to downregulate E-cadherin expression and to induce
mesenchymal-like morphological changes [38, 99]. Hypox-
ia represses E-cadherin expression, and promotes EMT [24,
42, 97]. HIF-1α enhanced EMT in vitro and induced epi-
thelial cell migration through upregulation of LOX [24, 41,
42, 100]. The upregulated expression of LOX and LOXL2
under hypoxia is required and sufficient for hypoxic repres-
sion of E-cadherin, possibly through stabilization of snail
transcription factor [24, 41]. The FoxM1b transcription fac-
tor simultaneously induces LOX and LOXL2 expression
and activates the Akt-Snail pathway, and drives EMT [23].
Whether FoxM1b initiates the EMT process via LOX/
LOXL2-mediated Snail stabilization needs further investi-
gation. Conversely, LOXL2 silencing in basal-like carcino-
ma cells induces a mesenchymal-epithelial transition
(MET). However, LOXL2 maintains the mesenchymal phe-
notype of basal-like breast cancer cells by transcriptional
downregulation of Lgl2 and claudin1 and disorganization of
cell polarity and tight junction complexes, independent of its
catalytic activity, Snail stability, and alteration in E-cadherin
expression, suggesting multi-faceted mechanisms of LOX
family oxidases in regulating EMT [40]. TGF-β, one of the
major triggers of EMT, induces the expression and secretion
of LOX family oxidases. LOX family oxidases were
reported to positively [39] or negatively [101, 102] regulate
TGF-β signaling. Nevertheless, the fact that inactivating
LOX impaired stiff matrix, TGF-β-mediated EMT and cell
invasiveness in breast cancer cells suggests LOX as a po-
tential mediator that couples mechanotransduction to TGFβ
signaling [39]. Further studies are warranted to investigate
the contribution of individual LOX family members to the
induction of EMT in the context of dynamic microenviron-
ment during cancer cell invasion and metastasis.

Future Study

LOX family oxidases trigger desmoplastic reaction and
active ECM remodeling. The transduction of resultant ma-
trix mechanical property changes into cellular signaling
promotes disruption of cell polarity, dynamic cytoskeleton
rearrangement, cell migration and invasion. The acquisition
of invasive behavior of cells expressing LOX family oxi-
dases are partially attributed to the EMT in transcription
factor snail dependent- and independent- manners. The
LOX-mediated recruitment of myeloid cells and establish-
ment of premetastatic niche facilitate the distant organ col-
onization and metastasis of cancer cells. These insightful

studies have provided us the first knowledge how LOX
family oxidases modulate tumor microenvironment and pro-
mote cancer progression and metastasis. However, as im-
portant extracellular oxidative enzymes, LOX family
oxidases may interact with and/or oxidize other proteins
besides collagens and elastin, thereby affecting diversified
signaling pathways and cellular functions. These largely
uncharacterized substrates and/or interacting proteins may
reside in the extracellular space, on the cell surface, or even
inside of the cells. Despite lack of substrate specificity in
vitro, the LOX family oxidases may well have preference
towards distinct spectrum of substrates and/or interacting
partners. This arises not only from the divergent pro-
peptides of each family member, but also from overlapping,
but not identical distribution and physiological functions of
LOX family oxidases. The temporal-spatial distribution and
sequence specificity of LOX family oxidases may determine
the spectrum of their substrates and/or interacting proteins
and possible diversified functions in cancer progression and
metastasis. More comprehensive studies, with no doubt, will
lead to further understanding of the mechanisms how LOX
family oxidases modulate the cancer microenvironment and
exert their promoting roles in cancer progression and me-
tastasis, and to the development of novel anti-cancer
therapeutics.
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