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Abstract—in many applications, wavelets are usually expected and applications of multirate filterbanks and wavelets. Since
to have the following properties: compact support, orthogonality, traditional wavelets or filterbanks do not possess all the above
linear-phase, regularity, and interpolation. To construct such five advantages, in special applications, a tradeoff among re-

wavelets, it is crucial designing scaling functions with the above .
properties. In two- and three-band cases, except for the Haar quired advantages has to be made. For example, in image pro-

functions, there exists no scaling function with the above five Cessing, the linear phase avoids phase distortion in reconstruc-
properties. In M-band case M > 4), more free degrees available tion, compact support provides efficient computation, and the
in design enable us to construct such scaling functions. In this orthonormality brings the convenience in performance analysis,
paper, a novel approach to designing such scaling functions is y, + two-pand wavelets or filterbanks hardly satisfy these de-

proposed. First, we extend the two-band Dubuc filters taM -band ds. Theref the desi i ling functi d let
case. Next, theM-band FIR regular symmetric interpolating mands. 1heretore, the design of scaling funclions and wavelets

scaling filters are parameterized, and then,M-band FIR regular ~ With the above five advantages has important practical meaning.
orthogonal symmetric interpolating scaling filters (OSISFs) are The paper will be devoted to the design of such scaling func-
designed via optimal selection of parameters. Finally, two family tions via a novel approach in which we utilize the parameter
of four-band and five-band OSISFs and scaling functions are enresentations of scaling filters with cardinal interpolation and
developed, and their smoothnesses are estimated. .
_ _ _ _ _ symmetry based of/-band Dubuc filters.
Index Terms—Cardinal interpolation, linear-phase, scaling  The interpolation dates back to Shannon’s sampling theorem,

function, Sobolev exponent, wavelet sampling. and from the multiresolution analysis point of view, the classical
Shannon sampling uses the Sinc function as the scaling function
l. INTRODUCTION for a bandlimited signal that provides an exact representation by

. . ts uniform samples with a sampling rate higher than its Nyquist
COMPACTLY supported wavelet IS typlcall_y constructeciate_ Recently, for scale-limited signals, this classical theorem
from a compa_lctly supp(_)rted _sc_allng function that 9€Nehas been extended to many other forms [10], [12]-[17], and
ates a muItwesqupon analy_3|s. It is important (and nontrivi ‘these new forms are the direct avenue in the performance of the
go gor;)sltruct scet!mg funclf]nons (?r?d her;ft:e \r/]\{a\r/]elets) IW!F st and accurate initialization of the wavelet series transforms
esirable properties, such as orthogonaily, high regu ar't\’NSTs). In the two-band interpolating wavelets and subdivision

symmetryflinear phase, and interpolation. However, in ths heme, the Dubuc filters play an important role [16]-[21]. Sim-

two-band and three-band cases, no scaling function can prov. & .
these t ffilt be extended toMieband .
all the above properties. Daubechies [1] had shown that, excI Y, NESE ypes ot fLers can ue extendec 1o and case

. . tthese filters, thé/-band regular scaling filters with cardinal
for the Haar function, there exists no two-band compact

terpolation can be parameterized, which is the cornerstone of

supported orthogonal symmetric scaling function. Neverthﬁie work in this paper

less, thebM-band (/ > 2) scaling functions or wa}velets havg The paper is organized as follows. In Section Il, we briefly
appeared that partake several of the above five PropertigKiiew some basic properties and structured/eband scaling

for gxamples, see [21-[3]. The multiscaling f_unctiong 6?ng:lar:ctions. In Section 1ll, thé\/-band Dubuc filters are intro-
multlwave_zlets_wnh com_pact support,_orthogonahty, Cont'nu'%uced, and the parametric representation of the subfilters of or-
and cardinal |nterpolat|.on were de§|gned [10]. These owe tWogonaI symmetric interpolating scaling functions (OSISFs) is
more free degrees available in design. In fact, WM.@ 4 developed. In Section IV, by using parametric representation,
one can design thM—band (M > Z.l) scaling functions as we propose an efficient method for designing OSISFs. In Sec-
much as wavelets with the above five advant_a ges. In [11]'t1‘]6n V, two families of scaling functions with the above five ad-
and Shen proposed an approach to constructing didsand vantages are developed, and their Holder exponents and Sobolev

scaling functions from(A/ — 1)-band scaling functions, and exponents are estimated. Finally, this paper is concluded in Sec-
several four-band examples were presented. tion VI

As is well-known, compact support, linear-phase, regularity,

orthogonality, and interpolation are important in both theory Il. OVERVIEW OF M-BAND SCALING FILTERS/FUNCTIONS

. . . . _ Similar to the two-band case, one usually uses a multireso-
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as the state-space approach and the factorization approdohn P (=), with P(») = (1/M) D iR z~* for maximal
[4]-[6]. M-band wavelets or filterbanks have more advantagpsssibleK. That is

than two-band wavelets. Generally speaking, the wavelet filters i

and wavelet bases can keep some good properties of the scaling Ho(z) = PX(2)Q(2).

functions such as the linear-phase and smoothness. Therefore, o ) j2mi/M .
in order to obtain a wavelet system, the linchpin is to desigi-regularity is equivalent tato(c’ ) = VMé(), and

a scaling function with good properties. In what follows, wé&S de/'r;v?/t%es' from the first to theK — 1) order vanish at
briefly review the fundamental results ab/-band scaling # = ¢’ ;i € R(M). The smoothness of scaling functions

filters and functions. is an important index in designing scaling functions, and the
A real orthogonal scaling filter is a sequerfggin) that sat- quantities to be used measure smoothness are the ones used in
isfies the following linear and quadratic constraints: [11] and [26]-[28]. Define

> ho(Yho(k+ M1y =6(1), > ho(k) = VM. (1) Fp = SUp {rs: /R(l + [w[P )| (w) [P dw < oo}-
k k

Whenp = 2, finiteness of the above integral defines the function
Let&M) ={..., -2M, =M, 0, M, 2M, ...} andR(M) = 4,,(2) to be in Sobolev spac®,«(R), and the critical expo-
{0, 1,2, ..., M — 1}, where £M) is a lattice generated by nenty, is taken as a measure of tfi€ smoothness ofig(z),
M, andR(M) is the set of representatives of ). In this  hich is called the Sobolev exponent. The Hailder exporent
way, the scaling filteho(n) can be represented by its polyphasgefers to thel., (R) case. By the Fourier analysis method, one

components or subfilters, i.e., easily estimates a low bound of the Héilder exponegtwith
‘ the following formula [1], [6]:
Ho(z) = Z ho(n)z™" = Z Z ho,i(n)z=Mn=i -
n iCR(M) n £ —iw/M*
i q; = max Q™!
— Z Z_ZHOJ(ZJW) (2) J weR g ( )
iCR(M) log ¢;
>K—1/2—infd ——1 % —
Koo / 11]1 {1 logM} € (5)

wherehg ;(n) = ho(Mn + ¢) are referred to as the subfilters,

whereadd ;(z) is the polyphase component. It is easy to showhere« is an arbitrarily small positive number. The Sobolev

that a real scaling filteho(n) is orthogonal iff exponents can be estimated by using the following method [11].
At first, for an integerk, let

Z Ho,i(2)Ho,i(z™") =1

. iem(;\l)‘ o Vi = {v e lo(Z): Z pla)v(a) =0, Vpe Hk}
w — 2wt «fwW—2m aed
oy 3 m () m (25 -1 @ -
iCR(M) wherell,, denotes the polynomials of degreelet anif-band

scaling filterho(n) with the support set—~N, —N+1, ..., N}

Given a scaling filter, the associated scaling function is thg, K-regular, letMag(n) be the autocorrelation sequence of
solution of the following two-scale difference equation: ho(n), and let

po(z) = VM > ho(n)iho(Mz — n). (4) H = [ag(Mk — D 1e[—an, 271

o ~ Then, whenyy is stable, the Sobolev exponet satisfies
However, an orthogonal scaling filter does not always derive an

orthogonal scaling function. A necessary condition for (4) to be Ko = —% log s Aaw (6)
a solution inL!(R) is that the scaling filter satisfies the linear

constrainty", ho(n) = /M. Moreover, wherhy(n) is a fi- Wherel,, is the spectrum radius &/, _,.

nite impulse response (FIR), via the infinite product of matrices Define

and the joint spectrum radius, the sufficient condition for (4) to

exist as a unique solution ib* (R) N L2(R) is given [22]-[24]. (k) = / aFapo(t) dt
When ani/-band orthogonal scaling filter satisfidfy(w) # N
0, Vwe[-(n/M), (x/M)], the associated scaling function m(k) = Z n"ho(n)

generates an orthonormal basis [6].
For a scaling filter, the regular order is closely related to the  7(k, ¢) = Z (Mn +9)*ho(Mn + 1)
smoothness and the approximation power for smoothing signals n
of the associated scaling function, and its smoothness dictates = Z (Mn + z‘)"‘ho?i(n), i € R(M)
the smoothness of the derived wavelet system. Thus, a proper n
_regul_ar order is requw_ed for design. AM—banq scaling filter vk, i) = Z nkhw(n) @)
is said to bei(-regular iff Hy(z) has a polynomial factor of the ~
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where In order to design such scaling functions, we analyze the char-
w(k) andm(k) moments ofyy andhg, respectively; acteristics of the scaling filters.
n(k, 1) partial moment of;

A. Characterizations of FIR Orthogonal Symmetric Scaling

vk, i) moment of theith subfilter. Filters with Cardinal Interpolation

By [6], a scaling filter isK -regular iff one of the following two

arbitrary conditions holds: Let
i) The frequency response of the scaling filter has a zero of M-1
order K at theMth roots of unity. Ho(z) = Z ho(n)z " = Z Z ho,i(n)zMn—
i) Fork = 0,1, ..., K, the partial momentg(k, ) is a n i=0 n
constant independent éfand only dependent on M-1
— Z Z_ZH()’Z‘(ZJW)

=0
lll. M-BAND SYMMETRIC INTERPOLATING SCALING
FILTERS/FUNCTIONS be the type-lI polyphase representation of the scaling filter
ﬂgn), where Hy ;(z) = >, ho,i(n)z~". Then, a scaling

. . h
. The Shanno_n sampling theofem. is one of the c_orners_tone?.lter can be completely described by its polyphase components
signal processing and communication theory, butit only is avall; (2) or subfiltersho ;(n)
0,¢\~ 0,1 .

able for bandlimited signals. Its general forms in multiresolu-", 0\ 1.8 po 4 ea) scaling filteho(n) is an or-

't6|\on s?gf %S ha}[vg b;?n dr;sdc;shsid e>it2ensnr/]el3:t[;3], [gr]{ [llz]_l[ilnﬁlbgonal symmetric one with the cardinal interpolation property
S pointed out by Ala ar ang [12], an orthogonal scaling 4 1yt the following three conditions are satisfied:
function must be a cardinal that supports a sampling theorem

identical to the Shannon sampling theorem in form. A function _,') ho,o(n) = 1/\/M6(n) or Ho,o(2) = 1/\/M;
Yo(z) is said to be a cardinal function ifo(n) = 6(n). Un- i) ho,i(n) ~ ho,m—i(1 = m) or Hoi(z) =
fortunately, in the two-band case, no compactly supported or-_ ZHO:A{”—Z‘(Z Ji=1,2 ..., ML
thogonal cardinal scaling function exists. By relaxing some de- i) 22—y Ho,i(w)Hg j(w) = 1 — (1/M), whenM =
mands, two families of the scaling functions with cardinal in- 2N + 125,07 Hoi(w)HE (@) + Ho, n(w)H v
terpolation are developed [12], [16], [17]. A family is the or- (w) =1-(1/M), whenM = 2N.
thogonal cardinal scaling functions with fast decay, and another Proof: From the cardinal interpolation property, we easily
family is the compactly supported biorthogonal cardinal onegbtain condition i). When the filteko(n) is symmetric about
Fortunately, M -band wavelets or multiwavelets can possess tle= 0, we have
following three properties.

1) orthogonality; ho,i(n) =ho(Mn +14) = ho(—Mn — %)

2) compact support; =ho(M(1—n)+ (M —14)) =ho m—i(1 —n)

3) interpolation.
Two examples are three-band compactly supported orthogowdiich is simply condition ii).

interpolating scaling functions [2], [8] and multiwavelets with From i) and i), we haveHo o(w)Hj o(w) = 1/M
cardinal interpolation [10]. In [11], several four-band examplesnd  Ho ;(w)H{ ;(w) = Ho pri(w)Hg 3 y(w),
with the above properties have been given. In this section, we= 1,2, ..., M — 1. Considering the orthogonal condi-

will investigate how to desigi/ -band compactly supported or-tion (3), we know that the condition iii) holds. Contrarily, if
thogonal symmetric scaling functions with cardinal interpolahe above three conditions are satisfied, then the associated
tion. scaling filter is an orthogonal symmetric filter with cardinal
From the wavelet sampling theorem, wheRg(x) is an interpolation. |

M-band cardinal interpolating scaling function and the asso-Corollary 2: A 3-band FIR real scaling filter is an orthogonal
ciated scaling (or multiresolution) subspaces are defined sssnmetric scaling filter with cardinal interpolation property if
V(1) = span, {MI/?po(M7z — n)}, then we have the and only if it is a Haar-type scaling filter.

wavelet sampling theorem identical to the Shannon sampling Proof: According to Theorem 1, if a 3-band FIR real

theorem of the form scaling filter is an OSISF, then its polyphase components must
satisfy
_ —i/2p (VN ppis2 S
o) = UM (g5 ) Mol =) Ho ()G 1) = 5.
v f(x) € Vj(@o). ®) Sinceho(n) is FIR, Ho, 1(w)Hg 1 (w) is a cosine polynomial.

This implies that its solutions must have the forn¥hs; (w) =
According to the above sampling theorem, the uniform samplély/+/3) exp(—jmw) for some integem, and henceho, 1 (n) =
of a signal can directly substitute for the initial approximatiof1/v/3)6(n — m), andho(n) is a Haar-type scaling filter. m
coefficients in the associated WST initialization. The right-hand It is known from Corollary 2 that in order to design the regular
side of (8) often provides a better approximationféf) than orthogonal scaling filters with the above properties, one cannot
one without the interpolation property, even thoydl) ¢ V;. help but consider the case 8f > 4.
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Proposition 3: A real FIR orthogonal symmetric interpo-derived from aK — 1 degree polynomial can implemented by
lating scaling filterio(n) is K-regular iff its subfilters satisfy the following filter:

. k m+K—1 .
. 4 1 1 (K, m) M+ .
By = 3 nthoin) =~ (L RIEM () = MR e Ry
k=0,1,2,..., K—1,ie R(M) 9) n=m,m+1,....,m+K-—1. (11)

but fork = K, at least one equation in (9) does not hold. ~ We call it an M -band K-order Dubuc filter. Following the
From (7) and the results in [6ho(n) is K-regular iff for polynomial interpolation theory and (11), thi¢-band& -order

k=0,1,...,K—1 Dubuc filters have the following characteristics.
i) The interpolators derived fromgf}\’}f)i(n) are accurate
n(k, @) = Z (Mn + i)kho A(n) for all polynomials whose degree is less thidn
’ m ’ i) The filters are the solutions of the system of linear equa-
tions
is a constant independentofAccording to the cardinal inter- (K m)
polation, we havey(k, 0) = (1/v/M)&(k), and thus > nPhiyi(n)
ki 16k —< L>p forp=0,1 K-1. (12
, 1) = —— . =l—-—== =0,1, ..., — 1.

] o & iiiy For M = 2N, ¢« = N, the following relationships hold:
Moreover, n(k, i) = Y., (Mn + 9)¥hgi(n) = Y,

B\ pplik—l : i i it - - -
(l)M 1*~‘~4(l, 4). By induction, it is easy to prove that the pUIG (e K)) 1) = plEm)
conditions in (9) hold. v, N (1) =hp oy v ()

h(?l\’, T_I(T)(_(n + 1)) _ h(?l\’, r_Kr) (71) (13)
B. M-Band Dubuc Filters and Parameterization of the P2 N P2 N
Subfilters namely, the Dubuc filter withn = — K is symmetric.
Dubuc filters [19] play a key role in the subdivision V) All coefficients of the filter are rational numbers in the
scheme, Largrange halfband filters, and two-band interpolating ~ form of 7/A* L. P
wavelets. By the spectrum factorization of the Largrange M-band Dubucfiltershgj‘jj\}'fir ) k=0,1,...,L— K just
halfband filters, the famous Daubechies wavelets were diorm a system of basis solutions of (12); therefore, an arbitrary
tained [18]. Using Dubuc filters as well as the parametrit/-bandK-order subfilterhg ;(n) with support sef{m, m +
representations of general interpolating filters, Donohb ..., m + L — 1}, L > K can be represented as the linear
wavelets [16], lifting Donoho wavelets [17], and nearly oreombination of Dubuc filters
thogonal interpolating wavelets [21] have been consecutively

developed. From the interpolation theory point of view, ho i(n) = 1 Ifa‘(k)h(ls’,m-i—k)(n)
Dubuc filters originate from algebra polynomial interpolator. NV P ¢ D, M,
For example, taking: = 0 as the interpolating point and K

{2n+1,n=m, m+1,...,m+ K —1} C2Z + 1asthe
stencil, using the values of a signal at the stencil &hd- 1
degree polynomial, one can estimate its value at 0, which
equals to a linear combination of its values at the stencil. Theln the above representation, all Dubuc filters have the same
linear combination weight vector is referred to as<aorder orderK, and their support sets slide ¢m, m +1, ..., m +
Dubuc filter, where the interpolator is derived from that whicl. — 1} from the left to the right. Moreover, one easily derives
is accurate for all polynomials less thda degree, and the the other parametric representation of #debandi -order sub-
filter's coefficients can be calculated using the Largrandter i ;(n), thatis, which is represented as the linear combi-

az(k) =1.

k=0

interpolation formula nation of different-order Dubuc filters. The proper parametric
forms often bring some benefit in numerical computation. The
m+K—1 another parametric representation will be discussed in the next
piEe m)(n) = H 2+1 section
i - I=m, l#n 2(l - 7’L) .
n=m,m+1,...,m+K—1. (10) C. LargrangeMth-Band Filters and\/-Band Daubechies
Wavelets

Mimicking the two-band case, we can define th&-band In [18] and [25], the relationship between the Largrange

Dubuc filters and Largrang&/th-band lowpass filters. Taking halfband interpolating filters and Daubechies filters is revealed,
n = 0 as the interpolating points afd{~ + ¢, n = m, m +  which shows that the commonly used Largrange interpolating
1,...,m+ K — 1} C MZ + 1 as the stencil, the interpolatorfilters are in one-to-one correspondence with the convolutional
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squares of Daubechies filters for orthonormal wavelets eition to generate a good scaling function. Without loss of gen-
compact support. That is erality, assume all subfilters have the same length and support
set. In what follows, we discuss two casés:is an odd integer

K-1 .
. C K and M an even integer.
Hy 5™ (2) =14 30 Wply ) (m)em e ’
n=-K A. M = 2N +1 Case
= Hpjebechios () HPebecies (z71) In this case, there ar@N + 1 subfilters. According to

. Theorem 1, for anM-band orthogonal symmetric scaling
whereH£§§§ ange 2y and HP3ubechies (1) denote2 K -regular filter with cardinal interpolation, we only need to design

Largrange halfband filter with lengthK — 1 and K-regular its N subfilters hg ;,¢ = 1,2,..., N. Let the subfil-
Daubechies filter with lengtRK, respectively. This relation- ters ho ;,¢ = 1,2,..., N have the same support set
ship provides a convenient avenue to generate and analyzefthe m + 1, ..., m+ L — 1}, wherem = —[L/2], and[L/2]

Daubechies wavelets. Using the method similar toj2}pand denotes the integer part @&f/2. This assumption can assure
orthonormal wavelets are constructed in [6] and [7]; custonthat the nonzero coefficients of the scaling filter concentrate
arily, we call them/-band Daubechies wavelets. Ad-band nearn = 0. When a scaling filtehq is K-regular andl > K,
K-regular Daubechies filters can be described as follows [7]then its subfilterg:y ; can be parameterized as

) e
HDaubechies( ) _ Z]w -1 ) Q ’( ) h _ 1 C k h(L—k, —[(L—k)/2])
M, K z) = —M(Z—l) K\Z 0,i(n) VI Bi(k) D, M,i (n)
k=0
K-1 i=1,2 ..., N. (16)

whereQ (2)Qx(z™") = > an,k(s)(2—2z—27")
5=0 Since the coefficient sum of each Dubuc filter is equal to one
and the constrainy_ ho ;(n) = 1v/M, it is apparent that
an, K (5) S°B:(k) = 1.In (16), the center of the support set of every
M-l pr 4, N —2s; Dubuc filter is close ta» = 0; thus, their coefficients change
= Z H < s ’) <281n M) in small dynamic range, which is beneficial to numerical
sitsotFsu1=s j=1 J calculation. Consequently, designing F-regular OSISF is

) ) simplified into selecting the parameter vectgrs
The another equivalent form appears in [6]. On the other hand, Qi :beall — K +1) x (L — K + 1) square matrix

similar to 2K -regular Largrange halfband filters 2&-regular
LargrangeM th-band interpolating filter is defined as

whose entries are defined as

M—1 Qi,l(Tla 7’2)
.agrange 2K, -K —Mn—i _ L—ry, m+r L—ry, m4+r
HPS0 (=) = 14 30 3 bl P ma i (14) = BT R T O )
i=1 n k
7’1,7’220,1,...,L—K (17)

This filter satisfies the following:
1) Cardinal interpolation; then,|H, ;(w)|? is a cosine polynomial given by
2) symmetry;

3) supportse{—MK +1, - MK +2, ..., MK —1}; -
4) 2K reguir M[Ho. ) = 4708+ 23 (A7 Qup)conte
Obviously, it is the unique interpolating filter satisfying =t (18)

these four conditions because its subfilters are complet@l¢cording to Theorem 1, th&-regular symmetric interpolating

determined by the linear system of equations in (9). For @galing filterh, is orthogonal iff the parameter vectg#sare the
M-band K-regular Daubechies filter, due to orthogonalitysolutions of the following system of equations:

HpPieectioo(z) Hyyeetes(z 1) is an interpolating filter that
satisfies 1)-4). From the uniqueness, we have

N
> BIQioBi =N

Lagrange aubecliies aubecliiesy _ — =
HIW,gQK s (2) = H/]\DL I\l’, ' (Z)H/]\%, 113 ' (= 1) (15) L
N
which shows the same relationship holds betweemthband > BFQiB; =0, 1=1,2,...,L—1
Daubechies filters and the Largrangie-band interpolating fil- i=1
ters. This relationship is useful in fast generation and perfor- _
mance analysis af/-band Daubechies wavelets. Z Bi(k) =1. (19)

Obviously, the first equation in (19) is not intrinsic since if the

latter L + N — 1 equations hold, then the first naturally holds. In
At first, we desire that the nonzero coefficients of the scalingeneral, the lattek+ /N —1 equations are mutually independent;

filter concentrate neat = 0, which is a reasonable presuppothus, in order to guarantee that the system (19) has solutions,

IV. DESIGNMETHOD OFFIR REGULAR OSISFs
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the number of variables cannot be less tlhap N — 1, thatis be used. In what follows, wher! = 2N 4+ 1, we define a
NK —1 non-negative objective function

L+N-1<N(L-K+1) or L>———— (20) LK)-1 /N 2
FBLBar - By)= Y (ZﬂEQi,lﬂJ (24)

In the subsequent design, we takdéo be the smallest integer =t —
= =1

satisfying the inequality (20) and denote it A6K). For ex-

ample,L(K) = 2K — 1, whenM = 5. whereas whe@d/ = 2N, we define
B. M = 2N Case f By, Bay -, By)

. 2L(K)—1 N—-1 2

In this case, aK-regular OSISFy(n) has 2N subfilters — 9 TQ. 0+ AQx Br | . (@25
ho,i,i=0,1,2,..., 2N — 1, and the subfiltefy, x(n) must ; ; Bi Qi+ By Q. iy (25)

be symmetric, i.e.ho, n(—(n + 1)) = ho, n(n). Therefore,
the length of the support set of the subfilters must be an ev'gglsolve the systems (19) and (22), one can search for the zero

number. Let the support set e L, —L+1 L—1}: then points of the object functions subject to the linear constraints

the subfilters have the following parametric structure: >_B;(k) = 1. Here, the gradient algorithm and Newton’s algo-
rithm are used in turn. Starting from a random initial parameter

1 2Lk vector, by the gradient algorithm, a solution near a zero point of
ho,i(n) = — ﬂi(k)hgf]\}f“; _[(QL_k)/QD(n) the objective function is achieved, where the objective function
VM k=0 value is less thah0~%; then, Newton’s algorithm is employed in
i=1,2...,N-1 order to quickly achieve a zero point, where the objective func-
. L—[(K+1)/2) tion value is less than0—2°. Due to random initial parameter
) — . (21.=2k, —(L=K)) (y vectors, many but not all solutions of the systems in (19) and
o, () VM kZ:O P (k)hD’M’A ) (22) are picked up.
(21) In general, systems (19) and (22) have many solutions, and
each solution generates an OSISF. However, the associated
Define the square matricdy, ; fori =1, 2,..., N —1lina scaling functions are very different in smoothness, reflecting
way similar to (18), and define the entries of the square matrick® low-bound of the Hollder exponent or Sobolev exponent
Qnx,; as follows: estimated by (5) and (6). From the obtained solutions, one
can choose the best one. Unfortunately, the vanishing moment
an, (71, 72) K is too large, and the above scheme suffers from expensive

— p2Ll=2ry, —(L=r0) pyp (2L—2re, —(L=r2)) (1. 1y computational load.
zk: DMK (%) DAL (D) In addition, whend{ > 6, according to (19) and (22), the
o . o number of variables in the system of equations is often more
A K-regular symmetric interpolating scaling filtlg can be de- than that of the equations. In this case, the part of the subfilters
signed by solving the following system of quadratic equationss fixed in advance, and then, the other subfilters are designed

N1 to satisfy the orthogonal condition.

2 TQi 18 +BNQN, 1By =0, 1=1,2,... 201
; B Qi B+ By Q. 1B V. EXAMPLES OF FIR REGULAR OSISFs
Z Bi(k) = 1. (22) In the following examples, we take the paramdtes L(K),
which is the smallest integer satisfying the inequality (20) or
In general, the2. + N — 1 equations are mutually indepen-(22). First, we considel = 1, 2 cases; here, the accurate
dent; in order to make the system of equations be a solutidilter coefficients are obtained by hand. For the > 2 case,

the number of variables should be greater than or equal to the four-band and five-band OSISFs are designed only with the

number of equations, i.e., numerical method in the above section.
K-1 . -
(N— DK+ [ } A. One-Regular OSISFs
2 23 Inthe M = 2N + 1 case, the parametér(1) = 1 and the

L=

2N -3 subfilters satisfyro ;(n) = (1/v/M)é(n + 1). The associated

Here, L(K') denotes the smallest integer satisfying (23). FOQSII_Sstandt_scalmg functt_lonls are d'j:ﬁa_r sScakI)lnlg filters andtHaar
example L(K) = K + [(K — 1)/2], whenM — 4. 30;1 ing functions, respectively, and their Sobolev exponents are

C. Solving the Systems of Equations In M = 2N case, the parametéx(1) = 2 and the subfilters

From the above results, solving the systems (19) and (252%t|sfy
becomes the crux of designing FIR regular OSISFs. When the ,,  _ b s, (1— )] P
regular ordetX is smaller, accurate solutions can be computed = VA ’ I
by hand, and then, the best OSISF is picked out. However, when] 1 11
the regular ordeiX is larger, the numerical methods have to "'~ — VM [5’ 5} '
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Fig. 1. Four-band one-regular OSISF and scaling function. Fig. 2. Two six-band one-regular scaling functions.

The orthogonality is equivalently that the parameters satis
Zf\‘:_ll 20(1 — ;) +1/4 = 0. WhenM = 4andoy = 4 14
(2 +/6)/4, the associated OSISFs are, respectively, given k

PV =12- V6 2, 24V6,4.24V6, 2,2 V6] o2 1 o8
Z g

hg4’1>:§[2+\/6, 2.2 -6, 42—/, 2,2+\/6}.

o

01t
The frequency response of the first filter and the associat
scaling function are shown in Fig. 1. Clearly, it is knowr
from Fig. 1 that the frequency response has no zero f 04

w € [—w4, 4], the orthonormality of the scaling function is  ** .Odﬁeq 05 2 ;’ vz
immediately inferred, and the Sobolev exponent of the scaliiy '
function is 0.5918.

Fig. 3. Five-band two-regular scaling filter and scaling function.
When M = 6, if the parameter vectors;, «- satisfy the

equation B. Five-Band More Regular OSISFs
1 1 1/8 =0 WhenK = 2, a set of equations (20) has two solutions, and
@l —ay) +as(l—az)+1/8= their corresponding subfilters are, respectively, given by
the corresponding scaling filter is an OSISF. Therefore, six-band 1o, = [0, &, -], ho2 = [2, 2,0
one-regular OSISFs can be completely parameterized in the gy
lowing form:
hov=[i5: 5 %) ho2=l55 5 — 5l
héﬁ’l) =l-a,l—-a1/2, s 01,1,..., 1 —a] The first set of subfilters generates a five-band symmetric

orthogonal interpolating scaling function with better analytic
oy = % [1 + % + dao(1 — 042)} property, as shown in Fig. 3. Obviously, the frequency response

is positive forw € [—(x/5), (w/5)], and the frequency
[2 —+/10 2++/10 response is factorized as
o € s
4 4

How) = <1 + 2 cos(w) + 2 cos(2w) ) 2 0w)

: (26)

Eachas generates a six-band one-regular OSISF. As two exam- °

ples, Fig. 2 shows two scaling functions correspondingite=  whereQ(w) = 20 cos(w)—10 cos(2w)—>5, andmax,, |Q(w)| =
(1/4)(24v6), ax = 1 anday = a = (1/2)(1 4 /5/4), re-  35. Thus, the scaling function is orthonormal. The low-bound
spectively, and their Sobolev exponents are 0.6666 and 0.628b]der exponent of the scaling function estimated by (5) is less

respectively. than 0. Therefore, a five-band two-regular scaling function is
We see that whemr; = s, the scaling function is close constructed, which has rational filter coefficients, except for the

to the Haar scaling function in shape. Similarly, witi = five advantages required by us.

2N increasing, the scaling function witly = as = --- = When K > 3, we have to use the numerical algorithms in

anv—1 = (1/2)(1 + /(2N — 1)/(2N — 2)) converges to the Section IV-C to solve the system of equations (19). The obtained
Haar scaling function or the square wave. parameter vectors are given in Tables | and Il. The frequency



SHUI et al: AM-BAND COMPACTLY SUPPORTED SCALING FUNCTIONS

TABLE

PARAMETER VECTORS OFFIVE-BAND THREE AND FOUR REGULAR OSISF
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B B1 B2 B B2
i=1 | 0.34646521185501 0.38329427417072 | 0.0184096545624388 | 0.0243416720779421
= -1.53160523949524 | 0.21531912890462 -3.63422305219063 1.01131152422609
= 2.18514002764023 0.40138659692466 3.12594051024182 0.922122231301493
i= 1.48987288738636 -0.957775427605534
TABLE I
PARAMETER VECTORS OFFIVE-BAND FIVE AND SIX REGULAR OSISFS
Bi B B2 B B2
=1 0.184487164681813 0.429151194420753 0.70896344848106 0.89213998403580
i= -0.750391152727642 | -0.130237131378472 | 3.75510434143538 -1.72022968113583
i= 0.282868872549000 0.448453032756689 | -3.04254515850165 | -1.04194157094469
i=4 |} -0.988709769123080 | -0.354335827261894 | -7.50292650620738 2.30073981413547
=5 | 2.271744884619915 0.606968731462919 5.11835660517008 1.81507145193009
= 1.96304726962251 -1.24577999802085
5 5
K=3 =4 =3 =6
3 3
e >
=1 [=} 08 L
= Ty 075
A 4 3 2
0 0.25 0.5 0 0.25 05 g g
Normlized freq. Normlized freq.
. ormlized freq s o €4 03 0.25
K=5 K=6
3 3
S =
(=3 (=}
= 1 - 1 -0.2 -0.25
-2 0 2 -2 0 2
1 1 . *
"o 0.25 05 ) 0.25 0.5 _ _ , _
Normlized freq. Normlized freq. Fig. 5. Three and six regular scaling functions.

Fig. 4. Frequency responses of five-band three to six regular OSISF’s. TABLE 1lI

HOILDER AND SOBOLEV EXPONENTS OFFIVE-BAND SCALING FUNCTIONS
responses of three- and six-regular OSISFs are illustrated =

Fig. 4, and the three-regular and six-regular scaling functi0|LoRegBular(?“;er 022091 043207 05‘199 085992 09381
are shown in Fig. 5, in which the six-regular one is describe =X 02" O Foo e T s 5 T Tioms
on its part support set. According to (5) and (6), a low bound ¢- 2 . - - - -

the Hoilder exponents and Sobolev of the scaling functions are

estimated, as illustrated in Table III. The above system has four solutions where the two solutions

corresponding to the better scaling functions are
C. Four-Band More Regular OSISFs

WhenK = 2, the polyphase filters have the following para- = (5 + ©) /48
metric representations B =(12v6—2-0) /48

az=(5-0)/48
P2 = (12v/6 -2 +0) /48

hoi=[-37, 30— +3v 20 -n+ 18 -5 m=(22-12/6-0)/14 7= (22-12V6+6) /144
ho,2 = [~30, 3(1+ @), 3(1+a), —30a] where® = /286 — 96/6. Interestingly, the second scaling

filter is identical to the example in [11], although they are de-
rived from completely different approaches.

When K > 2, the numerical method is used to obtain the
parameter vectors of OSISFs. Hér= 3, 4, 5, 6, the parameter
vectors are illustrated in Tables IV and V. From (5) and (6), a low
bound of the Hoilder exponents and Sobolev exponents of the
associated scaling function are shown in Table VI.

According to the orthogonal condition, the parameterg, and
~+ must satisfy the following system of equations:

462 + 32 +992 —da— -9y =0
204437 =5/8
202 4 383y =0.
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TABLE IV
PARAMETER VECTORS OFFOUR-BAND THREE AND FOUR REGULAR OSISF
Bi 1 B2 B B2
i=1 0.77870241700700 | 0.18480141348693 1.18908417038907 0.69217117606933
=2 | -0.38117768511519 | -0.18700532064801 -0.74652071226967 | -1.35521300497696
=3 1.24108122714595 1.00220390716109 -0.12316264342573 2.28589028102117
=4 | -0.60015497595149 0.48376594155427 -0.62284845211355
=5 [ 0.77251721566882 1.73458231958560
i=6 | -0.81096819875510 -1.96484515728283
= 0.42709608144930
TABLE V
PARAMETER VECTORS OFFOUR-BAND FIVE AND SIX REGULAR OSISFs
B A B2 B B2
i=1 1.99176848754050 1.85731346916586 30.13383970066399 29.0207975432901
i= -1.77431897659990 | -2.46637311219875 | -27.74488308025162 | -100.163161102052
i=3 -1.56300698326452 | 4.76135425325253 | -70.31457832704329 136.902718643178
i=4 1.37887387217341 -4.59035811399118 79.52789453858995 -85.3517114104807
i=5 3.56949879913418 1.4380635037715 60.97876822620857 21.6996982892195
i=6 | -3.90360135970715 -92.83485847099898 | -1.10834196315325
i= -0.29637806383649 -12.24353030031760
i=8 2.03317655748858 43.73679700667947
= 0.40406112103364 -4.47357593876446
i=10 | -0.84007345396225 -6.53365200945357
i=11 0.76777865468667
TABLE VI filter or M; therefore, it is nontrivial to design a linear-phase
HOILDER AND SOBOLEV EXPONENTS OFFOUR-BAND SCALING FUNCTIONS interpolating filter bank or wavelet from an OSISF. The
Tow Bound of riou | 0.0762 | 0.0761 | 03556 | 05303 ] 0.7083 | 0.8504 design approach proposed in [11] is an important reference in
Ko 09678 | 0.8904 | 1.1828 | 1.3451 | 1.7414 | 1.8534 designing linear-phase interpolating filterbanks and wavelets,

which is based on the recursive structure on the band number

In numerical computation, the final parameter vectors corré!:

spond to the value of the objective function less than2°,

which is enough for most of applications. Whé# > 6, the

similar algorithms can be employed to design OSISFs.

VI. CONCLUSION

This paper proposed a novel approach to designing the
4) FIR OSISFs and compactly supported
orthogonal symmetric interpolating scaling functions. Using
M-band Dubuc filters, we obtained the parametric representaiz]
tions of M-band K -regular symmetric cardinal interpolating
scaling filters. The orthogonality imposes the quadric con- 3]
straints in the parameter vectors. Solving a set of quadric
equations by hand or the numerical algorithms, two family of
five-band and four-band compactly supported orthogonal sym-
metric cardinal interpolating scaling functions are designed.
These are an absolutely necessary preparation to designing FIRI
orthogonal linear-phase interpolating filterbanks and wavelets.
Such filterbanks and wavelets are required in most applicationgs]
such as image processing and singularity detection. From
these scaling functions, one can design compactly supporteg;]
linear-phase orthogonal interpolating wavelets. There exist

M-band (M
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