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Abstract

The concept of M-convex function, introduced recently by Murota, is a quantitative

generalization of the set of integral points in an integral base polyhedron as well as an

extension of valuated matroid of Dress–Wenzel (1990). In this paper, we extend this

concept to functions on generalized polymatroids with a view to providing a unified

framework for efficiently solvable nonlinear discrete optimization problems. The restric-

tion of a function to {x ∈ ZV | x(V ) = k} for k ∈ Z is called a layer. We prove the

M-convexity of each layer, and reveal that the minimizers in consecutive layers are closely

related. Exploiting these properties, we can solve the optimization on layers efficiently.

A number of equivalent exchange axioms are given for M-convex function on generalized

polymatroid.

Keywords: matroid, base polyhedron, convex function, generalized polyma-

troid.

1 Introduction

In the area of discrete optimization, nonlinear optimization problems have been discussed

as well as linear optimization problems. It is widely accepted that the well-solvability of

linear optimization problems is deeply connected with polymatroid structures. In contrast,

however, the essence of the well-solvability of nonlinear optimization problems has not been

grasped clearly, while there are a number of scattered examples of efficiently solved nonlinear

optimization problems such as the minimum convex-cost flow problem, the nonlinear resource

allocation problem.
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On the other hand, discrete analogy of convex function has been considered by many

authors, e.g., Miller [14], Lovász [13], Camerini et al. [1], and Favati–Tardella [7]. In partic-

ular, Lovász clarified the relationship between submodularity and convexity; Camerini et al.

proposed the concept of quasi-separable convex function, showing the validity of a simple

greedy algorithm for such functions; Favati–Tardella investigated a class of discrete functions

such that local minimality leads to global minimality.

Recently, the concept of M-convex function has been introduced [19, 20, 21] as a quanti-

tative generalization of the set of integral points in an integral base polyhedron. The concept

of M-convex function provides us with a unified framework for efficiently solvable nonlinear

optimization problems. A function f : ZV → R∪{+∞} is said to be M-convex if it satisfies

(MB-EXC) ∀x, y ∈ dom f, ∀u ∈ supp+(x − y), ∃v ∈ supp−(x − y) such that

f(x) + f(y) ≥ f(x − χu + χv) + f(y + χu − χv),

where dom f = {x ∈ ZV | f(x) < +∞}, supp+(x − y) = {w ∈ V | x(w) > y(w)},
supp−(x − y) = {w ∈ V | x(w) < y(w)}, and χw ∈ ZV is the characteristic vector of w ∈ V.

The concept of M-convex function is also an extension of valuated matroid due to Dress and

Wenzel [5, 6]; for an M-convex function f with dom f ⊆ {0, 1}V , −f is a valuated matroid in

the sense of [5, 6]. The property (MB-EXC) implies that dom f is (the set of integral points

of) a base polyhedron.

M-convex functions enjoy several nice properties: they can be extended to ordinary

convex functions, and a Fenchel-type duality and a (discrete) separation theorem hold for

them [16, 19, 20, 21]. These properties may be sufficient for us to regard M-convexity

as convexity in discrete optimization. Applications of M-convex functions for polynomial

matrices are described in [5, 6, 15].

The main aim of this paper is to extend the concept of M-convexity to functions on

generalized polymatroids. The concept of generalized polymatroid, or g-polymatroid for

short, was introduced by Frank [8] in 1981 (see also Tardos [24] and Frank and Tardos [9]).

G-polymatroid includes polymatroid, submodular polyhedron, supermodular polyhedron,

and base polyhedron as its special cases. Although g-polymatroid is a generalization of

those polyhedra mentioned above, it is also known to be equivalent to base polyhedron in

the sense that any g-polymatroid can be obtained as a projection of a base polyhedron.

Given a set Q(⊆ ZV ), define Q̃(⊆ ZV ∪{v0}) as Q̃ = {(x,−x(V )) ∈ ZV ∪{v0} | x ∈ Q}, where

v0 is a new element not in V, and x(V ) =
∑
{x(w) | w ∈ V }.

Theorem 1.1 (Fujishige [10, 11]) Q is (the set of integral points in) a g-polymatroid if

and only if

(G-PRJ) Q̃ is (the set of integral points in) a base polyhedron.
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In view of this theorem, it would be natural to define M-convexity for a function on a g-

polymatroid as follows: a function f : ZV → R ∪ {+∞} is defined to be M-convex on a

g-polymatroid if

(MG-PRJ) function f̃ : ZV ∪{v0} → R ∪ {+∞} satisfies (MB-EXC), where

f̃(x, x0) =

 f(x) (x0 = −x(V )),

+∞ (otherwise).
(1)

It is clear that dom f is indeed a g-polymatroid for any M-convex function f on a g-

polymatroid.

Though M-convexity on a g-polymatroid is a straightforward translation of M-convexity

on a base polyhedron, we believe that it is worth investigating in its own right. One motiva-

tion is that we can talk of the layer structure of an M-convex function when it is defined on a

g-polymatroid, where a layer of a function is defined as its restriction to {x ∈ ZV | x(V ) = k}
for each k ∈ Z. Then optimization on each layer naturally comes into a problem. Recently,

many researchers analyze set systems and functions with respect to layer structures; for

example, greedoid by Korte, Lovász, and Schrader [12], valuated bimatroid [15], valua-

tion on independent sets [17], well-layered map and rewarding map by Dress and Terhalle

[2, 3, 4], and so on. In particular, valuations on independent sets enjoy M-concavity on

g-polymatroids, i.e., the negative of M-convex functions. We show that optimization of an

M-convex function in a specified layer can be done efficiently in several different ways.

Another motivation is the richness of examples of M-convex functions on g-polymatroids,

e.g., network flows, location problems, and polynomial matrices (see Section 2). It is well

known that kinds of greedy algorithms work for those problems, but such phenomena cannot

be explained by the theory of g-polymatroid. The framework of M-convex functions on g-

polymatroids explains why greedy algorithms work well for those problems.

In view of the exchange axiom (MB-EXC) for an M-convex function on a base polyhe-

dron, it would be natural to ask how the M-convexity on a g-polymatroid, defined through

projection, can be characterized by inherent exchange properties. We show in Theorem 4.2

that an M-convex function on a g-polymatroid is characterized by either of the following

simultaneous exchange properties:

(MG-EXC) ∀x, y ∈ dom f, ∀u ∈ supp+(x − y),

f(x) + f(y) ≥ min

[
f(x − χu) + f(y + χu), min

v∈supp−(x−y)
{f(x − χu + χv) + f(y + χu − χv)}

]
,

(MG-EXCw) ∀x, y ∈ dom f with x(V ) ≥ y(V ) and x 6= y,

f(x)+f(y) ≥ min
u∈supp+(x−y)

[
f(x − χu) + f(y + χu), min

v∈supp−(x−y)
{f(x − χu + χv) + f(y + χu − χv)}

]
.
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This paper is organized as follows: Section 2 provides various examples of M-convex

functions on g-polymatroids. Section 3 discusses the layer structure of M-convex function

and minimization on layers. Finally, we show the equivalence of a number of exchange axioms

in Section 4.

2 Examples of M-convex Functions on G-polymatroids

M-convex functions on g-polymatroids arise naturally in discrete optimization as follows.

While Examples 2.2 and 2.4 are minor variants of known facts, the others are new observa-

tions.

Example 2.1 (Quasi-separable convex function) Let f : ZV → R ∪ {+∞}. For any

x ∈ dom f and u ∈ V with x+χu ∈ dom f, we define a discrete derivative of f in direction u

at x as ∂uf(x) = f(x+χu)−f(x). Camerini et al. [1] called f quasi-separable convex if there

exist functions Φu (u ∈ V ) such that for each u ∈ V, Φu satisfies ∂uf(x) = Φu(x(V ), x(u))

and Φu is nondecreasing w.r.t. both x(V ) and x(u). For example, a quadratic function

f(x) =
n∑

i=1

aix
2
i + b

∑
i<j

xixj

is quasi-separable convex when 0 ≤ b ≤ 2min{ai | 1 ≤ i ≤ n}. We can show that a quasi-

separable convex function f is M-convex on a g-polymatroid when dom f is a polymatroid.

Example 2.2 (Min-cost flow) Let G = (V,A; V +, V −) be a directed graph with two spec-

ified vertex sets V +, V − ⊆ V such that V + ∩V − = ∅. We denote an upper capacity function

by c : A → Z ∪ {+∞}, a lower capacity function by c : A → Z ∪ {−∞}. A flow is a function

ϕ : A → Z, and its boundary ∂ϕ : V → Z is defined as

∂ϕ(v) =
∑

{ϕ(a) | a leaves v} −
∑

{ϕ(a) | a enters v} (v ∈ V ).

A flow ϕ is called feasible if it satisfies c(a) ≤ ϕ(a) ≤ c(a) (∀a ∈ A) and ∂ϕ(v) = 0 (∀v ∈
V −(V +∪V −)). Then, we see that Q = {(∂ϕ)− | ϕ : feasible flow}(⊆ ZV −

) is a g-polymatroid,

where (∂ϕ)− is the restriction of ∂ϕ to V −.

Suppose we are given a family of convex functions fa : Z → R indexed by a ∈ A. Here we

call fa convex if its piecewise linear extension fa : R → R is an ordinary convex function.

We define a function fmcf : ZV − → R ∪ {±∞} as follows:

fmcf(x) =

 inf{Γ(ϕ) | ϕ : feasible flow, (∂ϕ)− = x} (x ∈ Q),

+∞ (x 6∈ Q),

where Γ(ϕ) =
∑
{fa(ϕ(a)) | a ∈ A}. Then, the function fmcf satisfies (MG-EXC) if fmcf does

not take the value −∞, which can be proved in the similar way as in [19, 21].
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Example 2.3 (k-tree-core) Suppose we are given a tree network T = (V,E) with an

edge length function l : E → R+ and a vertex weight function w : V → R+. For any

u, v ∈ V, denote by P (u, v) the unique path connecting u and v. We define the distance

d(u, v) between u, v ∈ V as the sum of lengths of edges in P (u, v). The distance-sum dis(S)

of a subtree (connected subgraph) S is given by

dis(S) =
∑
u∈V

w(u) · min
v∈S

d(u, v).

A k-tree-core is a subtree with k leaves minimizing the distance-sum. We represent each

subtree of T by the set of its leaves. Put

F = {X ⊆ V | |X| ≥ 2, X is the leaf set of some subtree}

and denote by S(X) the subtree corresponding to X ∈ F . Define a function fdis : ZV →
R ∪ {+∞} by

fdis(x) =

 dis(S(X)) (x = χX for some X ∈ F),

+∞ (otherwise),

where χX ∈ {0, 1}V is the characteristic vector of X ⊆ V. Then, fdis satisfies (MG-EXC).

See Peng et al.[22] and Shioura and Uno [23] for more about k-tree-core.

Example 2.4 (Polynomial matrices [3, 5, 6, 15]) Let A(t) be an m×n polynomial ma-

trix, where each entry of A(t) is a polynomial in t. Denote by R and C the row and column

sets of A(t), respectively. Define J to be the family of linearly independent column sets,

and fmat : ZC → R ∪ {+∞} by

fmat(x) =

 −max{degt detA[I, J ] | I ⊆ R, |I| = |J |} (x = χJ , J ∈ J ),

+∞ (otherwise),

where A[I, J ] is the submatrix of A(t) induced by the row set I and the column set J. Then,

we can show that the function fmat satisfies (MG-EXC) by using the Grassmann-Plücker

identity.

3 Greedily Solvable Layer Structure

Suppose we are given a function f : ZV → R ∪ {+∞}. This section assumes that f satisfies

(MG-EXC), i.e., f is M-convex on a g-polymatroid, unless otherwise stated explicitly. We

discuss the layer structure of f, which is the restriction of f to {x ∈ ZV | x(V ) = k}, and

the following optimization problem in each layer (k ∈ Z) :

minimize f(x) subject to x(V ) = k.

Set λ = min{x(V ) | f(x) < +∞} and µ = max{x(V ) | f(x) < +∞}. For any integer k,

define a function fk : ZV → R ∪ {+∞} as fk(x) = f(x) if x(V ) = k, and = +∞ otherwise.

The following shows that each layer has a nice structure.
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Theorem 3.1 fk satisfies (MB-EXC) (λ ≤ ∀k ≤ µ).

Proof. This is an immediate corollary of Theorem 4.2 to be established in Section 4.

We can find a minimizer in each layer greedily by the following algorithm.

Exchanging Algorithm

Step 0: Let x be any element in dom f. Set V − = V.

Step 1: If V − = ∅ then stop.

Step 2: Choose any u ∈ V −, and find v ∈ V such that f(x−χu+χv) = min{f(x−χu+χw) |
w ∈ V }.
Step 3: Set x = x − χu + χv, and if v ∈ V − then set V − = V − − {v}. Go to Step 1.

Note that with a slight modification, this algorithm also applies to global optimization for

M-convex functions on g-polymatroids. The next lemma validates the exchanging algorithm.

Lemma 3.2 Suppose f : ZV → R ∪ {+∞} satisfies (MB-EXC). Given x ∈ dom f and

u ∈ V, let v ∈ V be such that f(x − χu + χv) = min{f(x − χu + χw) | w ∈ V }.
(i) If v 6= u, there exists x∗ ∈ arg min f with x∗(v) > x(v).

(ii) If v = u, there exists x∗ ∈ arg min f with x∗(v) ≥ x(v).

Proof. We prove the first claim only. The second claim can be proved in a similar

way. Let x∗ ∈ arg min f with the maximum value of x∗(v), and to the contrary suppose

x∗(v) ≤ x(v). Then we have v ∈ supp+((x − χu + χv) − x∗). By (MB-EXC), there exists

w ∈ supp−((x − χu + χv) − x∗) such that

f(x − χu + χv) + f(x∗) ≥ f(x − χu + χw) + f(x∗ + χv − χw).

The assumption for v and the fact x∗ ∈ arg min f imply f(x∗ + χv − χw) = f(x∗). However,

it is a contradiction since (x∗ + χv − χw)(v) = x∗(v) + 1.

We propose different approaches for optimization in a layer, which use the following

properties on the relationship between consecutive layers. For any integer k (λ ≤ k ≤ µ),

define α∗
k = min{f(x) | x(V ) = k} and Mk = {x ∈ ZV | x(V ) = k, f(x) = α∗

k}. For any

x ∈ ZV , we define ||x|| =
∑
{|x(w)| | w ∈ V }.

Theorem 3.3 (i) Let x∗
k ∈ Mk (λ ≤ k ≤ µ − 1), and v ∈ V be such that f(x∗

k + χv) =

min{f(x∗
k + χw) | w ∈ V }. Then x∗

k + χv ∈ Mk+1.

(ii) Let x∗
k ∈ Mk (λ + 1 ≤ k ≤ µ) and u ∈ V be such that f(x∗

k − χu) = min{f(x∗
k − χw) |

w ∈ V }. Then x∗
k − χu ∈ Mk−1.

Proof. For (i) it suffices to show that ||y∗ − x∗
k|| = 1 holds for some y∗ ∈ Mk+1. Let

y ∈ Mk+1 with ||y − x∗
k|| > 1. Note that supp+(y − x∗

k) 6= ∅. For u ∈ supp+(y − x∗
k), the

property (MG-EXC) yields either (a) or (b), where

(a) f(y) + f(x∗
k) ≥ f(y − χu) + f(x∗

k + χu),
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(b) f(y) + f(x∗
k) ≥ f(y − χu + χv) + f(x∗

k + χu − χv) (∃v ∈ supp−(y − x∗
k)).

Since x∗
k ∈ Mk, y ∈ Mk+1, we have x∗

k + χu ∈ Mk+1 if (a) holds, and y − χu + χv ∈ Mk+1 if

(b) holds. If (a) holds, we are done. In case of (b), we obtain y′ = y − χu + χv ∈ Mk+1 with

||y′ − x∗
k|| < ||y − x∗

k||. By repeating this procedure, we can find a desired y∗. The proof of

(ii) is similar.

This property naturally yields the next algorithm:

Augmenting Algorithm

Step 0: Find any x∗
λ ∈ Mλ. Set k = λ.

Step 1: If k = µ then stop.

Step 2: Find vk ∈ V such that f(x∗
k + χvk

) = min{f(x∗
k + χw) | w ∈ V }.

Step 3: Set x∗
k+1 = x∗

k + χvk
, k = k + 1. Go to Step 1.

The exchanging algorithm can be used in Step 0 of this algorithm. A reducing algorithm,

which iteratively reduces k, can be constructed similarly. These algorithms work well if

we can find an element x∗
λ ∈ Mλ or x∗

µ ∈ Mµ efficiently, in particular if |dom fλ| = 1 or

|dom fµ| = 1.

The next theorem shows the convexity of the sequence α∗
k.

Theorem 3.4 α∗
k−1 + α∗

k+1 ≥ 2α∗
k (λ + 1 ≤ ∀k ≤ µ − 1).

Proof. By Theorem 3.3, there exist x∗
k−1 ∈ Mk−1, x∗

k+1 ∈ Mk+1 such that x∗
k−1 ≤ x∗

k+1.

Apply (MG-EXC) to x∗
k+1, x∗

k−1 and any u ∈ supp+(x∗
k+1 − x∗

k−1) to obtain f(x∗
k+1) +

f(x∗
k−1) ≥ f(x∗

k+1 − χu) + f(x∗
k−1 + χu) ≥ 2α∗

k. Note that supp−(x∗
k+1 − x∗

k−1) = ∅.

Therefore, we can use the augmenting algorithm for finding a global minimum, where we

can stop the algorithm when k satisfies the condition α∗
k+1 ≥ α∗

k. As an immediate corollary

of this theorem, we have {x ∈ ZV | x(V ) = k, f(x) < +∞} 6= ∅ (λ ≤ ∀k ≤ µ).

Finally, we mention that the local minimality characterizes a global minimum of an M-

convex function on a g-polymatroid. This follows easily from the corresponding result [19, 20]

for an M-convex function on a base polyhedron.

Theorem 3.5 Let x ∈ dom f. Then, f(x) ≤ f(y) for any y ∈ ZV if and only if

f(x) ≤ min
[

min
u,v∈V

f(x − χu + χv), min
u∈V

f(x − χu), min
v∈V

f(x + χv)
]
.

Remark 3.1 The validity of the greedy algorithms in [1] is explained by the results in this

section together with the M-convexity of quasi-separable convex functions.
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4 Exchange Axioms for M-convex Functions on G-polymatroids

We derive here a number of equivalent exchange axioms for M-convex functions on g-

polymatroids.1 We first recall a seemingly weaker exchange property than (MB-EXC) for

M-convex functions on base polyhedra:

(MB-EXCw) ∀x, y ∈ dom f with x 6= y, ∃u ∈ supp+(x− y), ∃v ∈ supp−(x− y)

such that f(x) + f(y) ≥ f(x − χu + χv) + f(y + χu − χv).

Theorem 4.1 ([18, 20]) (MB-EXC) ⇐⇒ (MB-EXCw).

This equivalence is a quantitative generalization of the result of Tomizawa [25] for base

polyhedra.

A straightforward translation of (MB-EXC) and (MB-EXCw) through the equation (1)

leads to the following exchange axioms for M-convex functions on g-polymatroids:

(MG-EXCp) ∀x, y ∈ dom f,

(i) x(V ) < y(V ) =⇒ f(x) + f(y) ≥ min
v∈supp−(x−y)

{f(x + χv) + f(y − χv)},

(ii) x(V ) ≤ y(V ) =⇒ ∀u ∈ supp+(x − y),

f(x) + f(y) ≥ min
v∈supp−(x−y)

{f(x − χu + χv) + f(y + χu − χv)},

(iii) x(V ) > y(V ) =⇒ ∀u ∈ supp+(x − y),

f(x) + f(y) ≥ min

[
f(x − χu) + f(y + χu), min

v∈supp−(x−y)
{f(x − χu + χv) + f(y + χu − χv)}

]
,

(MG-EXCpw) ∀x, y ∈ dom f ,

(i) x(V ) > y(V ) =⇒

f(x) + f(y)

≥ min
u∈supp+(x−y)

[
f(x − χu) + f(y + χu), min

v∈supp−(x−y)
{f(x − χu + χv) + f(y + χu − χv)}

]
,

(ii) x(V ) = y(V ), x 6= y =⇒

f(x) + f(y) ≥ min
u∈supp+(x−y)
v∈supp−(x−y)

{f(x − χu + χv) + f(y + χu − χv)}.

For example, (MG-EXCp) (i) is obtained from (MB-EXC) for f̃ with u = v0.

The objective of this section is to show that these axioms are equivalent to (MG-EXC)

and (MG-EXCw), which look simpler and nicer.
1Labels (MB-***) are used for axioms of M-convexity of functions on base polyhedra, while (MG-***) for

those on g-polymatroids.
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Theorem 4.2 (MG-PRJ) ⇐⇒ (MG-EXC) ⇐⇒ (MG-EXCw) ⇐⇒ (MG-EXCp) ⇐⇒
(MG-EXCpw).

We can easily see from definitions and Theorem 4.1 that (MG-EXCpw) =⇒ (MG-EXCp)

=⇒ (MG-EXC) =⇒ (MG-EXCw). Furthermore, it is obvious that (MG-EXCw) =⇒ (MG-

EXCpw) (i). Thus, it suffices to show that (MG-EXCw) =⇒ (MG-EXCpw) (ii). For this

purpose, we need some lemmas.

Lemma 4.3 (MG-EXCw) =⇒ ∀x, y ∈ dom f with x(V ) < y(V ),

f(x) + f(y) ≥ min
v∈supp−(x−y)

{f(x + χv) + f(y − χv)}.

Proof. The proof is similar to and simpler than the one for Lemma 4.6 below and omitted.

Lemma 4.4 (MG-EXCw) =⇒ ∀x, y ∈ dom f with x(V ) = y(V ) and ||x − y|| = 4,

f(x) + f(y) ≥ min
u∈supp+(x−y)
v∈supp−(x−y)

{f(x − χu + χv) + f(y + χu − χv)}.

Proof. We can put x = z + χw1 + χw2 , y = z + χw3 + χw4 with wi ∈ V (i = 1, 2, 3, 4)

and z ∈ ZV defined by z(v) = min{x(v), y(v)} for v ∈ V. In the following, we denote

α1 = f(z + χw1), α23 = f(z + χw2 + χw3), α134 = f(z + χw1 + χw3 + χw4), and so on. To the

contrary suppose

α12 + α34 < min{α13 + α24, α14 + α23}. (2)

Then, we have α12 + α34 = min{α1 + α234, α2 + α134}. In fact, LHS ≥ RHS is by (MG-

EXCw) and (2), and the reverse inequality is by Lemma 4.3 and (2). Assume w.l.o.g. that

α12 + α34 = α1 + α234. From (MG-EXCw), it holds that

2(α12 +α34) = α234 +α12 +α34 +α1 ≥ min{α123 +α24, α124 +α23}+min{α3 +α14, α4 +α13}.

Again assume w.l.o.g. that min{α123 + α24, α124 + α23} = α123 + α24. In case that min{α3 +

α14, α4 + α13} = α3 + α14, we have a contradiction since

α123 + α24 + α3 + α14 ≥ α13 + α24 + α23 + α14 > 2(α12 + α34),

where the first and second inequalities are by (MG-EXCw) and (2), respectively. If min{α3+

α14, α4 + α13} = α4 + α13, then Lemma 4.3 and (2) yield another contradiction:

α123 + α24 + α4 + α13 ≥ min{α12 + α34, α13 + α24, α14 + α23} + α13 + α24 > 2(α12 + α34).
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Lemma 4.5 (MG-EXCw) =⇒ ∀x, y ∈ dom f with x(V ) = y(V ) and x 6= y, ∃u1 ∈ supp+(x−
y), ∃v1 ∈ supp−(x − y) such that y + χu1 − χv1 ∈ dom f.

Proof. By applying (MG-EXCw) for x and y, either (a) or (b) holds, where

(a) ∃u1 ∈ supp+(x − y) such that y + χu1 ∈ dom f,

(b) ∃u1 ∈ supp+(x − y), ∃v1 ∈ supp−(x − y) such that y + χu1 − χv1 ∈ dom f.

If (a) holds, then we can apply Lemma 4.3 for x and y+χu1 , which yields that y+χu1−χv1 ∈
dom f for some v1 ∈ supp−(x − (y + χu1)) ⊆ supp−(x − y).

In the following, we assume (MG-EXCw) and show a stronger statement than (MG-

EXCpw) (ii). The proof is almost the same as the one for [20, Theorem 3.1].

Lemma 4.6 (MG-EXCw) =⇒ ∀x, y ∈ dom f with x(V ) = y(V ), ∀u ∈ supp+(x − y),

f(x) + f(y) ≥ min
v∈supp−(x−y)

{f(x − χu + χv) + f(y + χu − χv)}.

Proof. Set

D = {(x, y) | x, y ∈ dom f, x(V ) = y(V ), ∃u∗ ∈ supp+(x − y),

∀v ∈ supp−(x − y) : f(x) + f(y) < f(x − χu∗ + χv) + f(y + χu∗ − χv)}.

We assume D 6= ∅ and derive a contradiction.

Let (x, y) be the element in D which minimizes the value ||x−y||, and u∗ ∈ supp+(x−y)

satisfy the condition for (x, y) to be in D. Using ε(> 0), we set p ∈ RV as follows:

p(v) =



f(x) − f(x − χu∗ + χv) (v ∈ supp−(x − y), x − χu∗ + χv ∈ dom f),

f(y + χu∗ − χv) − f(y) − ε (v ∈ supp−(x − y), x − χu∗ + χv 6∈ dom f,

y + χu∗ − χv ∈ dom f),

0 (otherwise).

Define fp(x) = f(x) +
∑
{p(w)x(w) | w ∈ V } (∀x ∈ ZV ).

Claim 1

fp(x − χu∗ + χv) = fp(x) (v ∈ supp−(x − y), x − χu∗ + χv ∈ dom f), (3)

fp(y + χu∗ − χv) > fp(y) (v ∈ supp−(x − y)). (4)

Suppose that u1 ∈ supp+(x − y), v1 ∈ supp−(x − y) satisfy

fp(y + χu1 − χv1) = min
u∈supp+(x−y)
v∈supp−(x−y)

fp(y + χu − χv). (5)

Lemma 4.5 yields that fp(y + χu1 − χv1) < +∞. Put y′ = y + χu1 − χv1 .
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Claim 2 (x, y′) ∈ D.

Proof of Claim. We have only to show that

fp(x) + fp(y′) < fp(x − χu∗ + χv) + fp(y′ + χu∗ − χv) (6)

for each v ∈ supp−(x − y′). We can assume that x − χu∗ + χv ∈ dom f, which implies

fp(x) = fp(x−χu∗ +χv) by (3) and the fact v ∈ supp−(x−y′) ⊆ supp−(x−y). Furthermore,

it holds that

fp(y′ + χu∗ − χv)

= fp(y + χu1 + χu∗ − χv1 − χv) + fp(y) − fp(y)

≥ min{fp(y + χu1 − χv1) + fp(y + χu∗ − χv),

fp(y + χu1 − χv) + fp(y + χu∗ − χv1)} − fp(y) (by Lemma 4.4)

≥ fp(y′) + min{fp(y + χu∗ − χv) − fp(y), fp(y + χu∗ − χv1) − fp(y)} (by (5))

> fp(y′) (by (4)),

which implies the inequality (6).

Hence, we have (x, y′) ∈ D, and ||x − y′|| = ||x − y|| − 2, which contradicts the selection of

(x, y).

5 Concluding Remarks

Remark 5.1 Most properties of M-convex functions on base polyhedra [16, 19, 20, 21]

extend to M-convex functions on g-polymatroids, according to its definition. For example,

• an M-convex function on a g-polymatroid is characterized by minimizers,

• M-convexity on g-polymatroids is preserved by addition of a linear function,

translation, and negation of the argument,

• an M-convex function on a g-polymatroid can be extended to a convex function,

• convolution and network induction work,

• an intersection theorem, a Fenchel-type duality, and a discrete separation the-

orem hold.

Remark 5.2 As a corollary of Theorem 4.2, g-polymatroids are characterized by a simul-

taneous exchange property:

(G-EXC) ∀x, y ∈ Q, ∀u ∈ supp+(x − y), either (i) or (ii) holds, where

(i) x − χu ∈ Q and y + χu ∈ Q,

(ii) x − χu + χv ∈ Q and y + χu − χv ∈ Q (∃v ∈ supp−(x − y)).

In fact, the axiom (MG-EXC) comes from this characterization. Alternatively, g-polymatroids

are characterized by another exchange property:
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(G-EXC0) ∀x, y ∈ Q, ∀u ∈ supp+(x − y), both (i) and (ii) hold, where

(i) either x − χu ∈ Q, or x − χu + χv ∈ Q (∃v ∈ supp−(x − y)),

(ii) either y + χu ∈ Q, or y + χu − χw ∈ Q (∃w ∈ supp−(x − y)),

which is a straightforward extension of the one for g-matroids due to Tardos [24]. This

axiom, however, is not suitable for a quantitative generalization.

Remark 5.3 Suppose that we are given a function f : ZV → R∪{+∞} with (MB-EXC) and

a specified subset W ⊆ V. Set λ = min{x(W ) | f(x) < +∞}, µ = max{x(W ) | f(x) < +∞},
α∗

k = min{f(x) | x(W ) = k}, and Mk = {x ∈ ZV | x(W ) = k, f(x) = α∗
k}. Then,

α∗
k−1 + α∗

k+1 ≥ 2α∗
k (λ + 1 ≤ ∀k ≤ µ − 1) as in Theorem 3.4, and Theorem 3.3 can be

generalized as follows:

Theorem 5.1 Let x∗
k ∈ Mk (λ ≤ k ≤ µ − 1), and u ∈ V − W, v ∈ W be such that

f(x∗
k − χu + χv) = min{f(x∗

k − χs + χt) | s ∈ V − W, t ∈ W}. Then x∗
k − χu + χv ∈ Mk+1.

Theorems 3.3 and 3.4 are the translation by projection of these results when |W | = 1. Note

that the similar properties of valuated bimatroid in [15] are also the special cases of the

above results.

Appendix: Proofs

A M-convexity of Functions in Examples

Theorem A.1 Let f : ZV → R ∪ {+∞} be a quasi-separable convex function such that

dom f is a polymatroid. Then, f satisfies (MG-EXCw).

The proof requires a characterization of polymatroids. See, e.g., Welsh [26].

Lemma A.2 Let P be a nonempty set of nonnegative vectors. Then, P is a polymatroid if

and only if P satisfies (P1) and (P2), where

(P1) y ∈ P, 0 ≤ x ≤ y =⇒ x ∈ P,

(P2) x, y ∈ P, x(V ) < y(V ) =⇒ ∃v ∈ supp−(x − y) such that x + χv ∈ P.

We also use an exchange axiom (G-EXCp) for g-polymatroids, which is just a qualitative

version of (MG-EXCp).

(G-EXCp) ∀x, y ∈ Q,

(i) x(V ) < y(V ) =⇒ ∃v ∈ supp−(x − y) such that x + χv ∈ Q and y − χv ∈ Q,

(ii) x(V ) ≤ y(V ) =⇒∀u ∈ supp+(x−y), ∃v ∈ supp−(x−y) such that x−χu+χv ∈
Q and y + χu − χv ∈ Q,

(iii) x(V ) > y(V ) =⇒ ∀u ∈ supp+(x − y), either x − χu ∈ Q, y + χu ∈ Q, or

x − χu + χv ∈ Q, y + χu − χv ∈ Q for some v ∈ supp−(x − y).
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Note that any polymatroid is a g-polymatroid and therefore satisfies (G-EXCp).

Lemma A.3 Suppose f : ZV → R ∪ {+∞} is a quasi-separable convex function such that

dom f is a polymatroid. Let x, y ∈ dom f.

(a) x(V ) > y(V ) =⇒ ∃u ∈ supp+(x − y) such that f(x) + f(y) ≥ f(x − χu) + f(y + χu),

(b) x(V ) = y(V ) =⇒ ∀u ∈ supp+(x − y), ∃v ∈ supp−(x − y) such that

f(x) + f(y) ≥ f(x − χu + χv) + f(y + χu − χv).

Proof. [proof of (a)]: By (G-EXCp) (i), there exists u ∈ supp+(x − y) with x − χu ∈
dom f, y + χu ∈ dom f. Hence, we have

f(x) − f(x − χu) = Φu(x(V ) − 1, x(u) − 1) ≥ Φu(y(V ), y(u)) = f(y + χu) − f(y).

[proof of (b)]: (G-EXCp) (ii) assures the existence of v ∈ supp−(x−y) with x−χu +χv ∈
dom f, y+χu−χv ∈ dom f. Then, it follows from (P1) that x−χu ∈ dom f, y−χv ∈ dom f .

Thus,

f(x − χu + χv) − f(x) = −Φu(x(V ) − 1, x(u) − 1) + Φv(x(V ) − 1, x(v))

≤ −Φu(y(V ) − 1, y(u)) + Φv(y(V ) − 1, y(v) − 1)

= f(y) − f(y + χu − χv).

This lemma implies (MG-EXCw) for quasi-separable convex functions.

Theorem A.4 The function fmcf in Example 2.2 satisfies (MG-EXC), provided fmcf does

not take the value −∞.

Proof. Let x, y ∈ Q, u ∈ supp+(x − y), and ϕx and ϕy be feasible flows with ∂ϕx = x,

∂ϕy = y, Γ(ϕx) = fmcf(x), Γ(ϕy) = fmcf(y). Then, we can find π : A → {0,±1} such that

supp+(π) ⊆ supp+(ϕx − ϕy), supp−(π) ⊆ supp−(ϕx − ϕy),

∂π(w) = 0 (w ∈ V − (V + ∪ V −)),

(∂π)− = χu, or (∂π)− = χu − χv for some v ∈ supp−(x − y).

Hence ϕx − π and ϕy + π are feasible, and we have either (i) or (ii), where

(i) (∂ϕx − π)− = x − χu and (∂ϕy + π)− = y + χu,

(ii) (∂ϕx − π)− = x − χu + χv and (∂ϕy + π)− = y + χu − χv.

Since

fa(ϕx(a) − 1) + fa(ϕy(a) + 1) ≤ fa(ϕx(a)) + fa(ϕy(a)) if ϕx(a) > ϕy(a),

fa(ϕx(a) + 1) + fa(ϕy(a) − 1) ≤ fa(ϕx(a)) + fa(ϕy(a)) if ϕx(a) < ϕy(a),
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we have

fmcf((∂ϕx − π)−) + fmcf((∂ϕy + π)−) ≤ Γ(ϕx − π) + Γ(ϕy + π)

=
∑

a:π(a)=1

[fa(ϕx(a) − 1) + fa(ϕy(a) + 1)] +
∑

a:π(a)=−1

[fa(ϕx(a) + 1) + fa(ϕy(a) − 1)]

+
∑

a:π(a)=0

[fa(ϕx(a)) + fa(ϕy(a))]

≤ Γ(ϕx) + Γ(ϕy) = fmcf(x) + fmcf(y).

Theorem A.5 The function fdis in Example 2.3 satisfies (MG-EXC).

To prove this, we first show a property on the distance-sum. For u, v ∈ V with (u, v) ∈ E,

set W (u, v) =
∑
{w(t) | t ∈ V, v ∈ P (u, t)}. For any u, v ∈ V, put ∆(u, v) =

∑
{l(ui−1, ui) W (ui−1, ui) |

i = 1, · · · , r}, where {u0(= u), u1, · · · , ur(= v)} is the sequence of vertices on the path P (u, v).

Note that ∆(u, v) is not equal to ∆(v, u).

Lemma A.6 Let u, v ∈ V and S be a subtree such that P (u, v) ∩ S = {u}. Then,

dis(S ∪ P (u, v)) − dis(S) = −∆(u, v).

Note that the value dis(S ∪ P (u, v)) − dis(S) does not depend on a subtree S.

Proof of Theorem A.5 Let X,Y ∈ F and u ∈ X − Y. It suffices to show that either (i)

or (ii) holds, where

(i) |X| ≥ 3 and dis(S(X)) + dis(S(Y )) ≥ dis(S(X − u)) + dis(S(Y + u)),

(ii) dis(S(X))+dis(S(Y )) ≥ dis(S(X −u+v))+dis(S(Y +u−v)) (∃v ∈ Y −X).

For each subtree S, we call w ∈ S a branching vertex of S if there are at least three edges of

S incident to w.

Case 1: S(X) and S(Y ) contain a common edge.

Let c be the nearest vertex to u in the intersection of S(X) and S(Y ). If |X| ≥ 3, let

bX be the nearest branching vertex of S(X) to u, and if |X| = 2 then let bX be the unique

element in X − u.

Case 1.1: bX ∈ P (c, u).

We claim that |X| ≥ 3. To the contrary suppose |X| = 2. Then S(X) = P (u, bX) from

the definition of bX . But it means that S(X) and S(Y ) share no edge, a contradiction. It

holds that S(X − u) = S(X) − P (bX , u), S(Y + u) = S(Y ) ∪ P (c, u). From Lemma A.6, we

have

dis(S(X − u)) + dis(S(Y + u)) = {dis(S(X)) + ∆(bX , u)} + {dis(S(Y )) − ∆(c, u)}

= dis(S(X)) + dis(S(Y )) − ∆(c, bX)

≤ dis(S(X)) + dis(S(Y )),
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and the condition (i) is fulfilled.

Case 1.2: bX 6∈ P (c, u).

There necessarily exists a leaf v of S(Y ) with c ∈ P (bX , v). We also have P (c, v)∩S(X) =

{c}. If there exists a branching vertex of S(Y ) on the path P (c, v), let bY be the nearest

one to v, and otherwise bY = c. Since S(X − u + v) = (S(X) − P (c, u)) ∪ P (c, v), and

S(Y + u − v) = (S(Y ) − P (bY , v)) ∪ P (c, u), Lemma A.6 implies the next inequality:

dis(S(X − u + v)) + dis(S(Y + u − v))

= {dis(S(X)) + ∆(c, u) − ∆(c, v)} + {dis(S(Y )) + ∆(bY , v) − ∆(c, u)}

= dis(S(X)) + dis(S(Y )) − ∆(c, bY )

≤ dis(S(X)) + dis(S(Y )).

Hence v satisfies the condition (ii).

Case 2: S(X) and S(Y ) contain no common edge.

Let cX be the nearest vertex in S(X) to S(Y ), and cY the nearest vertex in S(Y ) to

S(X). Note that P (cX , cY ) ∩ S(X) = {cX} and P (cX , cY ) ∩ S(Y ) = {cY }. If there exists a

branching vertex of S(X) on the path P (u, cX), let bX be the nearest one to u, and otherwise

bX = cX . Let v be any element of Y. If there exists a branching vertex on the path P (v, cY )

then let bY be the nearest one to v, and otherwise set bY = cY . Since

S(X − u + v) = (S(X) − P (bX , u)) ∪ (P (cX , cY ) ∪ P (cY , v)),

S(Y + u − v) = (S(Y ) − P (bY , v)) ∪ (P (cY , cX) ∪ P (cX , u)),

we have the following by Lemma A.6:

dis(S(X − u + v)) + dis(S(Y + u − v))

= {dis(S(X)) + ∆(bX , u) − ∆(cX , cY ) − ∆(cY , v)}

+ {dis(S(Y )) + ∆(bY , v) − ∆(cY , cX) − ∆(cX , u)}

= dis(S(X)) + dis(S(Y )) − ∆(cX , cY ) − ∆(cY , cX) − ∆(cX , bX) − ∆(cY , bY )

≤ dis(S(X)) + dis(S(Y )).

This inequality yields that v satisfies the condition (ii).

Theorem A.7 The function fmat in Example 2.4 satisfies (MG-EXC).

Proof. We define an m × (m + n) matrix Ã as the one consisting of columns in A and

unit column vectors {χw | w ∈ R}. For J ⊆ C and I ⊆ R, we denote by Ã[J ∪ I] a submatrix

of Ã which contains columns in A corresponding to J and vectors {χw | w ∈ I}. Then, we

have the relations

detA[I, J ] = det Ã[J ∪ (R − I)] (I ⊆ R, J ⊆ C, |I| = |J |),
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and

fmat(χJ) = −ω(J) (J ∈ J ),

where ω(J) = max{degt det Ã[J ∪ I] | I ⊆ R, |I| + |J | = m}.
Let J,H ∈ J and u ∈ J − H. For the M-convexity of fmat, we have only to show that

either (i) or (ii) holds, where

(i) J − u,H + u ∈ J and ω(J) + ω(H) ≤ ω(J − u) + ω(H + u),

(ii) ∃v ∈ H − J such that J − u + v,H + u − v ∈ J and ω(J) + ω(H) ≤
ω(J − u + v) + ω(H + u − v).

Denote by IJ , IH the subsets of R such that

ω(J) = degt det Ã[J ∪ IJ ], ω(H) = degt det Ã[H ∪ IH ]. (7)

Note that both Ã[J∪IJ ] and Ã[H∪IH ] are m×m nonsingular matrices. Since u ∈ (J∪IJ)−
(H∪IH), the Grassmann-Plücker identity guarantees the existence of v ∈ (H∪IH)−(J ∪IJ)

such that Ã[(J ∪ IJ)−u+ v] and Ã[(H ∪ IH)+u− v] are nonsingular and that the following

inequality is satisfied (see [4, 5] for more detail):

degt det Ã[J∪IJ ]+degt det Ã[H∪IH ] ≤ degt det Ã[(J∪IJ)−u+v]+degt det Ã[(H∪IH)+u−v].

(8)

If v ∈ H then we have the condition (ii) by (7), (8), and

degt det Ã[(J ∪ IJ)−u+ v] ≤ ω(J −u+ v), degt det Ã[(H ∪ IH)+u− v] ≤ ω(H +u− v),

and if v ∈ IH then the condition (i) holds by (7), (8), and the following inequalities:

degt det Ã[(J ∪ IJ) − u + v] ≤ ω(J − u), degt det Ã[(H ∪ IH) + u − v] ≤ ω(H + u).

Hence, fmat satisfies (MG-EXC).

B The Proof of Lemma 3.3

Assuming (MG-EXCw), we show that for any x, y ∈ dom f with x(V ) < y(V ),

f(x) + f(y) ≥ min
v∈supp−(x−y)

{f(x + χv) + f(y − χv)}.

Set

D = {(x, y) | x, y ∈ dom f, x(V ) < y(V ), ∀v ∈ supp−(x−y) : f(x)+f(y) < f(x+χv)+f(y−χv)}.

We assume D 6= ∅ and derive a contradiction.
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Let (x, y) be the element in D which minimizes the value ||x − y||. Using ε(> 0), we set

p ∈ RV as follows:

p(v) =


f(x) − f(x + χv) (v ∈ supp−(x − y), x + χv ∈ dom f),

f(y − χv) − f(y) − ε (v ∈ supp−(x − y), x + χv 6∈ dom f, y − χv ∈ dom f),

0 (otherwise).

Define fp(x) = f(x) +
∑
{p(w)x(w) | w ∈ V } (∀x ∈ ZV ).

Claim 1

fp(x + χv) = fp(x) (v ∈ supp−(x − y), x + χv ∈ dom f), (9)

fp(y − χv) > fp(y) (v ∈ supp−(x − y)). (10)

Claim 2 ∃u1 ∈ supp+(x − y), ∃v1 ∈ supp−(x − y) such that y + χu1 − χv1 ∈ dom f.

Proof of Claim. Since y(V ) > x(V ), we can apply (MG-EXCw) to y, x. Combining with

the fact (x, y) ∈ D, there exist u1 ∈ supp+(x − y), v1 ∈ supp−(x − y) such that

(+∞ >)f(x) + f(y) ≥ f(x − χu1 + χv1) + f(y + χu1 − χv1).

Hence y + χu1 − χv1 ∈ dom f.

Suppose that u1 ∈ supp+(x − y), v1 ∈ supp−(x − y) satisfy

fp(y + χu1 − χv1) = min
u∈supp+(x−y)
v∈supp−(x−y)

fp(y + χu − χv). (11)

The previous claim yields that fp(y + χu1 − χv1) < +∞. Put y′ = y + χu1 − χv1 .

Claim 3 (x, y′) ∈ D.

Proof of Claim. Since y′(V ) = y(V ) > x(V ), we have only to show that

fp(x) + fp(y′) < fp(x + χv) + fp(y′ − χv) (12)

for each v ∈ supp−(x−y′). This inequality stands obviously when x+χv 6∈ dom f. Therefore

we assume that x + χv ∈ dom f. We have fp(x) = fp(x + χv) by (9), and

fp(y′ − χv)

= fp(y) + fp(y + χu1 − χv1 − χv) − fp(y)

≥ min{fp(y + χu1 − χv1) + fp(y − χv),

fp(y + χu1 − χv) + fp(y − χv1)} − fp(y) (by (MG-EXCw))

≥ min{fp(y − χv) − fp(y), fp(y − χv1) − fp(y)} + fp(y + χu1 − χv1) (by (11))

> fp(y′) (by (10)).

Thus, the inequality (12) holds.

We have (x, y′) ∈ D by Claim 3, which contradicts the selection of (x, y) since ||x − y′|| =

||x − y|| − 2. Therefore D = ∅.

17



References

[1] Camerini, P. M., M. Conforti, D. Naddef (1989). Some easily solvable nonlinear integer

programs. Ricerca Operativa 50 11-25.

[2] Dress, A. W. M., W. Terhalle (1995). Well-layered maps — A class of greedily optimiz-

able set functions. Appl. Math. Lett. 8 77–80.

[3] Dress, A. W. M., W. Terhalle (1995). Well-layered maps and the maximum-degree k×k-

subdeterminant of a matrix of rational functions. Appl. Math. Lett. 8 19–23.

[4] Dress, A. W. M., W. Terhalle (1995). Rewarding maps — On greedy optimization of

set functions. Adv. Appl. Math. 16 464–483.

[5] Dress, A. W. M., W. Wenzel (1990). Valuated matroid: A new look at the greedy

algorithm. Appl. Math. Lett. 3 33–35.

[6] Dress, A. W. M., W. Wenzel (1992). Valuated matroids. Adv. Math. 93 214–250.

[7] Favati, P., F. Tardella (1990). Convexity in nonlinear integer programming. Ricerca

Operativa 53 3–44.

[8] Frank, A. (1984). Generalized polymatroids. A. Hajnal et al., eds., Finite and Infinite

Sets, North-Holland, Amsterdam, 285–294.
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