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We investigate a strategy for M-ary discrimination of nonorthogonal phase states with error rates below

the homodyne limit. This strategy uses feed forward to update a reference field and signal nulling for the state

discrimination. We experimentally analyze the receiver performance using postprocessing and a Bayesian strategy

to emulate the feed-forward process. This analysis shows that for a moderate system detection efficiency, it is

possible to surpass the homodyne error limit for quadrature phase-shift keying signals using feed forward.
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I. INTRODUCTION

Perfect discrimination of nonorthogonal quantum states is

impossible; there is no physical measurement that allows the

discrimination of such states with total certainty [1]. Quantum

cryptography in the form of quantum key distribution (QKD)

uses nonorthogonal states to guarantee secure communication

between the transmitter and the receiver through the creation

and sharing of a secret key [2]. For QKD using coherent

states, the key rate is limited by the performance of the

state discrimination of the receiver [3]. This is because

errors caused by the receiver have a similar signature to

the loss of information due to an eavesdropper. Even in the

case of classical communications where amplification is not

possible (such as a free-space link), the nonorthogonality

of coherent states produces unwanted errors in decoding

the information [1,4,5]. This has led to significant efforts

to find and demonstrate measurement strategies for optimal

discrimination of nonorthogonal states approaching the limits

set by quantum mechanics [1], and thus to increase the capacity

of the communication channels [6], thereby reducing the

demand on resources [1,4,5,7,8].

In binary optical communication the transmitter encodes

one bit of information per optical information carrier. However,

in M-ary communication, the optical carrier contains more

than one bit of information, increasing the channel capacity

and reducing the resources required. When the information

is encoded in coherent states, the minimum probability of

error for conventional receivers is referred to as the homodyne

limit (HL) and is due to the inherent overlap of the states

involved. However, quantum mechanics allows lower error

probabilities for the discrimination of such nonorthogonal

states. The Helstrom bound is the ultimate limit for the case of

two nonorthogonal states (binary signals), and also for multiple

nonorthogonal states such as quadrature phase-shift keying

(QPSK) [1].

Optimized strategies for binary signal receivers using

photocounting and displacement of the signal state to the

vacuum state, using a local oscillator (LO) field, have shown

*fbecerra@umd.edu

theoretical error probabilities below the HL [9–12]. Proof-

of-principle experiments have tested some of these strategies

for on-off-keying [13] and binary-phase-shift-keying [14]

signals. Recently, optimized-displacement receivers, where

the LO parameters are set for minimum error probability, have

been realized surpassing the HL for on-off-keying [15] and

binary-phase-shift-keying [16] signals.

In the case of M-ary communication, proposals for op-

timized strategies using feedback and feed forward have

shown theoretical error probabilities below the HL for QPSK

signals. One feedback receiver for QPSK [7] updates the

LO phase to displace the signal to vacuum by destructive

interference (signal nulling). Another feed-forward receiver

scheme for QPSK [8] is a hybrid system consisting of a

homodyne receiver and a subsequent optimized displacement

receiver using feed forward. However, there is no strategy

for general M-ary-state discrimination with error rates below

the homodyne limit, and no experimental investigation of a

receiver for QPSK with a strategy with error probabilities

below the HL has been reported. Therefore the feasibility of

any practical implementation of receivers for M-ary signals is

yet to be determined.

In this article we describe a strategy for M-ary-phase-state

discrimination below the HL using feed forward and signal

nulling. We test this strategy experimentally for a QPSK

receiver using postprocessing to emulate the feed-forward

process and multiple discrimination stages applying signal

nulling. This analysis shows that a receiver with moderate

system detection efficiencies (DEs) and a small number of

stages would be sufficient for QPSK-state discrimination

below the HL.

Section II describes the strategy for M-ary-state discrimi-

nation; we describe the experimental realization of the QPSK

receiver using postprocessing in Sec. III; Sec. IV contains the

analysis of the experimental data and the results; and we give

our concluding remarks in Sec. V.

II. M-ARY-STATE DISCRIMINATION STRATEGY

M-ary phase-encoded communication encodes the infor-

mation in the phase of a coherent state, and the receiver
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FIG. 1. (Color online) Feed-forward state-discriminating re-

ceiver. The polarization of the signal is set by the polarization

controller (PC). After the polarizing beam splitter (PBS), the signal

(with horizontal polarization) and LO (with vertical polarization)

propagate together and are distributed to each state-discriminating

stage (SDn) through a series of beam splitters (BSs). Inside each

SD stage the signal interferes with a fraction of the local oscillator,

which has been projected or rotated onto the signal polarization,

to test a particular signal state. Alternatively, this receiver can be

implemented using a 1 × N splitter after the PBS, and performing

adaptive measurements in the N outputs in a feed-forward manner.

discriminates among the M possible states of the signal using

a LO as a phase reference. The receiver investigated here uses

multiple signal-nulling stages and feed forward to update the

relative phase of the signal and LO in subsequent stages. The

updated phase setting in a given stage is based on the results of

the previous ones (measurement history), so that the LO tests

the current most likely hypothesis of the signal. We describe

this strategy for M-ary phase-encoded state discrimination and

a design for its experimental implementation.

Our proposed M-ary phase-shift receiver architecture

(Fig. 1) has significant advantages when considering imple-

mentations with current technology, making it possible to

approach optimal receiver performance and exceed the sen-

sitivity of an ideal homodyne receiver. The receiver distributes

the signal and LO (which are orthogonally polarized) among

the state discrimination (SD) stages. The copropagation of the

signal and LO reduces the need to stabilize separate optical

paths in each stage, lowering complexity and making it feasible

to implement a larger number of stages to achieve higher

sensitivities (see discussion below).

The M-ary phase-shift-keying (PSK) signal enters the

receiver in a coherent state |ψSig〉 = |eiφSig,M
√

nSig〉 with

horizontal polarization (H), an average photon number nSig,

and a phase φSig,M = 2πs
M

representing one of the s ∈
[1, . . . ,m, . . . ,M] = M symbols of the alphabet with a priori

probabilities B0 = {ζ0(1), . . . ,ζ0(m), . . . ,ζ0(M)}. The task of

the receiver is to identify the symbol s with the minimum

probability of error. While equal a priori probabilities, ζ0(m) =
1
M

, for all the possible symbols m ∈ M of the input signal s

are typical for communication systems, it is not required for

the operation of our receiver. The signal state |ψSig〉 can be

represented by the Jones vector defined in the (H,V) basis:

|ψs〉 =
[

eiφSig,M
√

nSig

0

]

.

At the polarizing beam splitter (PBS), the signal combines

with a strong coherent LO |ψLO〉 = |eiπ√
nLO〉, with average

LO photon number nLO (nLO ≫ nSig) and vertical polarization

(V). The Jones vector describing the LO is given by

|ψLO〉 =
[

0

eiπ√
nLO

]

.

The copropagating signal and LO are distributed to the

various stages using the branched beam splitters (BSs).

(Compensation of polarization mode dispersion can be used

to ensure temporal overlap and orthogonality of the signal and

LO if necessary.) While the beam splitter reflectivities should

be chosen to uniformly distribute the signal energy to each

of the receiver’s stages, absolute optimization only marginally

improves receiver performance for M > 2 compared with the

near optimal case of uniform signal distribution.

The state of the total field entering each SD stage of a

receiver with N discrimination stages is

|ψSig,LO(φ)〉 = 1√
N

[

eiφSig,M
√

nSig

eiπ√
nLO

]

, (1)

where the global phase acquired by the state has been omitted

without loss of generality, since only the relative phase

between the signal and LO affects the receiver performance.

The receiver uses interferometric measurements in each stage

to test the hypothesis of the signal phase relative to the LO.

A polarizer mixes the incident signal entering the stage with a

small fraction of the strong LO with a given phase producing

interference, and a single-photon detector (SPD) measures this

interference.

At SD1 the phase of the LO, δh1
, is set based on the signal

hypothesis h1 using a Pockels cell on the combined signal and

LO beam. The Pockels cell, modulating just one polarization,

allows the relative signal-LO phase φSig,M − δh1
+ π to be

controlled, ideally producing a null detection via destructive

interference (signal nulling). The state of the total field after

the Pockels cell is now

|ψSig,LO(φ,δ)〉 = 1√
N

[

eiφSig,M
√

nSig

−eiδh1
√

nLO

]

. (2)

The signal and LO pass through a polarizer oriented at angle χ1

relative to the horizontal to combine a fraction T1 = cos2(χ1)

of the signal field with the fraction 1 − T1 = sin2(χ1) of the

LO field, where T1 ≈ 1. This has the effect of interfering a

large fraction of the signal with a small fraction of the LO [see

Fig. 2(a)]. The amplitude of the optical state after the polarizer

is

〈 �p|ψSig,LO(φ,δ1)〉

= 1√
N

(
√

nSig

√

T1e
iφSig,M − √

nLO

√

1 − T1e
iδh1 ), (3)

where �p = [
√

T1√
1 − T1

] is the projection due to the polarizer.

Alternatively, the receiver can use different paths for the signal

and LO instead of polarization modes in each stage to reduce

possible losses of the signal due to absorption in the Pockel

cells. Figure 2(b) shows an interferometer using different

optical paths where a PBS separates the signal and LO within
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FIG. 2. (Color online) (a) SD stage using a Pockels cell as a phase

shifter (PS) and a polarizer oriented at angle χ to combine fractions of

the signal and LO to achieve interference at a single-photon detector

(SPD). (b) Alternative SD-stage design using separate paths for the

signal and LO instead of polarization modes. The signal and local

oscillator separate at a PBS, with the LO passing through a wave

plate (WP) and a phase modulator (PM). The wave plate rotates the

polarization of the LO to match the signal so that they interfere at

the unbalanced beam splitter (uBS) with transmissivity Tk for the

signal in the stage k. The control circuit uses the detection results to

calculate the new probabilities of the states and passes them to the

next stage.

the stage. A wave plate (WP) rotates the polarization of the

LO to match the signal and a phase modulator (PM) adjusts

the LO phase preparing the stage to test hypothesis hk . The

signal and LO interfere at the unbalanced beam splitter with

transmissivity Tk ≈ 1 for the signal path. The mean photon

number of the total field at the detector of stage k is

〈nk(s,hk)〉 = 1

N

{

nSigTk + nLO(1 − Tk)

− 2
√

nSignLO(1−Tk)(Tk) cos(φSig,M−δhk
)
}

. (4)

When the hypothesis of the signal state is correct (i.e., δh1
=

φSig,M), it is necessary to have equal signal and LO intensities

at the detector to yield a null detection. To achieve this balance

we set the transmissivity to Tk = nLO

nSig+nLO
, and the mean photon

number of the total field at the detector becomes

〈nk(s,hk)〉 = nSig

2Tk

N

[

1 − cos
(

φSig,M − δhk

) ]

.

We note that the condition Tk ≈ 1 (χ ≪ 1) follows from

nLO ≫ nSig (remembering that these photon numbers are

defined at the input of the receiver).

The phase hypothesis and detection result together pro-

vide information about the phase of the incident signal,

which is used for the subsequent measurements. Based

on the result of the detection d1 and hypothesis h1 (LO

setting), the receiver calculates a posteriori Bayesian prob-

abilities of the M possible input states of the signal: B1 =
{ζ1(1),ζ1(2), . . . ,ζ1(m), . . . ,ζ1(M)}. The receiver chooses the

most likely state of the incident signal based on the Bayesian

probabilities, i.e., the one with the maximum a posteriori

probability. This result becomes the new hypothesis and is

fed forward to the next stage, where the LO setting is prepared

to null this new hypothesis. The a posteriori probabilities for

stage k, Bk , thus correspond to the a priori probabilities for

stage k + 1. This procedure is repeated for each successive

stage, gaining more certainty about the state of the signal. At

each discrimination stage the hypothesis is based on the history

of all the former stages’ measurements and the decision is

made using Bayes’ rule:

ζk(m|dk,〈nk(m,hk)〉) = P (dk|〈nk(m,hk)〉)ζk−1(m)
∑M

j=1 P (dk|〈nk(j,hk)〉)ζk−1(j )
, (5)

where P (dk|〈nk(m,hk)〉) is the probability of the detection

result dk at stage k, given that the symbol m was sent, the

LO was set to test the symbol hypothesis hk , and the photon

mean number of the total field at stage k is 〈nk(m,hk)〉.
ζk(m) becomes the a priori probability of the possible symbol

m before measurement at stage k + 1, and this probability

depends on the history of the detections and hypotheses of

the previous k − 1 SD stages and on the a priori probabilities

B0:

ζk(m) =
∑

Dk

∑

Hk

ζk(m|Dk,Hk,B0)P (Dk,Hk|B0), (6)

where P (Dk,Hk|B0) is the a priori probability of the receiver

observing the set Dk = {d1, . . . ,dk} of detection results, and

Hk = {h1, . . . ,hk} is the set of test hypotheses for the first

k stages. We next write the probability of getting a particular

detection result dk from our detector. For a typical non-number

resolving detector, dk may take only two values, dk ∈ {0, 
= 0};
while for a detector with some number-resolving capability,

additional values are possible. Thus, in general, the probability

of detection result dk is

P (dk|〈nk(m,hk)〉) = 〈nk(m,hk)〉dk

dk!
e−〈nk (m,hk )〉, (7)

assuming the field is coherent (i.e., Poisson statistics). How-

ever, we found little additional benefit in using number

resolving detectors over binary detectors [17], thus we limit

our analysis here to the performance of the receiver with binary

detectors. After the final stage, k = N , the receiver calculates

the hypothesized symbol hN+1 as the one with maximum a

posteriori probability. This is the final decision of the receiver

about the received state. The expected probability of error for

the state discrimination of the signal is

Pe,SD = 1 −
∑

HN+1

∑

DN

ζ0(hN+1)Ŵ0(h1)

×
[

N
∏

j=1

P (dj |〈nk(hN+1,hj )〉)Ŵj (hj+1)

]

, (8)

where Ŵk(hj ) selects the terms that occur in the receiver, and

excludes those not allowed by the strategy Ŵk(hj ) = δmk ,hj

such that

ζk(mk|Dk,Hk,B0)

= max{ζk(1|Dk,Hk,B0), . . . ,ζk(M|Dk,Hk,B0)},
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Ŵ0(h1) = 1 if ζ0(h1) = max{B0} and zero otherwise. Se-

quential application of Bayes’ rule gives the a posteriori

probabilities for each symbol m at stage k in terms of the

sets Dk , Hk , and B0:

ζk(m|Dk,Hk,B0) =
∏k

l=1 P (dl|〈n(s = m,hl)〉)ζ0(m)
∑M−1

j=0

∏k
l=1 P (dl|〈n(s = j,hl)〉)ζ0(j )

.

Calculating the probability of error from Eq. (8) can be

computationally prohibitive for large numbers of stages.

Therefore, the expected error rates for the receiver with more

than four stages were found using Monte Carlo simulations.

Figure 3 shows the error probabilities for QPSK and 8-PSK as

a function of signal strength with varying numbers of stages.
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FIG. 3. (Color online) Error probability as a function of the

mean number of signal photons compared to the Helstrom bound

and Homodyne limit for an ideal receiver with a finite number of

discrimination stages for M-ary (M = 4 and 8) receivers. These

Monte Carlo simulations assume 100% efficient detection. The

slightly nonmonotonic behavior of the simulated error probability for

the case of 8-PSK at high photon number is just statistical fluctuations

due to the relatively rare probability of their occurrence in our Monte

Carlo simulations.

We compare the performance of the receivers to the

Helstrom bound and the HL. For the equally spaced, symmetric

states commonly used in M-ary PSK communication, the

Helstrom bound can be well approximated using the square-

root measure (SRM) [18]. The SRM for PSK signals is

Pe,SRM = 1 − 1

M2

⎛

⎝

M
∑

q=1

√

λq

⎞

⎠

2

, (9)

where

λq = e−nSig

M
∑

m=1

exp

{

(1 − q)
2πim

M
+ nSige

2πim
M

}

are eigenvalues of the Gram matrix for M-ary PSK, with the

elements Gj,k = 〈ψj |ψk〉.
The probability of error given by the standard quantum

limit (SQL) for symmetric M-ary PSK with M > 2 for an

ideal homodyne receiver is [4]

Pe,Hom = 1 − 1

π

∫ π
M

− π
M

∫ ∞

0

e−|r exp (iθ)−√
nSig|2

r dr dθ. (10)

Figure 3 shows that this strategy surpasses the performance

of homodyne receivers and approaches the ideal error prob-

ability as defined by the Helstrom bound as the number of

discrimination stages increases.

We apply this strategy to experimentally investigate re-

ceivers for QPSK signals by emulating the feed-forward

process to update the LO phase for each discrimination

stage. We do this emulation for receivers with four and eight

discrimination stages. Receivers using this strategy can surpass

the HL with a moderate number of discrimination stages and

efficiencies achievable with off-the-shelf detectors and optical

components.

III. EXPERIMENTAL INVESTIGATION OF A RECEIVER

FOR QPSK SIGNALS USING POSTPROCESSING

The QPSK modulation scheme encodes information in four

possible phases of the signal |α〉, {0,π/2,π,3π/2}, producing a

four-element alphabet {|α〉,|iα〉,|−α〉,|−iα〉} as shown in the

inset of Fig. 4. We describe the experimental investigation of

a receiver for QPSK signals emulating a feed-forward process

and multiple discrimination stages with the goal of reaching

error probabilities below the HL.

Figure 4 shows the experimental configuration for the four-

stage emulator of a receiver for QPSK signals. A frequency-

stabilized helium-neon laser with a linewidth ≈200 kHz passes

through an acousto-optic modulator (AOM). A single-mode

fiber (SMF) collects the first-order beam from the AOM and

directs it to the optical setup of the experiment. A field pro-

gramable gate array (FPGA) modulates the input power of the

AOM, producing optical pulses 100 ns long at a rate of 11 kHz

with rise and fall times of 20 ns. After the SMF the on-off

extinction ratio of the light pulse is ≈106. A photodiode (PD)

collects a small portion of the light for intensity stabilization

using feedback to the AOM. The average power is stable to

better than 0.1% (peak-to-peak) in both continuous wave (cw)
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FIG. 4. (Color online) Experimental configuration for emulating

a QPSK receiver. An acousto-optic modulator (AOM) prepares light

pulses at 633 nm, and a high extinction-ratio polarizer (GT) defines

the input horizontal polarization (H) after a single-mode fiber (SMF).

A half wave plate (HWP0) and a quarter wave plate (QWP0) prepare

the signal |eiφαSig〉V and the local oscillator |αLO〉H with V and H

polarization, respectively, with a given relative phase and intensity

resulting in a total field |�〉. Three 50:50 beam splitters (BSi)

split the signal and LO in four beams that are directed to analyzer

stages consisting of phase shifters (PS) and polarizers. Single-photon

detectors (SPDi) detect the total field in each stage for specific

induced phase shifts δi and the results are saved for postprocessing.

Inset (i) shows the possible states for the QPSK signal |e−iφα〉,
φ = {0,π/2,π,3π/2}.

and pulsed modes. A high extinction-ratio polarizer transmits

horizontal polarization (H) and defines the LO polarization

with an extinction ratio better than 105.

We generate the signal and LO from one beam with specific

relative phase shifts. A slight rotation of the half wave plate

HWP0 generates the signal (Sig) in the orthogonal (vertical)

polarization mode with respect to the LO with a signal-to-LO

intensity ratio of 1:100. This defines the entry point of the

signal into the receiver in analogy to the receiver in Fig. 1,

where the signal is combined with the LO with orthogonal

polarization using a polarizing beam splitter (PBS). We use the

combination of the HWP0 and a quarter wave plate (QWP0),

rotated at specific angles by motorized rotation stages, to

generate the four phase states of the signal with respect to

the LO: φ = {0,π/2,π,3π/2}. We pay special attention on the

calibration of the wave-plate rotation angles when using SPDs

to prevent damage to the SPDs from excessive light levels that

could result from unintended rotations of a wave plate. The

copropagating signal and LO are split into four paths using

three 50:50 beam splitters (BSi) with each beam entering a

discrimination stage. The fields of each of these beams are

now described by Eq. (1) with four possible values for the

phase φ.

The analyzer stages consist of a quartz plate with its optical

axis along the vertical, used as a variable phase shifter (PS),

and a polarizer consisting of a half wave plate (HWP) and

a PBS. These components are arranged to null a particular

signal input phase, i.e., to generate destructive interference at

the output of the polarizer.

The phase shifter adds an extra phase shift between the

signal and LO through the quartz plate’s birefringence. A tilt of

the quartz plate (rotation around a vertical axis perpendicular

to the propagation direction) changes the relative optical paths

of the signal and LO. We use this phase shift to null the signal

with respect to the LO. The relative phase shift, δ, as a function

of the quartz-plate tilt angle θ is given by [19]

δ = 2π
n

λ
d

(

cos

{

arcsin

[

nair

n1

sin(θ )

]})−1

, (11)

where 
n = ne − no = 0.0091 is the difference of the index

of refaction of the ordinary (o) and extraordinary (e) rays at

λ = 633 nm, d = 1 mm is the quartz plate thickness, nair ≈ 1

is the index of refraction of light in air, and n1 ≈ 1.455 is the

average of the e and o indices of refraction in quartz [20]. The

state of the total field in a given stage after the PS is given

by Eq. (2) with the extra phase shift defined by Eq. (11). The

relative phase of the signal and the LO is now φ − δ + π , and

this state is projected onto the signal polarization at the output

of the polarizer (see Fig. 4).

Figure 5 shows the relative intensity of the mixed signal and

LO (for four input phases of the signal), as projected by the

polarizer and measured by a photodiode, for a particular stage

versus the quartz-plate tilt angle. The functional form is given

by Eq. (4) together with Eq. (11). For these measurements

we use a strong cw input, of ≈0.5 mW, and motorized

control of the quartz-plate tilt angles. For a given phase of

the prepared input state φ relative to the LO, there is a

quartz-plate tilt angle β that nulls the signal with the LO. We

define this angle as the nulling angle for a given signal phase.

The minimum-to-maximum intensity ratio in the interference

fringes is ≈5 × 10−3 (see Fig. 5), which is consistent with the

1 × 104 extinction ratio at the LO polarization of the PBS in

the discrimination stages (polarizers in Fig. 4) along with the

1 × 10−2 signal-to-LO intensity ratio. We note that this results

in an expected constant background of ≈1% in the projected

intensity.

We use a detector [21] calibrated with a 0.05% 1σ

uncertainty and a series of optical attenuators to measure

the absolute radiant power of the light. This detector allows

us to measure the signal’s average photon number per pulse

with an uncertainty below 1%. This uncertainty is dominated

mainly by the calibration uncertainty of the attenuators that

prepare the signal at the single-photon level. We use the

same method to measure the detection efficiency of the

single-photon detector used in our experiment. We detect the

mixed signal and LO after the polarizer using a commercially

available photocounting module SPD with a 2 nm bandpass

filter at 633 nm and an antireflection coated lens. The measured

DE for the filter-lens-detector assembly is 82(2)%1 at 633 nm

with a dark count rate of 100 counts per second. Since we had

only a single SPD at this efficiency, we implemented Fig. 4 by

looking at each channel separately and directing that channel’s

output to the single SPD. In our experiment we did treat each

placement of the SPD as a unique detector and measured its

1All uncertainties quoted in this paper represent 1 standard

deviation, combined statistical and systematic uncertainties.
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FIG. 5. (Color online) Measured projected intensity of the field

containing the signal and LO for four relative phase shifts, φ =
{0,π/2,π,3π/2}, as a function of tilt angle of the quartz plate around

the vertical axis perpendicular to the light propagation direction. The

projected intensity shows destructive interference (signal nulling) at

specific quartz-plate tilt angles {β1,β2,β3,β4} for the input phase

states φ = {0, π/2,π , 3π/2}, respectively.

DE in situ, thus we henceforth refer to each placement as a

unique SPD.

The FPGA provides the clock for the experiment at

11.7 kHz and records the number of detections registered

by the SPDs during the photon pulse for postprocessing. A

computer controls the tilt angles of the quartz plates. This

defines the settings for different combinations of nulling angles

βi . The computer also collects the SPD detections for a given

number of trials, input signal states, and average signal photon

number per pulse for all possible LO settings.

It is possible to analyze the collected data as the four-

stage discrimination receiver shown in Fig. 4, with different

DEs in each stage reflecting the variation in losses in our

implementation (see the Appendix). (In this case there is a

direct correspondence between the SD stages in Fig. 1 and

the four stages in Fig. 4.) However, it is also possible (and

more convenient) to analyze the collected data to investigate

different multiple-stage receivers, for which the total system

DE is a fixed number. These scenarios are constructed from

the data collected from a particular discrimination stage, with

a fixed DE, so that the multiple-stage receivers we emulate

consist of multiple replicas of the same stage. This emulation,

built using data sets from single discrimination stages of Fig. 4

to create the receiver strategy of Fig. 1, allows us to study the

dependence of receiver performance on the number of stages

and system losses, as well as to compare our results with the

theoretical model.

IV. ANALYSIS AND RESULTS

We analyze the collected data to study the specific scenarios

of receivers with four and eight stages and different total

system DEs. In the case of eight-stage receivers, the data are

evaluated for higher photon numbers, since the power of the

signal entering the receiver would have to be two times higher

than that of a four-stage receiver to distribute the same amount

of energy in each stage. We apply the discrimination strategy

described in Sec. II for the case of QPSK signals.

Because the receiver strategy requires actual event prob-

abilities, we use the experimentally determined probabilities

Pexp(dk|nk(m,hk)) obtained from the collected data instead

of the ideal probabilities from Eq. (7); this includes the

effects of all system characteristics such as system detection

efficiency, detector dark counts, fringe visibility, etc. [17].

These probabilities are calculated from the measurement

results of all the combinations of signal phase and LO phase

(SD hypothesis).

As mentioned above, we use the collected data from a

single SD stage of using the SPDs as shown in Fig. 4 to

construct the emulated receiver via postprocessing. We do this

for each emulated scenario by separately taking the data from

each of the four SDs of Fig. 4. The count rates for the SPDs

depend on the relative signal and LO phases and the signal

average photon number. For a signal average photon number

of 1, the typical count rates for the four relative signal and

LO phases {π , 3π/2,0, π/2} are {25, 3100,6600, 3100} per

second, respectively, and these rates increase for higher photon

numbers. The effect of detector dark counts is negligible since

we collect data only when the light pulse is expected at the

detectors. The receiver emulation assigns a random hypothesis

for the signal to be tested in the first stage and uses the result

of a single measurement chosen from the collected data set for

this hypothesis (LO setting). Based on the result, it determines

a posteriori probabilities for the possible input states of the

signal using Eq. (5) and the experimental probabilities Pexp

(the Pexp a priori probabilities are assumed equal for the

first SD stage), and determines the most likely signal being

received. This most likely signal becomes the new hypothesis

to test in the next SD stage and a new measurement is made.

From this new result, updated a posteriori probabilities are

calculated using Eq. (5). This emulation procedure is repeated

as many times as the number of stages in the emulated receiver.

(Note that each data point is used only once in this emulation.)

At the end, the most likely state for the signal is the final

maximum a posteriori probability of the receiver. If this final

guess is the same as the real input signal, it is counted as a

success; otherwise, it is counted as an error. The probability of

error is equal to the number of errors divided by the number

of trials (4 × 104). We experimentally investigate the error

probabilities for signals with many different average photon

numbers.

Different scenarios were emulated for a range of total

system DEs representing the actual losses found in the different

analyzer channels in our setup (CHi in Fig. 4 accounting for

losses in the optical components and detection efficiencies).

The difference in losses includes not just transmittance losses,

but also imperfect splitting and polarizer extinction ratios. The

DE of the SPD as measured in each stage is the same to

within the experimental uncertainty: DESPD = 82(2)%. The

total system DE for each stage, which can be seen in the last

row of Table II of the Appendix, is the product of the total

transmittance for each stage and the estimated DE of the SPD

in the channel.
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FIG. 6. (Color online) (a) Error probabilities as a function of photon number for receivers composed of four and eight identical-DE SD

stages. Four such receiver systems are shown, each with a different DE as indicated (filled markers), along with the homodyne limit (red

solid line). (b) Error probabilities with the homodyne limit subtracted (filled markers), together with the theoretical predictions made using the

experimental probabilities (open markers). Dashed line at 0 corresponds to the homodyne limit. In (a) and (b) three sets of measurements were

made for the scenario with DE = 75% to see the variation of the results. The error bars in (b) represent 1σ statistical uncertainty, although

some are too small to be seen. Theory points are plotted for all measurements in (b) but many theory points are hidden by the data points. (c)

Error probabilities with the homodyne limit subtracted (dashed line) as a function of photon number, from 1 to 7, vs system DE of four-stage

and eight-stage receivers. Note that the eight-stage receivers outperform the four-stages receivers for all system DEs. Solid lines in (b) and (c)

are guides for the eye.

Figure 6(a) shows the error probability for receivers

with four equal-DE stages (left) and eight equal-DE stages

(right) for different total DEs, together with the homo-

dyne limit for QPSK signals (solid lines). Different sce-

narios are emulated using data collected from different

analyzer channels CHi of Fig. 4 with the measured DEs.

Also seen is a test of overall variation made by repeat-

ing three runs of the experiment for the scenario with

all stage DE’s equal to 75%. Note that the different

photon-number range in the horizontal axis of the eight-

stage scenarios is double the range used for the four-stage

scenarios.
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TABLE I. Estimated transmittance of individual 50:50 beam-

splitter transmission (T ) and rejection (R) ports. .

BS T R

BS1 50.4(5)% 47.0(3)%

BS2 49.4(2)% 46.3(3)%

BS3 48.9(3)% 47.1(4)%

Figure 6(b) shows the differences between the measured

error probability and the homodyne limit for the four- and

eight-stage scenarios. The four-stage scenario with a system

DE = 75% shows error probabilities below the HL for signals

with average photon numbers of 2 to 3.5, while the eight-stage

scenario for the same DE achieves error probabilities below

this limit for signals covering a wider range with average

photon numbers of 2 to 8 and goes below the HL to a much

greater degree. The theoretical predictions (open circles) are

the result of a Monte Carlo simulation with 4×105 trials

based on the strategy described in Sec. II. This simulation

used the experimentally determined probabilities for both

the discrimination Bayesian strategy and the generation of

the random data. This use of experimentally determined

probabilities is validated by the excellent agreement between

the experimental results and the theoretical predictions. These

analysis results demonstrate that the receiver strategy proposed

can achieve error probabilities significantly below the HL

for QPSK, and that more discrimination stages allow error

probabilities farther below that limit and for a wider range of

photon numbers.

The error probability as a function of DE, as shown in

Fig. 6(c), highlights the improved performance of the receivers

with increasing system DE from 65% to 75% for a given

photon number, and the improvement of eight-stage receivers

over one with four stages (with similar system DEs).

V. CONCLUSION

We described a strategy for state discrimination of

nonorthogonal M-ary phase states with error probabilities

below the homodyne limit. This strategy uses feed forward

to update a reference local oscillator for signal nulling in

multiple discrimination stages. This allows error probabilities

that approach the corresponding Helstrom bounds for a

moderate number of discrimination stages for signals in QPSK

and 8-PSK formats. We experimentally apply this strategy

to study the state discrimination for four nonorthogonal

symmetric states (QPSK signals) using postprocessing to

emulate the feed-forward process and multiple discrimination

stages. We analyze scenarios of receivers with four and eight

discrimination stages with different total detection efficiencies,

and observe error probabilities below the homodyne limit.

As this system used off-the-shelf components and detectors,

this analysis demonstrates the feasibility for M-ary-state

discrimination below the HL using feed forward with a

small number of discrimination stages and moderate detection

efficiencies. We do note that while performance below the HL

is shown to be feasible, the scalability of this scheme to allow

performance approaching the Helstrom bound is still to be

determined.
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APPENDIX: LOSSES FROM OPTICAL COMPONENTS

The performance of state discrimination receivers depends

on the efficiency with which the signal to be discriminated is

detected. This efficiency is the total system detection efficiency

including the SPD DE and the total transmittance of the optical

components in the receiver.

Table I shows the transmittance of the individual BSs used

in the experiment (see Fig 4). Table II shows the estimated

transmittances of the individual optical components and the

total transmittances for different discrimination stages. Note

the difference in total transmittance is due mainly to the 50:50

BSs. The total detection efficiency as seen in the last row of

Table II is the product of the total transmittance for each stage

and the estimated DE of the SPD.

TABLE II. Estimated signal transmittance of the optical components, total transmittance, and total DE for each discrimination stage. The

total DE is calculated from the total stage transmittance and the measured SPD DE: DESPD = 82(2)%

Stage

Component 1 2 3 4

BS ports BS1(T)BS2(T) BS1(T)BS2(R) BS1(R)BS3(T) BS1(R)BS3(R)

(BSs trans.)/25% 99.6(4)% 99.3(2)% 91.2(3)% 88.5(3)%

Quartz plate 97.1(2)% 99.1(2)% 98.0(2)% 98.0(2)%

HWP 96.7(2)% 96.8(2)% 96.3(2)% 95.0(2)%

PBS projection 98.5(2)% 96.7(2)% 97.7(2)% 97.0(2)%

Total transmittance 92.1(6)% 86.6(6)% 84.7(6)% 80.0(6)%

SPD DE 82(2)% 82(2)% 82(2)% 82(2)%

Total DE 75(2)% 71(2)% 69(2)% 65(2)%
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