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M -Channel Linear Phase Perfect Reconstruction
Filter Bank With Rational Coefficients

Trac D. Tran Member, IEEE

Abstract—This paper introduces a general class ofM-channel transform (DCT) which can be viewed as an irrational-coef-
linear phase perfect reconstruction filter banks (FBs) with rational ficient 8-channel 8-tap linear phase orthogonal FB [13], [14].
coefficients. A subset of the presented solutions has dyadic coeffl--l—he future image compression standard JPEG2000 also utilizes

cients, leading to multiplierless implementations suitable for low- - ) - .
power mobile computing. Al of these FBs are constructed from several biorthogonal integer-coefficient wavelet pairs for fast

a lattice structure that is VLSI-friendly, employs the minimum  coding/decoding and for lossless compression [15], [16].
number of delay elements, and robustly enforces both linear phase  This paper introduces a large family of FIR linear phase
and peffeCt(jreconStrUPtlOnfpfODEftyaTh'lij]J?ttlce Coeff'C'en_tj_arefpa- perfect reconstruction FBs with rational coefficients and
rameterized as a series of zero-order lifting steps, providing fast, ner m ion propertv. In r implementation
efficient, in-place computation of the subband coefficients. Despite goodbe c g>|/ (;O pdact.o property. telge f [.;)e : tt'athctJ S
the tight rational or integer constraint, image coding experiments can e_eas_'y oun Y'a a c_:ommon_ scaln_g_ actor. ) ighter
show that these novel FBs are very competitive with current pop- COnstraint yields solutions with dyadic coefficients, which lead
ular transforms such as the 8x 8 discrete cosine transform and the to efficient multiplierless implementations. Our focus is on the
wavelet transform with 9/7-tap biorthogonal irrational-coefficient  construction of the polyphase matrices as cascades of low-order
filters. modular components. Desirable properties such as symmetry,

Index Terms—Compression, dyadic coefficients, linear phase FIR, and perfect invertibility, are propagated by imposing them
filter bank, multiplierless, rational coefficients. structurally onto each cascaded module.

|. INTRODUCTION A. Outline

ULTIRATE filter banks (FBs) have found tremendous Thg outliqe of the paper is as follows. !n Section I, we oﬁer

applications in the analysis, processing, and efficieft'€View of |mp.ortant background .materlgls, concept;, mo'uya-
representation of digital signals [1]-[4]. Signal representatiof{§NS, and previous related works in multirate FB design using
by subband samples are usually more compact, more efficidttice and Iadd_er structures. The next section introduces agen-
yet as informative as the time-domain counterparts. Takiﬁ‘g‘jal parameterization of polyphase matrices based on lifting
advantage of the normally sparse subband sample matrix, $8PS (also known as ladder structures) and the subset of so-
can often obtain significant data compression. lutions that allows the construction @f-band rational- and

One particular class of FBs that have attracted a lot gyadic-coefficient FBs. Parts of Sections Il and Ill are meant

recent interests is FBs with integer coefficients [5]-[12fC Serve as tutorial materials. D_esign issqes and_ various design
First of all, integer-coefficient FBs eliminate the truncatiof*amples are presented and discussed in Section IV. The suc-
error in finite-precision implementations. More importantlycessful application of the newly found family of FBs in image
integer-arithmetic implementations in hardware are fasté2ding is |Ilustrfated in Section V. Finally, Section VI ends the
require less chip area, and consume less power. Thirdly, mdfpPer with a brief summary.
integer-coefficient FBs also have very fast multiplierless imple-
mentation with simple shift-and-add operations only. HencB; Notations

integer FBs are desirable in applications with high data rates| et R, Q, and 2 denote the sets of real numbers, rational
as well as in portable computing and wireless communicatigiymbers, and integers, respectively. Also,Tetienote the set
applications. Integer FBs or integer approximations are alreaglydyadic rationals, i.e., all rational numbers that can be rep-
popular in practice. For example, current international imaggsented in the form of/2™ wherek,m € Z. Bold-faced
and video compression standards JPEG and MPEG emplg)er case characters are used to denote vectors while bold-
several integer approximations of the 8-point discrete cosifiged upper case characters are used to denote matiées.
A~ |A|, anda;; denote, respectively, the transpose, the in-
Manuscript received April 23, 2001; revised December 21, 2001. This wol€S€, the d_eterm'nant' a_nd thk jth el_ement of the matriA.
has been supported in part by the National Science Foundation under GMAnen the size of a matrix or vector is not clear from context,
CCR-0093262 and in part by FastVDO Inc. This paper was presented in Pé‘&pital subscripts will be included. The notatidn e QMXN
at the SPIE Wavelets Applications in Signal and Image Processing ConferenceDMxN indi h | FHRE x N ix A
Denver, CO, July 1999. This paper was recommended by Associate Editor IDF’ . m' icates that ?Ve_ry element of thé x mamx
Vaidyanathan. is either rational or dyadic, i.eq;; € Q ora;; € D,Vi, .
The author is with the Department of Electrical and Computer Engi- Seyeral special matrices with reserved symbols are: the
neering, The Johns Hopkins University, Baltimore, MD 21218 USA (e-mail: . .
trac@jhu.edu). polyphase matrix of the analysis baik ~), the polyphase
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Fig. 1. M -channel uniform FB. (a) Conventional representation. (b) Polyphase representation.

reversal or anti-diagonal matrik the null matrix0, a permuta- synthesis filters have linear phase (their impulse responses are
tion matrix P, and the diagonal matril. M andL are usually either symmetric or antisymmetric if the filters have real coef-
reserved for the number of channels and the filter length. In tHisients). Besides the elimination of the phase distortion, linear
paper, we only consider the class of FBs whose filters all hapbase systems allow us to use simple symmetric extension
the same length, = KM, K € Z*. An M-channelL-tap FB methods to accurately handle the boundaries of finite-length
is sometimes denoted as afi x L transform. The symbols signals. Furthermore, the linear phase property can be ex-
hi[n], H;(»), andH;(e’*),0 < i < M — 1, stand for theith ploited, leading to faster and more efficient FB implementation.
analysis filter's impulse response, its associatadansform, If all filters have the same length = K M, it has been well
and its Fourier transform. Similarly, thi#gh synthesis filter established that the polyphase matrices satisfy the following
is denoted byf;[n], F;(z), or F;(c’*). For abbreviations, symmetric property [2] [17]
we often use LP, PR, and FB to denditeear phase perfect
reconstruction andFB. E(z) =2 E-UDE(z1)J (analysi$ (1)
R(z) =z~ E-DIR(z~1)D (synthesiy (2)
Il. BACKGROUND AND MOTIVATION . . . . .

whereD is the diagonal matrix with entries beinrgl or —1

A. FB Fundamentals depending on the corresponding filter being symmetric or anti-

. . . . . . tric.
In this paper, we shall limit the discussions on discrete-tin@ TMetr -
maximally decimatedV/-channel uniform FBs as depicted in The_,- highly complex problem of qleS|gn|ng ahl-band
Fig. 1. At the analysis stage, the input signdh] is passed FIR I|nea_1r phase pgrfect recons;rucnon_FB can be reduced
through a bank of\f analysis filtersH,(z), each of which pre- to Cr?ot(r)]SItn% iﬁp::olg”?te pt(_)tl))./lqommldn?.atrlcﬁézg and R(f:i)'t'
serves a frequency band. The overall sampling rate is preser%ﬁ at bo ~ INvertioiiity and finéar phase condition
by the M-fold downsamplers. At the synthesis stage, the sufi® satisfied. Additional constraints that yield rational- or

bands are combined by a set of upsamplers &hadynthesis yadic-coefficient filters W”.I b_e impos_ed on top. Knowing
filters F(z) to form the reconstructed signal]. E(z) andR(z), we can easily find the filterg;[n], f;[n] and

The FB in Fig. 1(a) can also be represented in terms of ﬁ:g:;?l This is the approach that will be taken throughout

polyphase matrices as shown in Fig. 1(b). H&g) is the anal-
ysis bank’s polyphase matrix ami(>) is the synthesis bank’s .
polyphase matrix. Note that bol(z) andR(z) areM x M B- The Lattice Structure
matrices whose elements are polynomialsin [1]. The delay ~ The lattice structure is one of the most effective and elegant
chain and the\/-fold downsamplers act as a serial-to-parallgbols in M -channel FB design and implementation. This ap-
converter. Similarly, in the synthesis bank, thefold upsam- proach bases on various factorizations of the polyphase matrices
plers and the delay chain act as a parallel-to-serial converterE(z) and R(z) [17]-[23]. From another viewpoint, in the lat-
The polyphase representation usually leads to faster and miice approach, the polyphase mafik=) or R(z) is constructed
efficientimplementations. Itis also very helpful in the FB desigfrom a cascade of modular low-ordered structures that propagate
process. IfE(z) is invertible with monomial determinant, i.e.,certain desirable properties (such as linear phase and perfect re-
|[E(2)| = 2", n € Z, one can obtain the outpiifn] as a pure construction). The lattice structure has been known to offer a
delayed version of the input{n], #[n] = z[n — no], with FIR  fast FB implementation with the minimal number of delay el-
synthesis filters by simply choosilg(z) = E~1(z) [1]-[3]. ements, and it can retain all desirable properties regardless of
We call this class of polyphase matridelR invertible The re- lattice coefficient quantization [1]—[4].
sulting FIR FB is said to bbiorthogonalor to haveperfect re- The generalM-band linear-phase lattice structure is pre-
construction In the case whelR(z) = E~!(») = ET(»7!), sented below [21]. The polyphase matkxz) can be factored
the FB is callecharaunitary. as
In numerous practical applications, especially in image
and video processing, it is often desired that all analysis and E(z) =Gk 1(2)Gg_2(2)---G1(2)Go 3)
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Fig. 2. General lattice structure fé -channel LPPRFB with filter length = K M (drawn forM = 8).
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Fig. 3. Simplified lattice structure fat/-channel LPPRFB with filter length = K M. (a) Type-I structure. (b) Type-ll structure.

where andV;_;. By repeating this operation, two different simplified
11U, o I 17T o I I structures shown in Fig. 3 can pe derived. The number of
G;(2) =5 { OZ Vl {I —I} {0 7_11} {I _J free parameters and the complexity of the structure have been
N * . “ reduced by almost 50% while the generality of the structure is
S3BWA(W, 0<i<K-1 (4) sitill retained. All rational-coefficient designs in this paper are
and constructed from these two structures.
o 1 { U, UOJ:| L [Uo 0 } [I J} C. The Lifting Scheme or the Ladder Structure
0 V2|1 Vod -Vo| V2|0 Vi||J -I The lifting scheme, also known as the ladder structure, is a spe-
215 W (5) cial type of lattice structure, a cascading construction using only

2 ' elementary matrices — identity matrices with one single nonzero

This lattice generates even-channel linear phase perfect @g=diagonal element [7], [10]. 2-channel FBs implemented in
construction FBs where every filters having the same lend@fder structures save roughly half of the computational com-
L = KM [21]. K is often called the overlapping factor be-Plexity due to the exploitation of the inter-subband relationship
cause of the FB connection to lapped transforms [18], [Ld)etween coefficients. Ithas been proven that aryZbolyphase
The factorization in (3) is also minimal. The resulting latticénatrix E(z) with unity determinant can be factored into a cas-
structure employs the fewest number of delays in its implemefgde ofpredict P(z), updatel/ () lifting steps, and a diagonal
tation — the polyphase matrix can be implemented using §62ling matrix [10]. Besides the speed improvement, the lifting
more thanM (K — 1)/2 delay elements. Each cascading stru&cheme also offers many other advantages: ability to map inte-
ture G;(z) increases the filter length by/. All U; andV;, 9ers to integers losslessly, simplicity of integer wavelet design,
i=0,1,...,K — 1, are arbitraryM /2 x M /2 invertible ma- in-place computation, connection to spatial prediction, and capa-
trices. The general lattice of the analysis bank is depicted Bity of incorporating nonlinear filtering.

Fig. 2. The synthesis bank can be obtained by inverting each o
analysis component one by one. D. Motivation

Following the approach in [22], [23], the structure in Fig. 2 Althoughthere have been numerousworks onfastrational-and
can be simplified significantly since any matrid; can be integer-coefficient two-band FBs [5]-[12], similar research on
moved across the butterfly matric®€’s and the delay chain Af-band systemsis rather limited. There has been substantial ev-
A(z) to combine with the free matrices of the next stdde,; idence thafl/-band decompositions are more advantageous than
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the dyadicwavelettransformincoding applications. Thewaveletn equivalence t@efinition 1 above is that every element of
based coder that the FBI designed to compress fingerprints adtath polyphase matrices is a polynomial with rational coef-
ally imitates a 4-band decomposition using the popular 9/7-téipients. In other words, if the polyphase matrices are repre-
biorthogonal wavelet [24]. On other image typé$;band FBs, sented a¥(z) = > E,z " andR(z) = >~ R,z ", then

M -bandwavelets and wavelet packets almostalwaysyield highgr € Q> andR,, € QM*M vpn € Z. Thus, the notations
coding performances [15], [16], [18], [19], [21], [25]-[28]. Fur-E(z) € QM*M(») andR(») € QM*M(2) are often used to
thermore M -channel FBs in reverse (the synthesis bank comigglicate that the resulting FB has rational coefficients.

first) are also useful in communications as crosstalk-free trans-

multiplexers [2], [29] and precoders [30], [31]. B. Rational and Dyadic Lifting-Based Cascades

When M > 2, there is no simple spectral factorization From the simplified lattice structures in Fig. 3, itis clear that

method which has worked well in 2-channe_| FB design. OQﬁe key to rational or dyadic-coefficient solutions hinges on the
has to rely on other approaches such as lattice structure parar

eterization, time-domain optimization, and cosine modulati [ee-parameter scalar matrice, V;,0 < ¢ < K — 1, and
P P ' o Yeir inverses. Since the fixed components — butterfly matrices
[1]-[4]. Even in the 2-channel case, the lifting scheme |

predominantly used for fast implementation rather than for » W}, delay chains {\(z), A(z)}, and their inverses — are

design. It is unclear how to generalize the lifting result to builg ready d_yadlc components, it is sufficient _to Impose rational
and dyadic property on the free scalar matrices.

an entire class of/-band FBs with many desired properties One problem arises from the irrationgly/2 normalization
such as linear-phase and integer-coefficient. In the next SeCtiPnCtors at the initial butterfly stag€, of both Type-I and
0 -

we present rational- and integer-coefficient building blocks th?‘ pe-ll structure in Fig. 3. There are several simple solutions to

can bq employe_d to construct fast integer (even muInpherIest s problem. First, for two-dimensional applications, tHe/2

FBs with an arbitrary number of channels. : L
factor in the row-wise filtering stage can be delayed and later
combined with thel/+/2 factor in the column-wise filtering

[ll. RATIONAL - AND INTEGER COEFFICIENT STRUCTURES stage to form a dyadic scaling factor 1/2. Second,1g/2
factors in Gg can be deferred and later combined with the
1/+/2 factors in the inverse compone(izg1 of the synthesis

The FBs of interest in this paper all satisfy the definitiopank.
below. Both of these solutions have a common drawback. They in-

Definition 1: An M-channel FB is said to have rationalcrease the dynamic range of intermediate data and final subband
coefficients if every analysis as well as synthesis filter c&amples. In order to minimize the bit depth and to achieve con-
efficient is rational, i.e..h;[n], filn] € Q,¥n € Z and sistently high performances in a unifying lossless/lossy coding
vi € {0,1,...,M — 1}. An M-channel FB is said to have framework, the FB should map integers to integers with limited
integer (or dyadic) coefficients if every analysis as well as syit expansion. A solution to the dynamic range problemis to re-
thesis filter coefficient is dyadic, i.ek;[n], fi[n] € D,¥n € 2 distribute thel /v/2 factors to obtain unbalanced, unnormalized
andvi € {0,1,..., M —1}. Gy andG ' matrices as follows:

Integer implementations can be easily obtained by scaling
the rational analysis and synthesis filter coefficielgg:] and U, O 11 Ly
fi[n] by their corresponding common denominatdts and Go = [ 0 Vo} {2J EI} (6)

C, respectively. Perfect reconstruction can be achieved by one

scaling factor,1/C,C;. Preferably,C, and C; should be as gnd

small as possible so that the dynamic range of the subband sam-

ples is limited and the computational complexity is minimized. [T L) [ugt o
However, one integer division needs to be spent on each output 0 T i 0 V!
sample, and perfect integer mapping cannot be guaranteed.

The dyadic subsef;;[n], fi[n] € D, of rational-coefficient This solution is commonly employed in integer wavelet design
FBs has even greater value in practice. In the dyadic case, F8§l implementation [3]. However, the unbalanced nature of the
can be implemented using only addition and binary shifting o8 makes some subbands have more energy than they should.
erations. Hence, these are often calteditiplierlessor multi- Hence, in coding applications, the following quantization and
plier-freeFBs. In this case, the scaling facttC, C, is dyadic; €ntropy coding steps need to be compensated accordingly.
hence, the input signal can be recovered perfectly using a binaryhe 1/2 scaling factor in each cascaded struc@ifez) can
shift. also be redistributed in similar fashion. For example, the type-I

From the definition of the polyphase representations [1] ~ Structure in Fig. 3(a) can be modified as follows:

A. Problem Formulation

()

I i1 I1][I o I I
se=lo vl allo Sl -l
Hi(z)= ) =~ Eu(") 0 Vi) [T —IJ[0 7T [5T —31 ©
1\[7_01 The resulting structure after taking into account (6)—(8) is illus-
Fi(2) = Z 2~ M=1=O R, (M) trated in Fig. 4 wherdJ, andV; are free scalar invertible ma-

—o trices. Linear phase and perfect reconstruction are structurally
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Fig. 4. General construction of fadf-band integer-coefficient FBs (type-I, drawn fbf = 4).

' & ™~ the key to our rational-coefficient or dyadic-coefficient FB de-
= H{ T 1] # H Z; @ sign. The theorem below establishes the parameterization of any
LELE] % & invertible matrix using a cascade of elementary, diagonal, and
' n permutation matrices.

Fig. 5. Parameterization of an invertible matrix as product of lifting steps Theorem 1. Ev.eryN x N invertible matrixV Car.] be Com_
us,, and diagonal scaling factors . pletely characterized by (V. — 1) elementary matricesy di-
agonal scaling factors, and a permutation matrix.

) o This is the LDU matrix factorization and we refer the readers
enforceq bythelattlge.The type-Il structure in Fig. 3(b) can algg [32] for a formal proof. Any invertible matri®v can be
be rewritten accordingly written asV = PLDU whereP is a permutation matrixL

is a lower triangular matrixDD is a diagonal matrix, andJ
Gi(2) = [I 0 } [I IJ} [I 0 } [%I %J} ' is an upper triangular matrix. All diagonal entries of bdth
‘ 0 ~'I|[J [0 V; J -1 and U are unity. Each of the lower or upper triangular matrix
(9 can be factored intoV (N —1)/2 elementary matrices whose
M-band LPPRFBs with rational or dyadic coefficients can b@ff_diagona| entries are labeled, or u,;. The parameters;;
easily constructed ifUp, V;;0 < i < K — 1} € QM/ZM2 504 i corresponding elementary matrides form the
or {Uo, Ug', V;, ViH0 < i < K — 1} € DM/2XM/2 ye- lower-triangular matrixL, i.e., L = [, ; P;;, whereas the

ol

T2

spectively. This topic is the focus of the next section. parameterss;; and their corresponding” elementary matrices
_ o U;; form the upper-triangular matrikJ, i.e., U = [[, . U;;.
C. Matrix Parameterization The diagonal scaling factors labeled are contained in the

As previously mentioned, the setp, V;;0 < ¢ < K — 1} diagonal matrixD and they hold the key to invertibility. This
holds all of the FB’s degrees of freedom. The purpose of matfi¥) Parameterization in FB design first appears in [7] under the
parameterization is to completely capture this set of invertib@Mmeladder structure L _
matrices using the fewest number of independent parameters>ince the permutation matrix is a simple re-routing, we usu-
From a design perspective, matrix parameterization provide&/y ignore itin the parameterization. The diagonal scaling fac-
powerful FB design tool since the free parameters can be varl@§s are strategically placed at the end of the structure so that
independently and arbitrarily without affecting the most desithey can be absorbed into the quantization stage whenever pos-
able FB characteristics. Unconstrained optimization can be p&tale. This requires a simple modification of the factorization:
form_ed on the free_—paramete_r space to obtain other features §uch V = PLDU = PDD-'L.DU = PDLU
as high coding gain, regularity, and high stopband attenuation.

An efficient parameterization of invertible matrices for integefwherel. 2 D—LD is still a lower triangular matrix with unity
and rational-coefficient FB design is based on elementary m#iagonal elements. The LDU parameterization of any arbitrary
trices as depicted in Fig. 5. invertible matrixV is illustrated in Fig. 5. The following the-

Definition 2: An N x N matrix is called elementary if it is orem imposes the rationality condition 8f, its inverseV !,
an identity matrixI with one single nonzero off-diagonal entryand all filter coefficients.

The symbolU;; will be used when the corresponding nonzero Theorem 2:If {p;;,w;;, ;} € Q, then{V,V~1} ¢ QNVxN
off-diagonal entryw;; is above the diagonal, i.e.,< j where and{h;[n], f;[n];Vi,n € Z} € Q.

i, 7 indicate the location of the nonzero off-diagonal element. If  Proof: First, sinceQ is close under addition and multi-
the nonzero off-diagonal entry is below the diagonal,i.e:,j, plication, if {p;;, u;, o} € Q, then{P;;, D, U;;} € QN*N,
symbolsP;; andp;; will be used instead. hence{L,D,U} € Q¥*¥ andV = PLDU e QNMxV,

The elementary matrix is often calledlifting stepin this Similarly, since the set of parameters that characterizes the
paper. One characteristic of an elementary matrix is that its ifverse {—p;;, —u;;, 1/c;} € Q, it is easy to establish that
verse is also elementary. Moreover, the inverse simply involvgs-1 = U-!D-IL-1P-1 ¢ QV*N as well. Now, con-

a negation of the nonzero off-diagonal enfigy or u;;. Itis ob-  sider the cascading modul€s, in (6) andG;(») in (8) and
vious thatp;; (or u;;) € Q or D is equivalent td?;; andP;;'  (9). If {Uy, Visi = 0,1,...,K — 1} € QM/2xM/2 then
(or U;; andU;') € QV*N or DYV, respectively. This is {Go, Gy} € QM and{G;(2),G; '(2);i =1,2,..., K~
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Fig. 7. Example of decomposing diagonal scaling factors into lifting steps.

Fig. 6. Simplified parameterization of an invertible matrix. From left to right: original scaling factors; decomposition inté{1/K}
pairing; decomposition into lifting steps.

1} € QM*M () Hence, for the Type-I lattice as in Fig. 3(a), _
we haveE(z) = [H;L:K_l Gi(2)]Go € QM*M(3) and the encoder. That is why we choose to place them at the end of

O e the factorization in Fig. 5.

R(_Z) = GO I[Hi=1 G (2)] € Qﬁfffl(@- For thf{TXfe'” Dyadic Lifting Steps and Multiplierless Constructio@ne
lattice as in F'9'13(b)E(Z)_1: Go 1:[{=1 Gj\gz)Af Q" (%) advantage that the lifting scheme offers is the versatility and
andR(z) = [[[ip_1 G (D)]Go ™ € @YY (). Inother e simplicity in constructing fast transforms that can map in-
words, {/;[n], fi[n];Vi,n € Z} € Q. . B tegers to integers as illustrated in Fig. 8. Hi@or (or round, or

Theorem 3:1f {p;;, ui;} € Dand{a;} € {2k € Z},then  ceiling) operator is placed in each lifting step, the FB can now
{hilnl, fi[”]V'Lv_” € Z} e .D- . _map integers to integers with perfect reconstruction regardless

Proof: This is a straightforward extension of the result iyt he [ifting step has integer coefficients or not. Moreover, if the

Theprem 2T_h_e complication here involves the scallng_factorming step is chosen to be dyadic, the nonlinear operation can
a; since their inverses are not guarante?d to E’e dyaf,'cj\?ve‘&éfincorporated into the division using binary bit shift. A scalar
they themselves are. We still ha{/Ia,lU, L_Nv UA_ } €D ifting step of valuek/2™ can be implemented as a multiplica-
if {pij, ui;} € D. However{D, D™} € DYH ifand only if o by followed by a division byt /2™, Division by1/2™ fol-
{ai} € {2k € Z}. From these conditions, FBs with integefoye by a truncation is equivalent to a binary shifthylaces.
coefficients can be realized by following the same reasoning-f§e numeratok: can be easily implemented using bit shift and
in the proof of Theorem 2. The most convenient path to dyadiggq operations, or we can split the fractiof®™ into a cascade
coefficient FBs is to set all diagonal scaling factors to unisy. pure power-of-two lifting steps, i.ek/2™ = 3, 1/2'. The

Computational ComplexityAs each elementary matrix |aiter approach leads to an implementation with solely binary
takes one multiplication and one addition, and the diagynt-shifts, preventing the bit-depth expansion in intermediate
onal matrix requiresV. multiplications, the computational yagyits. With all scaling factors set to unity, multiplierless FBs
complexity of each matrix multiplication is, at most, equatan pe easily constructed using this method. If the scaling fac-
to that of direct multiplication under this parameterizationy,g a; are powers of two, we can still retain the multiplierless
N(N —1)4 N = N? multiplications andV (N — 1) additions. taature on both banks.
In most cases, the computational complexity can be reducedyi, all free-parameter matricd$, andV; constructed from
significantly by setting the diagonal scaling factors to ”ni%yadic lifting steps, the structure in Fig. 3 or Fig. 4 is very reg-
setting many lifting step to zero, or choosing the lifting coeffiy|ar and modular: the same shift-and-add module is employed
cients to be dyadic as described in the next section. An examplgeatedly. This is very desirable in practical VLS| implemen-
of a reduced-complexity parameterization is shown in Fig. §tion where irregularity often translates to awkward transistor
where entries close to the diagonal axis are emphasized. Higcements, leading to larger chip area and power consumption
complexity is now reduced to ong(N — 1) multiplications 1331 The challenge is how to choose the minimal set of lifting
and2(N — 1) additions. _ _ steps that yield optimal or near-optimal coding performances.

L|ft|ng Decomposition for Scalm_g Factorslf we restrictthe \ne shall demonstrate in Section IV via many design examples
determinant ofV to +1, the N scaling factorsy; in D can be ¢ not all lifting steps are needed and most, if not all, diagonal

converted into lifting steps as well, i.e., the entire maWixn  gq5jing factors can be set to unity without having to sacrifice
this case can be represented using only lifting steps. much coding performances.

In the 2x 2 case, it is well-known that the diagonal scaling
matrixilo( 1 OK can be factored into four lifting steps [10]. IV. DESIGN

In the N x N case, the product of the diagonal elementss The FB structure presented in the previous section already
unity. Hence, they can be divided infé — 1 sugcessive pairs, has high practical value: FIR, linear phase, and perfect recon-
each with unity product. In other words, sinﬂé\‘=1 «; = 1,the struction regardless of the choices of the lifting,{ «;;} and

following pairings can be obtained: scaling {o;} parameters. Restricting these parameters to ratio-
nals yields rational-coefficient FBs. However, to achieve high
{al’ i} 7 {alo% 1 } ’ {ala(mg’ 1 } 7 cod?ng pe_rformance in practice, several other properties such as
a1 a2 Q103 coding gain and regularity are also needed. Practical FBs based
N1 1 on our structure can be obtained using two methods: approxi-
) H X N1 mation and optimization.
i=1 ILio o

as demonstrated in Fig. 7. Each pair can then be factored iftoAPProximation
a cascade of four lifting steps. However, many of these scalingln the approximation approach, one can study closely existing
factors typically can be folded into the quantization stepsizeshifjh-performance FBs and try to replace their floating-point
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Fig. 8. Example of a lifting step and its implementations. (a) Original lifting step. (b) Approximation that can map integers to integers, udhiftranti+add
operations.
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Fig. 9. Design Example 1: 4-channel 8-tap integer LPPRFB. Left: analysis bank. Right: synthesis bank.
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components by rational or integer components. One typical € v |
ample is the systematic approximation of the popular rotatic.| . . >< N S
angle, the basic building block of many FBs in the current lit- : \ \ N T / Y
erature such as the DCT [34], the LOT [18], and its generalize /0 \1 1/ \
version GenLOT [19]. 1 X \ Vs / / \ X / \
A plane rotation can be represented using three lifting ste_ / - WA /A / v 1\
or two lifting steps and two scaling factors as follows [10]: . m / W L
R N0 U 7Y | R B
R | S [
—s, el 1o 17 —s 1 0 17 Fig. 10. Normalized frequency responses of the 4-channel 8-tap integer
L ¢ LPPRFB in Design Example 1. Left: analysis bank. Right: synthesis bank.
|G 0 1 0 1 ti
{ 0 ci:| [_Sici 1} {0 1} The signalz[n] is the commonly-used AR (1) process with in-

N . N tersample autocorrelation coefficignt 0.95. The coding gain
wherec; = cosb;, s; = sinf;, andt; = tan6;. Therefore, we can be thought of as an approximate measure of the FBs energy
can simply try to replace each plane rotation approximatedympaction capability. Among the listed criteria, higher coding
by rational-coefficient ladder structures. The most straighain correlates most consistently with higher objective perfor-
forward method is to obtain the irrational |Ift|ng CoeﬁiCient&nance (measured in MSE or PSNR) FBs with h|gher Coding
{((ei = 1)/si),si,sici, t:}, and then replace them by rationalgain compact more signal energy into a fewer number of coef-
or dyadic values, for example, truncating the binary represeftients, and this leads to more efficient entropy coding.

tations of these parameters. Regularity: A recursive cascade of most of the previously
mentionedA/-channel FBs on the lowpass channel output can
B. Optimization generatel/-band wavelets. Smoothness of the continuous-time

The other design approach is to employ an unconstrainggfling functione(#) and wavelet functiony(t) which result
nonlinear optimization where certain FB desirable properti@m infinite iteration of the FB's lowpass channel is crucial
such as coding gain and regularity are maximized. in signal approximation and interpolation. The smoothness of

Coding Gain: The coding gain of a FB is defined as the re¢(t), also termedegularity, correlates closely to the number of
duction in transform coding mean-square error over pulse-coff0es at aliasing frequencies= 2kr/M,k =1,2,..., M —
modulation (PCM) which simply quantizes the samples of the0f the lowpass filtersto(z) and Fy(z) [25]. These zeroes
signal with the desired number of bits per sample. Defipas  a'€ also calleda_mlshlng_ momentsince a I_megr com_b|nat|on qf
the variance of the input signafn], o2 as the variance of the the corresponding s_calmg_functlon anql its time-shifted versions
ith subband, anfif;||2 as the£2 norm of theith synthesis filter. Can represent any piecewise polynomial of degtee 1 where
With several assumptions including scalar quantization and®ais the degree of regularity (the number of zeros at aliasing

sufficient large bit rate, the generalized coding gain can be fdféduencies).
mulated as [35] In traditional 2-band wavelets, all of the system’s degrees

of freedom are allocated to these vanishing moments, or zeros
o2 atw. The compact-support filters are easily obtained from the
M1 /M- (10) spectral factorization of the maxflat halfband filtéy(z) =
(Hi:o 0.37-||fvi||2) Ho(z)Fo(z). In the generalM/-band case, it has been proven

Ccoding gain — 1010»5—’;10
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TABLE |
DESIGN EXAMPLE 1: COEFFICIENTS OF THE4-CHANNEL 8-TAP DYADIC LPPRFB. Tor. ANALYSIS FILTERS & ;. BOTTOM: SYNTHESIS FILTERS f;

ho -5/16 1/8 7/8 21/16 21/16 7/8 1/8 -5/16

hy || -61/512 9/256 95/256  141/512 -141/512  -95/256 -9/256  61/512

ha -1/8 0 1/2 -3/8 -3/8 1/2 0 -1/8

hs || 23/128 5/64 -61/64  249/128 -249/128 61/64 -5/64  -23/128

fo 0 1/16 3/16 1/4 1/4 3/16 1/16 0

fi 5/128  -23/256 -249/256 -61/128  61/128 249/256 23/256  -5/128

f2 -1/16 -5/32 21/32 -7/16 -7/16 21/32 -5/32 -1/16

f3 || -9/612 -61/1024 141/1024 -95/512 95/512 -141/1024 61/1024 9/512
0] ®—osra5e—P @- X[0] @ 1] D—[256/7265®- 2%(0)
(1] @ 24/53 @ @ X[2] @ @ @ 5324] ® v ‘ 2x(1]
x(2) D-pesnoz -z =& @ @ Xl —@— O ey AWAIP

[13251122288][97/265][112] [112]971265] 13250122284

3] Loz = L& xo H—-1 Lo——0 S— 2x03]

Fig. 11. Design Example 2: 4-channel 8-tap rational-coefficient LPPRFB with 1 analysis vanishing moment and 2 synthesis vanishing momeatgsiseft: an
bank. Right: synthesis bank.

that in order forFp(z) to be K-regular (havingK zeros at | — S

(2k7r/M),Vk:1,3,...,M—1),aIIHi(z),i:1,2,...,M— /\ < \.(\K

1, must haveK zeros at dc frequency (= 0) and vice versa / X A //

[25]. The latter statement is equivalent to / / \\ /N /X\ / \ \

| NX T NA ]
Boln] = \] [/ /| A/

i A O AR

vi=l,2,...,M—1 and/k=0,1,..., K—1. (11) /.,, T i g o
Taking advantage of the resultin (11), we can enforce as me;
asK vanishing moments on the lowpass filter by designing tt’ \M - \V

lifting steps inU, andV; such that the resulting lattice yields]

is excited with the set of input signalsf; # = 0,1,..., K — Fig. 12. Design Example 2. Top row: normalized frequency responses of

1}. A subset of lattice parameter$7{j u;;} will be allocated the 4-channel 8-tap regular rational-coefficient LPPRFB (left: analysis; right:
Y synthesis). Bottom row, from left to right: analysis scaling functictit), first

specifjcally for the imposition of VaniShing mome_ms’ furthe5nalysis wavelet functiom¢ (t), synthesis scaling functiop®(¢), and first
reducing the number of free parameters in the lattice. synthesis wavelet function: (#).

C. Design Example 1: 4-Channel 8-Tap Dyadic-Coefficient 1yne_| jattice in Fig. 4(a). However, it was designed to have ex-
In this 4-channel 8-tap design example, we demonstrate #hely one vanishing moment in the analysis bank and two van-
feasibility of designing nontrivial integer-coefficient LPPRFBsishing moments in the synthesis bank. The synthesis stage can

This design is obtained from the optimization approach basegtonstruct perfectly the ramp signal using only the low-pass
on the Type-I lattice. Floating-point lifting coefficients are firssubband. The enhanced smoothness in the synthesis bank is
found via the nonlinear unconstrained optimizasomplexou- evident from the scaling and the wavelet functions shown in
tine in Matlab. Integer-coefficient solution is then obtained blgig. 12. This design achieves the highest degree of regularity
quantizing the lifting coefficients to dyadic rationals. The corgiven the number of channels and the number of filter taps —
responding fast implementation is depicted in Fig. 9. All of thi is impossible to impose two vanishing moments on the anal-
filter coefficients are indeed dyadic, and they are tabulated ysis bank as well [25]. The detailed lattice structure is depicted

Table I. Note that the scaling factors 2 and 1/2 are present to bal+ig. 11. Unfortunately, this FB does not have a practical in-
ance the gain of the subbands only; they should be absorbed tefger implementation due to the excessive dynamic range of the
the quantizer or moved to the other bank in practice. The ndifting parameters.
malized frequency responses of the filters are shown in Fig. 10.

E. Design Example 3: 8-Channel 8-Tap Dyadic-Coefficient
D. Design Example 2: 4-Channel 8-Tap Rational-Coefficient s g.channel 8-tap dyadic-coefficient design example is
With Improved Regularity a close approximation of the 88 floating-point DCT [34].

This 4-channel 8-tap design example has rational coefficienignce, it is named the binDCT and it follows the DCT’s factor-

instead of dyadic as in the previous one. It is still based on timation very closely. The resulting multiplierless lattice structure
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Fig. 13. Design example 3: 8-channel 8-tap binDCT. Left: analysis bank. Right: synthesis bank.

TABLE I
DESIGN EXAMPLE 3: COEFFICIENTS OF THEB-CHANNEL 8-TAP DYADIC-COEFFICIENTLPPRFB. ToP. ANALYSIS FILTERS /;. BOTTOM: SYNTHESIS FILTERS f;

ko 173 172 172 172 172 172 172 172
hy || 247/512 52811/131072  2147/8192 3/32 ~3/32 2147/8192  -52811/131072 -247/512
ke || 55/128 3/16 “3/16 -55/128  -55/128 -3/16 3/16 55/128
hs || 9732 ~89/4096 ~97/256 174 1/4 97/256 89/4006 -9/32
ha 174 -1/4 “1/4 1/4 1/4 174 174 174
hs | 7/16 “1343/2048 9/128 /2 -1/2 9/128 1343/2048 7/16
o || -3/16 1/2 -1/3 3/16 3/16 “1/2 172 -3/16
he || -3/32 329/8192 -223/512 /2 172 223/512 -2329/8192 3/32
o 1/4 1/4 1/4 1/4 174 1/4 1/4 1/4

fi [ -1/2 223/512 ~2329/8192 ~3/32 3/32 2329/8192 223/512 172

f2 1/2 3/16 “3/16 172 172 ~3/16 3/16 172
fi || -1/2 9/128 134372048 7]16 77/16 ~1343/2048 9/128 172

12 /2 -1/2 /2 172 172 172 -1/2 172
£ -1/4 977256 -89/4096 -9/32 9/32 8974096 ~97/256 1/4
Jo || _-3/16 55/128 “55/128 3/16 3/16 557128 55/128 3/16
|| 3/32 2147/8102  52811/131072 -247/512 247/512 -52811/131072 _ 2147/8102 ~3/32

/ 4% )3(7/ A ///// \ 7;}(
%ﬁ\f / / WAAWA

A ity

NN VL W A I
Fig. 14. Frequency responses of the 8-channel 8-tap binDCT in Design Example 3. Left: analysis bank. Right: synthesis bank.
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is depicted in Fig. 13. Design Example 3 is obtained from the apessing module is constructed solely using lifting steps; hence,
proximation approach. Each rotation angle in the Chen’s DGW¥e name the transform the LiftLT. In the>816 Type-| fast
structure is converted to a lifting representation. We employ tw@T, the three rotation angles that yield near-optimal solution
lifting steps for the rotation angles near the output and thraee {0.137,0.167,0.137} [18]. It turns out that each of these
lifting steps for the single rotation angle in the middle of theotation angles can be loosely approximated by a cascade of
structure. The scaling factors associated with the 2-lifting-stépo 1/2 lifting steps. In other words, from the Type-I lattice
structure are combined with the quantization step sizes to sawd-ig. 4(a), the LiftLT hasU, and V, chosen from the DCT
computational complexity further. Thex88 binDCT’s dyadic whereasV; = LiLy ... L)1, Where

transform coefficients are listed in Table Il. Its frequency re-

sponses are presented in Fig. 14. For more details on DCT ap- Thrjo—iot

proximation, we refer the readers to [36]. L, = L

IL_
F. Design Example 4: 8-Channel 16-Tap LiftLT !
This 8-channel 16-tap design example mimics the LOT [1%\1 T — [1 —1/2} [ 1 0

and the LBT [38] closely. However, the overlapping post-pro- 0 1 1/2 1} - This solution yields a large
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Fig. 15. Fast implementation of the 8-channel 16-tap LiftLT. (a) Analysis bank. (b) Synthesis bank.

DO A 5 10747880 WAt 648508 8 Skptan A8 >0 121498 Cot Gaas 1TSS G AL >4 (6747208 b = (72041208 Sqbunt A2 2 1474398 Cod Gan 0422228

improve coding efficiency. To obtain rational- or dyadic-coeffi-
cient LiftLT, we need to replace the DCT by a rational or dyadic
approximation such as a binDCT version similar to design Ex-
ample 3.

G. Design Example 5: 8-Channel 16-Tap Dyadic-Coefficient

This 8-band 16-tap dyadic-coefficient design example is ob-
tained from the unconstrained optimization approach based on
the Type-Il lattice as in Fig. 4(b). Matricds, andV are pa-
rameterized in full, i.e., using 12 dyadic lifting steps for each,
while V is parameterized with only six dyadic lifting steps.
All diagonal scaling factorsy; are set to unity. The result not
only has dyadic coefficients as illustrated in Table Ill, but it is
5 : also entirely lifting-based, has an efficient multiplierless imple-
AT ALY 1 CINIA mentation and maps integers to integers with perfect inversion
S e S e A T e e as shown in Fig. 17. The normalized frequency responses of the

filters are depicted in Fig. 18.

V. IMAGE CODING APPLICATION
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LA | \ YAV : A Computational Complexity and Coding Performance
*ﬁw i - : This section provides a comparison of the computational

_ ] Al complexity and the theoretical coding performance between
A A, S R L T the new rational or integer FBs and current state-of-the-art

transforms. The five transforms in comparison are as follows:
Fig. 16. Frequency responses of various LiftLT’s. Left: analysis bank. Right: : . . . . .
synthesis bank. (a) 8-channel 16-tap; 9.54 dB coding gain (b) 12-channel 24-tap; * DCT: 8-channel 8-_tap |rrat|0ngl-c0_eff|C|ent fllt_e_rs [3‘_1]'
9.75 dB coding gain. (c) 16-channel 32-tap; 9.83 dB coding gain. * Wavelet: 9/7-tap biorthogonal irrational-coefficient filters

[39];
class of even-channel LTs with 50% overldp £ 2M). The « binDCT: 8-channel 8-tap dyadic-coefficient filters (De-
8-band LiftLT’s lattice structure is presented in Fig. 15. The  sign Example 3);
frequency responses of the<8L6, 12x 24, and 32« 64 LiftLT « LiftLT-I: 8-channel 16-tap irrational-coefficient filters
filters are depicted in Fig. 16. The reader should note that the (Design Example 4);
LiftLT does not really have rational coefficients. It does have < LiftLT-1I: 8-channel 16-tap dyadic-coefficient filters (De-
a dyadic post-filtering inter-block stage of DCT coefficientsto  sign Example 5).
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Fig. 17. Design example 5: 8-channel 16-tap LiftLT type-II.
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Fig. 18. Normalized frequency responses of the 8-channel 16-tap LiftLT-Il in design example 5. Left: analysis bank. Right: synthesis bank.

TABLE Il
DESIGN EXAMPLE 5: COEFFICIENTS OF8-CHANNEL 16-TAP LPPRFB. TOP: ANALYSIS FILTERS /2 ;. BOTTOM: SYNTHESIS FILTERS f;. EVEN-INDEXED FILTERS
ARE SYMMETRIC WHEREAS ODD-INDEXED FILTERS ARE ANTI-SYMMETRIC

ho | —93/2™°  -1699/2™  —3095/277  19479/2™ 46057/2™8 35863/2"7 5795/27 349/2™
Ry || 12372 2741/2™ 13537/277  —31969/2™  —99103/2"  —50401/2"7 -7349/2™ —283/2™0
ha 15/2 5105/21° 39981/2™  —72749/2%° —123859/2"° —105517/2"°  3087/2'°  753/27
hs || —219/2™"  4579/2™  83159/2™  _—87255/2™° —174889/2° -91351/2"®  21789/2° 1259/2"
hy 51/2° 205/2"% —21095/2™° 4711727 60825/2™7 —11673/2™  —4301/2"°  205/2°
hs || —39/2°  —1369/2F  34315/2T° 127897277  —143861/277  59893/2™C 2393/2"%  —473/2°
he || 6972  —1093/2"°  5327/2"° 27441/21°  —02977/2™° 60209/2"®  —7099/2"°  187/2"
hr 33/2° —79/21" —223/2™* 2719/2™ —6815/2™ 5215/2" —825/2™" 201/2°
fo —5/2° 3/2° 7/2° 7/2° 9/2° 25/2° 29/2° 261/2°
fi || —15/2"  —555/21% 1967/2'° 3199/2™% 365/2™7 27281/2™ 5163/2™7 271/2™
f2 —1/2% 21/2° 17/2° —7/2° —25/2° —49/2° 11/2° 257/2°
fa 7/21° —-657/218  —4387/21° 77/218 119/2° 5091/2'° —1903/2"% —263/2™°
fa 11/2™ 9/27 —23/27 —7/2° 23725 —9/27 —41/27 245/2™
fs 5/21 949/2™ -4783/2"° -1407/2™* 179/2™ —8081/2™  —1451/2™"  251/2™
fs 15/2° —15/27 13/27 21/2° —53/2° 83/27 —81/27 241727
fr —9/2° —9/2™% —11/2™ —539/217 63/2% —4917/2™ 15457272 —247/2°
TABLE IV
COMPARISON OFTRANSFORM COMPLEXITY AND THEORETICAL CODING GAIN
Transform No. of Multiplications | No. of Additions | No. of Shifts | Coding Gain
9/7 Wavelet 5.25 7 0 9.46 dB
8 x 8 DCT 1.625 3.625 0 8.83 dB
8 x 8 binDCT 0 3.75 1.5 8.82 dB
8 x 16 LiftLT-I 1.75 6.375 0.75 9.54 dB
8 x 16 LiftLT-II 0 8.125 5.625 9.27 dB

Table IV tabulates the average number of multiplications, ad-The evidence in Table IV shows that high-performance, yet
ditions, and/or shifting operations needed to process one inpaw-complexity, FBs can be constructed based on our proposed
sample in 1D, and the theoretical coding gain of each transfotattice structures. Many of our design examples are faster than
given an AR (1) signal model with intersample autocorrelatiothe 9/7-tap wavelet transform, even in its lifting implementa-
coefficientp = 0.95. The numbers associated with the 9/7-tapion. The LiftLT-1 in Design Example 4 and LiftLT-1l in Design
wavelet [39] are obtained from a 3-level decomposition implé&xample 5 are slower than the DCT; however, they eliminate
mented in the lifting scheme. blocking artifacts at a reasonable computational overhead, much
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TABLE V
OBJECTIVE CODING RESULT COMPARISON (PSNRIN DB)

Goldhill Barbara

Comp. | 9/7 | 8x8 8x8 8 x 16 8 x 16 9/7 | 8x8| 8x8 8§ x 16 8§ x 16

Ratio | WL | DCT | binDCT | LiftLT-I | LiftLT-II | WL | DCT | binDCT | LiftLT-I | LiftLT-II
1:8 36.55 | 36.25 | 36.24 36.56 36.38 36.41 | 36.31 36.20 37.57 36.87
1:16 33.13 | 32.76 | 32.75 33.22 33.11 31.40 | 31.11 31.05 32.82 32.21
1:32 30.56 | 30.07 | 30.07 30.63 30.61 27.58 | 27.28 | 27.25 28.93 28.49
1:64 28.48 | 27.93 | 27.93 28.54 28.46 24.86 | 24.58 | 24.57 25.93 25.64

Fig. 19. Enlarged 256 256 Barbara portions at 32:1 compression ratio. Top row, from left to right: original image; coded by 9/7-tap wavelet, 27.58 dB; coded
by 8 x 8 DCT, 27.28 dB. Bottom row, from left to right: coded by83 binDCT, 27.25 dB; coded by 8 16 LiftLT-1, 28.93 dB; coded by & 16 LiftLT-Il, 28.49
dB.

less than 100%. The LiftLT-II does not even require any multiwith the 9/7-tap wavelet (6 levels of decomposition here) are ex-
plication. Performance-wise, The LiftLT-| attains a coding gaiactly those from the original SPIHT algorithm [40] . In the four
very close to the 9.63 dB level of the optimal GLBT [21]. The8-channel cases, we use the modified zerotree structure in [28],
improvement in coding performance over the DCT and somfgkl] where each block of transform coefficients are treated anal-
times the 9/7-tap wavelet transform is very promising as demavgously to a full wavelet tree and three more levels of wavelet
strated by the image coding experiment in the next section. decomposition are employed to decorrelate the dc subband fur-

ther. The objective coding results (PSNR in dB) are tabulated in
B. Image Coding Experiment Table V.

The same SPIHT’s quantizer and entropy coder [40] are uti- The LiftLT-I outperforms all transforms on both test images
lized to encode the coefficients of every transform. The eat all bit rates. The visual quality of its reconstructed images
coding algorithm is fixed; we only change the decompositids also superior as testified in Fig. 19: blocking is completely
and the corresponding reconstruction stage. The transformsiueided whereas ringing is reasonably contained. Comparing to
the coding experiment are the same five compared in the 1&@ wavelet transform, the LiftLT-I consistently surpasses the
section. The test images a@»ldhill and Barbara, both stan- 9/7-tap wavelet. The PSNR improvement can sometimes reach
dard 512x 512 8-bit grayscale images. The results obtaineas high as 1.5 dB. Comparing to the LiftLT-I, the multiplierless
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LiftLT-1l sacrifices roughly a 0.5 dB loss oBarbaraand a 0.1  [12] H. Y. Jung and R. Prost, “Lossless subband coding system based on
dB loss on the smoother imaggoldhill. Its performances are rounding transform,"IEEE Trans. Signal Processing/ol. 46, pp.

: e 2535-2540, Sep. 1998.
still very close to those of the 9/7-tap wavelet. The mult|pl|erles§ls,] W.B PennebaEer and J. L. MitchelPEG: Still Image Compression

binDCT yields roughly the same coding performances as theé ~ standard New York: Van Nostrand Reinhold, 1993.
DCT. [14] J. L. Mitchell, D. LeGall, and C. FogdyPEG Video Compression Stan-
dard. New York: Chapman & Hall, 1996.
[15] D. Taubman, “High performance scalable image compression with
VI]. SUMMARY EBCOT,” IEEE Trans. Image Processingol. 9, pp. 1158-1170, Jul.
2000.
We have presented in this paper the theory, design’ and6l ——, “JPEG2000 Verification Model: Version VM3A,” IEC, Geneva,

- ; . : . Switzerland, ISO/IEC JTC 1/SC 29/WG1 N1143, 1999.
implementation ofi/-channel LPPRFB with rational and dyadic A. K. Soman, P. P. vaidyanathan. and T. Q. Nguyen, “Linear-phase

- - [17]
coefﬁuents..AII new FBs are baged on fast, eff|C|e.nt, robust, and1 paraunitary filter banks: theory, factorizations and applicatiolEEE
modular lattice structures. Particularly, we have illustrated that  Trans. Signal Processingol. 41, pp. 3480-3496, Dec. 1993.
rational-coefficient FBs can be easily designed by cascadin@gl H. S. Malvar,Signal Processing with Lapped TransformsNorwood,
rational lifting steps. Several low-complexity design example(jlg] MA: Artech House, 1992.

. R. L. de Queiroz, T. Q. Nguyen, and K. R. Rao, “The GenLOT: gen-
are presented. All are fast-computable, VLSI-friendly, an eralized linear-phase lapped orthogonal transfotEEE Trans. Signal

hence can be valuable in fast real-time or low-cost, low-power  Processingvol. 40, pp. 497-507, Mar. 1996.
signal processing applications. Two of our design examples, tHéO] M. Vetterli and D. Le Gall, “Perfect-reconstruction filter banks : some

. . properties and factorizationdEEE Trans. Acoust., Speech, Signal Pro-
8-band 8-tap binDCT and the 8-band 16-tap LiftLT-II, can be cessingvol. 37, pp. 10571071, July 1989.

implemented entirely using only shift-and-add binary operations21] 7. D. Tran, R. L. de Queiroz, and T. Q. Nguyen, “Linear phase perfect
Furthermore, both can map integers to integers with exact reconstruction filter bank: lattice structure, design, and application in

reconstruction. This property allows a unifying lossy/lossless Srgz‘ggocé’é“”g""EEE Trans. Signal Processingol. 48, pp. 133-147,
coding framework. Finally, the same design method can b&z] X.Q.Gao, T. Q. Nguyen, and G. Strang, “On factorizationbichannel

easily extended to design fast and efficient FBs with longer — paraunitary filter banks,1EEE Trans. Signal Processingol. 49, pp.
filters, without linear-phase constraints, with an odd number  1433-1446, July 2001.

; ; i [23] L.Ganand K. K. Ma, “A simplified lattice factorization for linear-phase
of channels, or even with complex rational coefficients [42]' perfect reconstruction filter banklEEE Signal Processing Lettol. 8,

pp. 207-209, July 2001.
[24] J. N. Bradley, C. M. Brislawn, and T. Hopper, “The FBI wavelet/scalar
guantization standard for gray-scale fingerprint image compression,” in
. . Proc. VCIR, Orlando, FL, Apr. 1993.

. The authors wish to _thank the anonymo_us rGY'eY\{erS for_prO[ZS] P. Steffen, P. N. Heller, R. A. Gopinath, and C. S. Burrus, “Theory of
viding many constructive suggestions which significantly im- regularM -band wavelets,!TEEE Trans. Signal Processingol. 41, pp.
prove the presentation of the paper. 3497-3511, Dec. 1993.

[26] R. Coifmann, Y. S. Q. Meyer, and M. V. Wickerhaus8&ignal Pro-
cessing With Wavelet PacketsNew Haven, CT: Yale Univ., Numerical
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