
Math. Struct. in Comp. Science (2014), vol. 24, iss. 4, e240406, 48 pages. c© Cambridge University Press 2014

doi:10.1017/S0960129512000357

M-adhesive transformation systems with nested

application conditions. Part 1: parallelism,

concurrency and amalgamation

HARTMUT EHRIG†, ULRIKE GOLAS‡, ANNEGRET HABEL§,

LEEN LAMBERS¶ and FERNANDO OREJAS‖

†Technische Universität Berlin, Berlin, Germany

Email: ehrig@cs.tu-berlin.de
‡Konrad-Zuse-Zentrum für Informationstechnik Berlin,

Berlin, Germany

Email: golas@zib.de
§Universität Oldenburg, Oldenburg, Germany

Email: habel@informatik.uni-oldenburg.de
¶Hasso-Plattner-Institut, Universität Potsdam,

Potsdam, Germany

Email: leen.lambers@hpi.uni-potsdam.de
‖Universitat Politècnica de Catalunya, Barcelona, Spain

Email: orejas@lsi.upc.edu.

Received September 2011; revised January 2012

Nested application conditions generalise the well-known negative application conditions and

are important for several application domains. In this paper, we present Local

Church–Rosser, Parallelism, Concurrency and Amalgamation Theorems for rules with

nested application conditions in the framework of M-adhesive categories, where

M-adhesive categories are slightly more general than weak adhesive high-level replacement

categories. Most of the proofs are based on the corresponding statements for rules without

application conditions and two shift lemmas stating that nested application conditions can

be shifted over morphisms and rules.

1. Introduction

Standard graph transformation systems have been studied extensively and applied in

several areas of computer science (Rozenberg 1997; Ehrig et al. 1999a; Ehrig et al. 1999b).

To cope with the different varieties of graphical structures, they were, first, generalised to

high-level replacement (HLR) systems (Ehrig et al. 1991) and then, based on the notion

of adhesive categories (Lack and Sobocinski 2005), to weak adhesive HLR systems

(Ehrig et al. 2006a; Ehrig et al. 2006b) and more recently to M-adhesive systems‡ (Ehrig

¶ The work of Leen Lambers was funded by the Deutsche Forschungsgemeinschaft in the course of the

project ‘Correct Model Transformations’ – for further details, see http://www.hpi.uni-potsdam.de/giese/

projekte/kormoran.html?L=1.
‡ An M-adhesive system consists of an M-adhesive category and a set of rules over the category.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 2

Fig. 1. M-adhesive categories

Fig. 2. Application domains where nested application conditions are used

et al. 2010a). There is a proper hierarchy of categories: graph ⇒ high-level ⇒ weak

adh(esive) HLR ⇒ M-adhesive – categories that show that the implications are proper

are given in Ehrig et al. (2006b) and Ehrig et al. (2010a). Some examples of M-adhesive

categories are given in Figure 1.

Originally, application conditions (ACs), as defined in Ehrig and Habel (1986), were

very simple. They were restricted to specifying that a certain graph should not include

the match of the rule. For this reason, they were called Negative Application Conditions

(Habel et al. 1996). This kind of condition is useful in many cases, but is too restrictive

in some other cases. As a consequence, they were generalised to nested application

conditions in Habel and Pennemann (2009). Nested application conditions can be shown

to be expressively equivalent to first-order graph formulas (Courcelle 1997), where one

part of the proof is similar to the translation between first-order logic and predicates

on edge-labelled graphs with single edges in Rensink (2004). There is a proper hierarchy

of types of application conditions: no ACs ⇒ negative ACs ⇒ nested ACs. Some

examples of application domains where nested application conditions are used are given

in Figure 2. This means that even if nested application conditions do not add any

difficulty (undecidability), these results show that, in principle, the expressive power of

nested application conditions is no smaller than the expressive power of conditions in

term rewriting. However, given their different nature, they are difficult to compare.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 3

Fig. 3. Informal descriptions of the results with some application areas

The literature on (graph) transformation systems contains a number of results known as

Local Church–Rosser, Parallelism, Concurrency and Amalgamation Theorems. Informal

descriptions of these results, together with some application areas, are given in Figure 3.

The Local Church–Rosser, Parallelism and Concurrency Theorems were first presented

for graph transformation systems on rules without application conditions in Rosen (1975),

Kreowski (1977a), Ehrig (1979), Ehrig and Rosen (1980) and Ehrig et al. (1986) and

were later generalised to high-level replacement systems (Ehrig et al. 1991) and rules

with negative application conditions (Lambers 2010). The Amalgamation Theorem was

presented for graph transformation systems on rules without application conditions

(Boehm et al. 1987; Corradini et al. 1997).

The aim of the current paper is to show that results in the literature based on rules

without (Ehrig et al. 2006b) or with (Lambers 2010) negative application conditions

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 4

can be generalised to nested application conditions (Habel and Pennemann 2009) in

the framework of M-adhesive transformation systems. In order to increase the expressive

power of graph transformation systems, for several applications it is important to consider

not only negative application conditions but also nested ones. The presentation of the

main results in the categorical framework of M-adhesive categories is also highly relevant,

since in this way the results are not only valid for classical graph transformation systems,

but also for transformation systems based on typed and attributed graphs, hypergraphs,

and different kinds of low- and high-level Petri nets (Ehrig et al. 2006b).

We will state the Local Church–Rosser, Parallelism, Concurrency and Amalgamation

Theorems for M-adhesive systems on rules with nested application conditions. The proofs

of the Local Church–Rosser, Parallelism, and Concurrency Theorems are based on the

corresponding theorems for M-adhesive systems on rules without application conditions

given in Ehrig et al. (2006b) together with two shift lemmas for nested application

conditions (ACs), which extend those given in Habel and Pennemann (2009), and state

that application conditions can be shifted over morphisms and rules.

Theorem + shift lemmas for ACs ⇒ Theorem for rules with ACs

The Amalgamation Theorem for M-adhesive systems on rules with nested application

conditions can be considered to be a special case of a recent construction, called multi-

amalgamation, studied in Golas et al. (2014). The Concurrency and Amalgamation

Theorems may be viewed as two different generalisations of the Parallelism Theorem:

in the first case, sequential independence is dropped and, in the second case, parallel

independence.

1.1. Organisation of the paper

In Section 2, we review the definition of an M-adhesive category. In Section 3, we introduce

rules with nested application conditions. In Section 4, we state and prove the Local

Church–Rosser, Parallelism and Concurrency Theorems. In Section 5, we define amal-

gamated rules and state the Amalgamation Theorem. In Section 6, we describe some

related work. Finally, in Section 7, we give an overview of the results of M-adhesive

transformation systems with nested application conditions. The concepts are illustrated

by examples in the category of directed, labelled graphs with the class of all injective

graph morphisms. To motivate the rules with nested conditions, and to help give an

understanding of the main concepts, we will present a running example describing a

mutual exclusion algorithm closely following Dijkstra’s work.

The paper is a long version of the paper Ehrig et al. (2010b), and contains a new section

on amalgamation as well as a new illustrative example.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 5

2. Graphs and high-level structures

In this section, we will recall the basic notions of directed, labelled graphs (Ehrig 1979;

Corradini et al. 1997), and generalise them to high-level structures (Ehrig et al. 1991).

The motivation behind our considering high-level structures is to avoid repeating similar

investigations for similar structures such as Petri nets and hypergraphs. We assume

familiarity with the basic notions of graph transformation systems and the basic concepts

of category theory – standard references are Ehrig (1979), Arbib and Manes (1975) and

Adamek et al. (1990).

Directed, labelled graphs and graph morphisms are defined as follows.

Definition 2.1 (graphs and graph morphisms). Let L = (LV ,LE) be a fixed, finite label

alphabet. A graph over L is a system

G = (VG,EG, sG, tG, lG,mG)

consisting of: two finite sets VG and EG of nodes (or vertices) and edges; source and target

functions sG, tG : EG → VG; and two labelling functions lG : VG → LV and mG : EG → LE.

A graph with an empty set of nodes is empty and denoted by �. A graph morphism

g : G → H consists of two functions gV : VG → VH and gE : EG → EH that preserve

sources, targets, and labels, that is,

sH ◦ gE = gV ◦ sG

tH ◦ gE = gV ◦ tG

lH ◦ gV = lG

mH ◦ gE = mG.

A morphism g is injective (surjective) if gV and gE are injective (surjective), and it is an

isomorphism if it is both injective and surjective. In the latter case, G and H are isomorphic,

which is denoted by G ∼= H . The composition h ◦ g of g with a morphism h : H → M

consists of the composed functions hV ◦ gV and hE ◦ gE. The category having graphs as

objects and graph morphisms as arrows is called Graphs.

Example 2.2. To illustrate our definitions and results in the following sections, we will

use an example describing a mutual exclusion algorithm closely following Dijkstra’s work

(Dijkstra 1965). We begin by introducing the labels and underlying system models. In our

system, we have an arbitrary number of processes P and resources R. To each resource, a

turn variable T may be connected assigning this resource to a process. Each process may

be idle or active and has a flag with possible values 0, 1, 2, initially set to 0, which is

graphically described by no flag at all at this process. Moreover, a label crit marks a

process that has entered its critical section and is currently using the resource. Thus, the

label alphabet used for our example is

L = (LV ,LE)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 6

Fig. 4. (Colour online) Example graph and graph morphism.

with

LV = {P, T, R, F1, F2}
LE = {active, idle, crit, λ}.

On the left-hand side of Figure 4, we model a system S containing a resource and two

processes, one of them being active and one of them idle, where the active process is

connected to the resources via an F1-flag and the other process is conneted to them via

the turn variable. There is an injective graph morphism g : S → G extending S by another

active process with a flag to the resource and an additional resource that has no turn

variable and is thus disabled.

In drawings of graphs, nodes are represented by circles and edges by arrows pointing

from the source to the target node. Arbitrary graph morphisms are drawn by the usual

arrows ‘→’; the use of ‘→֒’ indicates an injective graph morphism, but we will only use it

if we need to point it out explicitly. The actual mapping of the elements will be shown by

positions, or by indices where necessary.

While the original double-pushout approach was defined on directed, labelled graphs

(Ehrig et al. 1973; Ehrig 1979), it was later lifted to a categorical setting using a

distinguished morphism class M, with various instantiations. In particular, adhesive

and weak adhesive HLR categories are a suitable concept providing many of the

required properties. The literature contains various versions of adhesive (Lack and

Sobocinski 2004), quasiadhesive (Lack and Sobocinski 2005), weak adhesive HLR (Ehrig

et al. 2006b), partial map adhesive (Heindel 2010) and M-adhesive (Ehrig et al. 2010a)

categories. In adhesive categories, the class M of morphisms is all monomorphisms, while

in quasiadhesive the class of all regular monomorphisms is considered. With slightly

different requirements concerning the existence of pushouts and pullbacks along M-

morphisms and requirements of M-morphisms with respect to the van Kampen property,

we get what are basically special weak adhesive HLR categories. In contrast, partial map

adhesive categories are based on hereditary pushouts, which are pushouts that have to

be preserved by the inclusion functor from the category C into the category of partial

maps over C. As shown in Ehrig et al. (2010a), partial map adhesive categories are also

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 7

M-adhesive categories. Since all the main properties are valid in M-adhesive categories,

we have chosen to work with these in the current paper.

Definition 2.3 (M-adhesive category). A category C with a morphism class M is an

M-adhesive category if the following properties hold:

(1) M is a class of monomorphisms containing all isomorphisms, closed under composi-

tion and decomposition, that is, for morphisms f and g, we have:

— f being an isomorphism implies f ∈ M;

— f, g ∈ M implies g ◦ f ∈ M; and

— g ◦ f ∈ M, g ∈ M implies f ∈ M.

(2) C has pushouts and pullbacks along M-morphisms, that is, pushouts and pullbacks

where at least one of the given morphisms is in M, and M-morphisms are closed

under pushouts and pullbacks, that is, given a pushout (1)

A

B

C

D

m n(1)

m ∈ M implies n ∈ M, and given a pullback (1), n ∈ M implies m ∈ M.

(3) Pushouts in C along M-morphisms are vertical weak van Kampen squares, (M-VK

squares for short), that is, for any commutative cube in C

A′

A C

C ′

B′

B D

D′

b

c

d
m

f

if we have the pushout with m ∈ M in the bottom, b, c, d ∈ M and the back faces are

pullbacks, then the top is a pushout if and only if the front faces are pullbacks.

Remark 2.4. In contrast to a vertical weak van Kampen square, a horizontal one requires

that f ∈ M rather than b, c, d ∈ M. Both properties combined represent the weak van

Kampen property as used in weak adhesive HLR categories (Ehrig et al. 2006b). Adhesive

categories (Lack and Sobocinski 2005), which are a special case of M-adhesive categories,

are special cases of the weak adhesive HLR categories in Ehrig et al. (2006b), where, in

addition, the class M is the class of all monomorphisms.

Fact 2.5 (Ehrig et al. 2006b). The category 〈Graphs,M〉 with the class M of all injective

graph morphisms is M-adhesive. Moreover, several variants of graphs like typed and

typed attributed graphs with a corresponding class M of injective morphisms form M-

adhesive categories. The category 〈PTNets,M〉 of place/transition nets with the class M

of all injective net morphisms and the category 〈Spec,Mstrict〉 of algebraic specifications

with the class Mstrict of all strict injective specification morphisms are M-adhesive, but

not adhesive.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 8

M-adhesive categories have a number of nice properties, known as HLR-properties

(Ehrig et al. 1991).

Lemma 2.6 (HLR-properties). For an M-adhesive category 〈C,M〉, the following prop-

erties hold:

(1) Pushouts along M-morphisms are pullbacks.

(2) We have M pushout–pullback decomposition. If (1) + (2)

A C E

B D F

c

w
l v

=

=

(1) (2)

is a pushout, (2) is a pullback, w ∈ M and (l ∈ M or c ∈ M), then (1) and (2) are

both pushouts and pullbacks.

(3) We have cube pushout-pullback decomposition: that is, given the commutative cube

A′

AC

C ′

B′

BD

D′

(3)

where all morphisms in the top and the bottom are in M, the top is a pullback and

the front faces are pushouts, then the bottom is a pullback if and only if the back

faces of the cube are pushouts.

(4) We have uniqueness of pushout complements: that is, given morphisms A →֒ C in M

and C → D, then there is, up to isomorphism, at most one B with A → B and B → D

such that diagram (1) above is a pushout.

Proof. The proofs can be found in Lack and Sobocinski (2005) and Ehrig et al. (2006b).

Ehrig et al. (2006c) gives the proofs of the HLR-properties for weak adhesive HLR-

categories, but they are also valid for M-adhesive categories because horizontal weak

VK-squares are not used anywhere in the proof.

In order to prove the main results for M-adhesive systems, we need to impose some

additional HLR-requirements in the form of unique E ′-M pair factorisation, binary

coproducts and initial pushouts over M-morphisms. E ′-M pair factorisation is needed

for the proof of all the main results, but they can also be obtained using classical E-

M-factorisation and binary coproducts. The latter are also necessary and sufficient for

defining parallel rules in the Parallelism Theorem. Initial pushouts are needed for the

proof of the Amalgamation Theorem. However, we cannot exclude the possibility that

weaker versions of some of these HLR-requirements may be sufficient to show our main

results, or suitable variants of them.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 9

Definition 2.7. Let 〈C,M〉 be an M-adhesive category and E ′ be a class of morphism

pairs with the same codomain. 〈C,M〉 has a unique E ′-M pair factorisation if, for each

pair of morphisms

f1 : A1 → C

f2 : A2 → C,

there exist a unique (up to isomorphism) object K and unique (up to isomorphism)

morphisms

e1 : A1 → K

e2 : A2 → K

m : K →֒ C

with (e1, e2) ∈ E ′ and m ∈ M such that m ◦ e1 = f1 and m ◦ e2 = f2.

K

A1

A2

C
e1

e2

m

f1

f2

=

=

〈C,M〉 has initial pushouts over M-morphisms if, for every M-morphism f : A →֒ A′, there

exists an initial pushout over f. Consider the diagrams

B A

C A′

b

f

c

(1)

B D A

C E A′

f

b∗

c∗

b′

c′

(3) (2)

b

c

=

=

An M-morphism b : B →֒ A is a boundary over f if there is a pushout complement of

f and b such that (1) is an initial pushout over f. Initiality of (1) over f means that,

for every pushout (2) with b′ ∈ M, there exist unique morphisms b∗, c∗ ∈ M such that

b′ ◦ b∗ = b, c′ ◦ c∗ = c and (3) is a pushout. B is called the boundary object and C the

context with respect to f.

Fact 2.8 (Ehrig et al. 2006b). The category 〈Graphs,M〉 has a unique E ′-M pair

factorisation (where E ′ is the class of pairs of jointly surjective graph morphisms),

binary coproducts and initial pushouts over M-morphisms. Moreover, all the examples

in Fact 2.5 satisfy these requirements.

3. Rules with application conditions

In this section, we use the framework of M-adhesive categories, introduce rules with

application conditions for high-level structures such as graphs, Petri nets, (hyper)graphs

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 10

and algebraic specifications, and show how application conditions can be shifted over

morphisms and rules.

Assumption 3.1. We assume that 〈C,M〉 is an M-adhesive category with E ′-M pair

factorisation (used in the first shift lemma – Lemma 3.11), binary coproducts (used in

Definition 4.8) and initial pushouts over M-morphisms (used in Theorem 5.3).

Remark 3.2. The category 〈Graphs,M〉 satisfies Assumption 3.1. For simplicity, we

may write: graph instead of object; graph morphism instead of morphism; and category

〈Graphs,M〉 instead of M-adhesive category 〈C,M〉:

object — graph

morphism — graph morphism

〈C,M〉 — 〈Graphs,M〉

Application conditions, more concretely, nested application conditions, may be repre-

sented as a tree of morphisms equipped with logical symbols such as quantifiers and

connectives.

Definition 3.3 (application conditions). An application condition, also called nested applic-

ation condition, is defined inductively as follows:

(1) For every object P , true is an application condition over P .

(2) For every morphism a : P → C and every application condition ac over C , ∃(a, ac) is

an application condition over P .

(3) For application conditions ac, aci over P with i ∈ I (for all index sets I), ¬ac and

∧i∈Iaci are application conditions over P .

Satisfiability of application conditions is defined inductively as follows:

(1) Every morphism satisfies true.

(2) A morphism p : P → G satisfies ∃(a, ac) over P with a : P → C if there exists a

morphism q : C → G in M such that q ◦ a = p and q satisfies ac:

P

G

C,
a

p q
=

ac

|=
)∃(

(3) A morphism p : P → G satisfies ¬ac over P if p does not satisfy ac, and p satisfies

∧i∈Iaci over P if p satisfies each aci (i ∈ I).

We write p |= ac to denote the fact that the morphism p satisfies ac.

Two application conditions ac and ac′ over P are equivalent, denoted by ac ≡ ac′, if for

all morphisms p : P → G, p |= ac if and only if p |= ac′.

Notation 3.4. We write ∃a as an abbreviation for ∃(a, true) and ∀(a, ac) as an abbreviation

for ¬∃(a,¬ac).

Remark 3.5. The concept of application conditions was introduced in Ehrig and Habel

(1986). Positive and negative application conditions, which were introduced in Habel

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 11

et al. (1996), correspond to nested application conditions of the form ∃a and ¬∃a,
respectively. Negative application conditions are investigated intensively in, for example,

Lambers (2010). Nested application conditions were introduced and intensively studied

in Habel and Pennemann (2009) and Pennemann (2009), and are generalisations of

the corresponding notions in Heckel and Wagner (1995), Koch et al. (2005) and Ehrig

et al. (2006a).

Example 3.6. The following expressions are application conditions based on injective

graph morphisms:

∃a There exists a proper outgoing edge from the image of 1.

¬∃a There does not exist a proper outgoing edge from the image of 1.

∃(a,¬∃b) There exists a proper outgoing edge from the image of 1 without

an edge in converse direction.

∀(a, ∃c) For every proper outgoing edge from the image of 1, the target

has a loop.

∃(a, ∀(d, ∃e))There exists a proper edge outgoing from the image of 1 such that,

for all edges outgoing from the target, the target has a loop.

The first application condition is positive, the second is negative and the rest are properly

nested.

Rules are specified by a pair of M-morphisms. In order to restrict the applicability of

rules, they are equipped with a left and a right application condition. Such a rule is applic-

able with respect to a ‘match’ morphism from the left-hand side of the rule to an object

if and only if the underlying plain rule is applicable, the match morphism satisfies the left

application condition and the comatch morphism satisfies the right application condition.

Definition 3.7 (rules and transformations). A plain rule p = 〈L ←֓ K →֒ R〉 consists of

two M-morphisms K →֒ L and K →֒ R. A rule ̺ = 〈p, acL, acR〉 consists of a plain rule

p and two application conditions acL and acR over L and R, respectively. L and R are

called the left- and right-hand side of p, respectively; acL and acR are called the left and

right application condition of ̺, respectively.

A direct transformation consists of two pushouts (1) and (2) such that m |= acL and

m∗ |= acR:

L K R

DG H

m m∗(1) (2)

acL =|

acR

|=

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 12

We write G ⇒̺,m,m∗ H and say that m : L → G is the match of ̺ in G and m∗ : R → H is the

comatch of ̺ in H . We also write G ⇒̺,m H , G ⇒̺ H or G ⇒ H to express the fact that

there is an m∗, m,m∗, or ̺, m, m∗, respectively, such that G ⇒̺,m,m∗ H . A transformation

G
∗⇒ H means G ∼= H or a sequence of direct transformations

G = G0 ⇒ G1 ⇒ . . . ⇒ Gn = H.

Fact 3.8. In 〈Graphs,M〉, the application of a rule ̺ = 〈p, acL, acR〉 to a graph G amounts

to the following steps:

(1) Find a match m : L → G satisfying acL and the gluing condition:

— Dangling condition:

No edge in G − m(L) is incident to a node in m(L) − m(K).

— Identification condition:

For all distinct items x, y ∈ L, we have m(x) = m(y) only if x, y ∈ K . (This

condition is understood to hold separately for nodes and edges.)

(2) Remove m(L − K) from G, yielding a graph D, and add R − K , yielding a graph H .

(3) Check whether the comatch m∗ : R → H satisfies acR .

Example 3.9. We will now introduce the rules for the mutual exclusion algorithm. The

main aim is to ensure that at all times, at most one process is using each resource. Another

variant of this algorithm implemented by graph transformation can be found in Ehrig

et al. (2006b), where the lack of application conditions induces a much more complex

model, including more types or labels together with additional rules for handling a single

resource. Using application conditions, we can simplify the models and do not need

additional edges representing the next executable step of the system, while also extending

the context to an arbitrary number of resources.

Initially, each process is idle and for each resource the turn variable is connected to

an arbitrary process, meaning that this process has the turn to use that resource. If a

process P1 wants to use some resource R, it becomes active and points the flag F1 to R.

If, in addition, it has the turn for R, it may proceed to use it, which is described by an

F2-flag to the resource and a crit loop at the process. Otherwise, if the turn for R belongs

to another process P ′, P must wait until P ′ is not flagging R. At this point, the process

may get the turn for R and start using it. When P has finished using R, the flag and the

crit are removed, and the process is again idle. As an extension of this normal behaviour,

a resource may be disabled, denoted by eliminating its turn variable, if there is no flag

present for it. Moreover, a resource may be enabled again if all other resources have at

least two requests waiting.

The rules setFlag, setTurn, enter and exit in Figure 5 describe the standard

behaviour of the system. With setFlag, a process becomes active and sets its F1-flag

to a resource. Note that this rule has a positive application condition requiring that the

resource has a turn variable noting it as enabled. If a process has set an F1-flag to a

resource and the turn variable of this resource points to another process, which has no

flag to this resource, the turn variable can be assigned to the first process using setTurn.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 13

Fig. 5. (Colour online) The rules for the mutual exclusion algorithm

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 14

Here, the application condition forbids the possibility that the process that has the turn

of the resource is already flagging that resource. With the rule enter, if a process has the

turn of a resource R and it points to R with an F1-flag, then the flag is replaced by an

F2-flag and a loop crit is added to the process. When the process is finished, the rule

exit is executed, which deletes the loop and the flag, and the process becomes idle again.

Moreover, with the rules disableR and enableR, a resource can be disabled or enabled

if the corresponding application conditions are fulfilled. The application condition true is

not included in the figures, while the application conditions Q(a, ac) with Q ∈ {∃,¬∃, ∀}
are represented by the morphism a : P → C , marked by Qa, combined with a drawing

of ac. Conjunctions of application conditions are represented by ∧ between ‘the outgoing

morphisms’.

Note that we could easily have a rule setFlag without any application condition.

In particular, it is enough to include in the left-hand side of the rule the turn variable

pointing to the resource R. However, the application condition ∀(b6, ∃c6) shown on the

right of the rule enableR cannot be removed, even if it too is a positive application

condition. In particular, this condition is nested twice because we need to specify that

every other enabled resource has two waiting processes.

Consider the rule setTurn with the match m1 shown on the left-hand side of Figure 6.

Note that m1 matches the two processes of the rule setTurn to the upper two processes

in G such that m1 satisfies the gluing condition, as well as the application condition

¬∃a2 ∧ ¬∃b2 and leads to the direct transformation

G ⇒setTurn,m1
H1

redirecting the turn variable from the idle process to one of the active ones, as shown in

Figure 6. The graph H1 is obtained from G by removing m1(L1 −K1) and adding R1 −K1.

For the graph H1, there is no direct transformation

H1 ⇒setTurn,m′ H2

because any match m′ : L1 → H1 does not satisfy the application condition ¬∃a2. Note

that the rules are completely symmetric, which means that a rule can be reversed to give

its inverse rule.

Fact 3.10 (inverse rule). For every rule

̺ = 〈p, acL, acR〉
with

p = 〈L ←֓ K →֒ R〉,
the rule

̺−1 = 〈p−1, acR , acL〉
with

p−1 = 〈R ←֓ K →֒ L〉
is the inverse rule of ̺. For every direct transformation

G ⇒̺,m,m∗ H,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 15

Fig. 6. (Colour online) Rule application

there is a direct transformation

H ⇒̺−1 ,m∗ ,m G

using the inverse rule.

We will now present two important technical results, which will be key to proving the

main results of this paper. The first shows that application conditions can be shifted over

morphisms. While the construction in Habel and Pennemann (2009) allows a shift over a

monomorphism and uses pushouts along M-morphisms, the construction in the current

paper allows a shift over an arbitrary morphism and uses E ′-M pair factorisations.

Lemma 3.11 (shift of application conditions over morphisms). There is a Shift construction

such that, for each application condition ac over P and for each morphism b : P → P ′,
Shift transforms ac via b into an application condition Shift(b, ac) over P ′ such that, for

each morphism n : P ′ → H , we have n ◦ b |= ac ⇐⇒ n |= Shift(b, ac).

P

H

P ′b

n ◦ b n

Shift(b, ac)ac

=

Construction 3.12. The Shift construction is defined inductively as follows:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 16

— Case true:

Shift(b, true) = true.

— Case ∃(a, ac):

If

F = {(a′, b′) ∈ E
′ | b′ ∈ M and (1) below commutes} �= �

P

C

P ′

C ′

a a′(1)

b

b′

ac

then

Shift(b, ∃(a, ac)) =
∨

(a′ ,b′)∈F
∃(a′, Shift(b′, ac))

otherwise

Shift(b, ∃(a, ac)) = false.

— Case ¬ac:

Shift(b,¬ac) = ¬Shift(b, ac).

— Case ∧i∈Iaci:

Shift(b,∧i∈Iaci) = ∧i∈IShift(b, aci).

Proof. The statement is proved by structural induction:

— Base case:

The equivalence holds trivially for the application condition true.

— Inductive step:

For an application condition of the form ∃(a, ac), we have to show

n ◦ b |= ∃(a, ac) ⇐⇒ n |= Shift(b, ∃(a, ac)).

– Only if direction:

Let

n ◦ b |= ∃(a, ac).

By the definition of satisfiability, there is some q ∈ M with q◦a = n◦b and q |= ac.

By E ′-M pair factorisation, there exist an object C ′ and morphisms

a′ : P ′ → C ′

b′ : C → C ′

m : C ′ →֒ H

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 17

with (a′, b′) ∈ E ′ and m ∈ M such that m ◦ a′ = n and m ◦ b′ = q. So

m ◦ a′ ◦ b = n ◦ b

= q ◦ a

= m ◦ b′ ◦ a

and, since m ∈ M, we have

a′ ◦ b = b′ ◦ a,

that is, (1) in the following diagram commutes:

P

P ′

C

C ′

H

a

a′

n

b b′

m

q
(1)

ac

Since M is closed under decomposition, q, m ∈ M implies b′ ∈ M. Thus, (a′, b′) ∈
F . By the induction hypothesis,

q = m ◦ b′ |= ac ⇔ m |= Shift(b′, ac).

So

n = m ◦ a′ |= ∃(a′, Shift(b′, ac))

and, by the definition of Shift,

n |= ∃(b, Shift(a, ac)).

– If direction:

Let

n |= Shift(b, ∃(a, ac)).

Then there is some (a′, b′) ∈ F such that b′ ∈ M, a′ ◦ b = b′ ◦ a and n |=
∃(a′, Shift(b′, ac)).

By the definition of satisfiability, there is some m ∈ M such that m◦a′ = n and m |=
Shift(b′, ac).

By the induction hypothesis,

m |= Shift(b′, ac) ⇔ m ◦ b′ |= ac.

So there is some q = m ◦ b′ ∈ M such that q |= ac, that is,

n ◦ b = q ◦ a |= ∃(a, ac),

which completes the inductive proof.

Example 3.13. To illustrate the construction of shifting an application condition over

morphisms, consider the application condition ∀(b6, ∃c6) of the rule enableR, which is an

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 18

Fig. 7. (Colour online) Shift of the application condition ∀(b6, ∃c6) over a morphism.

application condition over the left-hand side of this rule. We want to shift this condition

over the morphism v shown at the top of Figure 7.

The first step of the construction is shown in the upper part of Figure 7 – the result is

the intermediate application condition

Shift(v, ∀(b6, ∃c6)) = ∀(d,Shift(v1, ∃c6)) ∧ ∀(d2, Shift(v2, ∃c6)).

Since vi has to be injective and the resulting object has to be an overlapping of the

codomains of v and b6 such that the diagram commutes, and these are the only two

solutions possible.

In the second step, the second part of the application condition has to be shifted over

the two new morphisms v1 and v2. The result is shown in the lower part of Figure 7, that

is, the application condition

Shift(v, ∀(b6, ∃c6)) = ∀(d1, ∃e1 ∨ ∃e2) ∧ ∀(d2, ∃e3).

The other key result for proving the main results of the current paper is that application

conditions can be shifted along rules.

Lemma 3.14 (shift of application conditions over rules (Habel and Pennemann 2009)).

There is a construction L such that, for each rule ̺ and each application condition ac

over R, we have L transforms ac through ̺ into L(̺, ac) over L such that for each direct

transformation

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 19

G ⇒̺,m,m∗ H,

we have m |= L(̺, ac) ⇐⇒ m∗ |= ac.

L K R

DG H

m m∗(1) (2)

L(̺, ac)

=| |=

ac

Construction 3.15. The construction L is defined inductively as follows:

— Case true:

L(̺, true) = true.

— Case ∃(a, ac):

Consider

L K R

K∗L∗ R∗

l r

a∗ a(2) (1)

L(̺∗, ac) ac

If 〈r, a〉 has a pushout complement (1) and

̺∗ = 〈L∗ ←֓ K∗ →֒ R∗〉

is the derived rule by constructing the pushout (2), then

L(̺, ∃(a, ac)) = ∃(a∗,L(̺∗, ac))

otherwise

L(̺, ∃(a, ac)) = false.

— Case ¬ac:

L(̺,¬ac) = ¬L(̺, ac).

— Case ∧i∈Iaci:

L(̺,∧i∈Iaci) = ∧i∈IL(̺, aci).

Remark 3.16. The construction L uses rules to transform right application conditions into

left application conditions. The construction R with

R(̺, ac) = L(̺−1, ac)

transforms left application conditions ac using the rule ̺ into right application conditions.

Example 3.17. Suppose we want to translate the application condition ∀(b6, ∃c6) of the

rule enableR to the right-hand side. Basically, this means applying the rule to the first

graph of the application condition, leading to a span, which is applied as a rule to the

second graph. The result is shown in Figure 8, that is, the translated application condition

is ∀(b∗
6, ∃c∗

6).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 20

Fig. 8. (Colour online) Shift of the application condition from left to right.

As a consequence of the second shift lemma (Lemma 3.14), every rule can be transformed

into an equivalent rule where the right application condition is always true. A rule of the

form 〈p, acL, true〉 is said to be a rule with left application condition and is abbreviated by

〈p, acL〉. This may be considered an improvement with respect to efficiency since in order

to check a right application condition, we must first apply the rule, and then backtrack

if the condition is not satisfied. However, left application conditions can be checked

immediately after a match has been found.

Corollary 3.18 (rules with left application condition). There is a construction Left such

that, for every rule ̺, the rules ̺ and Left(̺) are equivalent, where Left(̺) is a rule with

only left application condition.

Proof. For a rule ̺ = 〈p, acL, acR〉, let

Left(̺) = 〈p, acL ∧ L(̺, acR)〉.
Then, by Definition 3.7 and the second shift lemma (Lemma 3.14), ̺ and Left(̺) are

equivalent:

G ⇒̺,m,m∗ H ⇔ G ⇒p,m,m∗ H ∧ m |= acL and m∗ |= acR

⇔ G ⇒p,m,m∗ H ∧ m |= acL and m |= L(̺, acR)

⇔ G ⇒p,m,m∗ H ∧ m |= acL ∧ L(̺, acR)

⇔ G ⇒Left(̺),m,m∗ H.

4. The Local Church–Rosser, Parallelism and Concurrency Theorems

In this section, we present Local Church–Rosser, Parallelism and Concurrency Theorems

for rules with application conditions as generalisations of the well-known theorems for

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 21

rules without application conditions (Ehrig et al. 2006b) and with negative application

conditions (Lambers 2010). The proofs of the statements are based on the corresponding

statements for rules without application conditions and the shift lemmas (Lemmas 3.11

and 3.14), which say that application conditions can be shifted over morphisms and rules.

The structure of the proofs is as follows. We first switch from transformations

with application conditions to the corresponding transformations without application

conditions, then use the results for transformations without application conditions, and

then, finally, lift the results without application conditions to application conditions.

transformations with ACs =⇒ result with ACs

↓ ↑
transformations without ACs =⇒ result without ACs

Remark 4.1. For every direct transformation G ⇒̺,m H using a rule ̺ = 〈p, acL, acR〉,
there is a direct transformation G ⇒p,m H using the underlying plain rule p, which we call

the underlying direct transformation without application conditions.

By Corollary 3.18, we may assume that the rules are rules with left application condition.

Assumption 4.2. In the following, for i = 1, 2, we let

̺i = 〈pi, acLi
〉

be a rule with left application condition and

pi = 〈Li ←֓ Ki →֒ Ri〉
be the underlying plain rule.

First, we consider direct transformations

H1 ⇐̺1
G ⇒̺2

H2

and look for conditions under which there are direct transformations

H1 ⇒̺2
M ⇐̺1

H2.

In particular, the first obvious condition is that the underlying plain transformations

are parallel independent. However, this is not enough, we must also require that the

matches of ̺2 and ̺1 in H1 and H2, respectively, satisfy the application conditions of the

corresponding rule. Similarly, we consider transformations

G ⇒̺1
H1 ⇒̺2

M

and look for conditions under which there are transformations

G ⇒̺2
H2 ⇒̺1

M.

In this case, in addition to the sequential independence of the underlying plain rules, we

require that the match of ̺2 in G satisfies its application condition and that the comatch

of ̺1 to M satisfies the application condition R(̺1, acL1
).

We can now formulate the notions of parallel and sequential independence and present

the Local Church–Rosser Theorem.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 22

Definition 4.3 (parallel and sequential independence). A pair of direct transformations

H1 ⇐̺1 ,m1
G ⇒̺2 ,m2

H2

is parallel independent if there are morphisms dij : Li → Dj such that mi = bj ◦ dij and

m′
i = cj ◦ dij |= acLi

with i, j ∈ {1, 2} and i �= j. Thus

GD1H1

R1 K1 L1

D2 H2

R2K2L2

c1 b1 b2
c2

= =
m1 m2

d21 d12

acL1
acL2

A pair of direct transformations

G ⇒̺1 ,m1
H1 ⇒̺2 ,m2

M

is sequentially independent if there are morphisms

d12 : R1 → D2

d21 : L2 → D1

such that m∗
1 = b2 ◦ d12, m2 = b1 ◦ d21 and

m′
2 = c1 ◦ d21 |= acL2

m′
1 = c2 ◦ d12 |= R(̺1, acL1

).

Thus

H1D1G

L1 K1 R1

D2 M

R2K2L2

c1 b1 b2
c2

= =
m∗

1
m2

d21 d12

acL1
acL2

A pair of direct transformations that is not parallel (sequentially) independent is said to

be parallel (sequentially) dependent.

Example 4.4. The pair

H1 ⇐setTurn,m1
G ⇒enableR,m2

H2

of direct transformations in Figure 9 is parallel independent. The left rule application is the

one we considered in Figure 6. Obviously, m2 matches the idle process to the uppermost

process in G. The morphisms d12 and d21 exist such that b1 ◦ d21 = m2, b2 ◦ d12 = m1 and

m′
1 = c2 ◦ d12 |= ¬∃a2 ∧ ¬∃b2

m′
2 = c1 ◦ d21 |= ¬∃a6 ∧ ∀(b6, ∃c6).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 23

Fig. 9. (Colour online) Parallel independent transformations.

The sequence

H1 ⇒setFlag,m0
G ⇒enableR,m2

H2

of direct transformations in Figure 10 is sequentially dependent. Note that m0 matches

the process of the rule setFlag to the lowermost process in H1, while the second

transformation is the one already considered in Figure 9. The morphisms d12 and d21 exist

such that c1 ◦ d21 = m2, c2 ◦ d12 = m∗
1 and

b2 ◦ d12 |= R(setFlag, ∃a1),

but

b1 ◦ d21 �|= ¬∃a6 ∧ ∀(b6, ∃c6).

The transformations are sequentially dependent because the rule setFlag adds a second

flag, which is needed to fulfill the application condition ∀(b6, ∃c6) of the rule enableR.

Note that the transformations without application conditions would be sequentially

independent.

By Definition 4.3, we immediately get the following fact.

Fact 4.5. Direct transformations are parallel (sequentially) independent if and only if the

underlying direct transformations without application conditions are parallel (sequentially)

independent and the ‘induced’ matches satisfy the corresponding application conditions.

By Definition 4.3, parallel and sequential independence are closely related.

Fact 4.6. Two direct transformations

H1 ⇐̺1 ,m1
G ⇒̺2 ,m2

H2

are parallel independent if and only if the two direct transformations

H1 ⇒̺−1
1 ,m∗

1
G ⇒̺2 ,m2

H2

are sequentially independent, where m∗
1 is the comatch of ̺1 in H1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 24

Fig. 10. (Colour online) Sequentially dependent transformations.

We can now present the Local Church–Rosser Theorem.

Theorem 4.7 (Local Church–Rosser Theorem). Given two parallel independent direct

transformations

H1 ⇐̺1 ,m1
G ⇒̺2 ,m2

H2,

there is an object M and there are direct transformations

H1 ⇒̺2 ,m
′
2
M ⇐̺1 ,m

′
1
H2

such that the two transformations

G ⇒̺i ,mi
H1 ⇒̺j ,m

′
j
M

G ⇒̺2 ,m2
H2 ⇒̺1 ,m

′
1
M

are sequentially independent.

Given two sequentially independent direct transformations

G ⇒̺1 ,m1
H1 ⇒̺2 ,m2

M,

there is an object H2 and a transformation

G ⇒̺2 ,m
′
2
H2 ⇒̺1 ,m

′
1
M

such that H1 ⇐̺1 ,m1
G ⇒̺2 ,m

′
2
H2 are parallel independent.

G

H1

H2

M

̺1

̺2

̺2

̺1

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 25

Proof. Let

H1 ⇐̺1 ,m1
G ⇒̺2 ,m2

H2

be parallel independent. Then the underlying direct transformations

H1 ⇐p1 ,m1
G ⇒p2 ,m2

H2

without application conditions are parallel independent. By the Local Church–Rosser

Theorem without application conditions (Ehrig et al. 2006b), there is an object M and

direct transformations

H1 ⇒p2 ,m
′
2
M ⇐p1 ,m

′
1
H2

such that the transformations

G ⇒p1 ,m1
H1 ⇒p2 ,m

′
2
M

G ⇒p2 ,m2
H2 ⇒p1 ,m

′
1
M

are sequentially independent. By parallel independence, there are morphisms dij : Li → Dj

such that mi = bj ◦ dij with (i, j ∈ {1, 2} and i �= j).

GD1H1

R1 K1 L1

D2 H2

R2K2L2

c1 b1 b2
c2

= =
m1

m∗
1 m2

m∗
2

d21 d12
(2) (1) (3) (4)

acL1
acL2

The morphisms are used for the decomposition of the pushouts (i) into pushouts (i1)

and (i2) for i = 1, . . . , 4:

GD1H1 D2 H2

D2 D0 D2 D0D1 D1

R1 K1 L1 R2K2L2

c1 b1 b2
c1

m1 m2m∗
1 m∗

2
= == =

(21)

(22)

(11)

(12)

(31)

(32)

(41)

(42)

acL1
acL2

The pushouts can be rearranged as in the figures below. Since the composition of

pushouts yields pushouts, we obtain direct transformations

H1 ⇒p2 ,m
′
2
M ⇐p1 ,m

′
1
H2

such that, for i ∈ {1, 2} and i �= j, we have

G ⇒pi ,mi
Hi ⇒pj ,m

′
j
M

are sequentially independent: there are morphisms

dij : Ri → Dj

dji : Lj → Di

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 26

such that cj ◦ dij = m∗
i and ci ◦ dji = m′

j .

H1D1G D2 M

D2 D0 D2 D0D1 D1

L1 K1 R1 R2K2L2

b1
c1 c2 b2

m1
m∗

1 m′
2 m′∗

2

(11)

(12)

(21)

(22)

(31)

(22)

(41)

(5)

= == =

acL1
acL2

H2D2G D1 M

D1 D0 D1 D0D2 D2

L2 K2 R2 R1K1L1

b2
c2 c1 b1

m2
m∗

2 m′
1 m′∗

1

(31)

(12)

(41)

(42)

(11)

(42)

(21)

(5)

= == =

acL1
acL2

By assumption, mi, m
′
i |= acLi

. By the second shift lemma (Lemma 3.14),

mi |= acLi
⇔ m∗

i |= R(̺i, aci).

Thus, there is a transformation

G ⇒̺i ,mi
Hi ⇒̺j ,m

′
j
M

that is sequentially independent.

The second statement can be proved using the first statement and Fact 4.6.

We will now consider parallel rules and parallel transformations. The parallel rule

̺1 + ̺2 of the rules ̺1 and ̺2 can be defined with help of the binary coproducts of the

components of the rules, because, by the General Assumption (Assumption 3.1), 〈C,M〉
has binary coproducts.

Definition 4.8 (parallel rule and transformation). The parallel rule of ̺1 and ̺2 is the rule

̺1+̺2 = 〈p, acL〉

where

p = 〈L1+L2 ←֓ K1+K2 →֒ R1+R2〉
is the parallel rule of p1 and p2 and

acL = ∧2
i=1Shift(ki, acLi

) ∧ L(p1+p2, Shift(k∗
i ,R(̺i, acLi

))).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 27

L1+L2 K1+K2 R1+R2

L1 K1 R1

L2 K2 R2k1

k∗
1

k2 k∗
2

acL1

acL2

acL

A direct transformation using a parallel rule is called a parallel direct transformation, or

a parallel transformation for short.

Fact 4.9. The morphisms K1+K2 →֒ L1+L2 and K1+K2 →֒ R1+R2 are in M.

Proof. Binary coproducts are compatible with M, that is, f1, f2 ∈ M implies f1+f2 ∈
M. In fact, pushout (1) in the diagram below with f1 ∈ M implies (f1+id) ∈ M and

pushout (2) with f2 ∈ M implies (id+f2) ∈ M, but now

(f1+f2) = (id+f2) ◦ (f1+id) ∈ M

by closure under composition.

A1 B1

A1+A2 B1+A2 B1+B2

B2A2

f1 f2

f1+id id+f2

(1) (2)

This completes the proof.

Example 4.10. The parallel rule setTurn+enableR is shown in the upper row of Fig-

ure 11†. The application

G ⇒setTurn+enableR,m1+m2
H ′

of this parallel rule is shown in Figure 11 – it combines the effects of both rules to G

leading to the graph H ′, where both the turn points to an active process and the previously

disabled resource is now activated.

Two rules ̺ and ̺′ are isomorphic, denoted by ̺ ∼= ̺′, if there are isomorphisms

isoL, isoK , isoR between the components such that the resulting diagrams commute and the

application conditions are isomorphic with respect to isoL. As an immediate consequence

of the definition, we have the following fact.

Fact 4.11. For all rules ̺1 and ̺2, we have

̺1 + ̺2
∼= ̺2 + ̺1.

† The figure does not show the application conditions because there are so many of them. Basically, they say

for various overlappings of processes or resources that there is no F1- or F2-flag between the process and the

resource from the rule setTurn, no turn on the resource of enableR, and all active resources have at least

two F1-flags pointing to them.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 28

Fig. 11. (Colour online) Parallel rule and transformation.

The connection between sequentially independent direct transformations and parallel

direct transformations using the parallel rule (Definition 4.8) is expressed by the Parallelism

Theorem.

Theorem 4.12 (Parallelism Theorem). Given two sequentially independent direct trans-

formations

G ⇒̺1 ,m1
H1 ⇒̺2 ,m

′
2
M,

there is a parallel transformation

G ⇒̺1+̺2 ,m M.

Given a parallel transformation

G ⇒̺1+̺2 ,m M,

there are sequentially independent direct transformations

G ⇒̺1 ,m1
H1 ⇒̺2 ,m

′
2
M

G ⇒̺2 ,m2
Hi ⇒̺1 ,m

′
1
M.

G

H1

H2

M

̺1

̺2

̺2

̺1

̺1 + ̺2

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 29

Proof. Let

G ⇒̺1 ,m1
H1 ⇒̺2 ,m

′
2
M

be sequentially independent. Then the underlying transformation without application

conditions is sequentially independent and, by the Parallelism Theorem without application

conditions (Ehrig et al. 2006b), there is a parallel transformation

G ⇒p1+p2 ,m M

with m1 = m ◦ k1 and m′∗
2 = m∗ ◦ k∗

2 .

By assumption,

m1 |= acL1

m′
2 |= acL2

.

By the shift lemmas (Lemmas 3.11 and 3.14) and Definition 4.8,

m1 |= acL1
∧ m′

2 |= acL2
(∗)

⇔ m |= Shift(k1, acL1
) ∧ m′∗

2 |= R(̺2, acL2
)

⇔ m |= Shift(k1, acL1
) ∧ m∗ |= Shift(k∗

2 ,R(̺2, acL2
))

⇔ m |= Shift(k1, acL1
) ∧ L(p1+p2, Shift(k∗

2 ,R(̺2, acL2
))) = acL.

Thus, m |= acL, that is, the parallel transformation satisfies the application condition.

For the opposite direction, let

G ⇒̺1+̺2 ,m M

be a parallel transformation. Then there is an underlying parallel transformation without

application conditions, and, by the Parallelism Theorem without application conditions

(Ehrig et al. 2006b), there is a sequentially independent direct transformation

G ⇒p1 ,m1
H1 ⇒p2 ,m

′
2
M

with m1 = m ◦ k1 and m′∗
2 = m∗ ◦ k∗

2 .

By assumption,

m |= acL,

and by (∗),

m1 |= acL1

m′
2 |= acL2

,

that is, the sequentially independent direct transformations satisfy the application condi-

tions. By

̺1 + ̺2
∼= ̺2 + ̺1,

there is also a sequentially independent direct transformation

G ⇒p2 ,m2
H2 ⇒p1 ,m

′
1
M

with m2 |= acL2
and m′

1 |= acL1
.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 30

Finally, we consider transformations of the form

G ⇒̺1
H ⇒̺2

M,

but without the assumption of sequential independence. This leads to the notions of an

E-dependency relation, an E-concurrent rule for ̺1 and ̺2, E-concurrent transformations

and E-related transformations. The connection between E-related and E-concurrent

transformations is established in the Concurrency Theorem.

The construction of an E-concurrent rule is based on an E-dependency relation, which

guarantees the existence of some pushout complements. It is defined with the help

of pushouts and pullbacks along M-morphisms. The application condition of the E-

concurrent rule guarantees that whenever the E-concurrent rule is applicable, the rule ̺1

and, afterwards, the rule ̺2 is applicable.

Definition 4.13 (E-concurrent rule). Let E ′ be a class of morphism pairs with the same

codomain. Given two rules ̺1 and ̺2, an object E with morphisms

e∗
1 : R1 → E

e2 : L2 → E

is an E-dependency relation for ̺1 and ̺2 if (e∗
1, e2) ∈ E ′ and the pushout complements (1)

and (2) over K1 →֒ R1 → E and K2 →֒ L2 → E in the diagram

ED1L

L1 K1 R1

D2 R

R2K2L2

K

e1 e∗
1

e2 e∗
2(3) (1) (2) (4)

(5)
= =

acL1
acL2

acL

exist. Given such an E-dependency relation for ̺1 and ̺2, the E-concurrent rule of ̺1 and

̺2 is the rule

̺1 ∗E ̺2 = 〈p, acL〉
where

p = 〈L ←֓ K →֒ R〉
with pushouts (3) and (4) and pullback (5),

̺∗
1 = 〈L ←֓ D1 →֒ E〉

is the rule derived by ̺1 and k1, and

acL = Shift(e1, acL1
) ∧ L(̺∗

1, Shift(e2, acL2
)).

Example 4.14. Figure 12 shows the E-concurrent rule construction leading to the E-related

sequence

G′ ⇒setFlag,m0
G ⇒enableR,m2

H2

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 31

Fig. 12. (Colour online) E-concurrent rule construction.

of direct transformations already considered in Figure 10. Note that e1 matches the

process of setFlag to the lowermost process and e2 matches the process of enableR to

the uppermost process. Note also that

acL = Shift(e1, ac1) ∧ L(̺∗
6, Shift(e2, ac6))

is not shown explicitly because it becomes too large. The rule says that the lowermost

resource should be connected to a token (Shift(e1, ∃a1)), that the uppermost resource

should not already be connected to a token (L(̺∗
6, Shift(e2,¬∃a6))), that the lowermost

resource should already be connected to a F1-flag and that other enabled resources should

already be connected to at least two F1-flags (L(̺∗
6, Shift(e2, ∀(b6, ∃c6)))).

For rules without application conditions, the parallel rule is a special case of the E-

concurrent rule with E = R1+L2 (Ehrig et al. 2006b), but, in general, this is not the case

for rules with application conditions: while the application conditions for the parallel rule

must guarantee the applicability of the rules in each order, the application condition for

the E-concurrent rule must guarantee the applicability of the rules in the given order.

Nevertheless, the parallel rule of two rules can be constructed from two concurrent rules

of the rules, one for each order: for i, j ∈ {1, 2} with i �= j, let acLij
be the application

condition of the Eij-concurrent rule of ̺i and ̺j with Eij = Ri+Lj . The rule p1+p2 with

application condition acL12
∧acL21

is then called the symmetric concurrent rule of ̺1 and

̺2 and is denoted by ̺1∗̺2.

Lemma 4.15 (parallel and symmetric concurrent rules). For rules ̺1 and ̺2, the parallel

rule and the symmetric concurrent rule are equivalent:

̺1+̺2 ≡ ̺1∗̺2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 32

Proof. For plain rules p1 and p2, the parallel rule p1+p2 and the concurrent rules

pi ∗Ri+Lj
pj are equivalent (Ehrig et al. 2006b). By Definitions 4.8 and 4.13,

m |= acL ⇔ m |= ∧2
i=1Shift(ki, acLi

) ∧ L(̺∗
i , Shift(k′

j , acLj
))

⇔ m |= acL12
∧ acL21

,

that is, the parallel rule and the symmetric concurrent rule are equivalent.

We will now consider E-concurrent transformations via E-concurrent rules and E-

related transformations via pairs of rules.

Definition 4.16 (E-concurrent and E-related transformations). A direct transformation via

an E-concurrent rule is called an E-concurrent direct transformation, or an E-concurrent

transformation for short. A transformation

G ⇒̺1
H ⇒̺2

M

is E-related if there are morphisms

E → H

D1 → E1

D2 → E2

such that the triangles in the following diagram commute and (6) and (7) are pushouts:

E

R1K1L1

D1

L2 K2 R2

D2

E1 E2G MH

(6) (7)

= =
= =

We will now present a Concurrency Theorem for rules with application conditions.

Theorem 4.17 (Concurrency Theorem). Let E be a dependency relation for ̺1 and ̺2. For

every E-related transformation

G ⇒̺1 ,m1
H ⇒̺2 ,m2

M,

there is an E-concurrent transformation

G ⇒̺1∗E̺2 ,m M.

Conversely, for every E-concurrent transformation

G ⇒̺1∗E̺2 ,m M,

there is an E-related transformation

G ⇒̺1 ,m1
H ⇒̺2 ,m2

M.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 33

G

H

M

̺1 ̺2

̺1 ∗E ̺2

Proof. Let

G ⇒̺1 ,m1
H ⇒̺2 ,m2

M

be E-related. Then the underlying transformation without application conditions is

E-related and, by the Concurrency Theorem without application conditions (Ehrig

et al. 2006b), there is an E-concurrent transformation

G ⇒p1∗p2 ,m M.

By assumption,

m1 |= acL1

m2 |= acL2
.

By the shift lemmas (lemmas 3.11 and 3.14) and Definition 4.13, we have

m1 |= acL1
and m2 |= acL2

(∗)

⇔ m |= Shift(k1, acL1
) and m′ |= Shift(k2, acL2

)

⇔ m |= Shift(k1, acL1
) and m |= L(p∗

1, Shift(k2, acL2
))

⇔ m |= Shift(k1, acL1
) ∧ L(p∗

1, Shift(k2, acL2
)) = acL.

Thus, m |= acL, that is, the E-concurrent transformation satisfies the application condition.

Let G ⇒̺,m M be an E-concurrent transformation. So the underlying direct transform-

ation without application conditions is E-concurrent and, by the Concurrency Theorem

without application conditions (Ehrig et al. 2006b), there is an E-related transformation

G ⇒p1 ,m1
H ⇒p2 ,m2

M.

By assumption, m |= acL. By statement (*),

m1 |= acL1

m2 |= acL2
,

that is, the E-related transformation satisfies the application conditions.

In order to apply the Concurrency Theorem to a transformation, we need to construct

an E-related transformation corresponding to Ehrig et al. (2006b, Fact 5.29). To do this,

we use an M-adhesive category with E ′-M pair factorisation.

Fact 4.18 (construction of E-related transformations). For every transformation

G ⇒̺1 ,m1
H ⇒̺2 ,m2

M

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 34

there is an E-dependency relation E such that

G ⇒̺1 ,m1
H ⇒̺2 ,m2

M

is E-related.

Proof. Given a transformation

G ⇒̺1 ,m1 ,m
∗
1
H ⇒̺2 ,m2

M,

let (e1, e2) ∈ E ′, h ∈ M be an E ′-M pair factorisation of m∗
1 and m2 with h ◦ e1 = m∗

1 and

h ◦ e2 = m2.

We now construct (6) in the diagram below as a pullback of E1 →֒ H ←֓ E. By the

universal pullpack property, there is a morphism K1 → D1 such that (1) and (8) commute.

Since h ∈ M, (6) is a pullback, and (1)+(6) is a pushout, the M-pushout–pullback

decomposition property then implies that diagram (1) is a pushout, and, analogously, (2)

is also a pushout.

E

R1K1L1

D1

L2 K2 R2

D2

E1 E2G MH

e1 e2

h(6) (7)

(8) (9)

(1) (2)

Thus, E with (e1, e2) ∈ E ′ is an E-dependency relation and

G ⇒̺1 ,m1
H ⇒̺2 ,m2

M

is E-related.

5. Amalgamation

In this section, we present an Amalgamation Theorem for rules with application conditions

generalising the well-known theorem for rules without application conditions (Boehm

et al. 1987; Corradini et al. 1997). The Amalgamation Theorem handles two direct

transformations, which may be parallel dependent. Roughly speaking, for a ̺-amalgamable

pair of direct transformations H1 ⇐̺1
G ⇒̺2

H2, there is a direct transformation G ⇒ M

via the ̺-amalgamated rule ̺′, and vice versa. The effect of the ̺-amalgamated rule ̺′ may

be described by the application of ̺i and the remainder of ̺′ with respect to ̺i (i = 1, 2).

The Multi-Amalgamation Theorem in Golas et al. (2014) and Golas (2011) generalises

the Amalgamation Theorem to the case of n � 2 amalgamable direct transformations.

The amalgamation of rules is based on the notions of a subrule and its remainder. In

the following, we let ̺ = 〈p, acL〉 be a rule with

p = 〈L ←֓ K →֒ R〉.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 35

Definition 5.1 (subrule and remainder). A rule ̺ is a subrule of a rule ̺1 if there are

embedding M-morphisms

L →֒ L1

K →֒ K1

R →֒ R1

such that diagrams (1) and (2) in

L K R

K1L1 R1

k1 (1) (2)

acL

acL1

are pullbacks, the pushout complement (1′) of K →֒ L →֒ L1 in

L K R

L10L1̺10: E1
l10

r10

(1′) (2′)

acL0

exists, and the application conditions acL and acL1
are compatible, that is, there is some

application condition acL10
over L10 such that

acL1
≡̺1

Shift(k1, acL) ∧ L(̺10, Shift(r10, acL10
))

where r10 : L10 →֒ E1 and ̺10 is the rule derived from ̺ and k1, that is, (1′) and (2′)
in the above diagram are pushouts. A rule ̺′

1 is a remainder of ̺1 with respect to ̺ if

̺1 = ̺ ∗E1
̺′

1 for some E1-dependency relation for ̺ and ̺′
1.

Example 5.2. We want to model an additional behaviour of the system in which two active,

waiting processes without a turn variable may decide to activate a disabled resource and

one of them gets the turn variable. The first rule appears at the top of Figure 13 and

shows the handling of the first process – its flag is redirected and it gets the new turn

variable. The second rule is shown at the bottom of the figure, and all it does is redirect

the flag of a process to a previously disabled resource. The middle row of the figure shows

the subrule, which has to ensure that the newly enabled resource and its turn variable

are synchronised. This rule is actually a subrule of ̺7 and ̺8 because the given squares

are pullbacks, in both cases the pushout complements exist and are equal to the left-hand

sides of the corresponding rule and, for the application conditions, we have

aci ∼= Shift(ki, ac0) ∧ L(ρ∗
i , Shift(ri,¬∃bi))

for i = 7, 8. The remainder rules ̺′
7 and ̺′

8 are shown in Figure 14. Note that in ̺′
7, the

turn variable appears because it has to be connected to the process, but it is not needed in

̺′
8. In addition, the application condition ¬∃bi is translated into an application condition

¬∃b′
i for both remainder rules with i = 7, 8.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 36

Fig. 13. (Colour online) The subrule ̺0 of the rules ̺7 and ̺8.

Every rule can be decomposed into the subrule and a remainder.

Theorem 5.3 (existence of a remainder Golas et al. (2014)). For every rule ̺1 with subrule

̺, there is a remainder ̺′
1 of ̺1 with respect to ̺.

The construction of an amalgamated rule generalises the construction of a parallel rule

̺1 + ̺2 of the rules ̺1 and ̺2: for a common subrule ̺ of ̺1 and ̺2, the ̺-amalgamated

rule ̺1 ⊕̺ ̺2 of ̺1 and ̺2 can be defined with the help of pushouts along M-morphisms

of the components of the rules. This generalises the construction of amalgamated rules

for rules without application conditions (Boehm et al. 1987; Corradini et al. 1997) and

makes use of the shifting of application conditions over morphisms (Lemma 3.11).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 37

Fig. 14. (Colour online) The remainder rules ̺′
7 and ̺′

8.

Definition 5.4 (amalgamated rule). Consider the diagram

L K R

L1 K1 R1

L2 K2 R2

L′ K ′ R′

l1 l2

acL

acL1
acL2

acL′

Given a common subrule ̺ of rules ̺1 and ̺2, the ̺-amalgamated rule of ̺1 and ̺2,

denoted by ̺1 ⊕̺ ̺2, is the rule 〈p′, acL′ 〉, where L′, K ′ and R′ are the pushout objects in

the left, middle and right diagram, respectively, K ′ → L′ and K ′ → R′ are the uniquely

existing morphisms,

p′ = 〈L′ ← K ′ → R′〉,
and

acL′ = Shift(l1, acL1
) ∧ Shift(l2, acL2

).

Note that the morphisms K ′ →֒ L′ and K ′ →֒ R′ are in M.

Example 5.5. The amalgamated rule ̺ = ̺7 ⊕̺0
̺8 is shown in the upper rows of Figure 15.

It combines the effects of ̺7 and ̺8, where both rules use the same resource as the new

target of the flags and only create one turn variable for this resource. Note that the

application condition ¬∃d prevents the upper and lower processes being matched non-

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 38

Fig. 15. (Colour online) The amalgamated rule ̺ = ̺7 ⊕̺0
̺8.

injectively and are connected via a turn variable to the resource – other overlappings,

which may not occur in valid systems, are not shown explicitly.

By definition, parallel rules are special amalgamated rules.

Fact 5.6 (parallel rules are amalgamated rules). If 〈C,M〉 has an M-initial object I , then

init = 〈I ←֓ I →֒ I〉 is a subrule of ̺1 and of ̺2 and ̺1 + ̺2
∼= ̺1 ⊕init ̺2.

The subrule property is inherited by amalgamated rules: if a rule is a common subrule

of rules, then these rules are subrules of the amalgamated rule of the rules.

Lemma 5.7 (subrule inheritance Golas et al. 2014)). If ̺ is a common subrule of ̺1 and

̺2, then ̺1 and ̺2 are subrules of ̺1 ⊕̺ ̺2.

The application of an amalgamated rule yields an amalgamated transformation.

Amalgamability of direct transformations generalises parallel independence of direct

transformations.

Definition 5.8 (amalgamated and amalgamable transformation). A direct transforma-

tion via a ̺-amalgamated rule is called a ̺-amalgamated direct transformation, or a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 39

̺-amalgamated transformation for short. For i = 1, 2, the direct transformations

G ⇒̺i ,mi
Hi

via

̺i = ̺ ∗Ei
̺′
i

are ̺-amalgamable if the matches are consistent, that is,

m1 ◦ k1 = m2 ◦ k2 = m,

and, for i �= j, there is a pushout complement Li0 of K →֒ L →֒ki Li as in Definition 5.1,

and there is a morphism dij : Li0 → Dj such that bj ◦ dij = mi ◦ li0 and cj ◦ dij |= acLi0
.

GD1H1

R1 K1 L10 L1

D2 H2

R2K2L20L2
l10 l20

c1 b1 b2
c2

m1 m2

d21 d12

Remark 5.9. The definition of amalgamable direct transformations generalises the defin-

ition of parallel independent transformations by requiring the existence of morphisms

Li0 → Dj instead of morphisms Li → Dj .

Example 5.10. Figure 15 shows the amalgamated transformation G ⇒̺,m H , which applies

the amalgamated rule ̺ to the graph G. The two processes with a flag waiting for one

resource enable the second, previously disabled resource, and the upper process gets the

turn variable.

Fact 5.11 (parallel independence implies init-amalgamability). Parallel independence of

direct transformations G ⇒̺i ,mi
Hi implies init-amalgamability of G ⇒̺i ,mi

Hi where

init-amalgamability means ̺-amalgamability with ̺ = init = 〈I ←֓ I →֒ I〉.

Proof. Let G ⇒̺i ,mi
Hi be parallel independent, that is, there are morphisms

dij : Li → Dj

such that bj ◦ dij = mi and cj ◦ dij |= acLi
.

For the initial rule ̺ = init, we have

Li0 = Li

li0 = id

acLi0
= acLi

G ∼= G′

Dj = D′
j

b′
j = bj .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 40

Thus, there are morphisms dij : Li0 → D′
j such that b′

j ◦ dij = bj ◦ dij = mi = mi ◦ li0 and

cj ◦ dij |= acLi0
, so

G ⇒̺i ,mi
Hi

is init-amalgamable.

Lemma 5.12 (amalgamability implies parallel independence (Golas et al. 2014)). For

a common subrule ̺ of ̺1 and ̺2, we have that the ̺-amalgamability of direct

transformations G ⇒̺i ,mi
Hi via ̺i = ̺ ∗Ei

̺′
i implies parallel independence of the direct

transformations G′ ⇒̺′
i ,m

′
i
Hi where G ⇒̺,m G′ and m = mi ◦ ki for i = 1, 2:

G G′

H1

H2

̺

̺′
1

̺′
2

̺1

̺2

We will now present an Amalgamation Theorem for rules with application conditions

that generalises the well-known Amalgamation Theorem for rules without application

conditions (Boehm et al. 1987) and specialises the Multi-Amalgamation Theorem (Golas

et al. 2014) to the case of the amalgamation of two rules.

Theorem 5.13 (Amalgamation Theorem). Let ̺′ = ̺1 ⊕̺ ̺2 and ̺′ = ̺i ∗E ′
i
̺′
i for i =

1, 2. Given ̺-amalgamable direct transformations G ⇒̺i ,mi
Hi, there is a ̺-amalgamated

transformation G ⇒̺′ ,m′ M and, for i = 1, 2, a direct transformation Hi ⇒̺′
i
M via ̺′

i such

that

G ⇒̺i ,mi
Hi ⇒̺′

i
M

is a decomposition of G ⇒̺′ ,m′ M.

Given a ̺-amalgamated direct transformation G ⇒̺′ ,m′ M, there is, for i = 1, 2, a

transformation

G ⇒̺i ,mi
Hi ⇒̺′

i
M

such that the direct transformations G ⇒̺i ,mi
Hi are ̺-amalgamable.

G

H1

H2

M

̺1

̺2

̺′
1

̺′
2

̺1 ⊕̺ ̺2

Proof. The theorem follows immediately from the Multi-Amalgamation Theorem in

Golas et al. (2014) for the case n = 2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 41

6. Related work

In this section, we describe some related work.

6.1. Regulated string, term and graph rewriting

In standard graph transformation (Ehrig 1979), as in standard string rewriting (Salomaa

1973) and standard term rewriting (Baader and Nipkow 1998), a rule can always be

applied to a graph if a match is found. However, there are many situations where we

would only want to apply a rule if certain conditions are met. The approach to restricting

the applicability of rules in graph transformation may look, at least superficially, similar

to the approaches used in string and term rewriting, but the approach for term rewriting

is actually very different.

Regulated string rewriting. In string rewriting, there are several approaches for regulated

rewriting (Salomaa 1973; Dassow and Păun 1989), for example, matrix, programmed and

random context rewriting. There are various applications of formal language theory where

context-free grammars are not enough, thus motivating the introduction of regulated

(context-free) grammars. Moreover, there are several other applications of regulated

rewriting, for example, relationships with programming languages, regulated rewriting

and Petri nets, and modelling of economic processes. Context-sensitive string rewriting

(Salomaa 1973), random context rewriting (Dassow and Păun 1989) and string rewriting

with local and global context conditions (Csuhaj-Varjú 1993) correspond to context-free

graph transformation with positive application conditions.

Conditional term rewriting. In term rewriting, we use conditional rules (Baader and

Nipkow 1998), where the conditions have a logical (or operational) nature. Typically,

conditions are lists of equations that must be satisfied for the given match, where

satisfaction is checked by term rewriting (usually by checking if the terms of each

equation can be rewritten into a common term). This means that the process required to

see if a rule can be applied to a given term is recursive: to check the applicability of a rule,

we have to evaluate its conditions, which means applying other rules. In fact, determining

the applicability of conditional rules is undecidable in the general case. Moreover, this

recursivity causes various difficulties when trying to extend some results for standard term

rewriting to conditional term rewriting.

6.2. Local and non-local graph conditions

In graph transformation, we restrict the applicability of rules using application conditions,

which essentially have a syntactic nature. In particular, we check the existence (or non-

existence) of a given structure that includes the matching. This means that checking

application conditions is essentially a matching problem. This is possibly one reason why

we are able to extend all the fundamental results of standard graph transformation to

this case. Finite nested conditions are expressively equivalent to first-order formulas and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 42

local properties (Habel and Pennemann 2009). Non-local properties like ‘there exists a

path’, ‘is connected’ and ‘is cycle-free’ are not expressible by finite nested conditions,

but can be expressed by finite HR+ conditions (Habel and Radke 2010), that is, finite

nested conditions with variables where the variables are place-holders for graphs and

the graphs are generated by a hyperedge replacement (HR) system. (Node-)Counting

monadic second-order formulas can be transformed into finite HR+ conditions, though

the reverse direction is not clear.

6.3. Local Church–Rosser, parallelism and confluence for left-linear rules

Adhesive categories provide an abstract setting for the double-pushout approach to

rewriting, which generalises classical approaches to graph transformation. Fundamental

results about parallelism and confluence, including the Local Church–Rosser Theorem,

can be proved in adhesive categories, provided we only use linear rules, that is, rules

〈L l←K
r→R〉 with l mono and r arbitrary. Baldan et al. (2011) identifies a class of

categories, including most adhesive categories used in rewriting, where those same results

can be proved in the presence of rules that are merely left-linear, that is, rules that can

merge different parts of a rewritten object. Such rules naturally emerge, for example, when

using graphical encodings for modelling the operational semantics of process calculi.

6.4. Local Church–Rosser, termination and confluence

Graph transformation has learnt lessons from term rewriting: the Church–Rosser and

Confluence Theorems were originally developed for term rewriting. Checking local

confluence for term rewriting is based on the essential technique for analysing critical

pairs (Knuth and Bendix 1970) and makes use of powerful techniques available for

checking termination. If termination is ensured, the local (and global) confluence of the

system is shown by checking for all critical pairs. If the system is not confluent, we may

apply the (Knuth–Bendix) completion procedures and try to transform the system into a

confluent one by converting all non-confluent critical pairs into rewrite rules (Baader and

Nipkow 1998). Checking local confluence for graph transformation (without application

conditions) is similar (Plump 2005; Ehrig et al. 2006b), though in this case the test only

provides a sufficient condition because local confluence for graph transformation systems

is undecidable, even for terminating systems (Plump 2005).

6.5. Weakest preconditions and proof systems

Nested graph conditions are used in the verification of graph programs: graph programs

(Habel and Plump 2001) generalise the notions of programs on linear structures (Dijk-

stra 1976) to graphs. For graph programs, (extensions of) nested graph conditions are used

as preconditions and postconditions. A well-known method for showing the correctness

of a program with respect to a precondition and a postcondition (Dijkstra 1976) is

to construct a weakest precondition of the program relative to the postcondition and

then prove that the precondition implies the weakest precondition. Habel et al. (2006)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 43

uses the framework of graphs to construct weakest preconditions for graph programs,

and Pennemann (2009) uses his algorithm for approximating the satisfiability problem

and his resolution-like theorem prover for graph conditions to try to prove that the

precondition implies the weakest precondition. A well-known method for verifying the

partial correctness of a program with respect to a precondition and a postcondition

(Hoare 1969) is to give a proof system and then show its soundness with respect to the

operational semantics of the program. Poskitt and Plump (2012) uses the framework of

graphs for verifying the partial correctness of a graph program in the graph programming

language GP, and then show the soundness with respect to the operational semantics of

GP.

6.6. Weakest preconditions and local confluence

Bruggink et al. (2011) enrich the formalism of reactive systems using the notion of nested

application conditions from graph transformation systems to reactive systems, and then

shows that some constructions for graph transformation systems (such as computing

weakest preconditions and strongest postconditions and showing local confluence by

means of critical pair analysis) can be done elegantly in the more general setting.

6.7. Model transformation

Negative application conditions, and more generally, nested application conditions, are

a key ingredient for many model transformations based on graph transformation. The

concept of negative application conditions is often used in Ehrig et al. (2009a) to define

expressive model transformations and to allow the modeller to specify complex model

transformations. The authors of the current paper are currently working on an extension

of model transformations based on triple graph grammars to the more general nested

applications.

6.8. OCL constraints

Nested graph conditions are often used for specifications: for instance, in (UML) model

transformations. Restricted OCL constraints (Winkelmann et al. 2008; Ehrig et al. 2009)

can be translated to equivalent local graph constraints such as the existence or non-

existence of certain structures (like nodes and edges or subgraphs) in an instance graph

(positive constraints have to be checked after the generation of a meta-model instance, but

negative graph constraints can be checked during the generation) and, by transformation

A in Habel and Pennemann (2009), graph constraints can be transformed into equivalent

application conditions for the corresponding rules. (Note that graph constraints equal

application conditions over the empty graph.)

7. Conclusions

In the current paper, we have presented the well-known Local Church–Rosser, Parallelism,

Concurrency and Amalgamation Theorems for rules with nested application conditions

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 44

in the framework of M-adhesive categories. The proofs for transformation systems with

nested application conditions are based on the corresponding theorems for transformation

systems without application conditions (Ehrig et al. 2006b) and two shift lemmas saying

that application conditions can be shifted over morphisms and rules. The first shift

lemma (Lemma 3.11) requires E ′-M pair factorisation. In addition to this, the Parallelism

Theorem also requires binary coproducts and the Amalgamation Theorem also requires

initial pushouts over M-morphisms (Golas et al. 2014). Summarising, we have

Theorem Category Additional requirements

Local Church–Rosser M-adhesive E ′-M pair factorisation

Parallelism M-adhesive E ′-M pair factorisation and

binary coproducts

Concurrency M-adhesive E ′-M pair factorisation

Amalgamation M-adhesive E ′-M pair factorisation and

initial pushouts over M

Golas et al. (2014) gives a Multi-Amalgamation Theorem for nested application

conditions in the framework of M-adhesive categories. This generalises our Amalgamation

Theorem to the case of n � 2 amalgamable direct transformations; Theorem 5.3 (the

existence of a remainder) requires E ′-M pair factorisation and initial pushouts over M.

Part 2 of the current paper (Ehrig et al. 2012) gives the Embedding and Local Confluence

Theorems for nested application conditions in the framework of M-adhesive categories,

and the results require E ′-M pair factorisation and initial pushouts over M-morphisms.

Using the hierarchies of adhesive categories (graph ⇒ high-level ⇒ weak adhesive HLR

⇒ M-adhesive) and application conditions (none ⇒ negative ⇒ nested), we obtain all

results for all these types of categories and application conditions. The following tables

provide a summary:

Concurrency none negative nested

graph
√ √ √

high-level
√ √ √

weak adhesive HLR
√ √ √

M-adhesive √ √ √

Amalgamation none negative nested

graph
√ √ √

high-level √ √ √

weak adhesive HLR √ √ √

M-adhesive √ √ √

So, the Local Church–Rosser, Parallelism and Concurrency Theorems, which were pre-

viously known for weak adhesive HLR transformations systems with negative application

conditions (Lambers 2010), marked above by
√

in the tables, also hold for proper

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 45

M-adhesive transformations systems with proper nested application conditions, marked

by √ . And the Amalgamation Theorem, which was previously only known for graph

transformations systems without application conditions (Boehm et al. 1987), also holds

for all M-adhesive transformations systems with nested application conditions.

Acknowledgements

We are very grateful to the referees for their careful reading of the draft of this paper

and for their stimulating remarks and suggestions, which led to a considerably improved

exposition.

References

Adámek, J., Herrlich, H. and Strecker, G. (1990) Abstract and Concrete Categories, John Wiley.

Arbib, M.A. and Manes, E. G. (1975) Arrows, Structures, and Functors, Academic Press.

Baader, F. and Nipkow, T. (1998) Term Rewriting and All That, Cambridge University Press.

Baldan, P., Gadducci, F. and Sobocinski, P. (2011) Adhesivity is not enough: Local Church–Rosser

revisited. In: Mathematical Foundations of Computer Science (MFCS 2011). Springer-Verlag

Lecture Notes in Computer Science 6907 48–59.

Biermann, E., Ehrig, H., Ermel, C., Golas, U. and Taentzer, G. (2010) Parallel independence of

amalgamated graph transformations applied to model transformation. In: Graph Transformations

and Model-Driven Engineering. Springer-Verlag Lecture Notes in Computer Science 5765 121–140.

Boehm, P., Fonio, H.-R. and Habel, A. (1987) Amalgamation of graph transformations: A

synchronization mechanism. Journal of Computer and System Sciences 34 377–408.

Bruggink, H. J. S., Cauderlier, R., Hülsbusch, M. and König, B. (2011) Conditional reactive systems.

In: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011) 191–

203.

Castellani, I. and Montanari U. (1983) Graph grammars for distributed systems. In: Graph

Grammars and Their Application to Computer Science. Springer-Verlag Lecture Notes in

Computer Science 153 20–38.

Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R. and Löwe, M. (1997) Algebraic

approaches to graph transformation. Part I: Basic concepts and double pushout approach.

In: Handbook of Graph Grammars and Computing by Graph Transformation 1, World Scientific

163–245.

Corradini, A., Rossi, F. and Parisi-Presicce F. (1991) Logic programming as hypergraph rewriting.

In: Proceedings of the International Joint Conference on Theory and Practice of Software

Development (TAPSOFT’91). Springer-Verlag Lecture Notes in Computer Science 493 275–295.

Courcelle, B. (1997) The expression of graph properties and graph transformations in monadic

second-order logic. In: Handbook of Graph Grammars and Computing by Graph Transformation

1, World Scientific 313–400.

Csuhaj-Varjú, E. (1993) On grammars with local and global context conditions. International Journal

of Computer Mathematics 47 17–27.

Dassow, J. and Păun, G. (1989) Regulated Rewriting in Formal Language Theory, EATCS

Monographs on Theoretical Computer Science 18, Springer-Verlag.

Degano, P. and Montanari, U. (1987) A model of distributed systems based on graph rewriting.

Journal of the ACM 34 411–449.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 46

Dijkstra, E.W. (1965) Solution of a Problem in Concurrent Programming Control. Communications

of the ACM 8 569.

Dijkstra, E.W. (1976) A Discipline of Programming, Prentice-Hall.

Ehrig, H. (1979) Introduction to the algebraic theory of graph grammars. In: Graph-Grammars and

Their Application to Computer Science and Biology. Springer-Verlag Lecture Notes in Computer

Science 73 1–69.

Ehrig, H. and Habel, A. (1986) Graph grammars with application conditions. In: Rozenberg, G.

and Salomaa, A. (eds.) The Book of L, Springer-Verlag 87–100.

Ehrig, H. and Kreowski, H.-J. (1980) Applications of graph grammar theory to consistency,

synchronization and scheduling in database systems. Information Systems 5 225–238.

Ehrig, H. and Parisi-Presicce, F. (1992) High-level-replacement systems for equational algebraic

specifications. In: Algebraic and Logic Programming – proceedings Third International

Conference. Springer-Verlag Lecture Notes in Computer Science 632 3–20.

Ehrig, H. and Rosen, B. (1980) Parallelism and concurrency of graph manipulations. Theoretical

Computer Science 11 247–275.

Ehrig, H., Ehrig, K., Habel, A. and Pennemann, K.-H. (2006) Theory of constraints and application

conditions: From graphs to high-level structures. Fundamenta Informaticae 74 (1) 135–166.

Ehrig, H., Ehrig, K., Prange, U. and Taentzer, G. (2006) Fundamentals of Algebraic Graph

Transformation. EATCS Monographs of Theoretical Computer Science, Springer-Verlag.

Ehrig, H., Engels, G., Kreowski, H.-J. and Rozenberg, G. (eds.) (1999) Handbook of Graph Grammars

and Computing by Graph Transformation 2: Applications, Languages and Tools, World Scientific.

Ehrig, H., Golas, U. and Hermann, F. (2010) Categorical Frameworks for Graph Transformation

and HLR Systems based on the DPO Approach. Bulletin of the EATCS 112 111–121.

Ehrig, H., Golas, U., Habel, A., Lambers, L. and Orejas, F. (2012) M-Adhesive Transformation

Systems with Nested Application Conditions. Part 2: Embedding, Critical Pairs and Local

Confluence. Fundamenta Informaticae 118 35–63

Ehrig, H., Habel, A. and Lambers, L. (2010) Parallelism and concurrency theorems for rules with

nested application conditions. Electronic Communications of the EASST 26.

Ehrig, H., Habel, A. and Rosen, B.K. (1986) Concurrent transformations of relational structures.

Fundamenta Informaticae IX 13–50.

Ehrig, H., Habel, A., Kreowski, H.-J. and Parisi-Presicce, F. (1991) Parallelism and concurrency in

high level replacement systems. Mathematical Structures in Computer Science 1 361–404.

Ehrig, H., Habel, A., Padberg, J. and Prange, U. (2006) Adhesive high-level replacement systems: A

new categorical framework for graph transformation. Fundamenta Informaticae 74 1–29.

Ehrig, H., Hermann, F. and Sartorius, C. (2009) Completeness and Correctness of Model

Transformations based on Triple Graph Grammars with Negative Application Conditions.

Electronic Communications of the EASST 18.

Ehrig, H., Kreowski, H.-J., Montanari, U. and Rozenberg, G. (eds.) (1999) Handbook of Graph

Grammars and Computing by Graph Transformation 3: Concurrency, Parallelism, and Distribution,

World Scientific.

Ehrig, K., Küster, J.M. and Taentzer, G. (2009) Generating instance models from meta models.

Software and System Modeling 8 (4) 479–500.

Ehrig, H., Pfender, M. and Schneider H.-J. (1973) Graph grammars: An algebraic approach. In:

Proceedings of the 14th Annual IEEE Symposium on Switching and Automata Theory 167–180.

Golas, U. (2011) Analysis and correctness of algebraic graph and model transformation, Vieweg+

Teubner Research.

Golas, U., Habel, A. and Ehrig, H. (2014) Multi-Amalgamation in M-Adhesive Categories.

Mathematical Structures in Computer Science (this volume).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

M-adhesive transformation systems with nested application conditions 47

Habel, A. and Pennemann, K.-H. (2009) Correctness of high-level transformation systems relative

to nested conditions. Mathematical Structures in Computer Science 19 245–296.

Habel, A. and Plump, D. (2001) Computational completeness of programming languages based

on graph transformation. In: Foundations of Software Science and Computation Structures –

proceedings FOSSACS 2001. Springer-Verlag Lecture Notes in Computer Science 2030 230–245.

Habel, A. and Radke, H. (2010) Expressiveness of graph conditions with variables. Electronic

Communications of the EASST 30.

Habel, A., Heckel, R. and Taentzer, G. (1996) Graph grammars with negative application conditions.

Fundamenta Informaticae 26 287–313.

Habel, A., Pennemann, K-H. and Rensink, A. (2006) Weakest preconditions for high-level programs.

In: Graph Transformations (ICGT 2006). Springer-Verlag Lecture Notes in Computer Science 4178

445–460.

Heckel, R. and Wagner, A. (1995) Ensuring consistency of conditional graph grammars – a

constructive approach. In: Workshop on Graph Rewriting and Computation – proceedings

SEGRAGRA’95. Electronic Notes in Theoretical Computer Science 2 95–104.

Heckel, R., Llabrés, M., Ehrig, H. and Orejas, F. (2002) Concurrency and loose semantics of open

graph transformation systems. Mathematical Structures in Computer Science 12 (4) 349–376.

Heindel, T. (2010) Hereditary Pushouts Reconsidered. In: Graph Transformations (ICGT’10).

Springer-Verlag Lecture Notes in Computer Science 6372 250–265.

Hoare, C. A.R. (1969) An axiomatic basis for computer programming. Communications of the ACM

12 576–580, 583.

Knuth, D. E. and Bendix, P. B . (1970) Simple word problems in universal algebras. In: Computational

Problems in Abstract Algebras, Pergamon Press 263–297.

Koch, M., Mancini, L. V. and Parisi-Presicce, F. (2005) Graph-based specification of access control

policies. Journal of Computer and System Sciences 71 1–33.

Kreowski, H.-J. (1977) Manipulationen von Graphmanipulationen, Ph.D. thesis, Technical University

of Berlin.

Lack, S. and Sobociński P. (2004) Adhesive categories. In: Foundations of Software Science and

Computation Structures (FOSSACS’04). Springer-Verlag Lecture Notes in Computer Science 2987

273–288.

Lack, S. and Sobociński P. (2005) Adhesive and quasiadhesive categories. Theoretical Informatics

and Application 39 (2) 511–546.

Lambers, L. (2010) Certifying Rule-Based Models using Graph Transformation, Ph.D. thesis, Technical

University of Berlin.

Mahr, B. and Wilharm, A. (1982) Graph grammars as a tool for description in computer processed

control: A case study. In: Graph-Theoretic Concepts in Computer Science, Hanser Verlag, München

165–176.

Parisi-Presicce, F. (1989) Modular system design applying graph grammar techniques. In: Automata,

Languages and Programming – proceedings ICALP89. Springer-Verlag Lecture Notes in Computer

Science 372 621–636.

Pennemann, K.-H. (2009) Development of Correct Graph Transformation Systems, Ph.D. thesis,

Universität Oldenburg.

Plump, D. (2005) Confluence of graph transformation revisited. In: Processes, Terms and Cycles:

Steps on the Road to Infinity – Essays Dedicated to Jan Willem Klop on the Occasion of His

60th Birthday. Springer-Verlag Lecture Notes in Computer Science 3838 280–308.

Poskitt, C.M. and Plump, D. (2012) Hoare-style verification of graph programs. Fundamenta

Informaticae 118 135–175.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas 48

Rensink, A. (2004) Representing first-order logic by graphs. In: Graph Transformations –

proceedings ICGT’04. Springer-Verlag Lecture Notes in Computer Science 3256 319–335.

Ribeiro, L. (1996) A telephone’s system specification using graph grammars. Technical report 96-23,

Technical University of Berlin.

Rosen, B. K. (1975) A Church–Rosser theorem for graph grammars (announcement). SIGACT News

7 (3) 26–31.

Rozenberg, G. (ed.) (1997) Handbook of Graph Grammars and Computing by Graph Transformation

1: Foundations, World Scientific.

Salomaa, A. (1973) Formal Languages, Academic Press.

Taentzer, G., Koch, M., Fischer, I. and Volle, V. (1999) Distributed graph transformation with

application to visual design of distributed systems. In: Ehrig, H., Kreowski, H.-J., Montanari, U.

and Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation

3: Concurrency, Parallelism, and Distribution, World Scientific 269–340.

Winkelmann, J., Taentzer, G., Ehrig, K. and Küster, J.M. (2008) Translation of restricted OCL

constraints into graph constraints for generating meta model instances by graph grammars. In:

Proceedings GT-VMT 2006. Electronic Notes in Theoretical Computer Science 211 159–170.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000357
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:53:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000357
https://www.cambridge.org/core

