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Abstract

Introduction—The lysyl oxidase family of enzymes is classically known as being required for 

connective tissue maturation by oxidizing lysine residues in elastin and lysine and hydroxylysine 

residues in collagen precursors. The resulting aldehydes then participate in cross-link formation, 

which is required for normal connective tissue integrity. These enzymes have biological functions 

that extend beyond this fundamental biosynthetic role, with contributions to angiogenesis, cell 

proliferation, and cell differentiation. Dysregulation of lysyl oxidases occurs in multiple 

pathologies including fibrosis, primary and metastatic cancers, and complications of diabetes in a 

variety of tissues.

Areas covered—This review summarizes the major findings of novel roles for lysyl oxidases in 

pathologies, and highlights some of the potential therapeutic approaches that are in development 

and which stem from these new findings.

Expert opinion—Fundamental questions remain regarding the mechanisms of novel biological 

functions of this family of proteins, and regarding functions that are independent of their catalytic 

enzyme activity. However, progress is underway in the development of isoform-specific 

pharmacologic inhibitors, potential therapeutic antibodies and gaining an increased understanding 

of both tumor suppressor and metastasis promotion activities. Ultimately, this is likely to lead to 

novel therapeutic agents.
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1. Introduction

The well-established functions of lysyl oxidases are to catalyze the final enzyme reaction 

required for biosynthetic cross-linking of collagens and elastin 1. Studies over the last 15 
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years, however, have identified a variety of additional biological activities including 

keratinocyte 2, 3 and chondrocyte differentiation 4, tumor growth inhibition 5, 6, promotion of 

metastasis in cancer 7, stimulation of cell proliferation 8, cell migration 9, angiogenesis 10, 

and extracellular matrix maturation 11. Understanding the biology and mechanisms of all 

functions of each lysyl oxidase isoform is likely to provide significant therapeutic 

opportunities in addressing both cancer and fibrosis. This review is focused on fibrosis and 

cancer, and particularly highlights novel mechanistic relationships that extend beyond the 

known functions of lysyl oxidases in collagen biosynthesis.

2. Body

The lysyl oxidase family consists of five members in mammals designated lysyl oxidase 

(LOX) and lysyl oxidase like-1 through lysyl oxidase like-4 (LOXL1 - LOXL4). All five 

members have a conserved C-terminal domain that contains the active enzyme region, and a 

more variable N-terminal pro-region. All members have a signal peptide and are secreted 

into the extracellular environment. LOX and LOXL1 both undergo extracellular proteolytic 

processing by procollagen C-proteinases 12, 13, while it is unclear whether or not LOXL2 – 

LOXL4 require processing for activation 14. LOXL2 – LOXL4 is a sub-group within the 

family based on the common feature of their propeptide domains which all contain four 

scavenger receptor cysteine rich domains which are not present in LOX or LOXL1 15, 16. 

The functions of the pro-regions of LOXL2 – LOXL4 are currently unknown. The 

propeptide domain of LOX, known as LOX-PP, has tumor growth inhibitory properties that 

will be reviewed in detail below. The pro-region of LOXL1 appears to help with its own 

trafficking and activation by procollagen C-proteinase 17.

All lysyl oxidase isoforms incorporate copper intracellularly, likely dependent on the copper 

chaperone ATP7a 18. Copper binding is dependent on conserved amino acid residues in the 

active site in LOX 19, 20, and copper incorporation is required for optimal lysyl oxidase 

enzyme activity 21. All five isoforms have a conserved tyrosine and lysine residue which in 

LOX becomes the active site carbonyl cofactor lysyl tyrosyl quinone (LTQ). This cofactor is 

required for lysyl oxidase oxidation of its primary amine substrates: the epsilon amino group 

of lysine or hydroxylysine residues in collagens and lysine residues in elastin 22, 23. By 

analogy to serum amine oxidases, copper is required for biogenesis of the LTQ cofactor, and 

this conversion does not appear to require a different enzyme protein for LTQ 

generation 23-25. In support, copper-binding residues were experimentally identified by site-

directed mutagenesis loss of function studies of recombinant mouse LOX in which histidine 

residues 292, 294, and 296 were found to be required for LTQ generation in mouse LOX. 

Thus, a major function of copper bound in LOX is LTQ cofactor generation, which is a 

spontaneous auto-catalyzed post-translational modification required for ultimate acquisition 

of enzyme activity. In addition, it has been suggested that copper may have a role in 

stabilizing the structure of LOX 21, though this has not been directly evaluated.

The catalytic mechanism of the LOX reaction has been reviewed previously 26 and is 

presented in Figure 1. Noteworthy is the requirement of Schiff base formation with the LTQ 

cofactor in the first step, which then facilitates the required redox reaction 26. This reaction 

mechanism is the same as that which is known for other copper-dependent quinone 
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containing amine oxidases which catalyze oxidative deamination of primary amines and for 

which considerable experimental evidence in support also exists 27-29. It is notable that 

secondary and teritiary amines have been shown not to function as substrates for lysyl 

oxidase and are not oxidized 30 likely because Schiff base formation cannot occur.

2.1 Activities of each lysyl oxidase isoform and potential therapeutic opportunities

2.1.1 Lysyl oxidase (LOX)—Lysyl oxidase (LOX) may be the best studied isoform to 

date and was the first one cloned 31, 32. It is synthesized as a 50 kDa pre-proenzyme and like 

all five isoforms undergoes signal peptide removal and intracellular N-glycosylation in the 

endoplasmic reticulum. The 50 kDa LOX proenzyme is secreted into the extracellular 

environment as an inactive precursor 33. Pro-LOX then undergoes proteolytic processing by 

procollagen C-proteinases which are products of the BMP1, TLL1 and TLL2 genes 12, 13. 

This processing releases the active enzyme and the lysyl oxidase propeptide LOX-PP. Active 

LOX and LOX-PP each have independent biological activities.

2.1.1.1 Active LOX biological activities: Lysyl oxidase (LOX) is the most abundantly 

expressed isoform in most, but not all tissues 34-36. As noted, LOX is required for the 

biosynthesis of normal collagens and elastin, and therefore LOX is critical for vascular, 

mineralized and non-mineralized connective tissues. LOX knockout mice exhibit perinatal 

death due to vascular and cardiovascular defects 37, 38. In fibrotic disease, elevated lysyl 

oxidase activity is consistently observed and contributes to resistance of the extracellular 

matrix to proteolytic degradation, thereby contributing to connective tissue accumulation 

and fibrosis (reviewed in 39). Some recent studies of fibrosis have included a comprehensive 

analysis of LOX isoforms expression, while other studies have focused on LOX activity 

without assessing for the genetic source, or assessed for LOX expression only, or only by 

inhibition by β-aminopropionitrile (BAPN) which inhibits all five isoforms 40-48. Although 

some reports may suggest that BAPN is inactive against some LOX isoforms in vivo, it 

should be understood that BAPN can serve as a substrate for some serum amine oxidases 

which do not belong to the LOX family. Thus, if BAPN appears to not inhibit a LOX 

isoform in vivo, then it is likely that (1) either BAPN has been metabolized, or (2) that the 

activity in question occurs as a result of a non-enzymatic function of LOX or LOX isoform. 

Data consistently show LOX up-regulated in a variety of fibrotic conditions, sometimes 

accompanied by additional LOX isoforms, including lung- 49-53, liver- 43, 54-56, and 

heart- 57, 58, and skin- 59-61 fibrosis, and hypertension 47, 58. One notable exception is 

phenytoin-induced gingival overgrowth which appears to be accompanied by LOXL2 

elevations and not LOX 62, 63. Thus, tissue-specific regulation of different LOX isoforms in 

fibrosis and other related pathologies can occur and should be carefully monitored which 

may ultimately aid in developing therapeutic strategies.

Recent studies have identified an important and novel role for LOX enzyme activity in the 

development of myelofibrosis that extends beyond its role in collagen cross-linking. LOX 

expression is high early in megakaryocyte differentiation and its expression and enzyme 

activity is required for optimal PDGF signaling and cell proliferation. Decreased LOX 

expression with time permits appears to slow proliferation to permit differentiation of 

megakaryocytes to platelets. The GATA-1 low mouse is a model of myelofibrosis, and a 
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high level of LOX expression was found which results in extracellular matrix accumulation 

and bone marrow fibrosis. Inhibition of LOX activity with BAPN resulted in attenuation of 

myelofibrosis 64. Thus, excess LOX activity in the bone marrow is a major contributor to 

myelofibrosis. Myeloproliferative neoplasms often result in bone marrow fibrosis, and 

assessments of expression of LOX isoforms in human myeloproliferative neoplasms was 

recently reported. Primary myelofibrosis is accompanied by clearly elevated expressions of 4 

of the 5 LOX isoforms studies (LOXL4 was not studied), while some variation in elevated 

isoforms expression was observed in other myeloproliferative neoplasms 65. Taken together, 

these studies point to inhibitors of LOX isoforms as a potential therapeutic strategy to treat 

myelofibrosis emanating from a variety of myeloproliferative neoplasms.

LOX-PP may also be involved in regulating the differentiation of megakaryocytes into 

platelets. rLOX-PP inhibits endomitosis and polyploidy of megakaryocytes by inhibiting 

TPO-stimulated ERK1/2 signaling which is required for differentiation into platelets 66. 

Thus, high early LOX expression and enzyme activity promotes megakaryocyte 

accumulation via enhancing PDGF signaling and cell proliferation while correspondingly 

expressed LOX-PP inhibits polyploidy. In summary, data taken together suggest that as 

megakaryocytes differentiate into platelets, LOX down-regulation drives lower cell 

proliferation (via lower enzyme activity) and permits polyploidy (via lower LOX-PP levels).

Diabetic retinopathy is a major cause of blindness in aging subjects and in diabetic 

individuals. This condition is accompanied by perivascular cell death 67 and basement 

membrane thickening and an acellular fibrotic lesion. Increased basement membrane 

thickening is associated with increased vascular permeability leading to bleeding and 

blindness 68, 69. Increased expression of LOX has been associated with increased basement 

membrane thickening and permeabilization 70. This is thought to be caused by uneven cross-

linking of the basement membrane and distortion of its structure, leading to increased 

permeability of retinal capillaries. Elevated LOX and LOXL2 levels and inhibition of 

choroid neovascularization in vivo with neutralizing anti-LOX and – LOXL2 antibodies 

further supports functional contributions of LOX and LOXL2 to diabetic retinopathy 71.

There is now great interest in observations that elevated LOX expression accompanies and 

may drive metastatic cancer 7, 9, 72-78. At least three ideas have emerged which are related to 

contributing mechanisms. Displastic tissues are characterized by fibrosis and increased 

tissue stiffness that can enhance cell migration. LOX-dependent collagen cross-linking 

increases stiffness, enhances fibrosis and integrin signaling, and thereby can create a 

permissive environment for tumor cell migration and intravasation 73, 79. Some studies 

support the notion that, in addition, LOX promotes the formation of a metastatic niche at 

distant sites. In this model LOX is seen to localize at a distant site and then serves to attract 

tumor cells to extravasate. LOX has also been linked to promoting angiogenesis in 

tumors 80. Although there is now little doubt that LOX activity contributes to metastasis, 

some aspects of some of studies related to LOX and metastatic niche identify the molecular 

size of LOX as 70 – 80 kDa 72, 81, 82, while pro-lysyl oxidase is well-established to be a 48 – 

50 kDa protein. This and other biochemical aspects of the study of LOX biology and 

chemistry should be carefully re-examined. If indeed LOX is somehow structurally modified 
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to result in a higher apparent molecular weight in some cancers, these modifications could 

be of significant biological consequence.

2.1.1.2. Lysyl oxidase propeptide (LOX-PP): The studies on active LOX and cancer 

summarized above are in contrast to early studies which indicated that LOX expression is 

reduced in tumor cell lines, and that LOX re-expression is required for stable phenotypic 

reversion of wildtype or mutant c-H-ras-expressing mouse and human cells 83-87. This 

complexity is related to findings which demonstrate that stimulation of metastatic 

progression is dependent on active LOX enzyme, while LOX-PP inhibits Ras-signaling in 

vitro, and primary tumor growth in vivo 5, 6, 88-90. Thus, excess LOX activity emanating 

from all LOX isoforms has the potential to contribute to metastasis. Evidence that LOX-PP 

is a tumor suppressor as well as a tumor growth inhibitor comes from a study in which a 

polymorphism in the LOX-PP sequence resulted in a higher incidence of cancer in a 

subpopulation of triple-negative breast cancer patients 91. As far as is known now, only 

LOX-PP which is unique in sequence, is a tumor growth inhibitor/tumor suppressor. No 

evidence exists that propeptides from the other four isoforms are tumor growth inhibitors. It 

is, therefore, of interest that LOXL2 and LOXL4 have been observed as highly up-regulated 

in metastatic cancers, and may be more effective promoters of metastatic disease than LOX 

possiblydue to the absence of a tumor inhibiting domain 92-105.

Several molecular targets of LOX-PP which mediate its inhibitory effects on tumor 

promoting signaling pathways have been identified in breast cancer and prostate cancer cell 

lines. Targets in prostate cancer cell lines include FGF-2 signaling mediated by FGFR1 and 

AKT activation 106, 107, and inhibition of DNA repair pathways mediated by binding to 

MRE11-containing DNA repair foci after nuclear localization 108. In breast cancer cells, 

targets are fibronectin-stimulated FAK signaling and ERK1/2 activation 109, inhibition of β-

catenin activation by targeting the receptor-type protein tyrosine phosphatase kappa 110, 

inhibition of Ras-signaling by direct targeting of Hsp70 and Raf leading to reduced ERK1/2 

activation 111, inhibition of CIN-85-mediated invasion 112, and inhibition of proliferation 

and stimulation of apoptosis in vivo 88. An interesting study investigated the phenotype of a 

spontaneous mutation in the mouse NNA1 transcription factor gene revealed ataxia caused 

by overexpression of LOX in Purkinje cells in the brain 113. Purkinje cells are critical for 

development of normal neural networks in the brain. Effects of elevated LOX expression 

resulted in reduced Purkinje cell growth. This effect was shown not to be related to LOX 

enzyme activity, but instead directly depends on LOX-PP. LOX-PP was shown to inhibit the 

RelA subunit of NF-κB from entering the nucleus, resulting in deficient mRNA and protein 

levels of MAP1B and MAP2 which are microtubule binding proteins required for Purkinje 

cell growth. Thus, in normal mice, normal NNA1 represses production of LOX. If LOX is 

overexpressed, LOX-PP then inhibits RelA nuclear localization leading to deficient MAP1B 

and MAP2 expression, deficient Purkinje cell production, contributing to ataxia. As noted 

above, LOX-PP targets many aspects of RAS signaling 111, and RAS can drive NF-κB 

activation 114. Thus, one possibility is that the primary molecular target of LOX-PP in this 

context could be RAF, though other RAS effectors are also possible.

LOX-PP is generated extracellularly by proteolytic processing by procollagen C-

proteinases 13, 33. Molecular binding partners and targets of LOX-PP identified so far are 
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intracellular, except possibly cell surface FGFR1. Therefore, the pathways of LOX-PP cell 

uptake was investigated in a variety of cell lines to assess for possible avenues to enhance 

uptake and therefore potentially block cancer cell growth and metastatic potential. Data 

demonstrated that macropinocytosis is employed by most cell lines, while clathrin-

dependent pathways serve as secondary uptake pathways in some cell lines 89. Ongoing 

work is focusing on modifying the structure of LOX-PP to enhance its uptake by cancer cells 

and increase its effectiveness, and to establish which targets are the most important in 

mediating the tumor inhibitor properties of LOX-PP.

2.1.2. Lysyl oxidase like-1 (LOXL1)—LOXL1 has been linked primarily to elastin 

maturation. LOXL1 null mice experience skin, uterine, and lung abnormalities and females 

exhibit uterine prolapse 115-117. LOXL1 has been shown to be closely associated with elastic 

fibers in vivo 118. However, a recent report identifies a bone abnormality in LOXL1 null 

mice which occurs only in females. Mutant mice have a deficiency in trabecular bone in both 

long bones and vertebrae 119. Immunohistochemistry demonstrated strong expression of 

LOXL1 in growth plate chondrocytes, suggesting that LOXL1 is important not only for 

elastin maturation, but also possibly for type II collagen. Moreover, data implicate sex 

hormone regulation of LOXL1 may be an important aspect of its biological control.

A variety of polymorphisms in LOXL1 have been genetically linked to ocular exfoliation 

syndrome and glaucoma which may be caused by aberrant regulation of expression of 

LOXL1 and/or missense mutations combined with environmental stressors 118, 120-123. 

LOXL1 null mice do not exhibit glaucoma, but do exhibit intracellular subcapsular 

vesicles 118. Intracellular vesicle accumulations in subcapsular cells precedes development 

of cataracts in some animal models of cataract development 124. Abnormalities in LOXL1 

expression or structure seem likely to contribute to some ocular abnormalities, but may not 

be primary determinants.

Only a few papers and conflicting data exist regarding roles for LOXL1 in cancer biology. 

One report indicates that LOXL1 and LOXL4 expression are anti-tumorigenic and inhibit 

RAS and ERK1/2 signaling in bladder cancer 125, while LOXL1 was suggested to enhance 

lung metastasis in low pH hypoxic tumor microenvironments 126. A role for caffeine-

stimulated LOXL1 expression in inhibiting tumor metastasis has also been suggested 127. 

Additional studies seem to be required to better understand these findings.

2.1.3. Lysyl oxidase-like 2—There is a great deal of interest in LOXL2, particularly in 

cancer biology. It is widely over-expressed in cancers, including metastatic cancers. For 

example, high levels of LOXL2 occur in colon cancer associated fibroblasts 128, skin 

cancer 129, oral cancer 130, skin and head and neck squamous cell carcinoma 101, liver 

metastasis 103, cholangiocarcinoma 131, breast cancer 76, 92, 132, 133, and gastric cancer 

metastasis 102. Attenuation of LOXL2 expression was shown to inhibit metastasis or the 

invasive cell phenotypes in most of these studies. One study documented LOXL2 down 

regulation in non-small cell lung cancers 134.

A variety of mechanisms for LOXL2 promotion of metastasis are being investigated and a 

rather complex picture has emerged. MicroRNA down-regulation of LOXL2 has recently 

Trackman Page 6

Expert Opin Ther Targets. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



been shown to be diminished in head and neck, renal and lung cancers 97, 135, 136 suggesting 

that regulatory pathways which control expression of LOXL2 may be significant drivers of 

metastasis. Evidence for both tumor secreted and stromal cell secreted LOXL2 in promoting 

metastasis has been found which may contribute to matrix stiffness, FAK activation and 

integrin signaling and control of cancer cell migration 94, 128. LOXL2 expression in cancer 

cells is stimulated under hypoxic conditions, and evidence for HIF-1 transcriptional 

regulation of LOXL2 has been presented 137. Extracellular interaction of LOXL2 with 

HSP90 to stimulate migration and metastasis has recently been highlighted 138. Several 

papers investigate roles and mechanisms of intracellular LOXL2 in promoting cancer 

metastasis. Direct nuclear interactions of LOXL2 with Snail and down-regulation of E-

cadherin to stimulate epithelial to mesenchymal transition and migration of cancer cells has 

been reported, but no evidence for LOXL2 oxidation of Snail has so far been reported 139. 

Interestingly, enzymatically inactive forms of LOXL2 were also able to interact with Snail 

and down-regulate E-cadherin 133, 140. Moreover, expression of full length LOXL2 or of an 

enzymatically inactive truncated form of LOXL2 were both found to down-regulate the 

promoter activity of claudin 1 and Lgl2 promoters independent of Snail in MDA-MB-231 

breast cancer cells. Claudin 1 and Lgl2, like E-cadherin are epithelial cell adhesion proteins 

critical for normal epithelial polarity 100. LOXL2 in which essential copper-binding histidine 

residues were mutated to glutamine, thus eliminating enzyme activity, still bound to Snail 

and down-regulated E-cadherin expression 140. Similarly, binding to the E-cadherin and 

claudin 1 promoters remained unaffected by these mutations in MDA-MB-231 human breast 

cancer cells and in MDCK cells, an epithelial cell line. Finally, FAK activation and cell 

migration in these cell lines was equally stimulated by active an inactive forms of LOXL2. 

The authors conclude that stimulation of epithelial to mesenchymal transition (EMT) 

mediated by intracellular LOXL2 occurs independent of its enzyme activity 140. As noted, 

however, LOXL2, like all other isoforms, is a secreted protein, and intracellular trafficking 

that leads to nuclear localization of LOXL2 and details regarding its interactions with 

transcription factors remain to be determined, and are of importance regarding under what 

conditions LOXL2 modulation of EMT is regulated. Reports of splice variants, and 

intracellular protein proteolytic processing are of interest and may be related to these 

questions of intracellular trafficking 99, 141.

Several reports suggest that LOXL2 can directly oxidize tri-methylated lysine residues in 

histones and TAFIID, another nuclear protein, and thereby promote an invasive 

phenotype 142-145. Although there is no doubt that excess LOXL2 expression can promote 

EMT and an invasive phenotype, the notion of direct oxidation of nuclear trimethyl lysine 

residues by LOXL2 in our opinion requires further investigation. As noted above, secondary 

and tertiary amines do not serve as substrates of LOX 30. The LTQ cofactor cannot form a 

Schiff base with tertiary amines; and the LTQ cofactor which functions in LOX is presumed 

to function in all other lysyl oxidase isoforms due to sequence conservation and the fact that 

they all oxidize primary amines. Thus, basic biochemical questions remain regarding the 

mechanism of action of LOXL2 and its apparent ability to oxidize tri-methylated lysine 

residues. In light of the proposed mechanism for tri-methyl lysine oxidation by LOXL2 145, 

one approach might be to directly assess the substrate potential of a variety of primary, 
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secondary and tertiary amines and corresponding primary alcohols for aldehyde generation 

by purified LOXL2.

LOXL2 is upregulated under hypoxic conditions and has been shown to participate in 

normal angiogenesis which was dependent on both non-enzymatic and enzymatic activities. 

Initial organization of endothelial cells into tubes was dependent on LOXL2 expression but 

not enzyme activity, while stabilization of the basement membrane structures and 

stabilization of vessels required active LOXL2 146. Tumor growth requires a blood supply 

and LOXL2 has been shown to participate in tumor angiogenesis angiogenesis 147.

In formation of mineralized tissues, LOX is the predominant isoform elaborated by 

osteoblasts 35, 148. Interestingly, LOXL2 appears to have negative consequences for 

mineralization by osteoblasts and odontoblasts. In odontoblast differentiation, LOXL2 

expression was lower than all other isoforms 149, while in BMP-2-stimulated osteoblast 

differentiation, LOXL2 addition resulted in highly cross-linked collagen and poor 

mineralization 150. However, LOXL2 is critically required for chondrocyte differentiation. 

Knock-down of LOXL2 profoundly inhibits development of chondrocytes in vitro, and 

expression of LOXL2 in healing long bones correlates positively with the chondrogenic 

phase in vivo 4.

LOXL2 null and overexpressing mice have recently been generated 129. LOXL2 deletion 

was accomplished by deletion of exon 2 and resulted in perinatal lethality in 50% of the 

mice. Heart defects characterized by disrupted ventricular septa were noted in 40% of the 

surviving homozygous null mice. Homozygous mice overexpressing LOXL2 were almost all 

sterile with poor testicle formation and low sperm production. Fibrosis in the epididymis and 

inflammation was observed histologically, accompanied by low expression of E-cadherin 

and claudin of basal epithelial cells of the epididymis, consistent with the EMT activity of 

LOXL2 previously identified 100, 139, 140. LOXL2 null and over-expressing mice were 

subjected to a chemically-induced model of squamous cell carcinoma 129. Interestingly, 

LOXL2 over-expressing mice developed cancer earlier and with greater severity than the 

LOXL2 null mice. Lesions in LOXL2 null mice were smaller than the corresponding 

wildtype littermates. LOXL2 was observed to inhibit epidermal cell differentiation mediated 

by its inhibition of the Notch1 pathway apparently mediated by LOXL2 binding to the 

Notch1 promoter, implicating a mechanism of action of LOXL2 which occurs in the nucleus 

of cells without oxidation of trimethylated histone H3K4 129.

2.1.4. Lysyl oxidase-like 3 (LOXL3)—LOXL3 null mice have recently been 

characterized and are perinatal lethal, exhibit cleft palate and vertebral defects. Collagen 

density was abnormally low in both the palate and vertebral primordia in knockout embryos. 

Both cleft palate and ocular abnormalities occur in a human family which has missense 

mutation in the Loxl3 gene, but the ocular phenotype was not observed in mice 151, 152. Two 

splice variants of LOXL3 have been identified 153, 154. One variant is initiated from an 

alternative promoter and has been shown to have catalytic activity and distinct tissue-specific 

expression patterns compared to full-length LOXL3 154. The biological relevance of these 

findings remain to be determined. As noted, LOXL3 is often up-regulated in concert with the 
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other four isoforms in fibrosis, but no specific therapeutic opportunities for LOXL3 have 

become apparent so far to our knowledge.

2.1.5. Lysyl oxidase-like 4 (LOXL4)—LOXL4 is expressed in vascular tissues and has 

normal functions in connective tissue remodeling. Excess LOXL4, like LOX, has been 

linked to vascular fibrotic pathologies 155. Splice variants of LOXL4 have been identified, 

and it has been proposed that shorter isoforms could stimulate metastasis while full length 

LOXL4 may have tumor inhibitory properties 156, 157. LOXL4 expression appears to be a 

reliable marker for head and neck cancer development 158-160. LOXL4 is overexpressed in 

gastric cancer and contributes to FAK activation and integrin signaling 104.

3. Therapeutic opportunities

Lysyl oxidase enzyme activity has long been considered to be a viable target to treat 

fibrosis 39. BAPN is a highly effective and specific inhibitor of all lysyl oxidases in vitro, but 

has the disadvantage that it is oxidized by other amine oxidases that can lead to the 

production of toxic products 161, 162. The copper chelator tetrathiomolybdate is an effective 

lysyl oxidase activity inhibitor as well 163-165, but it has the potential to cause significant 

toxicity or side effects due to the importance of copper in mitochondrial respiration and 

energy production to normal physiology 166. Interestingly, novel LOX active site-directed 

inhibitor development is underway, some of which are selective for specific lysyl oxidase 

isoforms 167. These inhibitors have enormous potential for treating LOXL2 driven metastatic 

cancers which have been summarized above. Preliminary data indicate that LOXL2 

inhibitors can effectively inhibit bleomycin-induced lung fibrosis without toxicity 168. 

Clearly much work needs to be done before human trials are undertaken, but there is now 

reason to be optimistic that the development of effective small molecule lysyl oxidase 

inhibitors to address fibrosis and cancer can be accomplished.

Therapeutic antibodies targeting LOX and LOXL2 have been described and employed in 

preclinical studies 40, 94, 169, and some human clinical trials have apparently been initiated 

by at least one pharmaceutical company. One limitation to these reagents may be that the 

negative effects of some LOX isoforms have been reported to be mediated not in the 

extracellular environment, but by intracellular targets which may not be accessible to 

antibody-based reagents.

LOX-PP has tumor growth inhibitor properties, is a natural product expressed by 

mammalian cells, and can enter cells from the extracellular environment. LOX-PP has a 

variety of molecular targets all of which appear to promote cancer development or 

metastasis, except possibly when injected into bones 170. Thus, LOX-PP may have an 

advantage over reagents that are designed to target only one molecule, due to the plasticity 

of cancer and the seemingly inevitable development of resistance to chemotherapeutics. A 

slow release formulation has been shown to be effective at inhibiting the growth of a pre-

existing breast cancer xenograft, suggesting that formulations of LOX-PP or a derivative to 

extend its half-life so that it is effective in vivo are possible 88.
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4. Conclusion

At least three therapeutic approaches, therefore, exist based on what is known so far 

regarding the biology of the lysyl oxidases: novel small molecule inhibitors, therapeutic 

antibodies, and molecules and formulations based on LOX-PP structure and activity. 

Additional opportunities seem likely to be developed after the biological functions and 

binding partners of the propeptide regions of LOXL1 and LOXL2 – LOXL4 and splice 

variants have been determined, and the novel substrates of all five active lysyl oxidase 

enzymes implied in many recent studies are actually identified.

5. Expert Opinion

Key findings are that lysyl oxidase enzyme activity from all 5 isoforms drives both fibrosis 

and cancer metastasis. Very significant progress in developing small molecule pan-lysyl 

oxidase isoform inhibitors and isoform-specific lysyl oxidase inhibitors is a promising 

current avenue of ongoing research that seems likely to lead to new therapies for fibrosis and 

possibly metastatic cancer 167, 168. Therapeutic antibodies that block the enzyme activity of 

lysyl oxidase isoforms have been developed in pre-clinical studies 171. LOXL2 has emerged 

as an isoform that is of particular importance in the development of cancer and metastasis. 

LOX-PP derived from pro-LOX, however, is a tumor growth inhibitor and tumor 

suppressor 6, 91. As a natural product, an increased understanding of its mechanisms of 

action and intracellular trafficking and identification of its most important targets will inform 

the degree to which a LOX-PP-derived therapeutic can be developed, possibly with little or 

no associated toxicity.

Although the evidence for the existence of novel substrates of lysyl oxidases that lead to 

some of these enzymes' pathologic effects is convincing, identification of these substrates 

and which lysine residue(s) are oxidized is lacking. This structural information is critically 

important for the development of, for example, strategies to block substrate activity perhaps 

with substrate-specific therapeutic antibodies that would prevent access by lysyl oxidases. It 

is also important to pay close attention to the structure of each lysyl oxidase isoform and to 

the enzymology of this family. The biosynthetic pathway of LOXL2 – LOXL4 is unclear at 

this time with respect to whether or not biosynthetic proteolytic processing occurs, and 

whether this is needed for enzyme activation. The origins and fates of intracellular lysyl 

oxidases are largely unknown regarding how these secreted proteins become intracellular, 

and how they traffic through the cell, sometimes localizing in the nucleus. No substrate 

specificity studies or classical enzymology has been reported on any isoform except LOX, 

and only one paper has been published along these lines on LOXL2 14. Confirmation of 

copper and LTQ cofactor content is important to establish in all isoforms. There is a great 

need to crystalize lysyl oxidase isoforms to gain detailed structural information, and 

recombinant expression of active lysyl oxidase isoforms has been very challenging. Lysyl 

oxidases from some commercial sources are inactive. LOXL2 from R&DSystems, however, 

is clearly an active enzyme and is an important contribution to the field.
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Article highlights box

• Dysregulation of lysyl oxidases is linked to fibrosis and cancer in a 

variety of tissues and organs.

• The lysyl oxidase family of proteins consists of five members and is 

required for normal biosynthesis of the extracellular matrix.

• Functions of the lysyl oxidase family of proteins extend beyond the 

classically known contributions to collagen and elastin cross-linking 

and include regulation of cell proliferation and differentiation.

• Respective unique domains of lysyl oxidase family members mediate 

novel functions and some of these are independent of active lysyl 

oxidase enzyme activity.

• The current understanding of contributions of both enzyme-dependent 

and non-enzyme dependent activities of lysyl oxidases to fibrosis and 

cancer points to the high likelihood of future development of potential 

therapeutic opportunities. Such opportunities will grow out of an 

increased mechanistic understanding of the variety of functions of the 

versatile lysyl oxidase family.
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Figure 1. 
The mechanism of action of the lysyl oxidase-catalyzed reaction 26. The red molecule 

represents the primary amine substrate or lysine side chain substrate. The numbers identify 

the sequence of the reaction steps.
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