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Abstract—In many applications, wavelets are usually expected
to have the following properties: compact support, orthogonality,
linear-phase, regularity, and interpolation. To construct such
wavelets, it is crucial designing scaling functions with the above
properties. In two- and three-band cases, except for the Haar
functions, there exists no scaling function with the above five
properties. In -band case ( 4), more free degrees available
in design enable us to construct such scaling functions. In this
paper, a novel approach to designing such scaling functions is
proposed. First, we extend the two-band Dubuc filters to -band
case. Next, the -band FIR regular symmetric interpolating
scaling filters are parameterized, and then, -band FIR regular
orthogonal symmetric interpolating scaling filters (OSISFs) are
designed via optimal selection of parameters. Finally, two family
of four-band and five-band OSISFs and scaling functions are
developed, and their smoothnesses are estimated.

Index Terms—Cardinal interpolation, linear-phase, scaling
function, Sobolev exponent, wavelet sampling.

I. INTRODUCTION

A COMPACTLY supported wavelet is typically constructed
from a compactly supported scaling function that gener-

ates a multiresolution analysis. It is important (and nontrivial)
to construct scaling functions (and hence wavelets) with
desirable properties, such as orthogonality, high regularity,
symmetry/linear phase, and interpolation. However, in the
two-band and three-band cases, no scaling function can provide
all the above properties. Daubechies [1] had shown that, except
for the Haar function, there exists no two-band compactly
supported orthogonal symmetric scaling function. Neverthe-
less, the -band ( ) scaling functions or wavelets have
appeared that partake several of the above five properties;
for examples, see [2]–[9]. The multiscaling functions and
multiwavelets with compact support, orthogonality, continuity,
and cardinal interpolation were designed [10]. These owe to
more free degrees available in design. In fact, when ,
one can design the -band scaling functions as
much as wavelets with the above five advantages. In [11], Ji
and Shen proposed an approach to constructing such-band
scaling functions from -band scaling functions, and
several four-band examples were presented.

As is well-known, compact support, linear-phase, regularity,
orthogonality, and interpolation are important in both theory
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and applications of multirate filterbanks and wavelets. Since
traditional wavelets or filterbanks do not possess all the above
five advantages, in special applications, a tradeoff among re-
quired advantages has to be made. For example, in image pro-
cessing, the linear phase avoids phase distortion in reconstruc-
tion, compact support provides efficient computation, and the
orthonormality brings the convenience in performance analysis,
but two-band wavelets or filterbanks hardly satisfy these de-
mands. Therefore, the design of scaling functions and wavelets
with the above five advantages has important practical meaning.
The paper will be devoted to the design of such scaling func-
tions via a novel approach in which we utilize the parameter
representations of scaling filters with cardinal interpolation and
symmetry based on -band Dubuc filters.

The interpolation dates back to Shannon’s sampling theorem,
and from the multiresolution analysis point of view, the classical
Shannon sampling uses the Sinc function as the scaling function
for a bandlimited signal that provides an exact representation by
its uniform samples with a sampling rate higher than its Nyquist
rate. Recently, for scale-limited signals, this classical theorem
has been extended to many other forms [10], [12]–[17], and
these new forms are the direct avenue in the performance of the
fast and accurate initialization of the wavelet series transforms
(WSTs). In the two-band interpolating wavelets and subdivision
scheme, the Dubuc filters play an important role [16]–[21]. Sim-
ilarly, these types of filters can be extended to the-band case.
By these filters, the -band regular scaling filters with cardinal
interpolation can be parameterized, which is the cornerstone of
the work in this paper.

The paper is organized as follows. In Section II, we briefly
review some basic properties and structures of-band scaling
functions. In Section III, the -band Dubuc filters are intro-
duced, and the parametric representation of the subfilters of or-
thogonal symmetric interpolating scaling functions (OSISFs) is
developed. In Section IV, by using parametric representation,
we propose an efficient method for designing OSISFs. In Sec-
tion V, two families of scaling functions with the above five ad-
vantages are developed, and their Hölder exponents and Sobolev
exponents are estimated. Finally, this paper is concluded in Sec-
tion VI.

II. OVERVIEW OF -BAND SCALING FILTERS/FUNCTIONS

Similar to the two-band case, one usually uses a multireso-
lution analysis (MRA) with a scaling factor of to construct

-band wavelets. One first constructs a scaling filter and func-
tion and then the wavelet filters and wavelets. Once a scaling
filter or scaling function is available, one can design-band
wavelet filters and wavelet bases via different approaches (such
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as the state-space approach and the factorization approach)
[4]–[6]. -band wavelets or filterbanks have more advantages
than two-band wavelets. Generally speaking, the wavelet filters
and wavelet bases can keep some good properties of the scaling
functions such as the linear-phase and smoothness. Therefore,
in order to obtain a wavelet system, the linchpin is to design
a scaling function with good properties. In what follows, we
briefly review the fundamental results on -band scaling
filters and functions.

A real orthogonal scaling filter is a sequence that sat-
isfies the following linear and quadratic constraints:

(1)

Let £ and
, where £ is a lattice generated by

, and is the set of representatives of £ . In this
way, the scaling filter can be represented by its polyphase
components or subfilters, i.e.,

(2)

where are referred to as the subfilters,
whereas is the polyphase component. It is easy to show
that a real scaling filter is orthogonal iff

or (3)

Given a scaling filter, the associated scaling function is the
solution of the following two-scale difference equation:

(4)

However, an orthogonal scaling filter does not always derive an
orthogonal scaling function. A necessary condition for (4) to be
a solution in is that the scaling filter satisfies the linear
constraint . Moreover, when is a fi-
nite impulse response (FIR), via the infinite product of matrices
and the joint spectrum radius, the sufficient condition for (4) to
exist as a unique solution in is given [22]–[24].
When an -band orthogonal scaling filter satisfies

, the associated scaling function
generates an orthonormal basis [6].

For a scaling filter, the regular order is closely related to the
smoothness and the approximation power for smoothing signals
of the associated scaling function, and its smoothness dictates
the smoothness of the derived wavelet system. Thus, a proper
regular order is required for design. An -band scaling filter
is said to be -regular iff has a polynomial factor of the

form , with for maximal
possible . That is

-regularity is equivalent to , and
its derivatives from the first to the order vanish at

. The smoothness of scaling functions
is an important index in designing scaling functions, and the
quantities to be used measure smoothness are the ones used in
[11] and [26]–[28]. Define

When , finiteness of the above integral defines the function
to be in Sobolev space , and the critical expo-

nent is taken as a measure of the smoothness of ,
which is called the Sobolev exponent. The Höilder exponent
refers to the case. By the Fourier analysis method, one
easily estimates a low bound of the Höilder exponentwith
the following formula [1], [6]:

(5)

where is an arbitrarily small positive number. The Sobolev
exponents can be estimated by using the following method [11].
At first, for an integer , let

where denotes the polynomials of degree. Let an -band
scaling filter with the support set
be -regular, let be the autocorrelation sequence of

, and let

Then, when is stable, the Sobolev exponent satisfies

(6)

where is the spectrum radius of .
Define

(7)
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where
and moments of and , respectively;

partial moment of ;

moment of the th subfilter.

By [6], a scaling filter is -regular iff one of the following two
arbitrary conditions holds:

i) The frequency response of the scaling filter has a zero of
order at the th roots of unity.

ii) For , the partial moments is a
constant independent ofand only dependent on.

III. -BAND SYMMETRIC INTERPOLATING SCALING

FILTERS/FUNCTIONS

The Shannon sampling theorem is one of the cornerstones in
signal processing and communication theory, but it only is avail-
able for bandlimited signals. Its general forms in multiresolu-
tion spaces have been discussed extensively [8], [9], [12]–[15].
As pointed out by Xia and Zhang [12], an orthogonal scaling
function must be a cardinal that supports a sampling theorem
identical to the Shannon sampling theorem in form. A function

is said to be a cardinal function if . Un-
fortunately, in the two-band case, no compactly supported or-
thogonal cardinal scaling function exists. By relaxing some de-
mands, two families of the scaling functions with cardinal in-
terpolation are developed [12], [16], [17]. A family is the or-
thogonal cardinal scaling functions with fast decay, and another
family is the compactly supported biorthogonal cardinal ones.
Fortunately, -band wavelets or multiwavelets can possess the
following three properties.

1) orthogonality;
2) compact support;
3) interpolation.

Two examples are three-band compactly supported orthogonal
interpolating scaling functions [2], [8] and multiwavelets with
cardinal interpolation [10]. In [11], several four-band examples
with the above properties have been given. In this section, we
will investigate how to design -band compactly supported or-
thogonal symmetric scaling functions with cardinal interpola-
tion.

From the wavelet sampling theorem, when is an
-band cardinal interpolating scaling function and the asso-

ciated scaling (or multiresolution) subspaces are defined as
, then we have the

wavelet sampling theorem identical to the Shannon sampling
theorem of the form

(8)

According to the above sampling theorem, the uniform samples
of a signal can directly substitute for the initial approximation
coefficients in the associated WST initialization. The right-hand
side of (8) often provides a better approximation of than
one without the interpolation property, even though .

In order to design such scaling functions, we analyze the char-
acteristics of the scaling filters.

A. Characterizations of FIR Orthogonal Symmetric Scaling
Filters with Cardinal Interpolation

Let

be the type-I polyphase representation of the scaling filter
, where . Then, a scaling

filter can be completely described by its polyphase components
or subfilters .

Theorem 1: An -band real scaling filter is an or-
thogonal symmetric one with the cardinal interpolation property
if and only if the following three conditions are satisfied:

i) or ;
ii) or

, ;
iii) , when

, when .
Proof: From the cardinal interpolation property, we easily

obtain condition i). When the filter is symmetric about
, we have

which is simply condition ii).
From i) and ii), we have

and ,
. Considering the orthogonal condi-

tion (3), we know that the condition iii) holds. Contrarily, if
the above three conditions are satisfied, then the associated
scaling filter is an orthogonal symmetric filter with cardinal
interpolation.

Corollary 2: A 3-band FIR real scaling filter is an orthogonal
symmetric scaling filter with cardinal interpolation property if
and only if it is a Haar-type scaling filter.

Proof: According to Theorem 1, if a 3-band FIR real
scaling filter is an OSISF, then its polyphase components must
satisfy

Since is FIR, is a cosine polynomial.
This implies that its solutions must have the form as

for some integer , and hence,
, and is a Haar-type scaling filter.

It is known from Corollary 2 that in order to design the regular
orthogonal scaling filters with the above properties, one cannot
help but consider the case of .
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Proposition 3: A real FIR orthogonal symmetric interpo-
lating scaling filter is -regular iff its subfilters satisfy

(9)

but for , at least one equation in (9) does not hold.
From (7) and the results in [6], is -regular iff for

is a constant independent of. According to the cardinal inter-
polation, we have , and thus

Moreover,
. By induction, it is easy to prove that the

conditions in (9) hold.

B. -Band Dubuc Filters and Parameterization of the
Subfilters

Dubuc filters [19] play a key role in the subdivision
scheme, Largrange halfband filters, and two-band interpolating
wavelets. By the spectrum factorization of the Largrange
halfband filters, the famous Daubechies wavelets were ob-
tained [18]. Using Dubuc filters as well as the parametric
representations of general interpolating filters, Donoho
wavelets [16], lifting Donoho wavelets [17], and nearly or-
thogonal interpolating wavelets [21] have been consecutively
developed. From the interpolation theory point of view,
Dubuc filters originate from algebra polynomial interpolator.
For example, taking as the interpolating point and

as the
stencil, using the values of a signal at the stencil and
degree polynomial, one can estimate its value at , which
equals to a linear combination of its values at the stencil. The
linear combination weight vector is referred to as a-order
Dubuc filter, where the interpolator is derived from that which
is accurate for all polynomials less than degree, and the
filter’s coefficients can be calculated using the Largrange
interpolation formula

(10)

Mimicking the two-band case, we can define the-band
Dubuc filters and Largrange th-band lowpass filters. Taking

as the interpolating points and
as the stencil, the interpolator

derived from a degree polynomial can implemented by
the following filter:

(11)

We call it an -band -order Dubuc filter. Following the
polynomial interpolation theory and (11), the-band -order
Dubuc filters have the following characteristics.

i) The interpolators derived from are accurate
for all polynomials whose degree is less than.

ii) The filters are the solutions of the system of linear equa-
tions

for (12)

iii) For , the following relationships hold:

(13)

namely, the Dubuc filter with is symmetric.
iv) All coefficients of the filter are rational numbers in the

form of .
-band Dubuc filters just

form a system of basis solutions of (12); therefore, an arbitrary
-band -order subfilter with support set

can be represented as the linear
combination of Dubuc filters

In the above representation, all Dubuc filters have the same
order , and their support sets slide on

from the left to the right. Moreover, one easily derives
the other parametric representation of the-band -order sub-
filter , that is, which is represented as the linear combi-
nation of different-order Dubuc filters. The proper parametric
forms often bring some benefit in numerical computation. The
another parametric representation will be discussed in the next
section.

C. Largrange th-Band Filters and -Band Daubechies
Wavelets

In [18] and [25], the relationship between the Largrange
halfband interpolating filters and Daubechies filters is revealed,
which shows that the commonly used Largrange interpolating
filters are in one-to-one correspondence with the convolutional
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squares of Daubechies filters for orthonormal wavelets of
compact support. That is

where and denote -regular
Largrange halfband filter with length and -regular
Daubechies filter with length , respectively. This relation-
ship provides a convenient avenue to generate and analyze the
Daubechies wavelets. Using the method similar to [1],-band
orthonormal wavelets are constructed in [6] and [7]; custom-
arily, we call them -band Daubechies wavelets. An-band

-regular Daubechies filters can be described as follows [7]:

where

The another equivalent form appears in [6]. On the other hand,
similar to -regular Largrange halfband filters, a -regular
Largrange th-band interpolating filter is defined as

(14)

This filter satisfies the following:

1) Cardinal interpolation;
2) symmetry;
3) support set ;
4) -regular.

Obviously, it is the unique interpolating filter satisfying
these four conditions because its subfilters are completely
determined by the linear system of equations in (9). For an

-band -regular Daubechies filter, due to orthogonality,
is an interpolating filter that

satisfies 1)–4). From the uniqueness, we have

(15)

which shows the same relationship holds between the-band
Daubechies filters and the Largrange-band interpolating fil-
ters. This relationship is useful in fast generation and perfor-
mance analysis of -band Daubechies wavelets.

IV. DESIGN METHOD OFFIR REGULAR OSISFS

At first, we desire that the nonzero coefficients of the scaling
filter concentrate near , which is a reasonable presuppo-

sition to generate a good scaling function. Without loss of gen-
erality, assume all subfilters have the same length and support
set. In what follows, we discuss two cases:is an odd integer
and an even integer.

A. Case

In this case, there are subfilters. According to
Theorem 1, for an -band orthogonal symmetric scaling
filter with cardinal interpolation, we only need to design
its subfilters . Let the subfil-
ters have the same support set

, where , and
denotes the integer part of . This assumption can assure
that the nonzero coefficients of the scaling filter concentrate
near . When a scaling filter is -regular and ,
then its subfilters can be parameterized as

(16)

Since the coefficient sum of each Dubuc filter is equal to one
and the constraint , it is apparent that

. In (16), the center of the support set of every
Dubuc filter is close to ; thus, their coefficients change
in small dynamic range, which is beneficial to numerical
calculation. Consequently, designing a-regular OSISF is
simplified into selecting the parameter vectors.

Let be a square matrix
whose entries are defined as

(17)

then, is a cosine polynomial given by

(18)
According to Theorem 1, the -regular symmetric interpolating
scaling filter is orthogonal iff the parameter vectorsare the
solutions of the following system of equations:

(19)

Obviously, the first equation in (19) is not intrinsic since if the
latter equations hold, then the first naturally holds. In
general, the latter equations are mutually independent;
thus, in order to guarantee that the system (19) has solutions,
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the number of variables cannot be less than , that is

or (20)

In the subsequent design, we taketo be the smallest integer
satisfying the inequality (20) and denote it as . For ex-
ample, , when .

B. Case

In this case, a -regular OSISF has subfilters
, and the subfilter must

be symmetric, i.e., . Therefore,
the length of the support set of the subfilters must be an even
number. Let the support set be ; then,
the subfilters have the following parametric structure:

(21)

Define the square matrices for in a
way similar to (18), and define the entries of the square matrices

as follows:

A -regular symmetric interpolating scaling filter can be de-
signed by solving the following system of quadratic equations:

(22)

In general, the equations are mutually indepen-
dent; in order to make the system of equations be a solution,
the number of variables should be greater than or equal to the
number of equations, i.e.,

(23)

Here, denotes the smallest integer satisfying (23). For
example, , when .

C. Solving the Systems of Equations

From the above results, solving the systems (19) and (22)
becomes the crux of designing FIR regular OSISFs. When the
regular order is smaller, accurate solutions can be computed
by hand, and then, the best OSISF is picked out. However, when
the regular order is larger, the numerical methods have to

be used. In what follows, when , we define a
non-negative objective function

(24)

whereas when , we define

(25)

To solve the systems (19) and (22), one can search for the zero
points of the object functions subject to the linear constraints

. Here, the gradient algorithm and Newton’s algo-
rithm are used in turn. Starting from a random initial parameter
vector, by the gradient algorithm, a solution near a zero point of
the objective function is achieved, where the objective function
value is less than ; then, Newton’s algorithm is employed in
order to quickly achieve a zero point, where the objective func-
tion value is less than . Due to random initial parameter
vectors, many but not all solutions of the systems in (19) and
(22) are picked up.

In general, systems (19) and (22) have many solutions, and
each solution generates an OSISF. However, the associated
scaling functions are very different in smoothness, reflecting
the low-bound of the Höllder exponent or Sobolev exponent
estimated by (5) and (6). From the obtained solutions, one
can choose the best one. Unfortunately, the vanishing moment

is too large, and the above scheme suffers from expensive
computational load.

In addition, when , according to (19) and (22), the
number of variables in the system of equations is often more
than that of the equations. In this case, the part of the subfilters
is fixed in advance, and then, the other subfilters are designed
to satisfy the orthogonal condition.

V. EXAMPLES OF FIR REGULAR OSISFS

In the following examples, we take the parameter ,
which is the smallest integer satisfying the inequality (20) or
(22). First, we consider cases; here, the accurate
filter coefficients are obtained by hand. For the case,
the four-band and five-band OSISFs are designed only with the
numerical method in the above section.

A. One-Regular OSISFs

In the case, the parameter and the
subfilters satisfy . The associated
OSISFs and scaling functions are Haar scaling filters and Haar
scaling functions, respectively, and their Sobolev exponents are
0.5.

In case, the parameter and the subfilters
satisfy
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Fig. 1. Four-band one-regular OSISF and scaling function.

The orthogonality is equivalently that the parameters satisfy
. When and

, the associated OSISFs are, respectively, given by

The frequency response of the first filter and the associated
scaling function are shown in Fig. 1. Clearly, it is known
from Fig. 1 that the frequency response has no zero for

, the orthonormality of the scaling function is
immediately inferred, and the Sobolev exponent of the scaling
function is 0.5918.

When , if the parameter vectors satisfy the
equation

the corresponding scaling filter is an OSISF. Therefore, six-band
one-regular OSISFs can be completely parameterized in the fol-
lowing form:

(26)

Each generates a six-band one-regular OSISF. As two exam-
ples, Fig. 2 shows two scaling functions corresponding to

and , re-
spectively, and their Sobolev exponents are 0.6666 and 0.6281,
respectively.

We see that when , the scaling function is close
to the Haar scaling function in shape. Similarly, with

increasing, the scaling function with
converges to the

Haar scaling function or the square wave.

Fig. 2. Two six-band one-regular scaling functions.

Fig. 3. Five-band two-regular scaling filter and scaling function.

B. Five-Band More Regular OSISFs

When , a set of equations (20) has two solutions, and
their corresponding subfilters are, respectively, given by

and

The first set of subfilters generates a five-band symmetric
orthogonal interpolating scaling function with better analytic
property, as shown in Fig. 3. Obviously, the frequency response
is positive for , and the frequency
response is factorized as

where , and
. Thus, the scaling function is orthonormal. The low-bound

Hölder exponent of the scaling function estimated by (5) is less
than 0. Therefore, a five-band two-regular scaling function is
constructed, which has rational filter coefficients, except for the
five advantages required by us.

When , we have to use the numerical algorithms in
Section IV-C to solve the system of equations (19). The obtained
parameter vectors are given in Tables I and II. The frequency
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TABLE I
PARAMETER VECTORS OFFIVE-BAND THREE AND FOUR REGULAR OSISFS

TABLE II
PARAMETER VECTORS OFFIVE-BAND FIVE AND SIX REGULAR OSISFS

Fig. 4. Frequency responses of five-band three to six regular OSISF’s.

responses of three- and six-regular OSISFs are illustrated in
Fig. 4, and the three-regular and six-regular scaling functions
are shown in Fig. 5, in which the six-regular one is described
on its part support set. According to (5) and (6), a low bound of
the Höilder exponents and Sobolev of the scaling functions are
estimated, as illustrated in Table III.

C. Four-Band More Regular OSISFs

When , the polyphase filters have the following para-
metric representations

According to the orthogonal condition, the parameters and
must satisfy the following system of equations:

Fig. 5. Three and six regular scaling functions.

TABLE III
HOILDER AND SOBOLEV EXPONENTS OFFIVE-BAND SCALING FUNCTIONS

The above system has four solutions where the two solutions
corresponding to the better scaling functions are

where . Interestingly, the second scaling
filter is identical to the example in [11], although they are de-
rived from completely different approaches.

When , the numerical method is used to obtain the
parameter vectors of OSISFs. For , the parameter
vectors are illustrated in Tables IV and V. From (5) and (6), a low
bound of the Höilder exponents and Sobolev exponents of the
associated scaling function are shown in Table VI.
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TABLE IV
PARAMETER VECTORS OFFOUR-BAND THREE AND FOUR REGULAR OSISFS

TABLE V
PARAMETER VECTORS OFFOUR-BAND FIVE AND SIX REGULAR OSISFS

TABLE VI
HOILDER AND SOBOLEV EXPONENTS OFFOUR-BAND SCALING FUNCTIONS

In numerical computation, the final parameter vectors corre-
spond to the value of the objective function less than ,
which is enough for most of applications. When , the
similar algorithms can be employed to design OSISFs.

VI. CONCLUSION

This paper proposed a novel approach to designing the
-band ( ) FIR OSISFs and compactly supported

orthogonal symmetric interpolating scaling functions. Using
-band Dubuc filters, we obtained the parametric representa-

tions of -band -regular symmetric cardinal interpolating
scaling filters. The orthogonality imposes the quadric con-
straints in the parameter vectors. Solving a set of quadric
equations by hand or the numerical algorithms, two family of
five-band and four-band compactly supported orthogonal sym-
metric cardinal interpolating scaling functions are designed.
These are an absolutely necessary preparation to designing FIR
orthogonal linear-phase interpolating filterbanks and wavelets.
Such filterbanks and wavelets are required in most applications
such as image processing and singularity detection. From
these scaling functions, one can design compactly supported
linear-phase orthogonal interpolating wavelets. There exist
several approaches to construct a linear-phase paraunitary
filterbank or wavelets from a linear-phase scaling filter [4]–[6],
but these approaches have some limitations on the initial scaling

filter or ; therefore, it is nontrivial to design a linear-phase
interpolating filter bank or wavelet from an OSISF. The
design approach proposed in [11] is an important reference in
designing linear-phase interpolating filterbanks and wavelets,
which is based on the recursive structure on the band number

.
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