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Abstract— In this paper, we describe a novel self-assembling,
self-reconfiguring cubic robot that uses pivoting motions to
change its intended geometry. Each individual module can pivot
to move linearly on a substrate of stationary modules. The
modules can use the same operation to perform convex and con-
cave transitions to change planes. Each module can also move
independently to traverse planar unstructured environments.
The modules achieve these movements by quickly transferring
angular momentum accumulated in a self-contained flywheel
to the body of the robot. The system provides a simplified
realization of the modular actions required by the sliding cube
model using pivoting. We describe the principles, the unit-
module hardware, and extensive experiments with a system
of eight modules.

I. INTRODUCTION

We wish to create robotic systems capable of au-

tonomously changing shape in order to match the system’s

structure to the task at hand. Many interesting robotic

systems have been proposed in pursuit of this goal [1].

This paper describes a new unit module, the M-Block, a

magnetically-bonded, angular momentum-actuated modular

robot. These 50 mm cubes are autonomous robots that have

no external actuated moving parts, and no tethers. The mod-

ules realize pivoting using inertial force actuation. A flywheel

located inside the module, (oriented in the plane of the

intended motion), is used to store angular momentum before

a braking mechanism is used to decelerate the flywheel and,

during a short duration, exert a high torque on the module.

If this torque is sufficiently high, the module breaks its

magnetic bonds with its neighbors and pivots into a new

location. Because the modules use passive connectors, they

could be hermetically sealed, making them extremely robust

to harsh environmental conditions.

An individual module can move autonomously in an

unstructured environment using this pivoting (rolling) loco-

motion. A module can also move on a 3D lattice of identical

modules, achieving a desired trajectory on a planar surface or

making convex and concave transitions to other planes. The

modules can also jump over distances up to several body

widths wide. This broad range of motions enables the M-

Block system to achieve a wide range of shape changing

and locomotion capabilities.

Similar to the sliding cube model (SCM) [2], we define a

pivoting cube model (PCM). The PCM defines the types of

movements that the M-Blocks can execute in the process

of transitioning from one configuration to another. The

SCM has been a mainstay of the modular robotics field,
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Fig. 1: Neighboring M-Blocks bond through permanent magnets
embedded in their edges while additional magnets on their faces
help with alignment. The modules locomote by pivoting about any
of their twelve edges which allows for a variety of movements,
including the convex transition shown here. All movements are
driven by a torque generated by rapidly decelerating an internal
flywheel. (The two large modules are pictured on a one-inch grid.)

both supporting theoretical developments and driving new

hardware instantiations. Given a group of homogeneous,

typically cubic modules, the SCM posits that a given module

can perform a planar traversal from one of its neighboring

modules to an adjacent module. While the SCM has proven

to be a convenient framework for theoretical work [2], phys-

ical realizations of modules that can actually implement the

SCM have been limited. We know of no hardware which can

reliably implement the SCM in three dimensions. Hardware

systems which implement the SCM in two dimensions are

often mechanically complex and prone to failure.

While research in chain-based modular robots is quite

active [3], [4], focus has shifted away from lattice-based

approaches based on the SCM model. If we expect lattice-

based self-reconfigurable systems to remain an active area of

research, we should move past the sliding cube model and

all of its practical limitations. This paper makes a number

of contributions to this end. First, the pivoting cube model

that it presents is theoretically attractive. While the PCM

is not equivalent to the SCM, the PCM still allows generic
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self-reconfiguration, and it enables some types of motions

that are not supported under the SCM. Second, the M-

Block hardware that we present relies on simple principles

that eliminate the mechanical complexities of many existing

systems. Finally, the experimental hardware characterization

provided in this paper demonstrates that self-reconfiguration

though pivoting with inertial forces is practical and could be

a viable basis for a system containing hundreds of modules.

The remainder of this paper is organized as follows.

Section II gives an overview of related work that pertains

to the M-Blocks system. Section III presents the hardware

design of the modules. Section IV then presents the pivoting

cube model and illustrates the types of movements that it

supports. Next, Section V presents data characterizing the

hardware and the results of many experiments with the

system. Finally, Section VI concludes with a short discussion

and ideas for future work.

II. RELATED WORK

We situate our work with respect to other cubic lattice-

based modular robotic systems [1]. Self-reconfiguring lattice-

based modular robots can be broadly categorized by two

attributes: the mode of locomotion and the connection mech-

anism. Perhaps the most elegant model for locomotion is

termed the sliding cube model [2]. In this model, cubes

translate (i.e. slide) from one lattice position to another.

Despite its theoretical simplicity, we know of no hardware

which implements this approach in the general 3D case. We

do know of two systems [5], [6] which implement a 2D

version of the sliding cube model in the vertical plane and

two systems [7], [8] that operate horizontally. Not only are

all of these systems mechanically complex, it is not clear

how any of these systems could be extended to 3D.

A common alternative to the sliding cube model is rotating

one or more connected modules about a pivot point that

is on a face or inside of a module [9], [10], [11], [12],

[13]. The I-Cubes [14] use 3-DOF linkages to reconfigure

passive modules in a cubic lattice. Another approach to

locomotion relies on modules that expand and contract in

either two [15] or three [16] dimensions. Other systems [17]

employ modules which can more generally deform.

Our work is most closely related to existing systems whose

modules pivot about the edges they share with their neigh-

bors [18], [19], [20]. These existing pivoting systems are

confined to the horizontal plane and use complex connection

mechanisms and/or external actuation mechanisms to achieve

reconfiguration. These prior works make no attempt to define

a generalized, three-dimensional model for reconfiguration

through pivoting. This paper will present a physical pivoting

cube model that can be applied to both solitary modules

and groups acting in synchrony. Our model captures physical

quantities including mass, inertia, and bonding forces.

The other defining characteristic of any modular robotic

system is its connectors. Many modular systems use me-

chanical latches to connect neighboring modules [14], [9],

[15]. Mechanical latches typically suffer from mechanical

complexity and an inability to handle misalignment. Other

systems such as the Catoms [21], Molecule [10], and EM-

Cube [8] use electromagnets for inter-module connections.

Electromagnets consume more power and are not as strong

as mechanical latches. Electropermanent magnets [22] are

an attractive alternative because they only consume power

when changing state, but they still require high instantaneous

currents to actuate and are not readily available. One unique

system [23] uses fluid forces to join neighboring modules,

but must operate while submerged in viscous fluid. Another,

the Catoms [24], uses electrostatic forces for bonding. The

unifying feature of all of these connection mechanisms is that

their holding force can be controlled: on, off, or somewhere

in-between. This adds complexity and decreases robustness.

In contrast to all of the systems just mentioned, M-Blocks

use a simple mode of locomotion (pivoting), a simple inertial

actuator (a flywheel and brake), and a simple bonding mecha-

nism (permanent magnets). Actuation through inertial control

has been used extensively in space [25] and underwater

robotics [26] as well as several earth-bound applications

[27]. We know of only one modular robotic system, the

XBot [20], that uses the inertia of the modules to induce

pivoting, but the necessary forces are applied externally;

the system is only two-dimensional; and the modules are

constrained to 180 degree rotations. The simplicity of the

M-Blocks, with their self-contained inertial actuators, allows

our system to achieve both robust self-reconfiguration and

independent locomotion in 3D environments.

III. HARDWARE

We have constructed four first generation M-Block robots,

along with four un-actuated modules. As shown in Figure 1,

each 143 g module is constructed from a 50 mm cubic frame

milled from a single piece of 7075 aluminum and the module,

(including the flywheel), has a moment of inertia, about the

center of mass, of 63.0E-6 kg m2. This frame holds twenty-

four cylindrical bonding magnets along its twelve edges.

Six bolt-on panels contain various electrical and mechan-

ical elements such as the inertial actuator and the control

PCB. Additionally, each of these panels is inset with eight

outward-facing magnets that assist in alignment between

neighboring modules. The active modules are equipped with

on-board power, computation, actuation, and communication

capabilities (see Figure 2(a)). They can move on a structure

formed by the passive modules (which still have all necessary

magnets) or completely independently over open ground.

Cost and robustness of modular robots become limiting

factors when producing modular systems with many mod-

ules. The M-Blocks attempt to address these issues due to

their mechanical simplicity and limited number of moving

parts. The per unit cost of the five modules that were

produced was $260, but this did not include machining costs,

which would have been substantial. (We estimate that in

quantity 100 the per unit cost, including all machining, would

be $200.) The remainder of this section provides a detailed

look at the design of the three critical systems inside each

robot: the magnetic bonding and pivoting mechanism; the

inertial actuator, and the electronic control system.
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(a) (b)
Fig. 2: As illustrated in (a), each M-Block is built around a solid
aluminum frame (1) and contains an inertial actuator (2), a motor
controller (3), batteries (4), and control circuitry (5). The inertial
actuator is detailed in (b). It is composed of a brushless DC motor
(6) which spins a flywheel (7). A servo motor (8) is used to tighten a
belt (9) which rapidly decelerates the flywheel to create an impulse
of torque.

A. Magnetic Edge and Face Bonds

An important aspect of the M-Block system is the novel

design that allows the modules to quickly form magnetic,

non-gendered, hinges on any of the cubes’ twelve edges.

These hinges must provide enough force to maintain a

pivot axis through various motions. The design solves this

challenge by using twenty-four diametrically polarized cylin-

drical magnets, two of which are situated coaxially with each

edge of the frame. The diametrically magnetized cylinder

magnets are free to rotate as shown by the arrows in Figure 3.

This rotation allows configurations with two, three, or four

modules to form structural magnetic bonds.

The magnets are set back from the corners of each cube as

shown in Figure 4. This set-back is critical to the M-Block

system performance because it guarantees that the strength

of a hinge bond between two modules (involving four total

magnets) is not dwarfed by the strength of the face bond

between two modules (involving sixteen total magnets) when

the modules are flush and well aligned. In contrast, if the face

bonds were much stronger than the hinge bonds, the energy

provided by the inertial actuators to break the face-to-face

bond would overpower the hinge bond and result in the active

module careening away from the assembly.

While the edge magnets form strong hinges and serve

to connect neighboring modules in the lattice, they are not

sufficient to overcome misalignments that are introduced

when modules pivot. To solve the alignment problem, we

embedded eight 2.5 mm diameter disc magnets in each of the

six faces. These disc magnets are arranged in an eight-way

symmetric pattern in order to maintain the modules’ gender

neutrality. These alignment magnets are strong enough to

pull a module into alignment as it finishes a rotation, but

they do not add significant holding force to the face bonds.

B. Inertial Actuator

In order for a module to overcome the forces of the

magnetic bonding system, it needs to provide a torque for a

relatively short time period. As illustrated in Figure 2(a,b),

our actuator is a unidirectional reaction wheel designed to

release all of its energy in less than 15 ms, thereby creating

Fig. 3: Each cube frame (translucent) holds twenty-four diametri-
cally polarized magnets in its edges that are free to rotate as shown
by the orange arrows. This configuration allows the cubes to form
face or hinge bonds.

Fig. 4: The two magnets in all edges of each cube are set back
from the corners by 1 mm. This air gap decreases the strength of
the planar bonds (which involve eight magnets per cube) so that its
does not overwhelm the strength of the hinge bonds (which only
involve two magnets per cube).

an approximate impulse of torque. The flywheel itself is a

20g stainless steel ring with a moment of inertia of 5.5E-

6 kg m2. It is fixed to an out-runner style brushless DC motor

that is capable of spinning at up to 20000 rpm.

We quickly decelerate the flywheel with a self-tightening

rubber belt that is wrapped around the flywheel’s circumfer-

ence. When un-actuated, the belt is loose and constrained

by a cage to maintain clearance from the flywheel (see

Figure 5(a)). To tighten the belt and stop the flywheel, we

use a hobby-style servo motor which pulls the belt in the

single allowable direction of rotation (see Figure 5(b)). As

the belt contacts the flywheel, the flywheel’s motion further

tightens the belt resulting in a rapid deceleration.

C. Electronics

Each module is controlled by a custom-designed PCB

which includes a 32-bit ARM microprocessor and a 802.11.4

XBee radio from Digi International. Three 3.7 V, 125 mAh

LiPo batteries connected in series power the modules. The

processor responds to commands received from a remote

XBee device connected to the user’s computer in order to

control the inertial actuator. The low-level BLDC control

is performed by a commercial motor driver. Because the

BLDC driver provides no feedback to the microprocessor, we

employ a photo-reflector to measure the speed of a striped en-

coder disk attached to the flywheel. Additionally, each PCB
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(a) (b)
Fig. 5: As illustrated by a cutaway view, subfigure (a) shows how
a rubber belt (1), is used to rapidly decelerate the flywheel (2).
When un-actuated, the belt rests against a cage (3), away from the
flywheel. Subfigure (b) illustrates how, when the belt is tightened
by a servo (4), it is pulled in the same direction that the flywheel
is spinning so that the belt self-tightens. Due to the design of the
mechanism, it can only brake the flywheel when the flywheel is
spinning in the direction indicated by the dashed arrow.

includes a 6-axis IMU (to determine absolute orientation);

a outward-facing IR LED/photodiode pair (for neighbor-to-

neighbor communication); and several Hall effect sensors (to

detect misalignment between modules).

IV. PIVOTING CUBE MODEL

A. Pivoting Cube Model Theory

The sliding cube model (SCM) is one of the more

prevalent algorithmic frameworks that has been developed

for modeling the motions of lattice based self-reconfiguring

modular robots. To overcome the physical implementation

issues of the sliding cube model and to utilize the favorable

traits of the M-Block hardware presented in Section III,

we develop a new physical pivoting cube model (PCM)

that is inspired by existing theoretical models [28]. In our

PCM, cubic modules locomote by pivoting about their edges,

in effect rolling from one position to the next. While the

specifics of the approach differ from those of the SCM,

pivoting still allows generalized reconfiguration.

Our model includes several assumptions about the types

of motions the modules can execute:

• While already assumed by other models [28], the mod-

ules involved in pivoting motions sweep out a volume

that must not intersect other modules. Figure 6a.

• Stable lattice configurations must have modules con-

nected via their faces, not their edges. (This is in

contrast to other models [28].) Figure 6b.

• Modules involved in pivoting motions must be able

to slide past stationary modules in adjacent planes.

Figure 6c.

• Modules can locomote in unstructured environments

without a supporting lattice, (e.g. on the ground).

• Multiple modules can move as a connected unit, but

they must all share a single axis of rotation.

These assumptions allow individual modules or groups of

modules to execute a range of motions including concave

transitions, convex transitions, and translations (both on and

(a) (b) (c)
Fig. 6: Moving cubes sweep out a volume that must be free from
other cubes in order to allow motions (a). Although cube edges
bond to each other - due to edge geometry any cube attached only
through edge bonds (shown in red) is not part of the regular lattice
configuration (b). Faces have no protruding elements allowing cubes
to slide past each other, although friction can be significant (c).

off lattice). In particular, a disjoint set of modules can loco-

mote over open ground to coalesce at a centralized point and

then proceed to form an arbitrary structure. To complement

our model’s theoretical underpinnings, we supplement it with

realistic physical constraints. These include mass, inertia,

gravity, friction, etc., but we assume that the modules are

rigid bodies and that the pivot axes do not slip.

In the most basic instantiation, a pure moment (T
(k)
pm ) is

applied to the k-th module by its inertial actuator. This

moment would cause an unconstrained module to rotate

about its center of gravity, but the geometric contraints

instead force the module to rotate about a pivot axis that is

created by the magnet hinge (see Figure 7). Using the parallel

axis theorem, we can calculate the moment of inertia about

this pivot axis. This approach can be generalized to find the

moment of inertia (IA) for any set (A) of connected modules

about an arbitrary axis. Because the actuators generate pure

moments, all of their applied torques can be superimposed

and applied en masse about the assembly’s pivot axis.

Fig. 7: When a torque (A) about an axis (F) causes the module
to pivot through an angle θ (B) about an axis (D), the modules
experience additional forces: downward force due to gravity (E)
and magnetic force from the face-to-face bonds and any edge bonds
being broken (C).

Other forces, including gravity (mA ·g), generalized mag-

netic forces (F
(k)
m ), and friction act to prevent this pivoting

(see Figure 7). If the single module in Figure 7 is viewed

as a generalized set of modules moving as a rigid unit, one

can construct a torque balance equation for the assembly:
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d2
θ

dt2
=

−mA ·g · cos(θ) · rcg + ∑
k∈A

T
(k)
pm (t)−F

(k)
m (θ) · r(k)

IA

While not explicitly stated in the equation, θ is a function

of time. rcg is the distance between the pivot axis and

the assembly’s center of gravity, and r(k) is the distance

between the pivot and the center of the face of the k-th

module in the assembly. This differential equation is non-

linear and time-varying. It ignores sliding friction which

would be subtracted from the numerator of the right-hand

side (thereby resisting the torque of the actuators) and which

will be highly dependent on the configuration of modules in

adjacent planes. Solving this equation for θ(t) would give us

an approximate description of the motion of a set of modules.

We used this equation as a basis for a rough analysis and

comparison of the different physical parameters and torques

acting on the system.

The basic message of the equation is that one should aim

to maximize pure moments (T
(k)
pm ) while minimizing the mass

(mA) and inertia (IA). While decreasing the magnetic bonding

strengths (F
(k)
m ) would lead to more energetic motions, those

same magnetic forces are used to maintain the magnetic

hinges and the system’s structural integrity. Finally, it is

worth emphasizing that the pure moments from all of the

inertial actuators sum equally over all the modules in a rigid

assembly. This is a fundamental property of inertial forces

and allows multiple modules to move as a group.

B. Autonomous Motion

In order for modular robots to realize self-assembly and

robust operation, the unit modules need to be both self-

contained and independently mobile. Although researchers

have produced modular systems in which the modules can

locomote independently, most of these systems are limited to

controlled environments [3], [12]. In contrast, the M-Blocks

are independently mobile, and they show an ability to move

through difficult environments. Although they only have a

single actuator, they can exhibit several motions including

rolling, spinning in place, and jumping over obstacles up to

twice their height.

This diverse set of motion primitives enables novel motion

algorithms. One method that we use to drive an M-Block

towards a specific goal is to implement a bimodal behavior.

When the module’s actuator is aligned with the goal location,

the actuator is used to apply a moderate amount of torque that

causes controlled rotation toward the goal. When the module

is not aligned with the goal, we stochastically reorient

the module using a high torque that causes unpredictable

movement. A group of disjoint M-Blocks executing this

behavior can self-assemble into a lattice structure.

C. Lattice Reconfiguration

Once a group of M-Blocks has aggregated into a lat-

tice structure, the modules are able to reconfigure using

a variety of motion primitives. For an example of lattice

reconfiguration, see Figure 8(a-d). In general, the modules

can execute translations, convex transitions, and concave

transitions. When translating, the modules rotate through 90

degrees to move to an adjacent position within the same

plane. Translations can be vertical (ascending or descending)

or horizontal (supported from any side, including above). For

examples of translations, see columns 1–3 of Table I.

Convex and concave transitions allow the modules to move

between orthogonal planes. Convex transitions are used to

traverse outside corners by rotating through 180 degrees. We

have shown that the modules can perform convex transitions

in either horizontal or vertical planes (columns 4–5 of

Table I). Concave transitions are 90 degree rotations that

are used to traverse inside corners. As before, these moves

can be horizontal or vertical (columns 6–7 of Table I). Due

to the fact that the active module is bonded to neighbors

in two orthogonal planes when the move begins, we have

found that the torque required to execute concave transitions

approaches the limits of what our actuators can provide.

(Future version of the system will employ a number of

mechanisms to overcome this limitation.)

(a) (b) (c)
Fig. 9: Groups of modules can move as rigid assemblies. Two-
dimensional movements can be extended along the pivoting axis
(a). Modules can aggregate and roll as an assembly (b). A few
M-Blocks with orthogonal actuators can form easily controllable
meta-modules (c).

D. Group Movement

When operating on a lattice, groups of modules that share

the same pivot axis are able to coordinate their actuators

in order to move together. Not only does this increase the

stability of the motion due to longer pivots as in Figure 9(a),

but it also decreases planning complexity when attempting

to relocate groups of modules on a lattice.

Assemblies of modules are able to move together in the

environment by first reconfiguring in order to approximate

a wheel or sphere (Figure 9(b)) and then simultaneously

applying their inertial actuators. An additional type of group

movement involves small groups forming meta-modules

(Figure 9(c)) to more precisely control their trajectories. The

modules can be oriented such that their actuators are aligned

in orthogonal planes allowing control over additional degrees

of freedom. When a disjoint group of modules is self-

assembling, these meta-modules can serve as intermediate

assemblies to increase the speed of the aggregation.

V. EXPERIMENTS

We characterized the M-Block hardware, and we per-

formed experiments with lattice-reconfigurations and group
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(a) (b) (c) (d) (e)
Fig. 8: These five frames show a modeled progression of a group of four modules that encounter and attempt to traverse an obstacle. They
first reconfigure into a tall shape in order to move the center of gravity of the group as far towards the direction of travel as possible.
After they have achieved this, in part e, all of the modules simultaneously apply moments to pivot the whole group over the obstacle.

movements. We tested the modules as they executed a range

of different lattice reconfiguration moves; a representative

sample of these moves is shown in Table I. Additionally,

video frames taken from the video linked in the supplemen-

tary materials are shown in Figure 12.

A. Characterizing the Actuator

Each M-Block inertial actuator needs to provide a high,

almost instantaneous, application of torque in order to break

the strong permanent magnet bonds. As previously described,

the actuator is able to decelerate the flywheel from 2100

to 0 rad/s in about 15 ms. By differentiating the measured

angular velocity profile of the flywheel during deceleration,

we have estimated the torque as shown in Figure 10. The

entire actuation event, from the moment the brake signal

is sent, to moment when the flywheel reaches zero angu-

lar velocity, is roughly 50 ms. The torque peaks at about

1.25 Nm. As shown in Figure 10, most of the torque is

applied over a 15 ms span, which transfers approximately

600 watts (average) to the cube frame. In experiments with

several different modules, we have noticed that the maximum

applied torque varies with the particular actuator due to belt

wear and flywheel material.

Fig. 10: This graph shows the angular velocity profile of the inertial
actuator’s flywheel as measured by an optical encoder. The torque
was found by differentiating this motion and applying the relevant
physical parameters. The peak torque that the actuator provides is
on the order of 1.25 Nm.

(0ms) (33ms) (66ms) (100ms) (133ms) (166ms)

(0ms) (200ms) (4000ms) (9900ms) (13000ms) (14000ms)

Fig. 12: These video frame sequences show six consecutive frames
for a jump motion (a), and six frames for an assembly movement
over a span of 14 seconds (b).

B. Characterizing the Magnets

As previously described in Section III the magnet bonding

system needs to provide enough force for robust face-to-

face connections as well as strong edge-to-edge bonds. To

provide this high strength in a small volume, we used N-52

grade rare-earth neodymium magnets. The pull strength of

various configurations are shown in Figure 11. The pull

strength of about 23 N is enough to support a chain of 16

modules hanging vertically. Additionally, the torque required

to separate two modules (in two different configurations)

is shown in Figure 11(c). The high torque exhibited for

the module bonded with two neighboring faces is near the

limit of what the inertial actuator can overcome. (We are

experimenting with bigger flywheels in order to apply more

torque.)

C. System Experiments

An important goal of the M-Blocks is to provide robust

lattice reconfiguration. Table I demonstrates the results of a

range of different attempted motions. The range of flywheel

RPM’s before braking was found through trial and error.

A motion is considered a success if after three attempts

the module moves to its desired lattice position. The two

most common failure modes were insufficient torque and

disconnection from the lattice. Additionally, modules some-

times have too much inertia and overshoot their desired

lattice positions. We attribute the insufficient torque failures

to several factors: low battery voltage resulting in reduced

motor speed; belt and flywheel surface conditions resulting in

unpredictable torque profiles; and inherent random variability

in the friction between the belt and the flywheel. We attribute

the lattice disconnection failures to variability in the bond
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TABLE I: This table shows experimental results for controlled tests of various motion primitives. The RPM measurements are approximated
using the on-board optical encoder. Some of the motions were performed using experimental upgrades that were not implemented in all
of the hardware; the ⋆ indicates a brass flywheel with a higher moment of inertia, and the † indicates the use of gear teeth on the edges
for additional friction.

Traverse Horizontal
Traverse

Vertical
Traverse†

Horizontal
Convex

Vertical
Convex† ⋆

Horizontal
Concave⋆

Vertical
Concave⋆

Corner
Climb

Jump⋆

Illustration

kRPM 11-13 10-12 16-18 8.5-12 13-15 19-21 16-17 17-18 19-21
Attempts 21 20 20 20 20 20 20 15 55
Successes 91% 75% 60% 80% 70% 65% 70% 93% 51%

(a) (b) (c)
Fig. 11: The force of the hinge strength drops quickly after holding a maximum force of around 18 N (a). The force between the faces
in tension (red), and in shear (blue) are important for bonding (b). We measured the torque required to rotate a module as a function of
an angle (c). The torque required in the four module configuration approaches the limit of the current actuator.

interactions and slipping of the pivot axis (which prompted

us to experiment with gear teeth attached to the cube edges).

The bond strenghts vary due to manufacturing tolerances,

edge magnet state, and module alignment. In particular,

debris can accumulate and impede the free rotation of the

edge magnets.

We also performed a number of less formal tests involving

individual modules and groups of modules moving both on

the lattice and in the surrounding environment. We found that

a module could execute 20–100 motions before depleting

its battery, depending on the difficulty of the motions. Two

examples are shown in Figure 12, and more examples can be

found in the supplemental video. Figure 12(a) shows a single

module jumping a distance that is one module high and

two modules wide. Figure 12(b), shows two active modules

reconfiguring into a 4-module approximation of a wheel,

and then simultaneously apply their actuators in order to

roll the whole structure. (Note that, in the last frame, the

white module has transitioned from the upper right to the

lower right.) Additionally, we have tested that the modules

are able to traverse on carpet, brick, and grass at speeds up

to 1 m/s.

VI. DISCUSSION

We have introduced the M-Blocks, 50 mm cubic robots

that use inertial forces to move independently in a range of

environments; perform lattice-reconfigurations on a substrate

of identical modules; and move ensembles of modules in

both lattice reconfigurations and in external environments.

The M-Blocks are relatively simple and robust—attributes

essential when scaling a modular robotic system into the

hundreds or thousands. There remain several difficulties and

limitations of the M-Block system. The modules contain

only a one-dimensional, uni-directional inertial actuator. The

modules are unable to descend in a controlled fashion and

instead continue descending until they encounter a horizontal

step. The actuator is not strong enough to execute all lattice

moves reliably. There is no intelligence incorporated into

the system, so a module cannot self-recover if it fails to

successfully execute a particular move.

Future versions of the M-Blocks could be implemented at

various scales. The pivoting cube model is scale-independent,

and a simplified analysis of the individual modules shows

that they are roughly scale independent. The ratio of the

actuator inertia to total module interia remains constant as the

modules undergo volumetic scaling. Material considerations

dicate that smaller objects can spin faster than large ones,

so in theory, smaller flywheels could develop larger torque
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to mass ratios. However, assuming constant flywheel speed

and volumetric scaling, the torque to volume ratio for a fixed

volume of M-Blocks increases as the characteristic module

size approaches the fixed volume. That is, a single module

of given size will have more torque than a group of smaller

modules configured into the same volume. This property

affects the system capabilities of assemblies of modules mov-

ing together. Other factors such as magnetic strength, energy

density, material properties, and manufacturing constraints

will likely affect scaling in complex ways.
We are developing a three-dimensional design with a

bidirectional flywheel which will allow us expanded con-

trol over the actuation torque. We are also considering

heterogenous modules patterned off of the basic M-Block

modular architecture that are capable of specific tasks such

as supplemtary power storage, manipulation, and traditional

(e.g. wheel or legged) locomotion methods.
We are also interested in exploring a wide breadth of

control and planning algorithms. Due to their natural ten-

dency to self-align, combined with their on-board sensing

and independent movement capabilities, we believe that the

modules will have the ability to move robustly and correct

for errors. An additional algorithmic challenge is deciding

how we can best use the modules’ inertial actuators to roll a

large assembly through an open environment. We are hopeful

that the contributions we have presented here, combined with

additional refinements, will result in a lattice-based modular

robotic system that is robust, simple to use, and highly

capable.
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