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Abstract—Recently, the lifting scheme was generalized to the
multidemensional and multiband cases and was used to design
M -band interpolating scaling filters and their duals. Based on
this idea, we develop a new lifting pattern, namely, the progres-
sive lifting pattern. This pattern allows us to pairwise generate
M -band interpolating filterbanks and wavelets by the order from
lowpass to highpass filters. A complete lifting procedure is devided
into M — 1 simple steps, in each step, a pair of filters (the /th filter
and its dual) are generated. In this way, an M -band biorthogonal
interpolating filterbank/wavelet is determined by M (M — 1)
lifting filters. The first 2(M — 1) lifting filters completely char-
acterize the two scaling filters as well as the vanishing moments
of bandpass and highpass filters; the residual (M — 1)(M — 2)
lifting filters are used to pairwise optimize the bandpass and
highpass filters in terms of the criterion of stopband energy
minimization. The obtained M -band biorthogonal interpolating
filterbanks and wavelets provide excellent frequency character-
istics, in particular, low stopband sidelobes. Furthermore, the
pattern is also utilized to design signal-adapted interpolating
filterbanks and their rational coefficient counterparts in terms
of subband coding gain. The obtained filterbanks achieve large
subband coding gains.The rational coefficient filterbanks preserve
the biorthogonality and allow wavelet transforms from integers to
integers and a unifying lossy/lossless coding framework at the cost
of a slight degradation in subband coding gain.

Index Terms—Interpolating filterbank, progressive lifting pat-
tern, stopband sidelobe, subband coding gain.

I. INTRODUCTION

VER the last two decades, various methodologies have
been developed to construct wavelets in the mathemat-
ical analysis literature and in the signal processing literature.
These methodologies have provided abundant filterbanks and
wavelets from which one can select an appropriate filterbank or
wavelet for the application in hand. The two-band wavelet bases
include considerable types, such as the orthonormal wavelets
[1], semi-orthogonal wavelets [2], biorthogonal wavelets [3],
shift-orthogonal wavelets [4], and the lifting wavelets [5], [6].
Many applications require fine frequency-band segmentation,
and M -band wavelets and two-band wavelet packets [7], [8]
can meet this requirement. In fact, a two-band wavelet packet
can be regarded as a special example of M -band wavelets with
M = 2%, and its equivalent filters come from the cascade and
Manuscript received September 29, 2002; revised September 29, 2003. This
work was supported in part by the Foundition of Author for National Excellent
Doctoral Dissertation (Project 200139), the TRAPOYT of P.R. China, and the
NSF of PR. China (Project 60272058). The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Henrique
Malvar.
The authors are with the Key Laboratory for Radar Signal Processing,
Xidian University, Xi’an, 710071, China (e-mail: plshui@xidian.edu.cn;

zhengbao @xidian.edu.cn).
Digital Object Identifier 10.1109/TSP.2004.832013

expanders of a pair of prototype filters. This structure makes
it difficult to manipulate the characteristics of the equivalent
filters; in other words, even if the prototype filters have good
frequency characteristics, the generated wavelet packet does
not always have those characteristics. Generally, people prefer
to directly design M-band filterbanks and wavelets. There
have existed several types of M-band filterbanks and wavelets
[9]-[15]. M-band scaling filters or functions can provide more
benefits than two-band scaling filters or functions, for example,
the compactly supported orthogonal symmetric interpolating
scaling functions [16], [17] have the most desired properties
in applications. Moreover, M-band filterbanks provide more
degrees of freedom to characterize the bandpass and highpass
filters. Nevertheless, how to efficiently utilize these degrees
of freedom to obtain the desired properties seems to be an
intractable problem. The regularity order and vanishing mo-
ments are the two commonly-used design constraints [11],
[14], [16], [17]. The regularity order imposes high order zeros
at aliasing frequencies w = 2kn/M, k = 1,2,...,M — 1
on the scaling filters to generate a typical lowpass filter. The
vanishing moments impose only one high order zero at w = 0
on the bandpass and highpass filters and, thus, are not enough
to ensure a typical bandpass or highpass filter when M > 3.
This indicates a major difference between the M-band case
and the two-band case.

The lifting scheme is one of the most effective and elegant
tools in biorthogonal filterbank design and implementation [5],
[6], [15], [18]-[23]. The lifting scheme separates the free pa-
rameters from the biorthogonal constraint, and these free pa-
rameters form the lifting filters. One can select different lifting
filters for different applications, e.g., biorthogonal filterbank de-
sign, signal-adapted filterbank design, wavelet transforms from
integers to integers, etc. In [21], the lifting scheme was general-
ized to the multidimensional and multiband cases, and the multi-
band lifting scheme was also used to design the M -band inter-
polating scaling filters and their duals. In this paper, we apply
this technique to further design the bandpass and highpass fil-
ters and then develop the M-band progressive lifting pattern.
Under the pattern, a complete lifting procedure is composed of
M — 1 simple steps. In the first step, we generate a pair of
scaling filters as in [21]; in each of the next M — 3 steps, we
generate a pair of filters (the filter and its dual), and two pairs
of filters are generated in the last step. To sum up, an M-band
filterbank is progressively generated by the order from lowpass
to highpass filters. Operating this lifting pattern on the M -band
“Lazy wavelet,” we obtain an M -band interpolating filterbank
and wavelet, which is parameterized by M (M — 1) lifting fil-
ters. The first 2(M — 1) lifting filters completely characterize
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the two scaling filters, regularity order, and vanishing moments,
and the residual (M — 1)(M — 2) lifting filters are used to pair-
wise optimize the bandpass and highpass filters in terms of the
criterion of stopband energy minimization. The obtained inter-
polating filterbanks and wavelets have excellent frequency char-
acteristics, in particular, low stopband sidelobes. Notice that the
obtained filters are not necessarily causal. When all lifting fil-
ters have the same length, the filters are different in length, and
their lengths gradually increase from lowpass to highpass fil-
ters. These filterbanks allow the ladder implementation with low
computational complexity in which the number of operators per
output sample only depends on the length of lifting filters, but
these filterbanks often require large systematic delay because of
the way they relate to the lengths of the filters.

Recently, signal-adapted filterbanks/subband coders have
been widely investigated [29]-[33]. These filterbanks achieve
larger subband coding gains than the standard ones because
their frequency characteristics match the statistics of an input
signal very well. For a given wide-sense stationary (WSS)
input process, the principal component filterbank (PCFB) [29]
decomposes the input signal to uncorrelated lower rate principal
components. The PCFB demonstrates the two important prop-
erties (the inter-subband total decorrelation and the spectral
majorization) and achieves the maximal subband coding gain in
all paraunitary filterbanks. The optimal biorthogonal filterbank
[30], [31] in terms of subband coding gain is the cascade of
the PCFB and a set of subband half-whitening filters. The
two optimal filterbanks are nonparametric results with infinite
impulse responses (IIRs); they provide an upper bound on the
performance of any finite impulse response (FIR) scheme and,
hence, can be used as a benchmark when testing proposed FIR
designs. When signal-adapted biorthogonal FIR filterbanks
are considered, the lifting structure reduces the complex
constrained optimization problem [32] into a relatively simple
unconstrained one [33]. Using the M -band biorthogonal inter-
polating filterbank with low stopband sidelobes as the initial
point, we optimize the lifting filters by the standard gradient
algorithm to design an M-band signal-adapted biorthogonal
interpolating filterbank for the typical AR(1) random process.
The obtained filterbank provides very good performance whose
subband coding gain is close to that of the optimal biorthogonal
filterbank. Further, through quantizing the lifting filters, we
obtain biorthogonal interpolating filterbanks with rational
coefficients, which allow wavelet transforms from integers to
integers and a unifying lossy/lossless coding framework at the
cost of a slight degradation in subband coding gain.

The paper is organized as follows. Section II gives the M -band
progressive lifting pattern. Section III establishes the structure of
M -band interpolating filterbanks and wavelets and deals with the
regularity and vanishing moments. Section IV gives three fam-
ilies of scaling filters. Section V describes the design algorithm
of bandpass and highpass filters and gives examples. Section VI
deals with signal-adapted interpolating filterbanks for the typical
AR(1)randomprocessandtheirrational coefficient counterparts.
Finally, we conclude our paper.

Throughout this paper, we assume that all filters are of real
coefficients. H(z) and H(w) denote the z-transform and the
frequency response of a filter h(n), respectively. The superscript
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" means the transpose; the bold 0 denotes a null vector or matrix;
the bold I, denotes a k x k identity matrix; the bold 1 denotes a
column vector whose entries are all one; Z denotes all integers;
and 6(k) = 1 when k = 0 and 6(k) = 0 when k # 0.

II. M-BAND PROGRESSIVE LIFTING PATTERN

The lifting scheme is one of the most effective and elegant
tools in biorthogonal filterbank design and implementation [5],
[6], [15], [18]-[23]. The two-band lifting procedure is divided
into two simple steps: the dual lifting and the lifting procedures.
Moreover, all two-band FIR filterbanks with perfect recon-
struction can factorize into the cascade of basic lifting block
[20], which allows the efficient and fast ladder implementation.
In 2000, Kovacevic and Sweldens [21] generalized the lifting
scheme to the multidimensional and multiband cases. Unlike
the two-band lifting scheme, the multiband lifting scheme
includes many different patterns. For example, in [23], the
two three-band lifting patterns were introduced and were used
to design complex biorthogonal interpolating filterbanks and
wavelets that can partition the positive and negative frequency
components of a complex signal into different subbands or
channels. Therein, the second pattern is a special case of the
M -band progressive lifting pattern, which will be proposed in
this Section. In [21], the multiband lifting scheme was used
to construct the M-band interpolating scaling filters and their
duals. Enlightened by this idea, we use the lifting scheme to
further design bandpass and highpass filters, and the scheme is
called the M -band progressive lifting pattern.

Set {H{ (=), H{'(2),..., HH (=)} and {G3(2),
G9(2),...,G3¥ ()} to form an M-band biorthogonal
filterbank with the polyphase matrices Hoq(2) and Gojq(2),
that is
[H (). HEE (2] = Hagg (M) L2200

[Ggld(z)? vy Grjiljd_l(z)]/: Gold(zju) [1’ 2;_1, cee, Z—(J\I—l):|l
and (D
ha(z™h) How(z) = Iy )

Equations (1) and (2) are the polyphase representations and the
biorthogonal condition of the filterbank, respectively.

Definition 1 (M -band progressive lifting pattern) : A
complete M-band progressive lifting pattern is composed of
(M — 1) simple steps. The iterative procedure of the polyphase
matrices is described as follows:

H,(z) =To(z)Hoa(z)
G1(2) =So(2)Go1a(2) 3)

where

ap(2)
{bo(z) bo(2) al)(z) + IM_l] @
ao(z) = [To’l(z), TO’Q(Z)7 .. >T0,M—1(Z)]l
bo(z) = [T1’0(2)7 712’0(,2)7 e 7T]u,170(2)]l (6)
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Analysis filter bank

Fig. 1.

Assume that we have obtained {H;(z), G;(2)}, where the
(I + Dth lifting is described by

Hia(2) = “)l Tz(zz)} H,(2)
Gial) = [ g | Gl ¢
where
_ |1 ap(2)
Ti(z) = {b,@) bi(z) al(z) + IM_I_J )
Si(z7") = [1 +Eil(lz()3l<z> 1_1;_;5?” )
a)(z) = [Tu41(2), Tii2(2), -, Ti—1(2) ]
bi(2) = [T141,1(2), Ti42,1(2)s - - -, Tar—1.(2) ' (10)
Repeat the iteration up tol = M — 2, and set
H(Z) = HM_l(z), G(Z) = G]\/[_l(z). (11)

From the polyphase matrices H(z) and G(z), we get a new
M -band filterbank

"=H(M) (1,27, .., MDY

) ) ?

LAY

(12)

It is easy to verify that S)(z7")Ti(z2) = In—i—1, for I =
0,1,...,M — 2, and thus, G'(271)H(z) = I,;. From this,
it follows that the new filterbank is biorthogonal. Because the
(I + Dth step does not change the first [ rows of the polyphase
matrices, the polyphase matrices H(z) and G(z) are progres-
sively generated from the first row to the last row, and thus,
the new filterbank is pairwise generated by the order from low-
pass to highpass filters. Therefore, we refer to the scheme as the
progressive lifting pattern. For example, taking the three-band
“Lazy wavelet” as the initial filterbank, whose two polyphase
matrices are the identity matrix, the progressive lifting pattern
is illustrated in Fig. 1. In Fig. 1, the first four lifting filters Tp1,
To2, Tho, and T determine the two scaling filters, and the last
two lifting filters 775 and 157 determine the two bandpass filters
and two highpass filters.

Synthesis filter bank

Three-band progressive lifting pattern.

III. REGULAR INTERPOLATING FILTERBANKS WITH
VANISHING MOMENTS

Operating the progressive lifting pattern on the M-band
“Lazy wavelet,” we obtain M -band biorthogonal interpolating
filterbanks. An M -band biorthogonal interpolating filterbank is
parameterized by M (M — 1) lifting filters, and the first 2(M — 1)
lifting filters completely determine the two scaling filters. In this
Section, we first describe the structure of these filterbanks. Next,
their regularity orders and vanishing moments are investigated.
Finally, we present and prove an explicit sufficient and necessary
condition for an M -band interpolating filterbank to be K -regular
and to have K —order vanishing moments.

A. Structure of M -Band Interpolating Filterbanks

Sampling theorems play a basic role in digital signal pro-
cessing, which enable continuous-time signals to be represented
and processed by their discrete samples. The classical Shannon
Sampling Theorem is applicable to only the bandlimited signals.
The other types of sampling theorems are also widely investi-
gated, in particular, the Shannon-like wavelet sampling theorem
that intimately related to interpolating scaling functions. As early
as in 1993, Xia and Zhang [24] constructed two-band cardinal
interpolating scaling functions with fast decay that support a
Shannon-like wavelet sampling theorem. The interpolating
scaling and multiscaling functions support a Shannon-like
wavelet sampling theorem, which greatly simplifies the initial-
ization of the discrete wavelet and multiwavelet transforms.
In 1996, Xia and Suter [25] extended the scalar-valued mul-
tiresolution analysis and wavelets to the vector-valued case
and established the fundamental framework of vector-valued
filterbanks and wavelets, including vector-valued interpolating
filterbanks and wavelets. Theoretically, from a vector-valued
interpolating wavelet, one can lead to interpolating multiwavelets
or M -band wavelets. However, it is a challenging task to design
vector-valued filterbanks and wavelets. Hence, many researchers
use the direct approaches, such as the M -band orthogonal inter-
polating wavelets [16], [17], interpolating multiwavelets [26],
and interpolating biorthogonal multiwavelets [27].

1o(x) is an M-band cardinal interpolating scaling function
if it satisfies 1)(n) = §(n). In this case, when a continuous-time
signal f(z) € Vy = span{yo(MN — n),n € Z}, the
Shannon-like wavelet sampling theorem holds [16], [17]:

f@) =Y f (37w wo(M™z = ).

nez

(13)
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Similarly, ho(n) is an M-band cardinal interpolating filter if it
satisfies M -band Nyquist condition h(Mn) = 6(n). A reg-
ular cardinal interpolating filter generates a cardinal interpo-
lating scaling function under some mild condition. A wavelet
with an interpolating scaling function is referred to as the inter-
polating wavelet, and a filterbank with an interpolating lowpass
filter is referred to as an interpolating filterbank. However, it
has been proved there exist no two-band compactly supported
orthogonal interpolating scaling functions other than the one as-
sociated with the Haar wavelet [24]. When M > 3, there exist
compactly supported orthogonal interpolating scaling functions,
in particular, when M 2> 4; these scaling functions can be also
symmetric [16], [17].

In principle, the M-band progressive lifting pattern can
operate on an arbitrary biorthogonal filterbank. Here, we
operate it on the M-band “Lazy wavelet” to generate M -band
biorthogonal interpolating filterbanks and wavelets. Like the
two-band “Lazy wavelet,” the M-band “Lazy wavelet” is a
multirate system with allpass filters

H () =G"(z)=2"", 1=0,1,....M-1 (14

and its polyphase matrices are the identity matrix. From Defini-
tion 1, the new M -band filterbank has the polyphase matrices

1
_ I 0
G(2) (,zlﬂ_,,[_z {o s,(z)D So(#) (15)
The filters have z-transforms
[HO(Z), ey H]\/[_l(z) ], = H(ZIU) [1 zil z*(l\/f*l ]’
[Go(2),...,Gruo1(2)] =GEM)[1,271, ..., 2= (M=1]
(16)

In particular, the two scaling filters can be represented by the
first 2(M — 1) lifting filters

M—1
H()(Z) =1+ Z Z_IT()’[<ZA[)
=1
M-1

= +ZT01

M 1

2N

Clearly, ho(n) satisfies the M-band Nyquist condition
ho(Mn) = 6(n) and, thus, is a cardinal interpolating scaling
filter, which often generates an M -band interpolating scaling
function under a mild condition [11]. An M -band interpolating
filterbank generates an interpolating wavelet by the following

Tio(z™)

=T 0( (17)

two-scale difference equations: For [ = 0,1,... M — 1
(v Z hy(n)o(Mz —n)
1/11 Z g(n 1/10 (Mx —n). (18)
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In order to utilize the Shannon-like wavelet sampling theorem in
(13), the filterbank h;(n) ,l = 0,1,..., M — 1 is often selected
as the synthesis filterbank.

In the two-band case, it has been proven that any 2 x 2
polyphase matrix with unity determinant can be factored a
cascade of predict, update lifting steps, and a diagonal matrix
[20], which provides an effective and fast implementation for
the existing two-band biorthogonal or orthogonal filterbanks.
However, unlike in the two-band case, there is no simple
spectral factorization method when M > 3. Up to now,
this remains an important but difficult problem. Using the
progressive lifting pattern, we can design a family of M -band
biorthogonal filterbanks with desired properties, such as low
stopband sidelobe and rational coefficients. However, since
the progressive lifting pattern requires that the lowpass/scaling
filter must be an M -band Nyquist filter rather than its spectral
factors as, in general, M-band biorthogonal filterbanks, our
method can only use to design M -band biorthogonal filterbanks
with special structure.

B. Lengths of Filters and Computational Complexity

In what follows, we consider the lengths of filters in the
M -band interpolating filterbanks and the computational com-
plexity to implement the corresponding wavelet transforms. In
terms of the polyphase matrices in (15), the lengths of filters
are determined by the lifting filters. Without loss of generality,
assume that all lifting filters have the same length L + 1, and
t1,p(n) have z-transforms

L—m

Tip(z)= Y tip(n)z", 1<p

Tip(2) = tip(n)z™", I >p (19)
n=m-—L

where m = [L/2] rounds L/2 to the nearest integer. If we define
the support set of an FIR filter h(n) by A = {n € Z : min(S) <
n < max(S)}, where S = {n € Z : h(n) # 0}, then (19)
shows that all lifting filters with [ < p have the same support
set A\g = {—m,—m+1,..., L —m}, whereas all lifting filters
with ! > p have the support set A; = —A. From the definitions
(8) and (9)

L L

Z ti(n)z7",8:i(z) = Z si(n)z™"

n=—L n=—L

T(z) = (20)

where t; and s; are two sets of matrices. Therefore, from the
iterative procedure of the polyphase matrices in (7), the lengths
of the synthesis filters and analysis filters satisfies

Length{hi}=(2k + )YML+M—-1,k=0,1,...,M -2
Length{hp—1} =2(M —1)ML+ M — 1
Length{gx} = (k+2)ML+1, k=0,1,... ., M —2

Length{gM_l} = (M — l)ML + 1. 21

The proof is somewhat long but relatively simple and, thus,
we omit it. Following the above formulae, the lengths of filters
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rapidly increase from lowpass to highpass filters when M and
L are large, and thus, the filterbank requires large systematic
delay because it relates to the lengths of the filters. Therefore,
this design method is applicable to moderate M, for example,
M = 3,4, and 5. Fortunately, small L already provides enough
degrees of freedom to achieve satisfactory filterbanks, which re-
cuperates the deficiency to a certain extent.

In computation, the ladder structure as shown in Fig. 1 is used,
and thus, the computational complexity is solely determined by
the length of lifting filters L+ 1. For example, in the decomposi-
tion stage, per output sample requires (M —1)(L+1) multiplica-
tions and (M —1)(L+1) additions, and the synthesis stage takes
the same operators. This implementation takes slightly more op-
erators per output sample than that of the extended lapped trans-
form (ELT) [9] and generalized lapped orthogonal transform
(GenLOT) [13] because the latter utilized the discrete cosine
transform (DCT) and the butterfly structure. As a notable merit,
the lifting filterbanks are structurally biorthogonal and allow ra-
tional coefficient filterbanks and transforms from integers to in-
tegers, which have been investigated by several researchers [15],
[19]. Later, in Section VI-B, we will round the real coefficients
of all lifting filters to finite-precision rational numbers, and the
rational approximation can preserve the biorthogonality, regu-
larity order, and vanishing moments.

C. Regularity Order and Vanishing Moments

The regularity order and vanishing moments are two
commonly-used design constraints by which many useful
filterbanks and wavelets were derived [1], [3], [11], [16].
An M-band scaling filter Hy(z) is said to be K-reg-
ular if it has a polynomial factor of the form PX(z),
with P(z) = (1 4+ 2zt + -« 4+ 2= M=D)/M for max-
imal possible K[11]. This shows that Ho(w) and its
first (K — 1) derivatives vanish at aliasing frequencies
w = 2rq/M,q = 1,2,...,M — 1. Similarly, a bandpass
or highpass filter H;(w) is said to have K-order vanishing
moments if H;(w), and its first (K — 1) derivatives vanish at
w = 0.

In order to find a sufficient and necessary condition for the
two scaling filters in (17) to be K -regular, we first introduce a
definition and give two lemmas.

Definition 2: Let Ty ,(z) = Y., ti,p(n)z~™ be a lifting
filter; then, its k-order moment is defined as

v p(k) =Y 0¥t (n). (22)

Lemma 1: The k-order moment of a lifting filter and its kth
derivative at w = 27q/M, ¢ = 0,1,..., M — 1 have the fol-
lowing relation:

dk
dar o7
dk

le,p(z_M) |w:(2/]\[)q7r: (Mj)kl/l’p(k').

(Z™M) lo=2/at)gn= (=M j) v (k)
(23)

The proof is straightforward.
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Lemma 2 (Sufficient and Necessary Condition of K -reg-
ular): Let W, be the M-point DFT matrix and Uy, be its
a submatrix, that is

W, =
Uy =

[O‘lq] 1,q=0,1,...,.M—1
[O‘lq] l,q=1,2,...M—1

where o = exp(—j2n/M). Then, Uy and Up; — 117 are
nonsingular, and U1 = U1 =—1,where1 =[1,1,...,1]
is an (M — 1)-dimensional column vector.

The proof is given in Appendix A.

Theorem 1: The scaling filters Ho(w) and Go(w)
in (17) are K-regular iff the lifting filters Tp,;(z) and
Tio(z) (I =1,2,...,M — 1) satisfy the moment conditions:
Fork =0,1,..., K — 1

l

vou(k) = (= 3p)*
vo(k) = — %(ﬁ)’“- (24)

Moreover, when the above moment conditions (24) hold
%)) — (k) () — _ _
Hy7(0) = M6(k),Gy 7 (0) = 6(k), for k=0,1,..., K — 1.

The proof is given in Appendix B.

Theorem 2 (K -Order Vanishing Moments): In the M -band
interpolating filterbank in (16), if the two scaling filters are
K -regular, then all bandpass and highpass filters have K -order
vanishing moments.

The proof is given in Appendix C.

These two theorems thoroughly characterize M -band
biorthogonal interpolating filterbanks. The biorthogonality is
structurally ensured, and the regularity order, the flatness of
the two scaling filters, and vanishing moments of bandpass and
highpass filters are all determined by the moment conditions
in (24).

IV. THREE FAMILIES OF SCALING FILTERS AND FUNCTIONS

Theorem 1 shows that the two K -regular scaling filters can be
obtained by finding the solutions of 2(M — 1) systems of linear
equations in which each system is composed of K independent
equations. Once the first 2(M — 1) lifting filters have the same
length K and the support sets are specified, each system has a
unique solution. The obtained scaling filters are provided with
explicit expressions and rational coefficients but suffer from se-
vere stopband sidelobes. Therefore, we lengthen these lifting
filters to L + 1(L > K), and the residual (L — K + 1) degrees
of freedom in each lifting filter are used to improve the stop-
band attenuation. We obtain scaling filters with low stopband
sidelobes. Finally, we show that this structure also supports or-
thogonal scaling filters.

A. Scaling Filters with Shortest Lifting Filters

Assume that the lifting filters ¢o;(n) and ¢;0(n) have the
same length K . ¢o ;(n) has the support set Ag = {—m, —m +
1,...,K —m—1}, and t; o(n) has the support set A; = —Ay,
where m = [(K —1)/2] rounds (K —1)/2 to the nearest integer.
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Then, the moment conditions (24) can be written as 2(M — 1)

systems of linear equations: For k = 0,1,..., K —1
I\F
Z nktOJ(n) = <_M)
n€EAg
1/ 1\"
k
=—-—=1|= . 2
Z n“t1o(n) 7 <M> (25)
nen;
These systems have unique explicit solutions
Mk +1
t = _ A 26
0.4(n) M=) "€ o (26)
k€Ao,k#n
1 Mk —1
t = - — — Ay 27
1o(n) M—n) " €M @D
keAy,k#n

Such lifting filters are identical to the M-band Dubuc filters
[51, [6], [22], except for a constant factor, which mathematically
originate from the Largrange Interpolation Polynomial [28]. All
coefficients of lifting filters are rational numbers with the form
as p/M™, which is desired in wavelet transforms from integers
to integers and the lossless compression [15], [19].

For M = 4 and 5 and K = 2, 3, 4,and 5, the magnitude fre-
quency responses of scaling filters and their duals are illustrated
in Figs. 2 and 3, in which the values of frequency responses at
w = 0 are normalized. These scaling filters, especially the anal-
ysis scaling filters, suffer from severe stopband sidelobes.

B. Scaling Filters with Low Stopband Sidelobes

In order to lower stopband sidelobes, we lengthen the first
2(M — 1) lifting filters and use additional degrees of freedom
to minimize the stopband energy. Without loss of generality, we
specify the stopband of scaling filters as SBy U (—SBy), where
SBo =[(1+&)n/M,x],and 0 < ¢ < 1is a factor to adjust the
width of the transition band. Then, the stopband energy of the
two scaling filters is given by

e(Ho) :2/513 | Ho(w)[? dw

£(Go) =2 / Go(w)]? dw. (28)
JSBq
Assume that the regularity order is specified as K and the length
of the lifting filters ¢, ;(n) as L + 1; in this case, the support
set of lifting filters ¢ (n) is specified as Ag = {—m,—m +
1,...,L—m}, where m = round(L./2). We first design the in-
terpolating scaling filter by the following optimization problem:
S.t. Z nktoyl(’l’b) =

I k
(~3)
neMg

oM —-1land k=0,1,..., K — 1.

min e(Hy)

to,1(n)

1=1,2,.. (29)

Due to the quadratic objective function and linear constraints,
the optimization problem has a unique optimal solution when
the set Ag is specified. Starting from an arbitrary initial point,
the standard gradient algorithm will fast converge to the optimal
solution, and thus the design is low in complexity.
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After the lifting filters o ;(n),l = 1,2,...,M — 1 are ob-
tained, e(G)) is the quadratic function of ¢; o(n). Let the sup-
port set Ay of ¢; o(n) be —Ag, the K-regular analysis scaling
filter is designed by the following optimization problem:

t1,0(n)

s St =~ (L)

1=1,2,..

min &(G) :2/ |Go(w)|? dw
JsB,

L M-—1landk=0,1,....K — 1. (30)

Similarly, the optimization problem has a unique optimal solu-
tion and is low in complexity.

For M =4and K = 2,3,4,and5,let L= K+1and¢ =1,
that is, two additional degrees of freedom in each lifting filter
are used to improve the stopband attenuation. The magnitude
frequency responses of the obtained scaling filters are illustrated
in Fig. 4. The synthesis scaling filters achieve the stopband at-
tenuation at less than —60 dB, and the analysis scaling filters
achieve the stopband attenuation at less than —40 dB. When
M = b5, the obtained scaling filters achieve near stopband at-
tenuation: the more the additional degrees of freedom, the better
the stopband attenuation.

C. Orthogonal Scaling Filters

In many applications, a scaling function is desired to provide
all or part of the following properties: the orthogonality, com-
pact support, symmetry, interpolation, and high regularity order.
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The two- and three-band scaling functions cannot provide all the
five properties. The Haar-like scaling functions satisfy the first
four properties, but it is only one-regular and not continuous.
When M > 4, we can design the scaling functions with all the
five properties [16], [17]. In what follows, we will show that the
progressive lifting pattern allows to use such M-band scaling
functions.

Proposition 2: An M-band regular interpolating scaling
filter Ho(z) = 1 + Z?i;l 27Ty 1(2M) is orthogonal iff the
lifting filters satisfy

M-1

Z Tou(2)Tou(z7Y) = M — 1. (31)
=1

Its proof can refer to [17, Th. 1]. Such lifting filters
tou(n),l = 1,2,...,M — 1 are obtained by the numerical
algorithm in [17]. In that case, the next (M — 1) lifting filters

Tio(2),l =1,2,...,M — 1 are given by
Tio(2) = = Tou(=") 32)
10(2) = —grloa(z).

Then Go(z) = (1/M)Hy(z) is also orthogonal.

Finally, we contrast the smoothness of these three families of
scaling functions. The smoothness is measured by the Sobelev
exponents [16], and their Sobelev exponents are listed in Table I,
in which the third family of scaling functions come from [17].
It can be seen that the scaling functions with low stopband side-
lobes are much better in smoothness than the other two families.

V. INTERPOLATING FILTERBANKS WITH Low
STOPBAND SIDELOBES

In this section, the residual (M — 2)(M — 1) lifting filters
are optimized to design bandpass and highpass filters in terms
of the criterion of stopband energy minimization. Several exam-
ples are designed, which show the obtained filterbanks possess
excellent frequency characteristics.

A. Design of Bandpass and Highpass Filters

For an M-band real filterbank, we desire its magnitude fre-
quency responses to approximate the ideal M -band real filter-
bank in shape. An ideal M -band real filterbank is illustrated in
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Fig. 5, in which the passbands of M filters form a uniform parti-
tion of the interval [0, ], and the magnitude frequency response
of each filter is constant onto its passband but vanishes outside
its passband. We know that an FIR filter cannot achieve, but
can approximate, the ideal case. When M > 3, vanishing mo-
ments only manipulate the attenuation around w = 0 of band-
pass and highpass filters. Herein, combining the vanishing mo-
ments with the criterion of stopband energy minimization, we
optimize bandpass and highpass filters. From the progressive
lifting structure, the vanishing moments have been ensured by
the regularity order, and thus, we only need to deal with the min-
imization of the stopband energy.

Due to symmetric magnitude frequency responses of real fil-
ters, we consider the passband, stopband, and transition band
onto the positive frequency region [0, ]. From Fig. 5, the pass-
bands of the filters { H;(w), Gi(w)},1 <1 < M — 1 are spec-
ified as PB; = [(I{/M)=,((l + 1)/M)x], and their transition
bands are specified as

B, = {ﬂm L,r] U [H_lw MW]

M M MM
M-1- M-1
TBy—1 = [ i 571'./ i 7|':| 33)

where 0 < ¢ < 1 is a factor to adjust the width of the transition
band. The less £ is, the narrower is the transition band will be.
In this case, their stopband is SB; = [0, 7] — PB; — T By, and
the stopband energy is given by

e(Hy) zz/SB |Hy(w)]? dw

£(G) = 2/ |G (w)]? dw. (34)
SB;

According to the progressive lifting pattern, an M-band
interpolating filterbank is progressively generated by the
order from lowpass to highpass filters. After the first 2/
filters Hy, G, ..., H;—1,G)—1 and the lifting filters ¢, ,(n)
satisfying min(p, q) < [ — 1 are determined, H;(w) is a linear
function of ¢; p(n),p =1+1,1+2,..., M — 1, whereas G;(w)
is a linear function of t,;(n),p = 1 + 1,0 +2,...,M — 1.
Therefore, the stopband energy (H;) and (G,) are quadratic
functions of {t;,(n),p =  + 1,1 +2,...,M — 1} and
{tpi(n),p=1+1,1+2,...,M — 1} in turn. The total design
procedure can be summarized as follows.

Design Procedure:

i) Determine the two scaling filters hg(n)
and go(n) and the first 2(M — 1) lifting
filters to (n) and tio(n),n = 1,2,...,M — 1 by
the methods in Section VI.

ii) Assume that we have obtained

ho(2), go(n), ..., hi1(n), gi—1(n), and the

lifting filters t¢,,(n) satisfying

min(p,q) < | — 1. Set the lifting filters
tip(n),p = I+ Ll +2,...,M — 1 to have the
support set Ag = {-m,—-m + 1,...,—m + L},
where m = [L/2], and L + 1 is the length
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TABLE 1
SOBELEV EXPONENTS OF FOUR-BAND SCALING FUNCTIONS AND THEIR DUALS
Type Shortest Length Low Stopband Sidelobe | Orthogonal
Regular Order | Interpolating | duals | Interpolating | duals | Interpolating
K=2 2.0000 0.6000 2.4213 1.7247 0.8904
K=3 1.8180 1.3835 3.0427 2.1297 1.1828
K=4 2.6000 0.8441 3.6155 2.5088 1.3451
K=5 2.1631 1.3897 4.0212 2.8677 1.7414
4
Hy H H, Hyer Huo g g
o g g
0 /M 2n/M T g 0.25 05

Fig. 5. Magnitude responses of ideal M-band real filterbank.

of lifting filters.
optimization problem

Solve the quadratic

|Hy(w)|” dw} (35)

min {o(Hi) =2 /

tl-P(n JSB;

and we obtain the lifting filters ¢ ,(n)
and hy(n).

Next, set the lifting filters t,;(n),p =
l+1,l+2,....,M —1 to have the support sets
A1 = —Ap. Solve the gquadratic optimization
problem

(36)

min {¢(G)) :2/ |G (w)]? dw}
tp,1(n) SB;

and we obtain the lifting filters t,,(n)
and gi(n).

iii) Repeat ii) up to =M —2. Finally,
all lifting filters are determined, and an
M -band biorthogonal interpolating filter-
bank is obtained.

The optimization problems (35) and (36) are easy to solve
due to the quadratic objective functions. Starting from an arbi-
trary initial point, the standard gradient algorithm will quickly
converge to the unique minimal point. Notice that the size of
the optimization problems reduces as [ increases. For example,
when M = 4, the design flowchart is illustrated as follows:

{to,1,t0,2,to3} — ho(n) — {t1,0,t2,0.t30} — go(n)
— {t1,2,t13} = hi(n) — {t21,t31} — g1(n)
— {ta3} — ha(n),g3(n) — {ta2} — g2(n), ha(n).

Normalized Freq.
Synthesis filter bank

Normalized Frea.
Analysis filter bank

Fig. 6. Four-band four-regular filterbank with low stopband sidelobes.

However, it will be a very difficult task to treat with the same
problem for general M-band biorthogonal filterbanks without
the progressive lifting structure.

B. Examples

Example 1: M = 4, the regularity order K = 4, and the
lifting filters ¢; ,(n),l,p = 1,2,..., M — 1,1 # p all have the
same length L + 1 = 6. The parameter ¢ is specified as 0.5,
which indicates that the transition band has the width 7 /8. The
two scaling filters are those with low stopband sidelobes from
(29) and (30). The obtained filterbank is illustrated in Fig. 6,
in which all magnitude frequency responses are normalized in
terms of their maximal values. The stopband sidelobes of all
filters are below —30 dB, and the filterbank provides excellent
magnitude frequency responses. The parameter ¢ determines the
width of the transition band. When £ decreases, the transition
band becomes narrow and the passband becomes flat, but the
stopband sidelobe lifts up. Fig. 7 demonstrates this phenomenon
for Hy(w) and £ = 0.5, 0.3, and 0.2.

Example 2: M = 5, the regularity order K = 4, and the
lifting filters all have the same length L + 1 = 6. The parameter
¢ is specified as 0.5, and the transition band has a width 7 /10.
The two scaling filters are those with low stopband sidelobes
from (29) and (30). Similarly, the obtained filterbank achieves
stopband attenuation below —30 dB, as shown in Fig. 8.

VI. SIGNAL-ADAPTED FILTERBANKS AND RATIONAL
COEFFICIENT FILTERBANK

Subband coding is one of important applications of filter-
banks. Signal-adapted filterbanks have been widely researched
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Fig. 8. Five-band four-regular filterbank with low stopband sidelobes.
[15], [22], [29]-[33], which can markedly improve the perfor-
mance because their frequency responses match the statistics of
input signals very well. In this application, the lifting scheme
provides two advantages: The design problem is reduced into a
unconstrained optimization [22], [33], and it supports rational
coefficient filterbanks [15], [19], which allow wavelet trans-
forms from integers to integers and a unifying lossy/lossless
coding framework. In what follows, we utilize the progressive
lifting structure to design signal-adapted M -band interpolating
filterbanks as well as their rational coefficient counterparts.

A. Optimal Design Based on the Progressive Lifting Structure

An M-band filterbank and a set of uniform scalar quantizers
form an M -channel subband coder. Its performance is usually
measured by the subband coding gain [15], [22],[29]-[33], which
is defined as the reduction in transform coding mean-square
distortion over the pulse-code modulation (PCM), which simply
quantizes the samples of the signal with the desired number of
bits per sample. Let o2 be the variance of the input signal z(n),
o be the variance of the /th subband, and || ||, be the [2-norm
of the synthesis filters. Under the assumptions of uniform scalar
quantizers, the optimal bits allocation, and a sufficient large bit
rate, the subband coding gain can be formulated as

J2

L . (37)
M—1 2\ /M
1=0 012 ||hl||2)

GS(,C =10 IOglo

The input signal z(n) is the commonly-used AR(1) process
with intersample autocorrelation coefficient p = 0.95, which
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Fig. 9. Optimal four-band biorthogonal filterbank for the AR(1)process.

is a simple image model. The PCPB [29] achieves the maximal
subband coding gain among all orthogonal filterbanks. For the
AR(1) process above, the PCFB is the ideal M -band filterbank,
as shown in Fig. 5. The optimal M -band biorthogonal filterbank
is the cascade of the PCFB and a set of the half-whitening fil-
ters in individual channel [30], [31]. Its subband coding gain is
maximal among all biorthogonal filterbanks. For example, when
M = 4, the PCFB of the AR(1) process has a subband coding
gain of 8.5908 dB, and the optimal biorthogonal filterbank has
a subband coding gain of 9.3732 dB. The frequency responses
of the optimal biorthogonal filterbank are illustrated in Fig. 9.
The two optimal filterbanks are of IIR, and they provide upper
bounds on the performance of FIR orthogonal and biorthogonal
filterbanks and, hence, can be used as a benchmark when testing
the proposed FIR designs.

There have existed various methods to design signal-adapted
FIR orthogonal filterbanks. However, it seems to be a diffi-
cult problem to directly design signal-adapted FIR biorthog-
onal filterbanks. In [32], the numerical method was used to
solve this problem. The high nonlinear objective function and
a large number of quadratic constraints on the biorthogonality
result in two fatal defects: the sensitivity of initial point and the
inexact biorthogonality from the numerical computation. Al-
though the inexact biorthogonality incurs very small system-
atic distortion, this distortion still results in a considerable per-
formance degradation under the high bit rate case. The lifting
scheme 1is structurally biorthogonal, and thus, the filterbank is
no systematic distortion. Moreover, the constrained optimiza-
tion problem is reduced to an unconstrained one. The method
was used in the two-band case and worked well [22], [33]. The
subband coding gain of an M -band biorthogonal filterbank is
determined by the term Hf‘io_l o? ||l ||§ in (37): the lesser this
term, the larger the subband coding gain. An M -band biorthog-
onal interpolating filterbank is parameterized by the lifting fil-
ters. When we are given the autocorrelation coefficients of the
input process, the term Hf‘igl o? ||hl||§ is a function of the
lifting filters ¢, ,(n),l,p = 1,2,...,M — 1,1 # p. It opti-
mizes the lifting filters such that this term is minimal to design
a signal-adapted M -band biorthogonal interpolating filterbank
, which can be performed by the following unconstrained opti-

mization problem:
M—-1
2
{ II 012||hl||2}-

=0

(38)

min
tip (n)
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TABLE II
LIFTING FILTERS IN SIGNAL-ADAPTED FILTERBANK FOR THE A R(1)PROCESS
to,1 | 0.00519191568249 0.24420410398887 0.80089528663578 -0.01959651092186
to,2 | -0.00979301739346 | 0.53411333670152 | 0.52513381244461 | -0.00541473435122
to,3 | -0.02347606984139 0.80627479573350 0.23735531582460 0.00874358803168
t1,0 | 0.06312600277049 -0.27989038065302 | -0.01990925804011 | -0.00658559969965
to,0 | 0.02392159409073 | -0.15139279733291 | -0.15742663195847 0.02582058849707
t3,0 | -0.00772752123248 | -0.01643608894452 | -0.28121596525013 0.06578330078621
t1,2 | 0.05421992722840 | -0.05751306402374 1.49307123736647 0.31111410991509
t1,3 | -0.03259808367004 | -0.34054165276598 0.79389102539419 0.19454050457338
to1 | -0.09840831369556 | -0.42311692781708 -0.01179563460281 | -0.04158999272282
t3,1 | -0.03540420461174 | -0.05873754483156 0.24473308209901 0.01529169455308
to,3 | -0.20451528697440 0.45285005297746 0.63835741830046 0.02270781473592
t32 | -0.03926862640170 | -0.18477990537634 | -0.72864883772897 0.09094135987113
1 AN 1 AN TABLE III
H \ __-5 "’-,_ i I/’ ‘\‘ :.-“ "-1 ,-’ SUBBAND CODING GAINS OF RATIONAL COEFFICIENT FILTERBANKS
ﬁ ," \\ rl ﬁ /’ ‘I ,’
s H ¥ £ 5 A i N 2 3 4 5 e
g v g A A F
2 J Nt @ AN Gpe | 86523 | 8.7858 | 8.7920 | 8.7923 | 8.7923
o ! Py : o } Vo ] : .
2 / Lo 2 / vl
& ! Vo ) /, \‘ P filterbank above, we round the real coefficients of all lifting fil-
= ;’ \i = / ! _;' ters to the nearest rational numbers with the form p/M?” and
w,’/._{'_‘_\ -y 4 i // o N % e then obtain filterbanks with rational coefficients. This procedure
Ny . Lot =N s . .
0 05 00 o5 isdescribed as follows: Forl,p = 0,1,...,.M —1land! # p

.25 .25
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Fig. 10. Signal-adapted four-band interpolating filterbank for AR(1).

Since the objective function is high nonlinear, the initial point
is crucial. For the lowpass process AR(1) above, the M-band
biorthogonal interpolating filterbank with low stopband side-
lobes is a good initial point; for example, when M = 4, K =
2, L+1=4,¢=0.5for two scaling filters and £ = 0.25 for
bandpass and highpass filters, the filterbank with low stopband
sidelobes from Section V has the subband coding gain 8.5468
dB, which is very close to that of the PCFB. Taking this filter-
bank as the initial point, we obtained the signal-adapted filter-
bank by the standard gradient algorithm, and its subband coding
gain is 8.7923 dB. The magnitude frequency responses are illus-
trated in Fig. 10, and the corresponding lifting filters are listed
in Table II. In fact, it can be seen that the signal-adapted filter-
bank does not achieve the very low stopband sidelobes, which
is different from the previous nonadapted filterbanks. However,
for a general WSS input process, it remains a knotty problem to
determine a good initial filterbank.

B. M-Band Interpolating Filterbank with Rational
Coefficients

An M -band interpolating filterbank is structurally biorthog-
onal, and the change of coefficients of lifting filters does not in-
fluence on the biorthogonality. Therefore, for the signal-adapted

1 r

tit(n) = T (MYt ,(n)] (39)
where the function [z] rounds z to the nearest integer. The
rational approximation of the lifting filters preserves the
biorthogonality and only results in a slight degradation in
subband coding gain, even if N is a moderate positive integer.
For example, when N = 2, 3, 4, 5, the subband coding gains
of the obtained rational coefficient filterbanks are listed in
Table III.

In Table III, N = oo represents the subband coding gain of
the signal-adapted filterbank in Table II. Clearly, when NV > 3,
the quantization of the lifting filters only leads to a very slight
degradation. More importantly, the filterbanks with rational co-
efficients of the form p/M* can implement wavelet transforms
from integers to integers and allow a unifying lossy/lossless
coding framework.

If required, the quantization of lifting filters can also preserve
the regularity order and vanishing moments. Assume that the
interpolating filterbank is K -regular and has K -order vanishing
moments, that is

1y g (MmN E
O e e IC

L4zt MDNE
( ) e

Go(Z) = M
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Then, through the quantization of the coefficients of the two
polynomials 1(z) and (Q2(z), we can obtain a rational coef-
ficient filterbank, and it retains the same regularity order and
vanishing moments.

VII. CONCLUSION

We have proposed an M-band progressive lifting pattern.
Using this pattern, we designed M -band biorthogonal interpo-
lating filterbanks and wavelets. These filterbanks and wavelets
have low stopband sidelobes and high smoothness. Such a
filterbank is composed of filters with different lengths, which
will result a large systematic delay in implementation. However,
the ladder structure ensures its low computation complexity
since the number of computation operators is solely determined
by the length of the lifting filters. Moreover, we also use this
pattern to design signal-adapted biorthogonal interpolating
filterbanks and their rational coefficient counterparts. The
obtained signal-adapted interpolating filterbanks are close to the
optimal IIR biorthogonal filterbanks and exceed the PCFB in
subband coding gain for the typical AR(1) process. Theirrational
counterparts can implement the wavelet transform from integer
to integer and allow a unifying lossy/lossless coding framework
at the cost of a slight degradation in subband coding gain.

APPENDIX A
PROOF OF LEMMA 2

Using the block-version of the matrix W, we have

11
Wi = [1 UM]'

Since the DFT matrix satisfies W MWJIL{[ = MT,;, where the
superscript H denotes the conjugation and transposition, there-
fore

1 1 1 1 M 1 +1'U%

1 Uy||1 U Uyl+1 UyUE +11

MO
T 10 MIy_q|
U]\IfIU uM = MIy_; — 11’ is a diagonally dominant matrix,

and thus, U}, is nonsingular.
Since

Ul (U —11) =MI - 11" — (U 1)1
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APPENDIX B
PROOF OF THEOREM 1

Let @« = exp(—j2n/M). Using Lemma 1 and the Leibniz
rule of differentiation to Hy(w) in (17), we get (40), shown at
the bottom of the page, where C¥ = k!/pl(k — p)!.

Set
k 2 k 47
D(Ho, k) = [Hé ) <M> L HY (M)

g (O]

V(ag, k) =[vo,1(k),vo2(k),...,v0m—1(k)]
A =diag{1,2,...,M — 1}.

Then, (40) can be rewritten as matrix form

k
"Un Y CEAPM* PV (ag, k — p).

p=0

D(Ho, k)=06(k)1 + (—j)

41)

If Hy(w) is K-regular, then D(Hy,k) = 0 for k = 0,1,

.., K —1.Fork =0, (41) reduces to 1 + U, V(ap,0) = 0.

From 1 4+ Uy,1 = 0, we get Uy (V(ap,0) — 1) = 0. Since

U, is nonsingular(see Lemma 2), we have

V(ao,0) = 1. (42)

When k =1,2,..., K —
comes

1, since U, is nonsingular, (41) be-

k
> CEAPM* PV (ag,k—p) =0 .

p=0

(43)

Combining (42) with (43), we obtain the following: For k =
1,2,.... K -1

1 1\"
V(ag, k) = W(—A)"’l or v, (k) = (‘M) . (44

Similarly, using the Leibniz rule of differentiation to G (w)
in (17), and considering Lemma 1 and (44), we get

= MI—11 +11' = MIy_, D(Go, k)
k
is nonsingular, Uy — 11’ is also nonsingular. The equations = §(k)1 -|-j (11" — Uyy) Z pMk PV (bo, k — p).
U1 = — 1 are straightforward. Similarly, from WAH[W M= p=0
M1y, we can get U1 = — 1. (45)
Mk e
(k) (27 _ p & iy Mjw
Ho <V>_{ +chkdl’ ’ )d kaOl( )
I=1p=0 w=(2/M)qr
M k Mk
B3 L) aP (= M) Pk — p) = 8(k) + (=) D2 S CLPaP M uty( — p) (40)
1=1p=0 =1 p=0
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If Go(w) is K-regular, then D(Go, k) = 0 for k = 0,1,
...,K—1.Fork =0, (45) reduces to (U,, —11")V(by,0) =
1. From Lemma 2, U%, (U, — 11") = M1, 1, and therefore

1 1
—Uf1=—-—1. (46)

M M

Fork =1,2,...,K —1,since (11’ — U)y) is nonsingular, (45)
becomes

V(by,0) =

k
> CH(=A)PM*PV (bo, k —p) = 0. (47)
p=0

Further, from (46) and (47), it follows thatfork = 1,2,..., K —
1

1 1/ 1\"
V(bo/k) = —WAkl, or 1/1’0(]6) = —M <M) . (48)

In this way, we prove that conditions (44) and (48) are necessary.
Contrarily, if conditions (44) and (48) are satisfied, substi-
tuting them into (41) and (45) gives D(Hy, k) = D(Gy, k) =0
for k = 0,1,2,..., K — 1. Therefore, Hy(w) and Go(w) are
K -regular. This conditions are also sufficient.
Additionally, from conditions (44) and (48), it is easy to verify
that

qP 0y = Ms(k), G (0) = 8(k), k=0,1,2,..., K —1.
(49)
Theorem 1 is proved. ]

APPENDIX C
PROOF OF THEOREM 2

From the iterative procedure of polyphase matrices, we find

{ggg;)} =To(e!M) 1,679, ... e I(M-Dwy

{%}8] = So(eIM)[1, e, ... emIM=Dw)

No matter how we select the latter (M —1)(M —2) lifting filters,
the bandpass and highpass filters have the following forms:
"= A(ME(w)
"=B(e/M)F(w).

[Hi(w) Har—1(w)
[Gl(z) G]\,[_l(z)

To prove that the filters H;(w) and Gy(w) 1 =1,2,...,M — 1
have K-degree zero at w = 0, it is enough to show that each
of the components of E(w) and F(w) have K-degree zero at
w = 0.

In fact, from (4) and (17), we get

Hg(u))
GQ(Z)

E(w) :bo(ejﬂfw) + [IJ\VI—l + bo(e]']\,[w)ao(ejlﬂw)]
e v

X .
e—j(]\/l—l)w

eI + Ty o(e!M) Ho(w)

e IM=Dw 4 Ty o(e?M2)Hy(w)
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Because v o(k) = —1/M(l/M)* and Hék)(()) = Mé(k) for
E=0,1,...,K — 1, it is easy to verify that E?*)(0) = 0 for
k=0,1,... K—1

Similarly

e—jw + T0,1(6_j]\'[“)
F(w) = :

e—d(M-1)w 4 rfo o1 (e=iMe)

From v (k) = (—1/M)F, it is easy to verify that F(*)(0) = 0
fork=0,1,..., K — 1. The theorem is proved. ]
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