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M -Channel Linear Phase Perfect Reconstruction
Filter Bank With Rational Coefficients

Trac D. Tran, Member, IEEE

Abstract—This paper introduces a general class of -channel
linear phase perfect reconstruction filter banks (FBs) with rational
coefficients. A subset of the presented solutions has dyadic coeffi-
cients, leading to multiplierless implementations suitable for low-
power mobile computing. All of these FBs are constructed from
a lattice structure that is VLSI-friendly, employs the minimum
number of delay elements, and robustly enforces both linear phase
and perfect reconstruction property. The lattice coefficients are pa-
rameterized as a series of zero-order lifting steps, providing fast,
efficient, in-place computation of the subband coefficients. Despite
the tight rational or integer constraint, image coding experiments
show that these novel FBs are very competitive with current pop-
ular transforms such as the 8 8 discrete cosine transform and the
wavelet transform with 9/7-tap biorthogonal irrational-coefficient
filters.

Index Terms—Compression, dyadic coefficients, linear phase
filter bank, multiplierless, rational coefficients.

I. INTRODUCTION

M ULTIRATE filter banks (FBs) have found tremendous
applications in the analysis, processing, and efficient

representation of digital signals [1]–[4]. Signal representations
by subband samples are usually more compact, more efficient,
yet as informative as the time-domain counterparts. Taking
advantage of the normally sparse subband sample matrix, we
can often obtain significant data compression.

One particular class of FBs that have attracted a lot of
recent interests is FBs with integer coefficients [5]–[12].
First of all, integer-coefficient FBs eliminate the truncation
error in finite-precision implementations. More importantly,
integer-arithmetic implementations in hardware are faster,
require less chip area, and consume less power. Thirdly, many
integer-coefficient FBs also have very fast multiplierless imple-
mentation with simple shift-and-add operations only. Hence,
integer FBs are desirable in applications with high data rates
as well as in portable computing and wireless communication
applications. Integer FBs or integer approximations are already
popular in practice. For example, current international image
and video compression standards JPEG and MPEG employ
several integer approximations of the 8-point discrete cosine
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transform (DCT) which can be viewed as an irrational-coef-
ficient 8-channel 8-tap linear phase orthogonal FB [13], [14].
The future image compression standard JPEG2000 also utilizes
several biorthogonal integer-coefficient wavelet pairs for fast
coding/decoding and for lossless compression [15], [16].

This paper introduces a large family of FIR linear phase
perfect reconstruction FBs with rational coefficients and
good energy compaction property. Integer implementations
can be easily found via a common scaling factor. A tighter
constraint yields solutions with dyadic coefficients, which lead
to efficient multiplierless implementations. Our focus is on the
construction of the polyphase matrices as cascades of low-order
modular components. Desirable properties such as symmetry,
FIR, and perfect invertibility, are propagated by imposing them
structurally onto each cascaded module.

A. Outline

The outline of the paper is as follows. In Section II, we offer
a review of important background materials, concepts, motiva-
tions, and previous related works in multirate FB design using
lattice and ladder structures. The next section introduces a gen-
eral parameterization of polyphase matrices based on lifting
steps (also known as ladder structures) and the subset of so-
lutions that allows the construction of -band rational- and
dyadic-coefficient FBs. Parts of Sections II and III are meant
to serve as tutorial materials. Design issues and various design
examples are presented and discussed in Section IV. The suc-
cessful application of the newly found family of FBs in image
coding is illustrated in Section V. Finally, Section VI ends the
paper with a brief summary.

B. Notations

Let , , and denote the sets of real numbers, rational
numbers, and integers, respectively. Also, letdenote the set
of dyadic rationals, i.e., all rational numbers that can be rep-
resented in the form of 2 where . Bold-faced
lower case characters are used to denote vectors while bold-
faced upper case characters are used to denote matrices.,

, , and denote, respectively, the transpose, the in-
verse, the determinant, and theth th element of the matrix .
When the size of a matrix or vector is not clear from context,
capital subscripts will be included. The notation
or indicates that every element of the matrix
is either rational or dyadic, i.e., or .

Several special matrices with reserved symbols are: the
polyphase matrix of the analysis bank , the polyphase
matrix of the synthesis bank , the identity matrix , the
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Fig. 1. M -channel uniform FB. (a) Conventional representation. (b) Polyphase representation.

reversal or anti-diagonal matrix, the null matrix , a permuta-
tion matrix , and the diagonal matrix . and are usually
reserved for the number of channels and the filter length. In this
paper, we only consider the class of FBs whose filters all have
the same length . An -channel -tap FB
is sometimes denoted as an transform. The symbols

, , and , stand for the th
analysis filter’s impulse response, its associated-transform,
and its Fourier transform. Similarly, theth synthesis filter
is denoted by , , or . For abbreviations,
we often use LP, PR, and FB to denotelinear phase, perfect
reconstruction, andFB.

II. BACKGROUND AND MOTIVATION

A. FB Fundamentals

In this paper, we shall limit the discussions on discrete-time
maximally decimated -channel uniform FBs as depicted in
Fig. 1. At the analysis stage, the input signal is passed
through a bank of analysis filters , each of which pre-
serves a frequency band. The overall sampling rate is preserved
by the -fold downsamplers. At the synthesis stage, the sub-
bands are combined by a set of upsamplers andsynthesis
filters to form the reconstructed signal .

The FB in Fig. 1(a) can also be represented in terms of its
polyphase matrices as shown in Fig. 1(b). Here, is the anal-
ysis bank’s polyphase matrix and is the synthesis bank’s
polyphase matrix. Note that both and are
matrices whose elements are polynomials in [1]. The delay
chain and the -fold downsamplers act as a serial-to-parallel
converter. Similarly, in the synthesis bank, the-fold upsam-
plers and the delay chain act as a parallel-to-serial converter.

The polyphase representation usually leads to faster and more
efficient implementations. It is also very helpful in the FB design
process. If is invertible with monomial determinant, i.e.,

, one can obtain the output as a pure
delayed version of the input , , with FIR
synthesis filters by simply choosing [1]–[3].
We call this class of polyphase matricesFIR invertible. The re-
sulting FIR FB is said to bebiorthogonalor to haveperfect re-
construction. In the case when ,
the FB is calledparaunitary.

In numerous practical applications, especially in image
and video processing, it is often desired that all analysis and

synthesis filters have linear phase (their impulse responses are
either symmetric or antisymmetric if the filters have real coef-
ficients). Besides the elimination of the phase distortion, linear
phase systems allow us to use simple symmetric extension
methods to accurately handle the boundaries of finite-length
signals. Furthermore, the linear phase property can be ex-
ploited, leading to faster and more efficient FB implementation.
If all filters have the same length , it has been well
established that the polyphase matrices satisfy the following
symmetric property [2] [17]

analysis (1)

synthesis (2)

where is the diagonal matrix with entries being1 or 1
depending on the corresponding filter being symmetric or anti-
symmetric.

The highly complex problem of designing an -band
FIR linear phase perfect reconstruction FB can be reduced
to choosing appropriate polynomial matrices and
such that both FIR invertibility and linear phase condition
are satisfied. Additional constraints that yield rational- or
dyadic-coefficient filters will be imposed on top. Knowing

and , we can easily find the filters , and
vice versa. This is the approach that will be taken throughout
this paper.

B. The Lattice Structure

The lattice structure is one of the most effective and elegant
tools in -channel FB design and implementation. This ap-
proach bases on various factorizations of the polyphase matrices

and [17]–[23]. From another viewpoint, in the lat-
tice approach, the polyphase matrix or is constructed
from a cascade of modular low-ordered structures that propagate
certain desirable properties (such as linear phase and perfect re-
construction). The lattice structure has been known to offer a
fast FB implementation with the minimal number of delay el-
ements, and it can retain all desirable properties regardless of
lattice coefficient quantization [1]–[4].

The general -band linear-phase lattice structure is pre-
sented below [21]. The polyphase matrix can be factored
as

(3)
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Fig. 2. General lattice structure forM -channel LPPRFB with filter lengthL = KM (drawn forM = 8).

(a)

(b)

Fig. 3. Simplified lattice structure forM -channel LPPRFB with filter lengthL = KM . (a) Type-I structure. (b) Type-II structure.

where

(4)

and

(5)

This lattice generates even-channel linear phase perfect re-
construction FBs where every filters having the same length

[21]. is often called the overlapping factor be-
cause of the FB connection to lapped transforms [18], [19].
The factorization in (3) is also minimal. The resulting lattice
structure employs the fewest number of delays in its implemen-
tation — the polyphase matrix can be implemented using no
more than delay elements. Each cascading struc-
ture increases the filter length by . All and ,

, are arbitrary invertible ma-
trices. The general lattice of the analysis bank is depicted in
Fig. 2. The synthesis bank can be obtained by inverting each
analysis component one by one.

Following the approach in [22], [23], the structure in Fig. 2
can be simplified significantly since any matrix can be
moved across the butterfly matrices ’s and the delay chain

to combine with the free matrices of the next stage,

and . By repeating this operation, two different simplified
structures shown in Fig. 3 can be derived. The number of
free parameters and the complexity of the structure have been
reduced by almost 50% while the generality of the structure is
still retained. All rational-coefficient designs in this paper are
constructed from these two structures.

C. The Lifting Scheme or the Ladder Structure

The lifting scheme, also known as the ladder structure, is a spe-
cial type of lattice structure, a cascading construction using only
elementary matrices – identity matrices with one single nonzero
off-diagonal element [7], [10]. 2-channel FBs implemented in
ladder structures save roughly half of the computational com-
plexity due to the exploitation of the inter-subband relationship
between coefficients. It has been proven that any 22 polyphase
matrix with unity determinant can be factored into a cas-
cade ofpredict , update lifting steps, and a diagonal
scaling matrix [10]. Besides the speed improvement, the lifting
scheme also offers many other advantages: ability to map inte-
gers to integers losslessly, simplicity of integer wavelet design,
in-place computation, connection to spatial prediction, and capa-
bility of incorporating nonlinear filtering.

D. Motivation

Althoughtherehavebeennumerousworksonfast rational-and
integer-coefficient two-band FBs [5]–[12], similar research on

-band systems is rather limited. There has been substantial ev-
idence that -band decompositions are more advantageous than
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thedyadicwavelet transformincodingapplications.Thewavelet-
based coder that the FBI designed to compress fingerprints actu-
ally imitates a 4-band decomposition using the popular 9/7-tap
biorthogonal wavelet [24]. On other image types,-band FBs,

-bandwaveletsandwaveletpacketsalmostalwaysyieldhigher
coding performances [15], [16], [18], [19], [21], [25]–[28]. Fur-
thermore, -channel FBs in reverse (the synthesis bank comes
first) are also useful in communications as crosstalk-free trans-
multiplexers [2], [29] and precoders [30], [31].

When , there is no simple spectral factorization
method which has worked well in 2-channel FB design. One
has to rely on other approaches such as lattice structure param-
eterization, time-domain optimization, and cosine modulation
[1]–[4]. Even in the 2-channel case, the lifting scheme is
predominantly used for fast implementation rather than for FB
design. It is unclear how to generalize the lifting result to build
an entire class of -band FBs with many desired properties
such as linear-phase and integer-coefficient. In the next section,
we present rational- and integer-coefficient building blocks that
can be employed to construct fast integer (even multiplierless)
FBs with an arbitrary number of channels.

III. RATIONAL - AND INTEGER-COEFFICIENTSTRUCTURES

A. Problem Formulation

The FBs of interest in this paper all satisfy the definition
below.

Definition 1: An -channel FB is said to have rational
coefficients if every analysis as well as synthesis filter co-
efficient is rational, i.e., and

An -channel FB is said to have
integer (or dyadic) coefficients if every analysis as well as syn-
thesis filter coefficient is dyadic, i.e.,
and

Integer implementations can be easily obtained by scaling
the rational analysis and synthesis filter coefficients and

by their corresponding common denominators and
respectively. Perfect reconstruction can be achieved by one

scaling factor, . Preferably, and should be as
small as possible so that the dynamic range of the subband sam-
ples is limited and the computational complexity is minimized.
However, one integer division needs to be spent on each output
sample, and perfect integer mapping cannot be guaranteed.

The dyadic subset, , of rational-coefficient
FBs has even greater value in practice. In the dyadic case, FBs
can be implemented using only addition and binary shifting op-
erations. Hence, these are often calledmultiplierlessor multi-
plier-freeFBs. In this case, the scaling factor is dyadic;
hence, the input signal can be recovered perfectly using a binary
shift.

From the definition of the polyphase representations [1]

an equivalence toDefinition 1 above is that every element of
both polyphase matrices is a polynomial with rational coef-
ficients. In other words, if the polyphase matrices are repre-
sented as and , then

and Thus, the notations
and are often used to

indicate that the resulting FB has rational coefficients.

B. Rational and Dyadic Lifting-Based Cascades

From the simplified lattice structures in Fig. 3, it is clear that
the key to rational or dyadic-coefficient solutions hinges on the
free-parameter scalar matrices , , and
their inverses. Since the fixed components – butterfly matrices
{ }, delay chains { }, and their inverses – are
already dyadic components, it is sufficient to impose rational
and dyadic property on the free scalar matrices.

One problem arises from the irrational normalization
factors at the initial butterfly stage of both Type-I and
Type-II structure in Fig. 3. There are several simple solutions to
this problem. First, for two-dimensional applications, the
factor in the row-wise filtering stage can be delayed and later
combined with the factor in the column-wise filtering
stage to form a dyadic scaling factor 1/2. Second, all
factors in can be deferred and later combined with the

factors in the inverse component of the synthesis
bank.

Both of these solutions have a common drawback. They in-
crease the dynamic range of intermediate data and final subband
samples. In order to minimize the bit depth and to achieve con-
sistently high performances in a unifying lossless/lossy coding
framework, the FB should map integers to integers with limited
bit expansion. A solution to the dynamic range problem is to re-
distribute the factors to obtain unbalanced, unnormalized

and matrices as follows:

(6)

and

(7)

This solution is commonly employed in integer wavelet design
and implementation [3]. However, the unbalanced nature of the
FB makes some subbands have more energy than they should.
Hence, in coding applications, the following quantization and
entropy coding steps need to be compensated accordingly.

The 1/2 scaling factor in each cascaded structure can
also be redistributed in similar fashion. For example, the type-I
structure in Fig. 3(a) can be modified as follows:

(8)
The resulting structure after taking into account (6)–(8) is illus-
trated in Fig. 4 where and are free scalar invertible ma-
trices. Linear phase and perfect reconstruction are structurally
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Fig. 4. General construction of fastM -band integer-coefficient FBs (type-I, drawn forM = 4).

Fig. 5. Parameterization of an invertible matrix as product of lifting stepsp ,
u , and diagonal scaling factors� .

enforced by the lattice. The type-II structure in Fig. 3(b) can also
be rewritten accordingly

(9)
-band LPPRFBs with rational or dyadic coefficients can be

easily constructed if
or , re-
spectively. This topic is the focus of the next section.

C. Matrix Parameterization

As previously mentioned, the set { }
holds all of the FB’s degrees of freedom. The purpose of matrix
parameterization is to completely capture this set of invertible
matrices using the fewest number of independent parameters.
From a design perspective, matrix parameterization provides a
powerful FB design tool since the free parameters can be varied
independently and arbitrarily without affecting the most desir-
able FB characteristics. Unconstrained optimization can be per-
formed on the free-parameter space to obtain other features such
as high coding gain, regularity, and high stopband attenuation.
An efficient parameterization of invertible matrices for integer-
and rational-coefficient FB design is based on elementary ma-
trices as depicted in Fig. 5.

Definition 2: An matrix is called elementary if it is
an identity matrix with one single nonzero off-diagonal entry.
The symbol will be used when the corresponding nonzero
off-diagonal entry is above the diagonal, i.e., where
, indicate the location of the nonzero off-diagonal element. If

the nonzero off-diagonal entry is below the diagonal, i.e., ,
symbols and will be used instead.

The elementary matrix is often called alifting step in this
paper. One characteristic of an elementary matrix is that its in-
verse is also elementary. Moreover, the inverse simply involves
a negation of the nonzero off-diagonal entry or . It is ob-
vious that (or ) or is equivalent to and
(or and ) or , respectively. This is

the key to our rational-coefficient or dyadic-coefficient FB de-
sign. The theorem below establishes the parameterization of any
invertible matrix using a cascade of elementary, diagonal, and
permutation matrices.

Theorem 1: Every invertible matrix can be com-
pletely characterized by elementary matrices, di-
agonal scaling factors, and a permutation matrix.

This is the LDU matrix factorization and we refer the readers
to [32] for a formal proof. Any invertible matrix can be
written as where is a permutation matrix,
is a lower triangular matrix, is a diagonal matrix, and
is an upper triangular matrix. All diagonal entries of both
and are unity. Each of the lower or upper triangular matrix
can be factored into elementary matrices whose
off-diagonal entries are labeled or . The parameters
and their corresponding elementary matrices form the
lower-triangular matrix , i.e., , whereas the
parameters and their corresponding elementary matrices

form the upper-triangular matrix , i.e., .
The diagonal scaling factors labeled are contained in the
diagonal matrix and they hold the key to invertibility. This
LU parameterization in FB design first appears in [7] under the
nameladder structure.

Since the permutation matrix is a simple re-routing, we usu-
ally ignore it in the parameterization. The diagonal scaling fac-
tors are strategically placed at the end of the structure so that
they can be absorbed into the quantization stage whenever pos-
sible. This requires a simple modification of the factorization:

where is still a lower triangular matrix with unity
diagonal elements. The LDU parameterization of any arbitrary
invertible matrix is illustrated in Fig. 5. The following the-
orem imposes the rationality condition on, its inverse ,
and all filter coefficients.

Theorem 2: If , then
and .

Proof: First, since is close under addition and multi-
plication, if , then ,
hence and .
Similarly, since the set of parameters that characterizes the
inverse , it is easy to establish that

as well. Now, con-
sider the cascading modules in (6) and in (8) and
(9). If , then

and
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Fig. 6. Simplified parameterization of an invertible matrix.

. Hence, for the Type-I lattice as in Fig. 3(a),
we have and

. For the Type-II
lattice as in Fig. 3(b),
and . In other
words, .

Theorem 3: If and 2 , then
.

Proof: This is a straightforward extension of the result in
Theorem 2. The complication here involves the scaling factors

since their inverses are not guaranteed to be dyadic even if
they themselves are. We still have
if . However, if and only if

2 . From these conditions, FBs with integer
coefficients can be realized by following the same reasoning as
in the proof of Theorem 2. The most convenient path to dyadic-
coefficient FBs is to set all diagonal scaling factors to unity.

Computational Complexity:As each elementary matrix
takes one multiplication and one addition, and the diag-
onal matrix requires multiplications, the computational
complexity of each matrix multiplication is, at most, equal
to that of direct multiplication under this parameterization:

multiplications and additions.
In most cases, the computational complexity can be reduced
significantly by setting the diagonal scaling factors to unity,
setting many lifting step to zero, or choosing the lifting coeffi-
cients to be dyadic as described in the next section. An example
of a reduced-complexity parameterization is shown in Fig. 6
where entries close to the diagonal axis are emphasized. The
complexity is now reduced to only multiplications
and additions.

Lifting Decomposition for Scaling Factors:If we restrict the
determinant of to 1, the scaling factors in can be
converted into lifting steps as well, i.e., the entire matrixin
this case can be represented using only lifting steps.

In the 2 2 case, it is well-known that the diagonal scaling

matrix can be factored into four lifting steps [10].

In the case, the product of the diagonal elementsis
unity. Hence, they can be divided into successive pairs,
each with unity product. In other words, since , the
following pairings can be obtained:

as demonstrated in Fig. 7. Each pair can then be factored into
a cascade of four lifting steps. However, many of these scaling
factors typically can be folded into the quantization stepsizes of

Fig. 7. Example of decomposing diagonal scaling factors into lifting steps.
From left to right: original scaling factors; decomposition into {K; 1=K}
pairing; decomposition into lifting steps.

the encoder. That is why we choose to place them at the end of
the factorization in Fig. 5.

Dyadic Lifting Steps and Multiplierless Construction:One
advantage that the lifting scheme offers is the versatility and
the simplicity in constructing fast transforms that can map in-
tegers to integers as illustrated in Fig. 8. If afloor (or round, or
ceiling) operator is placed in each lifting step, the FB can now
map integers to integers with perfect reconstruction regardless
of the lifting step has integer coefficients or not. Moreover, if the
lifting step is chosen to be dyadic, the nonlinear operation can
be incorporated into the division using binary bit shift. A scalar
lifting step of value 2 can be implemented as a multiplica-
tion by followed by a division by 2 . Division by 2 fol-
lowed by a truncation is equivalent to a binary shift byplaces.
The numerator can be easily implemented using bit shift and
add operations, or we can split the fraction2 into a cascade
of pure power-of-two lifting steps, i.e., 2 2 . The
latter approach leads to an implementation with solely binary
right-shifts, preventing the bit-depth expansion in intermediate
results. With all scaling factors set to unity, multiplierless FBs
can be easily constructed using this method. If the scaling fac-
tors are powers of two, we can still retain the multiplierless
feature on both banks.

With all free-parameter matrices and constructed from
dyadic lifting steps, the structure in Fig. 3 or Fig. 4 is very reg-
ular and modular: the same shift-and-add module is employed
repeatedly. This is very desirable in practical VLSI implemen-
tation where irregularity often translates to awkward transistor
placements, leading to larger chip area and power consumption
[33]. The challenge is how to choose the minimal set of lifting
steps that yield optimal or near-optimal coding performances.
We shall demonstrate in Section IV via many design examples
that not all lifting steps are needed and most, if not all, diagonal
scaling factors can be set to unity without having to sacrifice
much coding performances.

IV. DESIGN

The FB structure presented in the previous section already
has high practical value: FIR, linear phase, and perfect recon-
struction regardless of the choices of the lifting { } and
scaling { } parameters. Restricting these parameters to ratio-
nals yields rational-coefficient FBs. However, to achieve high
coding performance in practice, several other properties such as
coding gain and regularity are also needed. Practical FBs based
on our structure can be obtained using two methods: approxi-
mation and optimization.

A. Approximation

In the approximation approach, one can study closely existing
high-performance FBs and try to replace their floating-point
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Fig. 8. Example of a lifting step and its implementations. (a) Original lifting step. (b) Approximation that can map integers to integers, using only shift-and-add
operations.

Fig. 9. Design Example 1: 4-channel 8-tap integer LPPRFB. Left: analysis bank. Right: synthesis bank.

components by rational or integer components. One typical ex-
ample is the systematic approximation of the popular rotation
angle, the basic building block of many FBs in the current lit-
erature such as the DCT [34], the LOT [18], and its generalized
version GenLOT [19].

A plane rotation can be represented using three lifting steps
or two lifting steps and two scaling factors as follows [10]:

where , , and . Therefore, we
can simply try to replace each plane rotation approximately
by rational-coefficient ladder structures. The most straight-
forward method is to obtain the irrational lifting coefficients
{ }, and then replace them by rational
or dyadic values, for example, truncating the binary represen-
tations of these parameters.

B. Optimization

The other design approach is to employ an unconstrained
nonlinear optimization where certain FB desirable properties
such as coding gain and regularity are maximized.

Coding Gain: The coding gain of a FB is defined as the re-
duction in transform coding mean-square error over pulse-code
modulation (PCM) which simply quantizes the samples of the
signal with the desired number of bits per sample. Defineas
the variance of the input signal , as the variance of the
th subband, and as the norm of the th synthesis filter.

With several assumptions including scalar quantization and a
sufficient large bit rate, the generalized coding gain can be for-
mulated as [35]

(10)

Fig. 10. Normalized frequency responses of the 4-channel 8-tap integer
LPPRFB in Design Example 1. Left: analysis bank. Right: synthesis bank.

The signal is the commonly-used AR (1) process with in-
tersample autocorrelation coefficient . The coding gain
can be thought of as an approximate measure of the FBs energy
compaction capability. Among the listed criteria, higher coding
gain correlates most consistently with higher objective perfor-
mance (measured in MSE or PSNR). FBs with higher coding
gain compact more signal energy into a fewer number of coef-
ficients, and this leads to more efficient entropy coding.

Regularity: A recursive cascade of most of the previously
mentioned -channel FBs on the lowpass channel output can
generate -band wavelets. Smoothness of the continuous-time
scaling function and wavelet function which result
from infinite iteration of the FB’s lowpass channel is crucial
in signal approximation and interpolation. The smoothness of

, also termedregularity, correlates closely to the number of
zeroes at aliasing frequencies

of the lowpass filters and [25]. These zeroes
are also calledvanishing momentssince a linear combination of
the corresponding scaling function and its time-shifted versions
can represent any piecewise polynomial of degree where

is the degree of regularity (the number of zeros at aliasing
frequencies).

In traditional 2-band wavelets, all of the system’s degrees
of freedom are allocated to these vanishing moments, or zeros
at . The compact-support filters are easily obtained from the
spectral factorization of the maxflat halfband filter

. In the general -band case, it has been proven
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TABLE I
DESIGN EXAMPLE 1: COEFFICIENTS OF THE4-CHANNEL 8-TAP DYADIC LPPRFB. TOP: ANALYSIS FILTERSh . BOTTOM: SYNTHESISFILTERS f

Fig. 11. Design Example 2: 4-channel 8-tap rational-coefficient LPPRFB with 1 analysis vanishing moment and 2 synthesis vanishing moments. Left: analysis
bank. Right: synthesis bank.

that in order for to be -regular (having zeros at
), all

, must have zeros at dc frequency ( ) and vice versa
[25]. The latter statement is equivalent to

and (11)

Taking advantage of the result in (11), we can enforce as many
as vanishing moments on the lowpass filter by designing the
lifting steps in and such that the resulting lattice yields
zero output in every subband except the lowpass one when it
is excited with the set of input signals {
}. A subset of lattice parameters { } will be allocated

specifically for the imposition of vanishing moments, further
reducing the number of free parameters in the lattice.

C. Design Example 1: 4-Channel 8-Tap Dyadic-Coefficient

In this 4-channel 8-tap design example, we demonstrate the
feasibility of designing nontrivial integer-coefficient LPPRFBs.
This design is obtained from the optimization approach based
on the Type-I lattice. Floating-point lifting coefficients are first
found via the nonlinear unconstrained optimizationsimplexrou-
tine in Matlab. Integer-coefficient solution is then obtained by
quantizing the lifting coefficients to dyadic rationals. The cor-
responding fast implementation is depicted in Fig. 9. All of the
filter coefficients are indeed dyadic, and they are tabulated in
Table I. Note that the scaling factors 2 and 1/2 are present to bal-
ance the gain of the subbands only; they should be absorbed into
the quantizer or moved to the other bank in practice. The nor-
malized frequency responses of the filters are shown in Fig. 10.

D. Design Example 2: 4-Channel 8-Tap Rational-Coefficient
With Improved Regularity

This 4-channel 8-tap design example has rational coefficients,
instead of dyadic as in the previous one. It is still based on the

Fig. 12. Design Example 2. Top row: normalized frequency responses of
the 4-channel 8-tap regular rational-coefficient LPPRFB (left: analysis; right:
synthesis). Bottom row, from left to right: analysis scaling function� (t), first
analysis wavelet function (t), synthesis scaling function� (t), and first
synthesis wavelet function (t).

Type-I lattice in Fig. 4(a). However, it was designed to have ex-
actly one vanishing moment in the analysis bank and two van-
ishing moments in the synthesis bank. The synthesis stage can
reconstruct perfectly the ramp signal using only the low-pass
subband. The enhanced smoothness in the synthesis bank is
evident from the scaling and the wavelet functions shown in
Fig. 12. This design achieves the highest degree of regularity
given the number of channels and the number of filter taps –
it is impossible to impose two vanishing moments on the anal-
ysis bank as well [25]. The detailed lattice structure is depicted
in Fig. 11. Unfortunately, this FB does not have a practical in-
teger implementation due to the excessive dynamic range of the
lifting parameters.

E. Design Example 3: 8-Channel 8-Tap Dyadic-Coefficient

This 8-channel 8-tap dyadic-coefficient design example is
a close approximation of the 88 floating-point DCT [34].
Hence, it is named the binDCT and it follows the DCT’s factor-
ization very closely. The resulting multiplierless lattice structure
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Fig. 13. Design example 3: 8-channel 8-tap binDCT. Left: analysis bank. Right: synthesis bank.

TABLE II
DESIGNEXAMPLE 3: COEFFICIENTS OF THE8-CHANNEL 8-TAP DYADIC-COEFFICIENTLPPRFB. TOP: ANALYSIS FILTERSh . BOTTOM: SYNTHESISFILTERS f

Fig. 14. Frequency responses of the 8-channel 8-tap binDCT in Design Example 3. Left: analysis bank. Right: synthesis bank.

is depicted in Fig. 13. Design Example 3 is obtained from the ap-
proximation approach. Each rotation angle in the Chen’s DCT
structure is converted to a lifting representation. We employ two
lifting steps for the rotation angles near the output and three
lifting steps for the single rotation angle in the middle of the
structure. The scaling factors associated with the 2-lifting-step
structure are combined with the quantization step sizes to save
computational complexity further. The 88 binDCT’s dyadic
transform coefficients are listed in Table II. Its frequency re-
sponses are presented in Fig. 14. For more details on DCT ap-
proximation, we refer the readers to [36].

F. Design Example 4: 8-Channel 16-Tap LiftLT

This 8-channel 16-tap design example mimics the LOT [18]
and the LBT [38] closely. However, the overlapping post-pro-

cessing module is constructed solely using lifting steps; hence,
we name the transform the LiftLT. In the 816 Type-I fast
LOT, the three rotation angles that yield near-optimal solution
are { } [18]. It turns out that each of these
rotation angles can be loosely approximated by a cascade of
two 1/2 lifting steps. In other words, from the Type-I lattice
in Fig. 4(a), the LiftLT has and chosen from the DCT
whereas , where

with . This solution yields a large
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Fig. 15. Fast implementation of the 8-channel 16-tap LiftLT. (a) Analysis bank. (b) Synthesis bank.

Fig. 16. Frequency responses of various LiftLT’s. Left: analysis bank. Right:
synthesis bank. (a) 8-channel 16-tap; 9.54 dB coding gain (b) 12-channel 24-tap;
9.75 dB coding gain. (c) 16-channel 32-tap; 9.83 dB coding gain.

class of even-channel LTs with 50% overlap ( ). The
8-band LiftLT’s lattice structure is presented in Fig. 15. The
frequency responses of the 816, 12 24, and 32 64 LiftLT
filters are depicted in Fig. 16. The reader should note that the
LiftLT does not really have rational coefficients. It does have
a dyadic post-filtering inter-block stage of DCT coefficients to

improve coding efficiency. To obtain rational- or dyadic-coeffi-
cient LiftLT, we need to replace the DCT by a rational or dyadic
approximation such as a binDCT version similar to design Ex-
ample 3.

G. Design Example 5: 8-Channel 16-Tap Dyadic-Coefficient

This 8-band 16-tap dyadic-coefficient design example is ob-
tained from the unconstrained optimization approach based on
the Type-II lattice as in Fig. 4(b). Matrices and are pa-
rameterized in full, i.e., using 12 dyadic lifting steps for each,
while is parameterized with only six dyadic lifting steps.
All diagonal scaling factors are set to unity. The result not
only has dyadic coefficients as illustrated in Table III, but it is
also entirely lifting-based, has an efficient multiplierless imple-
mentation and maps integers to integers with perfect inversion
as shown in Fig. 17. The normalized frequency responses of the
filters are depicted in Fig. 18.

V. IMAGE CODING APPLICATION

A. Computational Complexity and Coding Performance

This section provides a comparison of the computational
complexity and the theoretical coding performance between
the new rational or integer FBs and current state-of-the-art
transforms. The five transforms in comparison are as follows:

• DCT: 8-channel 8-tap irrational-coefficient filters [34];
• Wavelet: 9/7-tap biorthogonal irrational-coefficient filters

[39];
• binDCT: 8-channel 8-tap dyadic-coefficient filters (De-

sign Example 3);
• LiftLT-I: 8-channel 16-tap irrational-coefficient filters

(Design Example 4);
• LiftLT-II: 8-channel 16-tap dyadic-coefficient filters (De-

sign Example 5).
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Fig. 17. Design example 5: 8-channel 16-tap LiftLT type-II.

Fig. 18. Normalized frequency responses of the 8-channel 16-tap LiftLT-II in design example 5. Left: analysis bank. Right: synthesis bank.

TABLE III
DESIGN EXAMPLE 5: COEFFICIENTS OF8-CHANNEL 16-TAP LPPRFB. TOP: ANALYSIS FILTERSh . BOTTOM: SYNTHESISFILTERS f . EVEN-INDEXED FILTERS

ARE SYMMETRIC WHEREASODD-INDEXED FILTERS ARE ANTI-SYMMETRIC

TABLE IV
COMPARISON OFTRANSFORMCOMPLEXITY AND THEORETICAL CODING GAIN

Table IV tabulates the average number of multiplications, ad-
ditions, and/or shifting operations needed to process one input
sample in 1D, and the theoretical coding gain of each transform
given an AR (1) signal model with intersample autocorrelation
coefficient . The numbers associated with the 9/7-tap
wavelet [39] are obtained from a 3-level decomposition imple-
mented in the lifting scheme.

The evidence in Table IV shows that high-performance, yet
low-complexity, FBs can be constructed based on our proposed
lattice structures. Many of our design examples are faster than
the 9/7-tap wavelet transform, even in its lifting implementa-
tion. The LiftLT-I in Design Example 4 and LiftLT-II in Design
Example 5 are slower than the DCT; however, they eliminate
blocking artifacts at a reasonable computational overhead, much
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TABLE V
OBJECTIVE CODING RESULT COMPARISON(PSNRIN DB)

Fig. 19. Enlarged 256� 256 Barbara portions at 32:1 compression ratio. Top row, from left to right: original image; coded by 9/7-tap wavelet, 27.58 dB; coded
by 8� 8 DCT, 27.28 dB. Bottom row, from left to right: coded by 8� 8 binDCT, 27.25 dB; coded by 8� 16 LiftLT-I, 28.93 dB; coded by 8� 16 LiftLT-II, 28.49
dB.

less than 100%. The LiftLT-II does not even require any multi-
plication. Performance-wise, The LiftLT-I attains a coding gain
very close to the 9.63 dB level of the optimal GLBT [21]. The
improvement in coding performance over the DCT and some-
times the 9/7-tap wavelet transform is very promising as demon-
strated by the image coding experiment in the next section.

B. Image Coding Experiment

The same SPIHT’s quantizer and entropy coder [40] are uti-
lized to encode the coefficients of every transform. The en-
coding algorithm is fixed; we only change the decomposition
and the corresponding reconstruction stage. The transforms in
the coding experiment are the same five compared in the last
section. The test images areGoldhill andBarbara, both stan-
dard 512 512 8-bit grayscale images. The results obtained

with the 9/7-tap wavelet (6 levels of decomposition here) are ex-
actly those from the original SPIHT algorithm [40] . In the four
8-channel cases, we use the modified zerotree structure in [28],
[41] where each block of transform coefficients are treated anal-
ogously to a full wavelet tree and three more levels of wavelet
decomposition are employed to decorrelate the dc subband fur-
ther. The objective coding results (PSNR in dB) are tabulated in
Table V.

The LiftLT-I outperforms all transforms on both test images
at all bit rates. The visual quality of its reconstructed images
is also superior as testified in Fig. 19: blocking is completely
avoided whereas ringing is reasonably contained. Comparing to
the wavelet transform, the LiftLT-I consistently surpasses the
9/7-tap wavelet. The PSNR improvement can sometimes reach
as high as 1.5 dB. Comparing to the LiftLT-I, the multiplierless
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LiftLT-II sacrifices roughly a 0.5 dB loss onBarbaraand a 0.1
dB loss on the smoother imageGoldhill. Its performances are
still very close to those of the 9/7-tap wavelet. The multiplierless
binDCT yields roughly the same coding performances as the
DCT.

VI. SUMMARY

We have presented in this paper the theory, design, and
implementation of -channel LPPRFB with rational and dyadic
coefficients. All new FBs are based on fast, efficient, robust, and
modular lattice structures. Particularly, we have illustrated that
rational-coefficient FBs can be easily designed by cascading
rational lifting steps. Several low-complexity design examples
are presented. All are fast-computable, VLSI-friendly, and
hence can be valuable in fast real-time or low-cost, low-power
signal processing applications. Two of our design examples, the
8-band 8-tap binDCT and the 8-band 16-tap LiftLT-II, can be
implementedentirelyusingonlyshift-and-addbinaryoperations.
Furthermore, both can map integers to integers with exact
reconstruction. This property allows a unifying lossy/lossless
coding framework. Finally, the same design method can be
easily extended to design fast and efficient FBs with longer
filters, without linear-phase constraints, with an odd number
of channels, or even with complex rational coefficients [42].
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