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M-ESTIMATION, CONVEXITY AND QUANTILES1

By V. I. Koltchinskii

University of New Mexico

The paper develops a class of extensions of the univariate quantile
function to the multivariate case (M-quantiles), related in a certain way
to M-parameters of a probability distribution and their M-estimators.
The spatial (geometric) quantiles, recently introduced by Koltchinskii and
Dudley and by Chaudhuri as well as the regression quantiles of Koenker
and Basset, are the examples of the M-quantile function discussed in
the paper. We study the main properties of M-quantiles and develop the
asymptotic theory of empirical M-quantiles. We use M-quantiles to extend
L-parameters and L-estimators to the multivariate case; to introduce
a bootstrap test for spherical symmetry of a multivariate distribution,
and to extend the notion of regression quantiles to multiresponse linear
regression models.

1. Introduction. The univariate quantile function has been extensively
used in statistical inference. One of the reasons of such a wide applicability is
that many important robust statistics (like, for instance, L- and R-estimators)
are defined as functionals of the empirical quantile function. Our goal is to
extend the notion of quantiles to a broader context, specifically, to probability
measures on finite-dimensional spaces. Since there is no really natural order-
ing of vectors in Rd for d > 1; such an extension of quantiles is a hard problem
in the statistics of multivariate data. A brief outline of some of the known ap-
proaches for the study of order statistics and quantiles in the multivariate
case is as follows:

1. Tukey (1975), Barnett (1976), Eddy (1985) and Reiss (1989) suggested dif-
ferent ways of ordering multivariate data (by peeling the convex hulls of
data points, using auxillary real-valued functions, etc.).

2. Pyke (1975, 1985) considered extensions of the empirical quantile process.
Einmahl and Mason (1992) developed a class of extensions of the univariate
quantile function to the multivariate case. Their quantile function UC is
defined as

UC �t� x= inf�λ�C�x P�C� ≥ t; C ∈ C � for t ∈ �0;1�;
where P is a probability measure on Rd, C ⊂ Rd is a class of Borel subsets
and λ is a real-valued function defined on C : They studied asymptotics of
the corresponding empirical quantile processes.
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3. Koltchinskii and Dudley (1996) ([K-D]) [see also Koltchinskii (1994a, b,
1996)], and Chaudhuri (1996) ([Ch]) suggested an extension of the distribu-
tion function FP (of a probability measure P) to the multivariate case such
that the inverse function F−1

P can be viewed as an extension of the quantile
function. These functions possess many properties known and used in the
one-dimensional case. For instance, FP characterizes P, F−1

P is equivariant
with respect to translations (as well as with respect to orthogonal transfor-
mations), and the asymptotic properties of their empirical versions are the
same as in the univariate case [see, e.g., Shorack and Wellner (1986)]. The
corresponding “median” F−1

P �0� is nothing but the well-known Haldane’s
spatial L1-median [see Haldane (1948)].

Our approach in this paper is rather close to Koltchinskii (1996). It allows
us, for example, to define L-parameters of the distribution P as integral func-
tionals of the form L�P� x=

∫
h�F−1

P �t��dm�t�; and to define L-estimators as
L-parameters of the empirical measure Pn; avoiding ordering of multivariate
data [see Section 4 of this paper and Koltchinskii (1995a)]. A multivariate
extension of R-estimators can be also defined in a similar way, as a certain
functional of the empirical quantile function.

In the one-dimensional case, it is well known that the set of all medians ofP
coincides with the set of all minimal points of the function ∫��s−x�−�x��P�dx�:
However, it is less known that quantiles of P can be also characterized as
minimal points of a certain function. For instance, let

�1:1� fP�s� x= 0:5
∫
R1
��s− x� − �x� + s�P�dx� for s ∈ R1:

Then for any t ∈ �0;1�; the set of all tth quantiles of P is exactly the set of
all minimal points of the function fP; t�s� x= fP�s� − st; s ∈ R1: Note that the
function fP is convex, the distribution function FP is a subgradient of fP and
the quantile function F−1

P is a subgradient of the Young–Fenchel conjugate of
fP; defined as

f∗P�t� x= sup
s∈R1
�st− fP�s�� for t ∈ R1

and known in smooth analysis as the Legendre transformation of fP: In
what follows we extend this construction to the multivariate case and de-
fine M-distribution and M-quantile functions of a probability measure P on
an arbitrary measurable space. These functions are related to the class of
M-parameters of P; defined by convex minimization. The relationship is es-
sentially the same as between the distribution and quantile functions and the
median, so that the M-parameter can be viewed as a “median,” whereas the
corresponding M-estimator is a “sample median.”

We use some notations, as introduced in the Appendix. Let �X;A ;P� be a
probability space, and let fx Rd×X 7→ R1: Suppose that for any s ∈ Rd; f�s; ·� is
an integrable function. We define the integral transformation �P; s� 7→ fP�s� ∈
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R1 of the probability measure P with the kernel f:

fP�s� x=
∫

X
f�s; x�P�dx� for s ∈ Rd:

If there exists a point s0; which minimizes fP on Rd; it is called an M-
parameter of P with respect to the kernel f: Under some smoothness, the
M-parameters are the solutions of the equation FP�s� = 0; where FP�s� x=∫

X ∇f�syx�P�dx�:
Given a sample �X1; : : : ;Xn� from the distribution P, Pn denotes the em-

pirical measure based on this sample; that is, Pn x= n−1∑n
1 δXk

; where δx
is the unit point mass at x ∈ X: An M-parameter of Pn is known as an M-
estimator.

Definition 1.1. We call a minimal point of the functional

fP; t�s� x= fP�s� − �s; t�; s ∈ Rd

an �M;t�-parameter of P with respect to f: An �M;t�-parameter of the em-
pirical measure Pn will be called an �M;t�-estimator (with respect to f) based
on a sample �X1; : : : ;Xn�:

Of course, M-parameters of P coincide with �M;0�-parameters, and M-
estimators are just �M;0�-estimators.

Huber (1967) developed the asymptotic theory of M-estimators. Pollard
(1988), Haberman (1989), Niemiro (1992) and others have emphasized the role
of convexity of the kernel f�s; x� in s in the asymptotic study of M-estimators
(as well as some other estimators defined by minimization of statistical func-
tionals). They showed that in this case the theory can be substantially simpli-
fied and the asymptotic normality of M-estimators can be established under
minimal and very natural assumptions.

We use convex analysis rather extensively in this paper. The relevant facts
can be found in Rockafellar (1970) ([Ro]). Some frequently used notions are
given in the Appendix.

In what follows, we assume that f�·; x� is a convex function for P almost
all x: We call such a kernel f P-convex. If there exists A ∈ A such that f�·; x�
is strictly convex for all x ∈ A and P�A� > 0; then f will be called a P-strictly
convex kernel.

Given a P-convex kernel f; we call the subdifferential map ∂fP of the
convex function fP the M-distribution map of P with respect to f: Its inverse,
∂f−1

P = ∂f∗P, is called the M-quantile map of P with respect to f: For the
convex function fP given by (1.1), ∂fP and ∂f−1

P are multivalued versions of
the usual distribution and quantile functions of P (see Example 2.2), which
motivates our definitions. For any t ∈ Rd, �∂fP�−1�t� is the set of all �M;t�-
parameters of P: If, in addition, f is a P-strictly convex kernel, then ∂f−1

P

is a single-valued map, so that the �M;t�-parameter is unique (for all t such
that it exists). In this case we call a subgradient FP (i.e., a map FP from Rd
into Rd such that FP�s� ∈ ∂fP�s� for all s ∈ Rd) the M-distribution function
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of P with respect to f; and we call its inverse F−1
P from FP�Rd� onto Rd;

the M-quantile function. In particular, if 0 ∈ FP�Rd�; then the M-parameter
of P is unique and it coincides with the “median” F−1

P �0� and M-estimators
are “sample medians” F−1

Pn
�0�: Using some basic facts of convex analysis, it

is easy to describe the range FP�Rd� of the map FP (see Section 2). We also
give some conditions when FP charaterizes P (in the sense that FP = FQ

implies P = Q). In Section 3, we study equivariance of M-distribution and
M-quantile maps with respect to the groups of translations and orthogonal
transformations and obtain representations of these functions for spherically
symmetric probability distributions.

Section 5 develops the asymptotic theory of empirical M-distribution and
M-quantile functions. Specifically, we prove that the sequences n1/2�FPn

−FP�
and n1/2�F−1

Pn
−F−1

P � converge in distribution to Gaussian processes.
We apply these results to two main examples. First of all, we consider a

class of extensions of quantiles to the multivariate case. To define such spatial
quantiles we use the kernel f�s; x� x= ϕ��s−x��−ϕ��s0−x��; s; x ∈ Rd; where
s0 ∈ Rd is a fixed point and ϕ is a convex nondecreasing function on �0;+∞�;
differentiable in �0;+∞�: In this case FP is defined by

FP�s� x=
∫
�x6=s�

8��s− x�� s− x�s− x�P�dx� for s ∈ Rd;

where 8 x= ϕ′: If ϕ is strictly increasing and P is not concentrated in a line,
then the range VP x= FP�Rd� is a ball (which, in particular, could coincide
with the whole space Rd) with a number of spherical “holes” in it (one “hole”
for each atom of P). The map FP is one-to-one from Rd onto VP; so that F−1

P

is well defined (see Proposition 2.6). In particular, if ϕ�u� ≡ u and 8 ≡ 1; we
get an extension of the distribution and quantile functions to the multivariate
case as introduced by [K-D] and [Ch]. We study the main properties of these
M-distribution and M-quantile functions (analytical properties, characteriza-
tion of the distribution P; asymptotics of their empirical counterparts, etc.).
We show also their equivariance with respect to translations and orthogo-
nal transformations and obtain representations of FP and F−1

P for spherically
symmetric distributions. These representations are used in Section 4 to de-
velop tests for spherical symmetry of multivariate distributions.

Another example is related to the notion of regression quantiles, introduced
by Koenker and Basset (1978). Consider a sample �Xi;Yi�; i = 1; : : : ; n of
i.i.d. observations, where Xi; i ≥ 1 take values in Rm and Yi; i ≥ 1 take val-
ues in R1: Suppose that our observations satisfy the following linear regression
model with random design:

Yi = �s0;Xi� + ξi; 1 ≤ i ≤ n;

where s0 ∈ Rm and ξi; i ≥ 1 are i.i.d. errors, independent of Xi i ≥ 1: Koenker
and Basset (1978) define (empirical) regression α-quantiles for α ∈ �0;1� as
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minimal points of the function in s,
n∑
1

[
�Yi − �s;Xi�� − �2α− 1��s;Xi�

]
:

One of the reasons to introduce this notion was to develop a technique of ro-
bust estimation for regression models. Koenker and Portnoy (1987) studied L-
estimators for regression, defined in terms of regression quantiles. Chaudhuri
(1991) considered nonparametric estimates of regression quantiles. See also
Gutenbrunner and Jurečková (1992) and Gutenbrunner, Jurečková, Koenker
and Portnoy (1993) for applications of this notion.

[Ch] suggested extending the notion to the case of multiresponse regression,
using the version of spatial quantiles introduced by him and by [K-D]. In this
paper, we define regression quantiles for multiresponse regression models and
show that they can be viewed and studied as a special case of the M-quantile
function with respect to a certain convex kernel.

2. M-distribution and M-quantile functions with respect to convex
kernels. Let f be a P-convex kernel such that for all s ∈ Rd f�s; ·� is a P-
integrable function. Then fP is a convex function from Rd into R1: Moreover,
if f is a P-strictly convex kernel, then fP is a strictly convex function. Let
df�syvyx� denote the directional derivative of the function f�·; x� at a point
s ∈ Rd in the direction v ∈ Rd;

df�syvyx� x= inf
λ∈�0;+∞�

1f�syvyλyx� = lim
λ↓0

1f�syvyλyx�;

where 1f�syvyλyx� x= λ−1�f�s + λvyx� − f�syx��: The directional derivative
exists for any x such that f�·; x� is convex; thus, it exists P a.e. Since the
function 1f�syvyλyx� is increasing in λ > 0; one can use the monotone con-
vergence theorem to show that for all s ∈ Rd,

dfP�syv� = lim
λ↓0

1fP�syvyλ� = lim
λ↓0

∫
X
1f�syvyλyx�P�dx� =

∫
X
df�syvyx�P�dx�:

Clearly,

∂fP�s� =
⋂

v∈Rd; v6=0

{
tx
∫

X
df�syvyx�P�dx� ≥ �v; t�

}
:

Given s ∈ Rd, x 7→ ∂f�syx� is a closed convex multivalued map. Given a
multivalued map x 7→ C�x� ⊂ Rd; an integral

∫
X C�x�P�dx� is defined as a

set
{∫

X
c�x�P�dx�x c x X 7→ Rd is P-integrable; c�x� ∈ C�x� for P-almost all x

}
:

The next statement is a special case of Theorem 8.3.4 of Ioffe and Tihomirov
(1974). It shows that one can subdifferentiate under the integral sign and gives
an integral representation of the multivalued map ∂fP:
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Theorem 2.1. Suppose f is a P-convex kernel, and for all s ∈ Rd f�sy ·� is
P-integrable. Then, for all s ∈ Rd;

∂fP�s� =
∫

X
∂f�syx�P�dx�:

A map FPx Rd 7→ Rd is a subgradient of the convex function fP if and only
if there exists a map Fx Rd × X 7→ Rd; such that F�s; x� ∈ ∂f�s; x� P a.e. [so,
F�s; x� is a subgradient of f�s; x� P a.e.], F�s; ·� is P-integrable and

�2:1� FP�s� x=
∫

X
F�syx�P�dx�:

Example 2.2. Let X = R1; and let f�s; x� x= 0:5��s−x�−�x�+s� for s; x ∈ R1:
Then

fP�s� x= 0:5
∫
R1
��s− x� − �x��P�dx� + 0:5s for s ∈ R1:

In this case for any x ∈ R1, a function F�·yx�; defined by F�syx� x= I�−∞;s��x�
for x; s ∈ R1; is a subgradient of the convex function f�·yx�: Therefore, a
function FP; defined by

FP�s� x=
∫
R1

I�−∞; s��x�P�dx� = P��−∞; s�� for s ∈ R1;

is a subgradient of fP: Clearly, FP is the distribution function of the proba-
bility measure P: The inverse F−1

P of the function FP is the quantile function
of P: It’s easy to show that the subdifferential of fP is a multivalued map
∂fP; defined by ∂fP�s� = �FP�s−�;FP�s�� for s ∈ R1: On the other hand, the
inverse of the multivalued map ∂fP,

∂f−1
P �t� =





�F−1
P �t�;F−1

P �t+��; for t ∈ �0;1�;
�−∞;F−1

P �0+��; for t = 0;
�F−1

P �1�;+∞�; for t = 1;
\; for t /∈ �0;1�;

is the subdifferential ∂f∗P of the conjugate f∗P: In particular, F−1
P �t� is a sub-

gradient of the convex function f∗P�t�; t ∈ �0;1� [for t = 0 and t = 1, F−1
P �0+�

and F−1
P �1� are also subgradients of f∗P; if they are finite]. The set of �M;t�-

parameters of P coincides with the set �F−1
P �t�;F−1

P �t+�� of t-quantiles of P:
Clearly, ∂fP and ∂f∗P = ∂f−1

P can be viewed as multivalued versions of the
usual distribution and quantile functions, respectively.

Motivated by this example, we introduce the following definition in the
general case.

Definition 2.3. The subdifferential map ∂fP of the function fP will be
called the M-distribution map of P with respect to f: Respectively, the sub-
differential map ∂f∗P = ∂f−1

P of the conjugate map f∗P will be called the M-
quantile map of P with respect to f: Any point of the set ∂f−1

P �t� is called an
�M;t�-quantile of P with respect to f: If ∂fP (respectively, ∂f−1

P ) is a single-
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valued map, we call it the M-distribution (respectively, the M-quantile) func-
tion of P with respect to f:

Define

rf�vyx� x= sup
s∈Rd

df�syvyx� for v ∈ Rd and x ∈ X;

so that rf�·; x� is the recession function of f�·; x�: It follows from the properties
of the recession function (see [Ro]), that for any s ∈ Rd and for P almost all x

rf�vy x� = lim
λ↑+∞

1f�syvyλyx�:

Therefore, by the monotone convergence theorem, we have the following rep-
resentation for the recession function of fP:

rP�v� x= rfP�v� x= sup
s∈Rd

dfP�syv� = lim
λ↑+∞

1fP�syvyλ�

= lim
λ↑+∞

∫
X
1f�syvyλyx�P�dx� =

∫
X
rf�vyx�P�dx� for v ∈ Rd:

We define a convex set

BP x= BfP x=
⋂

v∈Rd; v6=0

�tx �v; t� < rP�v��:

The following properties of M-distribution and M-quantile maps easily fol-
low from the general facts of convex analysis (see [Ro], especially Sections 23–
27). They are quite similar to the properties of the multivalued versions of the
usual distribution and quantile functions [such as their monotonicity, semi-
continuity, relationship with �M;t�-parameters (quantiles) andM-parameters
(medians), etc.; see Example 2.2].

2.1. Properties of M-distribution and M-quantile maps. Let f be a P-
convex kernel. Then we have the following properties.

1. The M-distribution map ∂fP of P with respect to f is a monotone upper
semicontinuous multivalued map. Moreover, if f is P-strictly convex, then
∂fP is strictly monotone.

2. The M-quantile map of P with respect to f is the inverse of the M-
distribution map: ∂f∗P = �∂fP�−1: It is a monotone upper semicontinuous
multivalued map.

Let DP x= DfP
be the set of all points s ∈ Rd such that dfP�syv� is linear

in v:
3. fP is differentiable at points s ∈ DP and ∂fP�s� = �∇fP�s��; s ∈ DP: DP

is a dense subset of Rd and its complement has Lebesgue measure 0: The
gradient ∇fP is continuous on DP:

4. For any t ∈ Rd, the set of all �M;t�-parameters of P with respect to f coin-
cides with ∂f∗P�t� = ∂f−1

P �t� [the set of all �M;t�-quantiles of P with respect
to f]. Thus, an �M;t�-parameter of P exists iff f∗P is subdifferentiable at t:
The set of �M;t�-parameters is nonempty and bounded iff t ∈ BP: The set
of �M;t�-parameters consists of the unique point s iff f∗P is differentiable
at t and s = ∇f∗P�t�:
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Let now f be a P-strictly convex kernel. Denote

UP x= UfP
x= BP

∖ ⋃

s∈Rd\DP

∂fP�s�:

Then:
5. The convex function f∗P is continuously differentiable in BP with the gra-

dient (and subgradient) ∇f∗P: Moreover, ∇f∗P is the M-quantile function of
P with respect to f:

6. For any t ∈ BP, the unique �M;t�-parameter of P coincides with ∇f∗P�t�:
The gradient ∇fP of the function fP is a homeomorphism of DP and UP:
For any t ∈ UP, ∇f∗P�t� = �∇fP�−1�t�:
To be more specific, assume that X = Rd; and that P is a Borel probability

on Rd: Define a function

fP�s� x=
∫
Rd
�h�s− x� − h�s0 − x��P�dx� for s ∈ Rd;

where hx Rd 7→ R1 is convex, s0 ∈ Rd is a fixed point, and h�s− ·�−h�s0− ·� is
P-integrable. Using Theorem 2.1, we get the following representation of the
M-distribution function:

�2:2� ∂fP�s� =
∫
Rd
∂h�s− x�P�dx� for s ∈ Rd:

For all x ∈ Rd and v ∈ Rd,

rf�vyx� = lim
λ↑+∞

h�λv− x� − h�−x�
λ

= rh�v�:

Therefore

rP�v� x= rfP�v� =
∫
Rd
rf�vyx�P�dx� = rh�v� for v ∈ Rd;

so the recession function of fP does not depend on P: It follows that BP
coincides with a convex set

Bh x=
⋂

v∈Rd; v6=0

�tx �v; t� < rh�v��:

Assume that h is continuously differentiable in Rd \ �0�: It means that
Dh = Rd \ �0�; unless h is differentiable at 0 too, and then Dh = Rd: Let
t0 ∈ ∂h�0�: Then the map Hx Rd 7→ Rd; defined by

H�s� x=
{∇h�s�; for s 6= 0;
t0; for s = 0;

is a subgradient of the convex function h: Therefore the map FP; defined by

FP�s� x=
∫
Rd
H�s− x�P�dx�;

is a subgradient of fP:
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Let AP be the set of all atoms of the probability measure P; and let, for
s ∈ AP; p�s� x= P��s��: Since

∂h�s− x� =
{
∂h�0�; for x = s;
�H�s− x��; for x 6= s;

we have

∂fP�s� =
{�FP�s��; for s /∈ AP;

FP�s� + p�s��∂h�0� −H�0��; for s ∈ AP:

Thus fP is continuously differentiable in Rd \AP: If h is not differentiable at
0; then DP = Rd \AP; otherwise fP is continuously differentiable in Rd and
DP = Rd: We also define

UP x= Bh
∖ ⋃

s∈AP

(
FP�s� + p�s��∂h�0� −H�0��

)
:

The following statement immediately follows from the main properties of
M-distribution and M-quantile maps.

Proposition 2.4. (i) For all P; FP is a monotone map, continuous in
Rd \AP: If f�syx� = h�s− x� − h�s0 − x� is a P-strictly convex kernel, then

(ii) FP is a strictly monotone one-to-one map from Rd onto UP ∪ FP�AP�
and it is a homeomorphism of Rd \AP and UP: If P is nonatomic, or if h is
differentiable at 0; then FP is a homeomorphism of Rd and Bh:

We extend the map F−1
P (defined in a natural way on the set UP) to the whole

set Bh assuming that for t ∈ Bh \UP F
−1
P �t� coincides with the unique s ∈ AP

such that t ∈ �FP�s� + p�s��∂h�0� −FP�0���: Then the following holds.
(iii) For all t ∈ Bh the unique �M;t�-parameter of P coincides with F−1

P �t�:

Note that if h is a strictly convex function, then f�sy ·� = h�s− ·�−h�s0− ·�
is a P-strictly convex kernel. It also holds, if P is not concentrated in a line,
h is convex and for all s1; s2 ∈ Rd; such that s1 6= αs2 for all α ≥ 0; we have

h�λs1 + �1− λ�s2� < λh�s1� + �1− λ�h�s2� for λ ∈ �0;1�:
It is well known that in the one-dimensional case the distribution function

FP characterizes P; that is, FP ≡ FQ implies P = Q: Now we extend this
importatant property to the class of M-distribution functions defined above
[see Koldobskii (1990) and Mattner (1992) for more general conditions on the
kernels of convolution integrals, characterizing probability measures]. Denote
S ′�Rd� the space of tempered generalized functions (distributions). Given g ∈
S ′�Rd�; denote g̃ the Fourier transform of g [see Gelfand and Shilov (1964) or
Reed and Simon (1975)]. Since Borel probabilities on Rd can be also viewed as
generalized functions, we use the same notation for their Fourier transforms
(characteristic functions):

P̃�λ� x=
∫
Rd
ei�λ;x�P�dx� for λ ∈ Rd:
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Given h; let Ph be the set of all Borel probability measures P on Rd; such
that the following hold:

1. h�s− x� − h�−x� is a P-strictly convex kernel;
2. h�s− ·� − h�−·� is P-integrable for all s ∈ Rdy
3. for some α > 0

∫
Rd �H�s− x��P�dx� = O��s�α� as s→∞:

Theorem 2.5. Suppose that the Fourier transform h̃ is given by a Borel
function on Rd such that h̃ 6= 0 a.e. in Rd: Then, for any two probability mea-
sures P;Q ∈ Ph; the equality FP ≡ FQ implies that P = Q:

Let us consider a special case of the previous kernel. Namely, assume that
h�x� x= ϕ��x�� for x ∈ Rd; where ϕ is a convex nondecreasing function on
�0;+∞�: We also suppose that the functions ϕ��s− ·��−ϕ��s0− ·��; s ∈ Rd, are
P-integrable, and define

fP�s� x=
∫
Rd
�ϕ��s− x�� − ϕ��s0 − x���P�dx� for s ∈ Rd:

Denote

ρϕ x= lim
ε↓0

ϕ�ε� − ϕ�0�
ε

and Rϕ x= lim
λ↑+∞

ϕ�λ�
λ
:

The use of Theorem 2.1 and a bit of subdifferential calculus allow us to get
the following representation of the M-distribution map ∂fP for all s ∈ Rd:

∂fP�s� =
∫
Rd
∂�ϕ��s− x���P�dx�

=
∫
Rd\�s�

∂ϕ��s− x�� s− x�s− x�P�dx� + p�s� B̄�0; ρϕ�:

We assume for simplicity that ϕ is differentiable in �0;+∞�: Let 8�λ� x=
ϕ′�λ�; λ > 0: Then ∂fP�s� = FP�s�+p�s�B̄�0; ρϕ� = B̄�FP�s�; p�s�ρϕ�; s ∈ Rd;
where

FP�s� x=
∫
Rd\�s�

8��s− x�� s− x�s− x�P�dx� for s ∈ Rd:

It follows that FP is a subgradient of fP: For h�x� x= ϕ��x�� we have

rh�v� x= lim
λ↑+∞

h�λv� − h�0�
λ

= lim
λ↑+∞

ϕ�λ�v�� − ϕ�0�
λ

= Rϕ �v�;

and it follows that BP = Bh = B�0yRϕ�: Let

UP x= B�0yRϕ�
∖ ⋃

s∈AP

B̄�FP�s�yp�s�ρϕ�:

In this case we get the following special version of Proposition 2.4.
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Proposition 2.6. (i) For all P; FP is a monotone continuous in Rd \AP:
For any s ∈ AP,

FP�s+ εv� → FP�s� + p�s�ρϕv as ε→ 0 for v ∈ Sd−1y

(ii) FP�λv� →
{
Rϕv; for Rϕ < +∞
∞; otherwise

as λ→∞ for v ∈ Sd−1:

If either ϕ is strictly convex, or it is strictly increasing andP is not concentrated
in a line, then:

(iii) FP is a strictly monotone one-to-one map from Rd onto UP ∪ FP�AP�
and it is a homeomorphism of Rd \AP and UP: If P is nonatomic, then FP is
a homeomorphism of Rd and B�0yRϕ�:

We extend the map F−1
P (defined on the set UP) to the whole ball B�0yRϕ�

assuming that for t ∈ B�0yRϕ� \UP F
−1
P �t� coincides with the unique s ∈ AP

such that t ∈ B̄�FP�s�yp�s�ρϕ�: Then:
(iv) For any t ∈ B�0yRϕ�; the unique �M;t�-parameter of P coincides with

F−1
P �t�:

The next example was considered by [K-D] and [Ch].

Example 2.7. Let X = Rd, d ≥ 1; and let f�syx� = �s − x� − �x�: Consider
the functional

fP�s� x=
∫
Rd
��s− x� − �x��P�dx� for s ∈ Rd:

In this case we have ϕ�λ� x= λ; λ > 0; and 8�λ� x= ϕ′�λ� = 1; λ > 0; and the
map FP; defined by

FP�s� x=
∫
�x6=s�

s− x
�s− x�P�dx�;

is a subgradient of fP: In the case d = 1 we have �s−x�/�s−x� = sign�s−x�;
and

FP�s� = P��−∞; s�� +P��−∞; s�� − 1 for s ∈ R1;

so FP is just a simple modification of the distribution function of P; while F−1
P

is a simple modification of the quantile function of P:
For d > 1; Proposition 2.6 (with ρϕ = Rϕ = 1) gives the main properties of

the maps FP and F−1
P ; first studied by [K-D] and [Ch].

Note that properties (iii) and (iv) in Proposition 2.6 immediately imply the
existence and the uniqueness of the Haldane’s spatial median (if P is not
concentrated in a line). See also Milasevic and Ducharme (1987).

Example 2.8. Let X = Rd, d ≥ 1; and let f�syx� x= �s− x�r − �x�r for some
r > 1: We consider the functional

fP�s� x=
∫
Rd
��s− x�r − �x�r�P�dx� for s ∈ Rd;
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which is well defined for all P with
∫
Rd �x�r−1P�dx� < +∞: In this case ϕ�λ� =

λr; λ ≥ 0: We have Rϕ = +∞; ρϕ = 0; and 8�λ� = rλr−1, λ ≥ 0: A map FP;
defined by

FP�s� x= r
∫
�x6=s�
�s− x��s− x�r−2P�dx�;

is a subgradient of fP: Proposition 2.6 implies the following:

(i) FP is a strictly monotone homeomorphism from Rd onto Rd;
(ii) FP�λv� → ∞ as λ→∞ for v ∈ Sd−1;

(iii) For any t ∈ Rd; the unique �M;t�-parameter ofP coincides withF−1
P �t�:

In Examples 2.7, 2.8 we have h�x� = �x�r; r ≥ 1: The Fourier transform
of this function is given by the following formula [see Gelfand and Shilov
(1964)]:

h̃�λ� = 2r+dπd/2
0��r+ d�/2�
0�−r/2� �λ�

−r−d:

If r 6= 2k, k = 1;2; : : : ; we have h̃�λ� 6= 0 for all λ 6= 0:
Given r ≥ 1; denote Pr the set of all Borel probabilities with

∫
Rd
�x�r−1P�dx� < +∞:

Theorem 2.5 implies the following statement.

Corollary 2.9. If r ≥ 1 and r 6= 2k; k = 1;2; : : : ; then, for any two
probability measures P, Q ∈ Pr; the equality FP = FQ implies P = Q:

3. Equivariance and symmetry. In this section we study equivariance
of M-distribution and M-quantile functions with respect to certain groups of
transformations.

3.1. Group of translations. Given θ ∈ Rd; denote by Pθ the θ-translation
of the Borel probability measure P in Rd:

Proposition 3.1. Let hx Rd 7→ R1 be a convex function. Suppose that for
some s0 ∈ Rd and for all s ∈ Rd functions h�s− ·� − h�s0 − ·� are P-integrable.
Let

fP�s� x=
∫
Rd
�h�s− x� − h�s0 − x��P�dx� for s ∈ Rd:

Then for all θ ∈ Rd, (i) ∂fPθ�s� = ∂fP�s−θ� for s ∈ Rd; (ii) ∂f−1
Pθ
�t� = θ+∂f−1

P �t�
for t ∈ Rd:
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If h is continuously differentiable in Rd \ �0�; we can choose a point t0 ∈
∂h�0�; and define a map

H�s� x=
{∇h�s�; for s 6= 0;
t0; for s = 0:

Then the map FP; defined by

FP�s� x=
∫
Rd
H�s− x�P�dx� for s ∈ Rd;

is a subgradient of fP; and Proposition 2.4 gives its properties. In this case
we have the following proposition.

Proposition 3.2. (i) For all θ ∈ Rd, FPθ
�s� = FP�s− θ�, s ∈ Rd: (ii) For all

θ ∈ Rd, the �M;t�-parameter of Pθ is the θ-translation of the �M;t�-parameter
of P:

F−1
Pθ
�t� = θ+F−1

P �t� for t ∈ Bh:

3.2. Orthogonal group. Let us consider the function

fP�s� x=
∫
Rd
�ϕ��s− x�� − ϕ��s0 − x���P�dx� for s ∈ Rd;

where ϕ is a convex function on �0;+∞�; s0 ∈ Rd is a fixed point and the
functions ϕ��s− ·�� − ϕ��s0 − ·�� are P-integrable for all s ∈ Rd:

Proposition 3.3. The following hold for all orthogonal transformations O
of Rd:

(i) ∂fPBO−1�s� = O∂fP�O−1s� for s ∈ Rdy
(ii) ∂f−1

PBO−1�t� = O∂f−1
P �O−1t� for t ∈ Rd:

Denote

ρ�xyλ� x=
√
�λ− x�1��2 + �x�2��2 + · · · + �x�d��2 for x ∈ Rd and λ ≥ 0:

Proposition 3.4. Let P be a Borel probability measure in Rd; spherically
symmetric with respect to the center a ∈ Rd: Then we have the following:

(i) ∂fP�s� =




ψP��s− a��

s− a
�s− a� ; for s 6= a;

B̄�0yρϕ�; for s = a;
where ψP is a monotone multivalued map from �0;+∞� into R1; defined by

ψP�λ� x=
∫
Rd
λ+ a�1� − x�1�
ρ�x− ayλ� �∂ϕ�

(
ρ�x− ayλ�

)
P�dx�y

(ii) ∂f−1
P �t� =




a+ �ψP�−1��t�� t�t� ; for �t� > ρϕ;

a; otherwise:
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If ϕ is differentiable in �0;+∞�; and 8�λ� = ϕ′�λ�; λ > 0; then the map
FP; defined by

FP�s� x=
∫
�x6=s�

8��s− x�� s− x�s− x�P�dx� for s ∈ Rd;

is a subgradient of fP: Proposition 2.6 gives the properties of this map. In this
case we have

Proposition 3.5. (i) For any orthogonal transformation O of Rd,
FPBO−1�s� = OFP�O−1s� for s ∈ Rd:

(ii) If ϕ is strictly convex, or it is strictly increasing andP is not concentrated
in a line, then F−1

PBO−1�t� = OF−1
P �O−1t� for t ∈ B�0yRϕ�:

Proposition 3.6. Let P be a Borel probability measure in Rd; spherically
symmetric with respect to the center a ∈ Rd: Then we have the following:

(i) FP�s� =




ψP��s− a��

s− a
�s− a� ; for s 6= a;

0; for s = a;
where ψP is a nondecreasing function from �0;+∞� into R1; defined by

ψP�λ� x=
∫
Rd
λ+ a�1� − x�1�
ρ�x− ayλ� ϕ′�ρ�x− ayλ�� P�dx�y

(ii) F−1
P �t� =




a+ �ψP�−1��t�� t�t� ; for �t� > ρϕ;

a; otherwise:

Note that, given a ∈ Rd; the transformation s 7→ 2a− s of Rd (reflection of
the space Rd with respect to the center a) is the superposition of a translation
and the orthogonal transformation s 7→ −s: Suppose that P is symmetric with
respect to the reflection about a (which means that X − a and a − X are
identically distributed, given a random vector X with distribution P). In this
case, Propositions 3.2 and 3.5 imply that

FP�s� = −FP�2a− s� for s ∈ Rd

and

F−1
P �−t� = 2a−F−1

P �t� for t ∈ B�0yRϕ�:

3.3. Affine group. Unfortunately, theM-distribution andM-quantile func-
tions described above are not affine equivariant. In order to define affine equi-
variant versions of these functions, one should use in their definitions the
kernel f; which depends on P: One of the possible choices of such a kernel
is based on standardization of P using the square root of its covariance ma-
trix [Rao (1988) suggested doing this in order to define an affine equivariant
version of Hadane’s median]. Namely, one can use the kernel

f�s; x� x= ϕ��s− x�P� − ϕ��s0 − x�P�;
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where �s�P x=
∣∣inv�61/2

P �s
∣∣ = �inv�6P�s; s�1/2, s ∈ Rd; 6P being the covariance

operator of measure P:

4. Statistical applications of M-distributions and M-quantiles. In
this section we consider some statistical applications of M-distribution and
M-quantile functions, introduced by [K-D] and [Ch]; see our Example 2.7. In
this case 8�λ� ≡ 1; so we have

�4:1� FP�s� x=
∫
�x6=s�

s− x
�s− x�P�dx�:

In addition to the properties of the map FP; summarized in Sections 2 and 3,
we need the following proposition. Denote Id the identity operator in Rd:

Proposition 4.1. Suppose that P has a bounded density in Rd with d ≥ 2:
Then FP is continuously differentiable in Rd with derivative

F′P�s� =
∫
�x6=s�

1
�s− x�

[
Id −

�s− x� ⊗ �s− x�
�s− x�2

]
P�dx�:

Moreover, F′P is uniformly continuous in Rd; and F′P�s� is positively definite

for all s ∈ Rd:

All asymptotic results below are based on limit theorems for empirical M-
distribution and M-quantile functions, obtained in Section 5.

4.1. L-estimators. In the one-dimensional case, L-estimators (also called
L-statistics), based on a sample �X1; : : : ;Xn�; are defined as linear com-
binations of order statistics X�1� ≤ X�2� ≤ · · · ≤ X�n�; or, more generally,
Ln x=

∑n
1 mn;jh�X�j�� where mn;j are certain weights, and h is a transfor-

mation function. It is hard to extend this definition to the multivariate case,
since there is no really natural ordering in Rd; d ≥ 1: But in many cases an L-
estimator could be represented as a functional of the empirical measure, Ln =
L�Pn�; where the functional L�P� is defined as L�P� x=

∫ 1
0 h�F−1

P �t��m�t�dt
with a certain weight function m: Here FP is the distribution function of P;
and F−1

P is its quantile function. It is natural to call L�P� an L-parameter
of P: [Ch] suggested using a similar representation to define L-parameters
and L-estimators in the multivariate case. His suggestion was to replace F−1

P

for the inverse of the map FP; defined by (4.1). In fact, any M-quantile func-
tion considered in previous sections could be used as well, so one could relate
L-parameters and L-estimators to any M-parameter defined by convex mini-
mization. To be specific, we assume that FP is defined by (4.1). In this case

L�P� x= Lh;µ�P� x=
∫
Bd

h�F−1
P �t��µ�dt�;

where µ is a signed measure on Bd with finite total variation, and hx Rd 7→ Rm
is a vector-valued Borel function, such that the integral in the right-hand side
is well defined.
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For instance, one could be interested in the uniform distribution µ onB�0; r�
for a certain value 0 < r < 1: Such an L-parameter could be viewed as a mul-
tivariate extension of the trimmed mean. Similarly, linearly trimmed means
could be considered.

Theorem 4.2. Suppose that we have the following conditions:

(i) P has a bounded density in Rd; d ≥ 2y
(ii) µ is supported in a ball B�0; r� with some 0 < r < 1y

(iii) h is continuously differentiable in a neighborhood of F−1
P �B�0; r��:

Then an L-estimator Ln x=
∫
Bd
h�F−1

Pn
�t��µ�dt� is asymptotically normal. The

limit distribution of the sequence n1/2�Ln − L�P�� is that of the random vec-
tor −

∫
Rd h

′�s� inv�F′P�s��ξP�s��µ ◦FP��ds�:Moreover, the following asymptotic
representation holds:

Ln = L�P� −
∫
Rd
h′�s� inv�F′P�s���FPn

�s� −FP�s���µ ◦FP��ds� + op�n−1/2�
as n→∞:

The proof follows directly from Theorem 5.7. Assume that h�s� ≡ s; so that
L�P� x=

∫
Bd
F−1
P �t�µ�dt�: Assume also that µ�Bd� = 1: Let P be a symmetric

distribution with center a ∈ Rd in the sense that the random vectorsX−a and
a −X are identically distributed, given X has the distribution P: If µ�A� =
µ�−A� for any Borel subset A of Bd; then it is easy to show that L�P� = a: In
particular, if P is spherically symmetric about a ∈ Rd; then L�P� = a: Thus
L-statistics described above could be used to estimate the center of symmetry
of the distribution P:

In the one-dimensional case, µ is often absolutely continuous on �0;1�x
µ�dt� = m�t�dt: Note that in this case, if P is nonatomic, then P ◦F−1

P is
the uniform distribution on �0;1�: It means that, in fact, an L-parameter can
be expressed as

L�P� =
∫
�0;1�

h�F−1
P �t��m�t��P ◦F−1

P ��dt�:

Koltchinskii (1995a) extended this to the multivariate case, defining

L�P� x=
∫
Bd

h�F−1
P �t��m�t��P ◦F−1

P ��dt� =
∫
Rd
h�s�m�FP�s��P�ds�;

and studied the asymptotic properties of the corresponding L-estimators.

4.2. Statistical tests. Suppose that FP is an M-distribution function, de-
fined by (4.1). Let π be a Borel probability on Rd: In order to test the hy-
pothesis P = π against the alternative P 6= π one could use the test statistics
Dn x= n1/2�FPn

−Fπ�Rd or W2
n x= n

∫
Rd �FPn

�s�−Fπ�s��2π�ds�; which could be
viewed as multivariate extensions of Kolmogorov’s and ω2-tests, respectively.
If π is nonatomic, then Theorem 5.6 implies that the limit distribution of Dn
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coincides with the distribution of �ξπ�Rd; while the limit distribution of W2
n

is that of
∫
�ξπ�s��2π�ds�: One could use bootstrap [which is justified in view

of the theorem of Giné and Zinn (1990)] in order to determine the rejection
region.

Suppose now we have a sample �X1; : : : ;Xn� from a probability distribu-
tion P in Rd; and our goal is to test the hypothesis that P is spherically
symmetric. Many authors suggested different tests for symmetry [see, for ex-
ample, Arcones and Giné (1991) for some tests in the one-dimensional case
and Beran (1979), Baringhaus (1991) for the multivariate case].

If P is spherically symmetric and a ∈ Rd is the center of symmetry, then,
by Proposition 3.6, we have the following representation of the M-distribution
function FP:

FP�s� =




ψP��s− a��

s− a
�s− a� ; for s 6= a;

0; for s = a;
where ψP�λ� x= ψP�ayλ� is defined by

ψP�λ� x=
∫
Rd

λ+ a�1� − x�1�√
�λ+ a�1� − x�1��2 + �a�2� − x�2��2 + · · · + �a�d� − x�d��2

P�dx�:

It’s easy to see that ψP�ayλ� x= �FP�λe1 + a�; e1�; where e1 is the first vector
of the canonical basis of Rd:

For an arbitrary probability distribution P in Rd; define

ψ̃P�λ� x=
∫
Sd−1

〈
FP�λv+F−1

P �0��; v
〉
m�dv�;

where m denotes the uniform distribution on Sd−1: Note that for a spherically
symmetric P ψ̃P ≡ ψP:

We introduce a measure of asymmetry of P as follows:

γ�P� x= sup
s∈Rd

∣∣∣∣FP�s+F−1
P �0�� − ψ̃P��s��

s

�s�

∣∣∣∣:

It’s easy to see that the functional γ�P� is invariant with respect to all or-
thogonal transformations of Rd [i.e., γ�P ◦O−1� = γ�P�], and γ�P� = 0 iff P
is spherically symmetric. Therefore, a test for spherical symmetry of P can be
based on the measure of asymmetry γ�Pn� of the empirical distribution.

Theorem 4.3. IfP has a bounded spherically symmetric density in Rd with
d ≥ 2; then the sequence of distributions of n1/2γ�Pn� converges weakly to the
distribution of the random variable �δP�Rd; where

δP�s� x=




ζP�s� −

∫
Sd−1

〈
ξP��s�v+F−1

P �0��; v
〉
m�dv� s�s� ; for s 6= 0;

0; for s = 0;

ζP�s� x= ξP�s+F−1
P �0�� −F′P�s+F−1

P �0�� inv�F′P�F−1
P �0���ξP�F−1

P �0��:
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If P is not spherically symmetric, then for all t ≥ 0,

lim
n→∞

Pr�n1/2γ�Pn� ≤ t� = 0:

We describe a bootstrap version of this test. Any spherically symmetric
distribution P is completely characterized by its center a ∈ Rd and the distri-
bution π of the random variable �X−a�; given X with distribution P: We call
�a;π� parameters of P: Given a sample �X1; : : : ;Xn� from the unknown dis-
tribution P in Rd; denote by πn the empirical distribution based on the sample
��X1 −F−1

Pn
�0��; : : : ; �Xn −F−1

Pn
�0���: Let Psn be the spherically symmetric dis-

tribution in Rd with parameters �F−1
Pn
�0�; πn�: Define on a probability space

��s; 6s;Prs� an i.i.d. sample �X̂1; : : : ; X̂n� from the distribution Psn: Let P̂n
be the empirical distribution of this sample. It could be shown that if P has a
bounded density in Rd with d ≥ 2; then the sequence of distributions (with re-
spect to Prs) of the random variables n1/2γ�P̂n� converges weakly to the distri-
bution of �δPs�Rd in probability Pr. Here Ps denotes the spherically symmetric
distribution in Rd with parameters �F−1

P �0�; π�; where π is the distribution
of the random variable �X−F−1

P �0��; given X with distribution P: In partic-
ular, if P is spherically symmetric, then Ps = P: This allows us to construct
a bootstrap test for spherical symmetry, based on the test statistic n1/2γ�Pn�:
The proofs go beyond this paper [see Koltchinskii and Lang Li (1996)].

4.3. Regression quantiles. Let �X;Y� be a vector in the space Rm × Rd =
Rm+d; satisfying the following model:

�4:2� Y = S0X+ ξ;
where random vectors X and ξ are independent, and S0 is a linear operator
from Rm into Rd: In the case d = 1, of course, S0x = �s0; x� for some s0 ∈ Rm:

Denote by R the distribution of the random vector �X;Y�; and let
RX;RY;P be the distributions of X;Y; ξ; respectively.

The space of all linear operators from Rm into Rd could be identified with
Rmd (if ui; i = 1; : : : ; d is the canonical basis in Rd and vj; j = 1; : : : ;m is
the canonical basis in Rm; then we take �ui⊗ vj; i = 1; : : : ; d; j = 1; : : : ;m�
as a basis in Rmd).

We introduce a kernel gx Rmd ×Rm ×Rd 7→ R1; g�Syx;y� x= �Sx−y� − �y�:
Clearly, for all x ∈ Rm, y ∈ Rdg is convex in S ∈ Rmd: Assuming that E�X� =∫
Rm �x�RX�dx� < +∞; define a convex function gRx Rmd 7→ R1;

gR�S� x=
∫
Rm×Rd

g�Syx;y�R�dx;dy�:

For t ∈ Bd; we define a regression t-quantile as a minimal point of the
following functional in S ∈ Rmd:

E��SX−Y� − �Y� − �SX; t�� = gR�S� − �S; t⊗ EX�:
This is an extension of the original definition of Koenker and Basset (1978)
for d = 1:
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A subgradient GRx Rmd 7→ Rmd of the function gR is given by:

GR�S� x=
∫
Rm+d

G�Syx;y� R�dx;dy�;

where Gx Rmd × Rm × Rd is defined by

G�Syx;y� x=





Sx− y
�Sx− y� ⊗ x; for Sx 6= y;

0; otherwise:

Under condition (4.2),

�4:3� GR�S� = E
�S−S0�X− ξ
��S−S0�X− ξ�

⊗X = EFP��S−S0�X� ⊗X:

Calculations show that

∂g�Syx;y� =





{
Sx− y
�Sx− y� ⊗ x

}
; if Sx 6= y;

�u⊗ xx �u� ≤ 1�; otherwise,

which, in view of Theorem 2.1, implies

∂gR�S� = GR�s� +
{
u⊗

∫
��x;y�x Sx=y�

xR�dx;dy�x �u� ≤ 1
}
:

We need some properties of gR and GR (most of them follow from the gen-
eral properties of M-distribution and M-quantile functions; see Section 2).
Relationship (4.4) below follows from (4.3) and Proposition 4.1.

Denote

BR x=
⋂

V∈Rmd;V6=0

�Tx �V;T� < E�VX��:

Then BR is an open convex subset of the ball in Rmd with center 0 and radius
E�X�.

We introduce the following conditions:

1. X has an absolutely continuous distribution with E�X�2 < +∞y
2. P has a bounded density p in Rd;
3. if d = 1; assume, in addition, that p is continuous and RX��xx p��s; x�� >

0�� > 0 for all s ∈ Rm:
Given S1; S2 ∈ Rmd with S1 6= S2; denote

L �S1; S2yx� x=
{
S1x+ λ�S2 −S1�xx λ ∈ R1} for x ∈ Rm:

Proposition 4.4. For all T ∈ BR there exists an �M;T�-parameter of R:
If d > 1 and for all S1; S2 ∈ Rmd with S1 6= S2 we have R���x;y�x y /∈
L �S1; S2yx��� > 0; then gR is strictly convex and the �M;T�-parameter is
unique for all T ∈ BR: If conditions (1)–(3) hold, then gR is a strictly con-
vex continuously differentiable function with gradient GR; which is a strictly
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monotone one-to-one map from Rmd onto the open convex set BR: Moreover, GR

is a homeomorphism of Rmd and BR; and it is continuously differentiable in
Rmd with nonsingular and strictly positive derivative

�4:4� G′R�S� = EF′P
(
�S−S0�X

)
⊗X⊗X:

For all T ∈ BR; the unique �M;T�-parameter of R coincides with G−1
R �T�:

Since for t ∈ Bd,

�V; t⊗ EX� = �t;EVX� < E�VX�;
we have t⊗EX ∈ BR; and it is clear that under conditions (1)–(3) the regres-
sion t-quantile exists, is unique and coincides with G−1

R �t⊗ EX�:
For S = S0; we have GR�S0� = FP�0� ⊗ EX; which implies S0 =

G−1
R �FP�0� ⊗ EX�: If either FP�0� = 0 (which means that the spatial median

of ξ is 0), or EX = 0; then S0 = G−1
R �0�:

Consider a sample �Xi;Yi�; i = 1; : : : ; n from the distribution R; and
let Rn be the empirical distribution based on this sample. Denote X̄n x=
�X1 + · · · +Xn�/n: Since for t ∈ Bd;
�V; t⊗ X̄n� = �t; n−1�VX1 + · · · +VXn�� < n−1��VX1� + · · · + �VXn��;

we have

t⊗ X̄n ∈ BRn
x=

⋂

V∈Rmd;V6=0

{
Tx �V;T� < n−1(�VX1� + · · · + �VXn�

)}
:

Thus, for all t ∈ Bd; the empirical regression t-quantiles exist. Moreover,
for d > 1; under condition (2) we have Rn

(
��x;y�x y ∈ L �S1; S2yx��

)
= 0

for all S1; S2 ∈ Rmd with S1 6= S2 a.s. Thus, due to Proposition 4.4, for all
t ∈ Bd the empirical regression t-quantile exists, is unique and coincides with
G−1
Rn
�t⊗ X̄n�:

Let Qx Bd 7→ Rmd be the regression quantile function [which is uniquely
defined under the conditions (1)–(3)], and let Qnx Bd 7→ Rmd be a version of
the empirical regression quantile function [which always exists and, for d > 1;
under conditions (1), (2) is a.s. unique]. Define

A�t� x= inv�G′R ◦G−1
R ��t⊗ EX� for t ∈ Bd:

Theorem 4.5. If conditions (1)–(3) hold, then the sequence of empirical re-
gression quantile processes �n1/2�Qn − Q��t��n≥1 converges weakly locally in
Bd to the Gaussian process

A�t�
∫
Rm+d

(
t⊗ x−G�Q�t�yx;y�

)
W
B
R�dx;dy�; t ∈ Bd:

Moreover, locally uniformly in t ∈ Bd
�4:5� Qn�t� = Q�t�+A�t��t⊗�X̄n−EX��−A�t��GRn

−GR� ◦Q�t�+op�n−1/2�:
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It is worth mentioning that the definition of the regression quantiles and
their asymptotic theory can be easily extended to the case of a discrepancy
function g�Syx;y� x= h�Sx − y� − h�−y� with an arbitrary convex hx Rd 7→
R1: This extension is also based on the theory of M-quantiles developed in
this paper. See Bai, Rao and Wu (1992) for the asymptotic properties of M-
estimators of linear regression parameters under such a discrepancy function.

5. Asymptotics of empirical M-distribution and M-quantile func-
tions. First we consider asymptotics of general empirical M-quantile
functions at a given point. Let fx Rd ×X 7→ R1 be a P-convex kernel. Assume
that it is P-integrable for all s ∈ Rd: Consider a convex function fP; defined by

fP�s� x=
∫

X
f�s; x�P�dx� for s ∈ Rd:

Let Fx Rd×X 7→ Rd be such that F�s; x� ∈ ∂f�s; x� for all s ∈ Rd and P-almost
all x ∈ X: Then

FP�s� x=
∫

X
F�s; x�P�dx� for s ∈ Rd

is a subgradient of fP (see Theorem 2.1).
Let �Cn�n≥1 be a sequence of random sets ω 7→ Cn�ω� ⊂ Rd; and let ηn

be a sequence of random vectors in Rd: Given a sequence �δn�n≥1 of positive
numbers, we write

Cn = ηn + op�δn� as n→∞
iff for all ε > 0,

lim sup
n→∞

Pr∗
(
�Cn 6⊂ B�ηny εδn��

)
= 0:

Theorem 5.1. Let t0 ∈ Rd: Suppose that we have the following:

(i) P has the unique �M;t0�-parameter with respect to f (which means
that f∗P is differentiable at the point t0). We denote it by s0 [then FP�s0� = t0];

(ii)
∫

X �F�s; x��2P�dx� < +∞ for all s in a neighborhood of s0y
(iii) FP is continuously differentiable at the point s0 and the derivative

F′P�s0� is a positively definite operator in Rd:

Then the following representation holds for empirical �M;t0�-quantiles

∂f−1
Pn
�t0� = s0 − inv�F′P�s0���FPn

�s0� −FP�s0�� + op�n−1/2� as n→∞:

If sn is an �M;t0�-quantile of Pn; then n1/2�sn − s0� is asymptotically
normal. Its limit distribution is that of the Gaussian random vector
− inv�F′P�s0��

∫
X F�s0; x�WBP�dx�:

The following corollary is a result of Haberman (1989) [see also Niemiro
(1992)].
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Corollary 5.2. Suppose that P has the unique M-parameter s0 with re-
spect to f (which means that f∗P is differentiable at point 0) and conditions (ii)
and (iii) of Theorem 5.1 hold. Then the following representation holds for any
M-estimator sn:

sn = s0 − inv�F′P�s0��FPn
�s0� + op�n−1/2� as n→∞:

In particular, n1/2�sn − s0� is asymptotically normal. Its limit distribution is
that of the Gaussian random vector − inv�F′P�s0��

∫
X F�s0; x�WBP�dx�:

We consider now uniform asymptotic results for empirical M-distribution
and M-quantile functions. To do this, we need some facts on empirical pro-
cesses and on weak convergence (see the Appendix).

Suppose that Fx Rd × X 7→ Rd is a function, such that for all s ∈ Rd and
for all 1 ≤ j ≤ d the jth component F�j��sy ·� of F�sy ·� is P-square integrable:
F�j��sy ·� ∈ L2�XydP�: Consider

FP�s� x=
∫

X
F�syx�P�dx�

and

FPn
�s� x=

∫
X
F�syx�Pn�dx� = n−1

n∑
1

F�syXk� for s ∈ Rd:

We callFP-Glivenko-Cantelli iff the class of functions F x= ⋃n
j=1�F�j��sy ·�x s∈

Rd� ∈ GC�P�:We callFP-Donsker iff, for any 1 ≤ j ≤ d;F�j� is ρP-continuous
on Rd and F ∈ CLT�P�:

Let φ be a nondecreasing continuous function from �0;+∞� into itself, and
let ψ�s� x= φ��s��; s ∈ Rd: The following facts follow from the properties of
empirical processes (see the Appendix and further references there).

Theorem 5.3. IfF/ψ isP-Glivenko–Cantelli, then a.s. �FPn
−FP�Rd; ψ→0

as n→∞: In particular, a.s. for all compacts K⊂Rd, �FPn
−FP�K→0 as

n → ∞: If ψ is bounded and F is P-Glivenko–Cantelli, then a.s. �FPn
−

FP�Rd → 0 as n→∞: If F/ψ is P-Donsker, then

n1/2�FPn
−FP� →w ξP in l∞ψ �Rd� as n→∞;

where ξP�s� x=
∫

X F�s; x�W
B
P�dx� for s ∈ Rd: In particular,

n1/2�FPn
−FP� →w; loc ξP as n→∞:

If ψ is bounded and F is P-Donsker, then

n1/2�FPn
−FP� →w ξP as n→∞:

Let now fx Rd × X 7→ R1 be a P-strictly convex kernel. Assume that it is
P-integrable for all s ∈ Rd: Consider a convex function fP; defined by

fP�s� x=
∫

X
f�s; x�P�dx� for s ∈ Rd:
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Let Fx Rd×X 7→ Rd be such that F�s; x� ∈ ∂f�s; x� for all s ∈ Rd and P-almost
all x ∈ X: Then

FP�s� x=
∫

X
F�s; x�P�dx� for s ∈ Rd

is a subgradient of fP (see Theorem 2.1). Let δf�syx� be the diameter of the
bounded convex set ∂f�s; x� x δf�syx� x= Diam�∂f�syx��:

DenoteQ x=F−1
P =�∇fP�−1xUP 7→DP [see properties (5), (6) in Section 2.1].

Theorem 5.4. Let S be an open subset of Rd and let T x= FP�S�: Suppose
the following:

(i) FP is continuously differentiable in S with nonsingular derivative
F′P�s�; s ∈ S;

(ii) for some c > 0; either ψ ≡ c; or for all s ∈ Rd with �s� sufficiently large,
FP�s� ≥ cψ�s�y

(iii) F/ψ is P-Donsker;
(iv) sups∈Rd

∫
X δf�syx�Pn�dx� = oP�n−1/2� as n→∞y

(v) for any compact set K ⊂ BP lim supn→∞ Pr∗��K 6⊂ BPn�� = 0:

Then for any Qnx � × T 7→ Rd; such that Qn�t� ∈ ∂f−1
Pn
�t� for t ∈ T [so that

Qn�t� is an �M;t�-estimator], we have

n1/2�Qn −Q� →w; loc ηP in S as n→∞;

where ηP x= − inv�F′P ◦Q��ξP ◦Q�: Moreover,

n1/2�Qn −Q+ inv�F′P ◦Q��FPn
−FP� ◦Q� →p; loc 0 in S as n→∞:

Now we consider in some detail asymptotics of empirical spatial distribu-
tions and quantiles. Let ϕ be a convex increasing function on �0;+∞�; contin-
uously differentiable in �0;+∞�: Let 8 x= ϕ′: Suppose that for some C > 0,

�5:1� 8�λ1 + λ2� ≤ C�8�λ1� +8�λ2�� for λ1; λ2 > 0

and for all c > 0,

�5:2� 8�λ+ c�
8�λ� → 1 as λ→∞:

Denote ψ�s� x= 8��s��∨1 for s ∈ Rd: We consider an M-distribution function

FP�s� x=
∫
�x6=s�

8��s− x�� s− x�s− x�P�dx� for s ∈ Rd;

which is a subgradient of the convex function

fP�s� x=
∫
Rd
(
ϕ��s− x�� − ϕ��x��

)
P�dx� for s ∈ Rd:
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Theorem 5.5. If

�5:3�
∫
Rd
8��x��P�dx� < +∞;

then a.s.

�5:4� �FPn
−FP�Rd; ψ→ 0 as n→∞:

In particular, a.s. for all compacts K ⊂ Rd,

�5:5� �FPn
−FP�K→ 0 as n→∞:

If 8�+∞� < +∞; then a.s.

�5:6� �FPn
−FP�Rd → 0 as n→∞:

Theorem 5.6. If P is nonatomic and

�5:7�
∫
Rd
82��x��P�dx� < +∞;

then

�5:8� n1/2�FPn
−FP� →w ξP in l∞ψ �Rd� as n→∞;

where

ξP�s� x=
∫
�x6=s�

8��s− x�� s− x�s− x�W
B
P�dx� for s ∈ Rd:

In particular,

�5:9� n1/2�FPn
−FP� →w; loc ξP as n→∞:

If 8�+∞� < +∞; then

�5:10� n1/2�FPn
−FP� →w ξP as n→∞:

Suppose that P is nonatomic and it is not concentrated in a line. Then,
by Proposition 2.6, F−1

P is a well defined map from B�0yRϕ� into Rd: Denote
Q x= F−1

P :

Theorem 5.7. Let S be an open subset of Rd and let T x= FP�S�: If FP

is continuously differentiable in S with nonsingular derivative F′P�s�; s ∈ S;
and if condition (5.7) holds, then, for any Qn from � × T into Rd; such that
Qn�t� ∈ ∂f−1

Pn
�t� for all t ∈ T [so that Qn�t� is an �M;t�-parameter of P],

n1/2�Qn −Q� →w; loc ηP in S as n→∞;

where ηP x= − inv�F′P ◦F−1
P ��ξP ◦F−1

P �: Moreover,

n1/2�Qn −Q+ inv�F′P ◦F−1
P ��FPn

−FP� ◦Q� →p; loc 0 in S as n→∞:
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Remarks. Since P is nonatomic and it is not concentrated in a line, Pn is
not concentrated in a line either with probability tending to 1 as n→∞: By
Proposition 2.6,F−1

Pn
is well defined onB�0yRϕ� andQn ≡ F−1

Pn
with probability

tending to 1 as n→∞: If, moreover, P�L� = 0 for all straight lines L in Rd;
then Pn is not concentrated in a line and Qn ≡ F−1

Pn
for almost all samples

�X1; : : : ;Xn� from P with size n > 2:
Note that the proof of Theorem 5.7 (see Theorems 5.4 and A.4) includes,

in fact, a differentiation of the map R 7→ F−1
R : Suppose that P is nonatomic.

Given R ∈ P �Rd�; denote Pε x= �1 − ε�P + εR; where ε ∈ �0;1�: Let t ∈
B�0yRϕ� be a point such that FP is continuously differentiable in a neighbor-
hood of the point F−1

P �t� with nonsingular derivative. Then

F−1
Pε
�t� −F−1

P �t�
ε

→− inv�F′P ◦F−1
P �t���FP −FR� ◦F−1

P �t� as ε→ 0:

It follows, in particular, that the influence curve of the functional P 7→ F−1
P �t�

is given by the following expression:

IC�xyPyF−1
P �t�� = − inv�F′P ◦F−1

P �t���FP −Fδx
� ◦F−1

P �t�

for all t 6= FP�x�; x ∈ Rd:

Koltchinskii (1994a, b) studied Bahadur–Kiefer representations of empiri-
cal spatial quantiles.

APPENDIX

Notation. �·; ·� denotes the canonical inner product in the finite-
dimensional space Rd; � · � = �·; ·�1/2 is the corresponding norm; � ·� (sometimes
with indices) is used for the norms of functions or linear transformations
(matrices). If x ∈ Rd; then x�j� denotes the jth coordinate of x: Similarly, if F
is an Rd-valued function, F�j� is its jth coordinate.

We denote the ball in Rd with center s ∈ Rd and radius R > 0 by B�syR�:
In particular, Bd x= B�0y1�: Sd−1 denotes the unit sphere in Rdx Sd−1 x= �s ∈
Rdx �s� = 1�: Given a set A ⊂ Rd, Ā denotes its closure.

We use the notation L �Rd� for the space of all linear transformations of Rd:
Given two vectors u ∈ Rd and v ∈ Rm; u⊗v denotes the linear transformation
x 7→ �v; x�u from Rm into Rd:

Regularly, we denote by ∇f the gradient of a function f on an open subset
of Rd; and by F′ the derivative of a vector-valued map F from an open subset
of Rd into Rd: So ∇f�s� ∈ Rd and F′�s� ∈ L �Rd�:

Given an invertible A ∈ L �Rd�; the notation inv�A� will be used for its
inverse. Given an L �Rd�-valued function 9; defined on a subset of Rd; inv�9�
denotes the function s 7→ inv�9�s�� (assuming, of course, that 9�s� is invert-
ible). If ζ is a function from a subset of Rd into Rd; and if9 is an L �Rd�-valued
function defined on the domain of ζ; then the “product” 9ζ is the function
s 7→ 9�s�ζ�s�:
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We denote by ��;6;Pr� the main probability space which carries all ran-
dom elements under consideration; E denotes the expectation with respect to
Pr : Define

Pr∗�A� x= inf�Pr�B�x B ∈ 6; B ⊃ A�;
E∗ξ x= inf�Eηx η− 6-measurable; η ≥ ξ�:

Given a measurable space �X;A � ; P �X� denotes the set of all probability
measures on X:

Facts on convex analysis. The function fx Rd 7→ R1 is called convex iff
f�αs1+�1−α�s2� ≤ αf�s1�+ �1−α�f�s2� for all s1; s2 ∈ Rd and α ∈ �0;1�; and
it is called strictly convex iff the above inequality is strict for all s1 6= s2; α ∈
�0;1�: Any convex function is continuous on Rd ([Ro], Theorem 10.1).

For s ∈ Rd and v ∈ Rd; v 6= 0; denote 1f�syvyλ� x= λ−1�f�s + λv� − f�s��:
The directional derivative of f at the point s in the direction v is defined by

df�syv� x= inf
λ∈�0;+∞�

1f�syvyλ� = lim
λ↓0

1f�syvyλ�:

A set ∂f�s� of all points t ∈ Rd such that f�s′� ≥ f�s� + �s′ − s; t� for all
s′ ∈ Rd is called a subdifferential of f at a point s ∈ Rd: A function f is called
subdifferentiable at a point s ∈ Rd iff ∂f�s� 6= \. Any point t ∈ ∂f�s� is called
a subgradient of f at point s: If f is differentiable at a point s; we denote
∇f�s� the gradient of f at s:

Given a convex function f; define a setDf x= �s∈Rdx df�syv� is linear in v�:
Then f is differentiable at any point s ∈ Df and ∂f�s� = �∇f�s��, s ∈ Df. Df

is a dense subset of Rd and its complement Rd \Df has Lebesgue measure 0:
The gradient ∇fx s 7→ ∇f�s� is continuous on Df ([Ro], Theorems 25.2, 25.5).

A map Fx Rd 7→Rd is called a subgradient of f iff F�s� ∈ ∂f�s� for all s∈Rd:
A map G from Rd into 2R

d

is called a multivalued map. For instance,
s 7→ ∂f�s� is a multivalued map. The inverse of a multivalued map G is the
multivalued map G−1 such that G−1�t� = �s ∈ Rdx t ∈ G�s�� for all t ∈ Rd:

A multivalued map G is called single-valued iff for any s ∈ Rd the set G�s�
contains only one element. Of course, any such map could be identified with
a regular map from Rd into Rd:

A multivalued map G is called monotone iff for any s1; s2 ∈ Rd and for any
t1 ∈ G�s1�, t2 ∈ G�s2� �s2 − s1; t2 − t1� ≥ 0: It is called strictly monotone iff
for any s1; s2 ∈ Rd such that s1 6= s2 and for any t1 ∈ G�s1�; t2 ∈ G�s2�;
�s2 − s1; t2 − t1� > 0:

In particular, a map Fx Rd 7→ Rd is called monotone (strictly monotone) iff
the multivalued map Rd 3 s 7→ �F�s�� is monotone (strictly monotone).

A multivalued map G is said to be upper semicontinuous at a point s ∈ Rd
iff for any neighborhood V of the set G�s� there exists a neighborhood U of
the point s such that for any s′ ∈ U we have G�s′� ⊂ V:

A function f∗x Rd 7→ R1 ∪ �+∞�; defined by f∗�t� x= sups∈Rd��s; t� − f�s��;
is called the Young–Fenchel conjugate of f: It is a convex function and ∂f∗ =
�∂f�−1 ([Ro], Theorem 23.5).
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The recession function rf of a convex function f on Rd is defined as

rf�v� x= sup
s∈Rd
�f�s+ v� − f�s�� for v ∈ Rd:

Empirical processes and weak convergence. Let S be a set, and let
�L; � · �� be a separable Banach space. Denote by l∞�S� = l∞�SyL� the normed
space of all uniformly bounded functions Yx S 7→ L with norm

�Y�S x= sup
s∈S
�Y�s�� for Y ∈ l∞�S�:

More generally, if ψ is a positive function on S; we define a norm

�Y�S;ψ x= sup
s∈S

�Y�s��
ψ�s�

and denote by l∞ψ �S� the normed space of all functions Y with �Y�S;ψ < +∞.
Let �ξn�n≥1 be a sequence of random functions ξnx S 7→ L: We say that

�ξn�n≥1 converges weakly in the space l∞�S� to a random function ξx S 7→ L;
or

ξn→w ξ as n→∞;
iff there exists a separable subspace N ⊂ l∞�S� such that ξ ∈ N a.s. and for
any bounded continuous functional 8x l∞�S� 7→ R we have E∗8�ξn� → E8�ξ�
as n→∞:

The sequence �ξn�n≥1 converges weakly in l∞ψ �S� to a random function ξ iff

ξn
ψ
→w

ξ

ψ
as n→∞:

It’s easy to check that if ξn →w ξ in l∞ψ �S�; then the same holds in l∞ψ1
�S� for

any ψ1 such that c−1ψ ≤ ψ1 ≤ cψ for some c > 0:
Let S be an open subset of a metric space. The sequence �ξn�n≥1 converges

weakly locally in S to a random function ξ; or ξn →w; loc ξ as n → ∞; iff ξ
is a.s. continuous in S and for any compact subset K of S, �ξn�n≥1 converges
weakly to ξ in the space l∞�K�:

Let �X;A ;P� be a probability space. Denote ��;6;Pr� a countable product
of copies of �X;A ;P� times the unit interval �0;1� with Borel σ-algebra and
Lebesgue measure. Let Xi; i ≥ 1 be coordinates on ��;6;Pr� : We define the
empirical measure Pn; based on a sample �X1; : : : ;Xn�; as

Pn x= n−1
n∑
1

δXi
;

where δx is a unit point mass at x: A signed random measure Zn x= n1/2�Pn−
P� is called an empirical process. Usually Zn is considered as a stochastic
processZn�f�; indexed by A -measurable functions on X: Here ν�f� x=

∫
X fdν

for a signed measure ν on A :



462 V. I. KOLTCHINSKII

The limit process (in the sense of finite-dimensional distributions) of the
sequence Zn�f�; f ∈ L2�X; dP� of empirical processes is the so called P-
Brownian bridge, that is, a Gaussian process WBP�f�; f ∈ L2�X; dP� with
mean 0 and covariance

EWBP�f�WBP�g� = P�fg� −P�f�P�g�:

The P-Brownian bridge can be also viewed as a stochastic integral WBP�f� =∫
X fdW

B
P:

A class F ⊂ L1�X; dP� is called P-Glivenko–Cantelli, or F ∈ GC�P�; iff
the sequence of random variables ��Pn −P�F � tends to 0 as n→∞ a.s.

We introduce the following metric in L2�X; dP�:

ρP�f;g� x= �P�f− g�2 − �P�f− g��2�1/2:

A class F ⊂ L2�X; dP� is called P-Donsker, or F ∈ CLT�P�; iff

Zn→w W
B
P in l∞�F � as n→∞:

A measurable real-valued function E on X is called an envelope of the class
F iff �f�x�� ≤ E�x� for all x ∈ X; f ∈ F :

Given a (pseudo)metric space �S;d�, Nd�Sy ε� denotes the minimal number
of balls of radiuses ε; covering S: Given Q ∈ P �X� and 1 ≤ r < +∞; denote
dQ;r the metric of the space Lr�XydQ�: We define

Nr�F y ε� x=Nr;E�F y ε� x= sup
Q∈P �X�

NdQ;r

(
F y ε

(∫
X
Er dQ

)1/r)
for ε > 0:

We set Hr�F y ε� x= logNr�F y ε�:
Under some measurability, the conditions H1�F y ε� < +∞ for all ε > 0 and∫

X EdP < +∞ imply F ∈ GC�P�: The conditions

∫ ∞
0
H

1/2
2 �F y ε�dε < +∞

and
∫

X E
2 dP < +∞ imply F ∈ CLT�P�: For the so-called VC-subgraph

classes F ; there exist constants V = V�F � and C = C�Vy r� such that

Nr�F y ε� ≤ Cε−V for all ε > 0:

In particular, if there exists a finite-dimensional space H of real-valued func-
tions on X × R1; such that any set of the form ��x; t�x f�x� ≥ t ≥ 0�; or
��x; t�x f�x� ≤ t ≤ 0�; with some f ∈ F ; can be represented as �h ≥ 0�
for some h ∈ H ; then F is a VC-subgraph class with V�F � depending only
on the dimension of H : See Dudley (1984), Pollard (1990) and van der Vaart
and Wellner (1996) for these and further facts on empirical processes and
VC-subgraph classes.
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Proofs of the main results.

Proof of Theorem 2.1. The first statement follows immediately from
Theorem 8.3.4 of Ioffe and Tihomirov (1974). If FP�s� is a subgradient of fP
at a point s ∈ Rd; then FP�s� ∈ ∂fP�s�: The first statement along with the
definition of the integral of multivalued maps implies that there exists a map
Fx Rd × X 7→ Rd; such that F�s; x� ∈ ∂f�s; x� P a.e., F�s; ·� is P-integrable,
and (2.1) holds. Then it is easy to check that the map FPx Rd 7→ Rd; defined
by (2.1), is a subgradient of the convex function fP: Indeed, we have for all
s ∈ Rd; v ∈ Sd−1 �v;F�s; x�� ≤ df�syvyx� P a.e. Therefore

�v;FP�s�� =
∫

X
�v;F�s; x��P�dx� ≤

∫
X
df�syvyx�P�dx� = dfP�syv�;

and the second statement follows. 2

Proof of Theorem 2.5. First note, that H�j� = �∂/∂xj�h (in the sense of
generalized functions). Using the properties of the Fourier transform, we get

�A:1� H̃�j��λ� = −iλjh̃�λ� for λ ∈ Rd:

We show that for P ∈ Ph,

�A:2� F̃
�j�
P = H̃�j�P̃; 1 ≤ j ≤ d:

Indeed, assume first that P has a density p belonging to the space S �Rd�:
Then F�j�P =H�j� ∗ p; which implies F̃�j�P = H̃�j�p̃; and (A.2) follows.

Next, assume that P is any Borel probability measure with bounded sup-
port. Given a random vector X with distribution P; let Y be a random vector
independent of X; with density in S �Rd�: Define Zn x=X+n−1Y: Let 5n be
the distribution of Zn: Then 5n has the density pn belonging to S �Rd�; and
we have

�A:3� F̃
�j�
5n
= H̃�j�5̃n; 1 ≤ j ≤ d:

Using continuity of FP in Rd \AP (see Proposition 2.4), it is easy to show that
for all s /∈ AP,

F5n
�s� =

∫
Rd
H�s−x�5n�dx� = EH�s−X−n−1Z� = EFP�s−n−1Z� → FP�s�;

which implies that F�j�5n converges to F�j�P in S ′�Rd� for all 1 ≤ j ≤ d: Due to
continuity of the Fourier transform, we also have that F̃�j�5n converges to F̃�j�P
for all 1 ≤ j ≤ d in S ′�Rd�: On the other hand, 5̃n converges to P̃: Passing
to the limit in (A.3) as n→∞; we get (A.2) for an arbitrary P with bounded
support.

In the general case, given an X with distribution P ∈ Ph; denote Xn the
random vector obtained by conditioning of X on �X� ≤ n; and let 5n be the
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distribution ofXn: Then (A.3) holds for such a5n:Under the conditionP ∈ Ph;
we have for all s ∈ Rd,

F5n
�s� = 1

P�xx �x� ≤ n�
∫
�xx �x�≤n�

H�s− x�P�dx� → FP�s� as n→∞:

It follows that for all 1 ≤ j ≤ d F�j�5n converges to F�j�P in S ′�Rd� as n→ ∞;
which implies that F̃�j�5n converges to F̃�j�P in S ′�Rd�: Since we also have 5̃n
converges to P̃; by passing to the limit in (A.3), we get (A.2) in the general
case.

Now, if we have two Borel probabilities P and Q such that FP ≡ FQ; we
get, for all 1 ≤ j ≤ d; F̃�j�P = F̃

�j�
Q : Therefore, by (A.1) and (A.2), λjh̃�λ��P̃�λ�−

Q̃�λ�� ≡ 0: Under the condition h̃ 6= 0 a.e. in Rd; we have P̃ = Q̃ a.e., and since
P̃ and Q̃ are both continuous, we can conclude that P̃ = Q̃ and P = Q: 2

Proof of Proposition 2.6. Almost everything follows from Proposition
2.4. One need prove just the second statement of (i), and (ii ). Let s ∈ AP:
Clearly, there exists a probability measure Q on Rd such that Q��s�� = 0 and
P = p�s�δs + �1− p�s��Q; where δs is the unit mass at the point s: We have
FP = p�s�Fδs

+ �1− p�s��FQ: It follows that

FP�s+ εv� = p�s�8�ε�v+ �1− p�s��FQ�s+ εv�:
Since FQ is continuous at the point s and 8�0+� = ρϕ; we get

FP�s+ εv� → p�s�ρϕv+ �1− p�s��FQ�s�:
It remains to note that since Fδs

�s� = 0; we have FP�s� = �1 − p�s��FQ�s�;
which proves (i).

Part (ii) follows from the representation

FP�λv� =
∫
�x6=λv�

8

(
λ

∣∣∣∣v−
x

λ

∣∣∣∣
)
v− x/λ
�v− x/λ�P�dx�;

the fact that 8�+∞� = Rϕ and the dominated convergence theorem. 2

Proof of Proposition 3.1. Indeed, for all s ∈ Rd,

fPθ�s� =
∫
Rd
�h�s− x� − h�s0 − x��Pθ�dx�

=
∫
Rd
�h�s− θ− x� − h�s0 − θ− x��P�dx�

=
∫
Rd
�h�s− θ− x� − h�s0 − x��P�dx�

+
∫
Rd
�h�s0 − x� − h�s0 − θ− x��P�dx�

= fP�s− θ� + fPθ�s0 + θ�:

To prove (i), note that t ∈ ∂fPθ�s� iff for all v ∈ Rd; v 6= 0 we have

�v; t� ≤ dfPθ�syv� = dfP�s− θyv�:
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It means that t ∈ ∂fP�s− θ�: Then we have for all t ∈ Rd,

f∗Pθ�t� = sup
s∈Rd
��s; t� − fPθ�s�� = sup

s∈Rd
��s; t� − fP�s− θ� − fPθ�s0 + θ��

= sup
s∈Rd
��s+ θ; t� − fP�s�� − fPθ�s0 + θ�

= �θ; t� + sup
s∈Rd
��s; t� − fP�s�� − fPθ�s0 + θ�

= �θ; t� + f∗P�t� − fPθ�s0 + θ�:

Finally, s ∈ ∂f∗Pθ�t� = ∂f
−1
Pθ
�t� iff for all v ∈ Rd, v 6= 0

�s; v� ≤ df∗Pθ�tyv� = �θ; v� + df
∗
P�tyv�;

which is equivalent to

�s− θ; v� ≤ df∗P�tyv�:
It means that s− θ ∈ ∂f∗P�t� = ∂f−1

P �t�; so (ii) holds. 2

Proof of Proposition 3.3. Note that ∂fP�s� does not depend on the
choice of s0 in the definition of fP: So, we could assume s0=0 and fP�s� x=∫
Rd�ϕ��s−x��−ϕ��x���P�dx�: For an orthogonal transformation O and s ∈ Rd,

we get

fPBO−1�s� =
∫
Rd
(
ϕ��s− x�� − ϕ��x��

)
P ◦O−1�dx�

=
∫
Rd
(
ϕ��s−Ox�� − ϕ��Ox��

)
P�dx�

=
∫
Rd
(
ϕ��O−1s− x�� − ϕ��x��

)
P�dx� = fP�O−1s�:

Next, for t ∈ Rd; we have

f∗PBO−1�t� = sup
s∈Rd
��s; t� − fP ◦O−1�s�� = sup

s∈Rd
��s; t� − fP�O−1s��

= sup
s∈Rd
��O−1s;O−1t� − fP�O−1s��

= sup
s∈Rd
��s;O−1t� − fP�s�� = f∗P�O−1t�:

Relationships (i) and (ii) now follow by subdifferentiation. 2

Proof of Proposition 3.4. Without loss of generality we can and do as-
sume that s0 = a = 0 (since subdifferentials ∂fP and ∂f∗P do not depend on the
choice of s0). Since P is invariant with respect to any orthogonal transforma-
tionO; it follows from the proof of Proposition 3.3 that fPBO−1�s� = fP�O−1s� =
fP�s�; s ∈ Rd; so the convex function fP is invariant with respect to all or-
thogonal transformations. It means (see [Ro], page 110) that there exists a
lower semicontinuous convex nondecreasing function ϕP on �0;+∞� such that
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fP�s� = ϕP��s��: Let �e1; : : : ; ed� be an orthonormal basis in Rd: Given a vector
x ∈ Rd; let �x1; : : : ; xd� be its coordinates in this basis. Then for λ ≥ 0,

ϕP�λ� = fP�λe1� =
∫
Rd
ϕ��λe1 − x��P�dx� =

∫
Rd
ϕ
(
ρ�xyλ�

)
P�dx�:

Subdifferentiating this relationship, we get (i).
Now we use the formula for the conjugate of the convex function fP�s� =

ϕP��s�� (see [Ro], page 110) to get f∗P�t� = ϕ+P��t��; t ∈ Rd; where the function
ϕ+P is a monotone conjugate of ϕP:

ϕ+P�λ� x= sup
α≥0
�λα− ϕP�α�� for λ ≥ 0:

It is a lower semicontinuous convex nondecreasing function such that for all
λ ≥ 0, ∂ϕ+P�λ� = �∂ϕP�−1�λ�: Subdifferentiating the relationship for f∗P gives
(ii). 2

In order to prove Theorem 5.1 we need a couple of facts about convex func-
tions and their minimal points. The next lemma is just a stochastic version of
a well-known fact of convex analysis (see [Ro], Theorem 10.8).

Lemma A.1. Let fnx Rd×� 7→ R1 be a sequence of random functions, convex
on Rd for Pr-almost all ω ∈ �: Suppose that for all s ∈ Rd, fn�s� → f�s� as
n→∞ in probability. Then for all compacts K ⊂ Rd �fn−f�K→ 0 as n→∞
in probability.

Recall that ∂f−1�0� coincides with the set of all minimal points of f:

Lemma A.2. Let fx Rd 7→ R1 be a convex function and let gx Rd 7→ R1 be a
quadratic function, defined by g�s� x= �s; a� + 1

2�As; s�; s ∈ Rd; where a ∈ Rd
is a vector, and A is a symmetric positively definite operator in Rd such that
�As; s� ≥ c�s�2 for all s ∈ Rd with a constant c > 0: Let b x= − inv�A�a: Take a

number r > �b�: Denote δ x=
(
6c−1�f− g�B̄�0y r�

)1/2
: If δ ≤ r− �b�; then ∂f−1�0�

belongs to the ball B̄�by δ�:

Proof. The unique minimum of g is at the point b: By the Taylor expan-
sion,

g�s� = g�b� + 1
2�A�s− b�; s− b� for s ∈ Rd:

If �s− b� = δ; then

g�s� ≥ g�b� + c
2
δ2 = g�b� + 3�f− g�B̄�0; r�:

Since for all s with �s − b� = δ B̄�by δ� ⊂ B̄�0y r�; g�s� ≤ f�s� + �f − g�B̄�0; r�
and g�b� ≥ f�b� − �f− g�B̄�0;r�: Therefore, for all s on the sphere �s− b� = δ;
we have f�s� ≥ f�b�+ �f−g�B̄�0;r�: Since f is convex, any minimal point of f
must be in the ball B̄�b; δ�: 2
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The next statement is very useful in the study of asymptotics of statistical
estimators defined by convex minimization. In fact, its versions have already
been used by Pollard (1988) and Niemiro (1992). Let fnx Rd × � 7→ R1 be
a sequence of random functions. Assume that fn�s;ω� is convex in s on Rd
for Pr-almost all ω ∈ �: Suppose that E�fn�s�� < +∞; and there exists a
function fx Rd 7→ R1 such that Efn�s� = f�s�; for all s ∈ Rd and all n ≥ 1: Let
Fnx Rd × � 7→ Rd be a subgradient of fn for Pr-almost all ω ∈ �: Then (see
Theorem 2.1) F�s� x= EFn�s� is a subgradient of f for all s ∈ Rd:

Given s0 ∈ Rd; denote

rn�s0yu� x= fn�s0 + u� − fn�s0� − �Fn�s0�; u� for u ∈ Rd;
r�s0yu� x= f�s0 + u� − f�s0� − �F�s0�; u� for u ∈ Rd:

Theorem A.3. Suppose the following:

(i) the function f has its unique minimum at the point s0 ∈ Rdy
(ii) if is twice continuously differentiable at this point, so that the first

derivative f′�s0� = F�s0� = 0 and the second derivative f′′�s0� = F′�s0� is
a positively definite operator in Rdy

(iii) rn�s0yu/n1/2� − r�s0yu/n1/2� = op�n−1� as n→∞ for all u ∈ Rd;

(iv) the sequence n1/2Fn�s0� is stochastically bounded.

Then the following asymptotic representation holds for the minimal set of fn:

∂f−1
n �0� = ∂f∗n�0� = s0 − inv�F′�s0��Fn�s0� + op�n−1/2� as n→∞:

Proof. Since f is twice continuously differentiable at the point s0; we
have for all u ∈ Rd,

�A:4� nr

(
s0y

u

n1/2

)
= 1

2
�F′�s0�u;u� + o�1� as n→∞:

It follows from conditions (ii), (iii) and (A.4) that for all u ∈ Rd,

n

(
fn

(
s0+

u

n1/2

)
−fn�s0�−

〈
Fn�s0�;

u

n1/2

〉)
= 1

2
�F′�s0�u;u�+op�1� as n→∞:

Moreover, Lemma A.1 implies that convergence in the last relationship is
uniform over compacts in Rd: Denote

f̃n�u� x= n
(
fn

(
s0 +

u

n1/2

)
− fn�s0�

)
for u ∈ Rd

and

g̃n�u� x= n1/2�Fn�s0�; u� + 1
2�F′�s0�u;u� for u ∈ Rd:

Take ε > 0: By condition (iv) there exists r > 0 such that

�n1/2 inv�F′�s0��Fn�s0�� < r/2
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with probability at least 1− ε: On the other hand, we have

δ2
n x= �f̃n − g̃n�B̄�0yr� = op�1� as n→∞:

By Lemma A.2 the set ∂f̃−1
n �0� of all minimal points of f̃n belongs (with prob-

ability tending to 1) to a ball with center −n1/2 inv�F′�s0��Fn�s0� and with
radius of the order δn: It remains to observe that ∂f−1

n �t0� = s0+n−1/2∂f̃−1
n �0�

and the result follows. 2

Proof of Theorem 5.1. We apply Theorem A.3 to the following functions:

fn�s� x= fPn�s� − �s; t0�; Fn�s� x= FPn
�s� − t0;

f�s� x= fP�s� − �s; t0�; F�s� x= FP�s� − t0 for s ∈ Rd:
Clearly, s0 is the unique minimal point of f; and conditions (i) and (ii) of The-
orem A.3 hold. Due to the central limit theorem, condition (iv) of Theorem A.3
follows from condition (ii) of Theorem 5.1, since n1/2Fn�s0� = n1/2�FPn

�s0� −
FP�s0��: To check condition (iii) of Theorem A.3, note that

Ern
(
s0y

u

n1/2

)
= r

(
s0y

u

n1/2

)
;

and

�A:5�

Var
(
nrn

(
s0y

u

n1/2

))

= Var
( n∑

1

[
f

(
s0 +

u

n1/2
;Xi

)
− f�s0;Xi� −

〈
F�s0;Xi�;

u

n1/2

〉])

=
n∑
1

Var
(
f

(
s0 +

u

n1/2
;Xi

)
− f�s0;Xi� −

〈
F�s0;Xi�;

u

n1/2

〉)

≤ n
∫

X

(
f

(
s0 +

u

n1/2
; x

)
− f�s0; x� −

〈
F�s0; x�;

u

n1/2

〉)2

P�dx�:

By the definition of the subgradient of convex functions, we have the inequal-
ities

f�s0 + u;x� − f�s0; x� ≥ �F�s0; x�; u�
and

f�s0 + u;x� − f�s0; x� ≤ �F�s0 + u;x�; u�
which imply

0 ≤ f�s0 + u;x� − f�s0; x� − �F�s0; x�; u� ≤ �F�s0 + u;x� −F�s0; x�; u�:
Thus

0 ≤ f
(
s0 +

u

n1/2
; x

)
− f�s0; x� −

〈
F�s0; x�;

u

n1/2

〉

≤ n−1/2
〈
F

(
s0 +

u

n1/2
; x

)
−F�s0; x�; u

〉
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and it follows from (A.5) that

�A:6� Var
(
nrn

(
s0y

u

n1/2

))
≤ E

〈
F

(
s0 +

u

n1/2
; x

)
−F�s0; x�; u

〉2

:

By the monotonicity of the subgradient of a convex function, the sequence of
nonnegative functions

γn�·� =
〈
F

(
s0 +

u

n1/2
; ·
)
−F�s0; ·�; u

〉
; n ≥ 1

is nonincreasing. Denote γx X 7→ �0;+∞� its limit. Then

�A:7�

∫
X
γ�x�P�dx� = lim

n→∞

∫
X

〈
F

(
s0 +

u

n1/2
; x

)
−F�s0; x�; u

〉
P�dx�

= lim
n→∞

〈
FP

(
s0 +

u

n1/2

)
−FP�s0�; u

〉
= 0;

since FP is continuous at the point 0: But γ is nonnegative, so γ = 0 P-a.e.
Condition (ii) implies, by dominated convergence, that

∫
X γ

2
ndP→ 0; n→∞:

Thus (A.6) and (A.7) imply condition (iii) of Theorem A.3. Since ∂f−1
n �0� =

∂f−1
Pn
�t0� and Fn�s0� = FPn

�s0� −FP�s0�; this completes the proof. 2

We need one fact on asymptotics of inverses of random functions. Let S ⊂ Rd
and Hx S 7→ Rd: Given ε > 0; a map J from a subset T ⊂ Rd into S will
be called an ε-inverse of H on T iff �t − H�J�t��� < ε for all t ∈ T: Let
JH�TySy ε� be the set of all ε-inverses on T of the map H from S into Rd:
The following statement was proved by Koltchinskii (1995b) (see Theorems
2.5 and 2.7 there).

Theorem A.4. Let �an�n≥1 be a sequence of positive real numbers with
an → ∞; n → ∞: Let S and T be open subsets of Rd; and G be a one-to-
one map from S onto T; continuously differentiable in S with nonsingular
derivative G′�s�; s ∈ Rd: Let �εn�n≥1 be a sequence of positive real numbers

with εn = o�a−1
n � as n→∞: Let Gn be functions from �×S into Rd: Suppose

there exists a stochastic process ξx S 7→ Rd such that

an�Gn −G� →w; loc ξ in S as n→∞:

Let Jn be a function from �×T into Rd; satisfying the following condition: for
any compact K ⊂ T there exists a compact C ⊂ S such that

lim sup
n→∞

Pr∗
(
�Jn /∈ JGn

�KyCy εn��
)
= 0:

Then

an�Jn −G−1 + inv�G′ ◦G−1��Gn −G� ◦G−1� →p; loc 0 in T as n→∞:
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Proof of Theorem 5.4. We apply Theorem A.4 to the maps G x=FP,
Gn x=FPn

and Jn x=Qn: By the definitions of subdifferential and subgradi-
ent, we have FPn

�Qn�t�� ∈ ∂fPn�Qn�t�� and, since Qn�t� ∈ ∂f−1
Pn
�t�; we have

t ∈ ∂fPn�Qn�t��: Thus, for all t ∈ BPn ∩T;

�A:8�
�FPn
�Qn�t�� − t� ≤ Diam�∂fPn�Qn�t��� ≤

∫
X

Diam�∂f�Qn�t�; x��Pn�dx�

=
∫

X
δf�Qn�t�yx�Pn�dx� ≤ sup

s∈Rd

∫
X
δf�syx�Pn�dx�:

Let K be a compact subset of T: Then, clearly, K ⊂ BP: Take ε > 0: Denote

�A:9�
A x=

{
ωx K ⊂ BfPn

} ⋂ {
ωx sup

s∈Rd

�FPn
�s� −FP�s��
ψ�s� < ε

}

⋂ {
ωx sup

s∈Rd

∫
X
δf�syx�Pn�dx� < εn−1/2

}
:

It follows from Theorem 5.3 and conditions (iv), (v) that for large n;Pr∗��\A�
≤ ε:

If ψ ≡ c; we have for all ω ∈ A and t ∈K,

�A:10� �FPn
�Qn�t�� −FP�Qn�t��� ≤ cε:

Otherwise, by condition (ii), we get for large a > 0,

�A:11� inf
�s�≥a

�FP�s��
ψ�s� ≥ c:

If ω ∈ A; we have, by (A.9) and (A.11), that for all s with �s� ≥ a,

�A:12� �FPn
�s�� ≥ �c− ε�φ��s��:

We have either �Qn�t�� ≤ a or �Qn�t�� > a and then, by inequality (A.12),

�FPn
�Qn�t��� ≥ �c− ε�φ��Qn�t���:

It follows from (A.8) and (A.9) that for all ω ∈ A and t ∈ K �FPn
�Qn�t��� ≤

�t� + εn−1/2: Therefore, for all ω ∈ A and t ∈K,

�Qn�t�� ≤ φ−1
( �t� + εn−1/2

c− ε

)∨
a:

Since K is bounded, there exists r > 0 such that �t� ≤ r for all t ∈K: It follows
that for all ω ∈ A,

�A:13� sup
t∈K
�Qn�t�� ≤ φ−1

(
r+ ε
c− ε

)∨
a:

Since, by (i), S ⊂ DP; it follows that FP is a homeomorphism of S and T (see
the properties of M-distribution function). Therefore, there exists a compact
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C ⊂ S and a positive number δ such that F−1
P �Kδ� ⊂ C: Using (A.13), we get

for all ω ∈ A and t ∈K,

�A:14� �FPn
�Qn�t�� −FP�Qn�t��� ≤ εφ��Qn�t��� ≤ ε

[
r+ ε
c− ε

∨
φ�a�

]
:

It follows from (A.8), (A.10) and (A.14) that for ω ∈ A and t ∈K,

�A:15� �t−FP�Qn�t��� ≤ ε
[
r+ ε
c− ε

∨
φ�a�

∨
c

]
+ ε:

Clearly, ε > 0 can be choosen in such a way that (A.15) yields �t−FP�Qn�t��� <
δ: It means that FP�Qn�t�� ∈ Kδ; which implies Qn�t� ∈ C: Thus we proved
that for all ω ∈ A, Qn�K� ⊂ C: By condition (iv) and (A.8), there exists a
sequence �εn� of positive numbers such that εn = o�n−1/2� and for all large n,
supt∈K �FPn

�Qn�t�� − t� ≤ εn: It shows that

�A:16� lim sup
n→∞

Pr∗
({
Qn /∈ J �KyCy εn�

})
= 0:

Under condition (iii), Theorem 5.3 implies that

n1/2�FPn
−FP� →w; loc ξP as n→∞ in Rd;

and the result follows from Theorem A.4. 2

Proof of Theorems 5.5 and 5.6. Let 1k x= �8−1�2k−1�;8−1�2k�� for k ≥
1; and 10 x= �0;8−1�1��: Define

ψ̃�s� x=
∞∑
k=0

2kI��s�∈1k� for s ∈ Rd;

and let

F�s; x� x=





8��s− x��
ψ̃�s�

s− x
�s− x� ; for x 6= s;

0; otherwise.

Let F x= ⋃d
1 F �j�; where F �j� x= �F�j��s; ·�x s ∈ Rd�: Since ψ̃�s� ≥ 1; condition

(5.1) implies that the function EF �x� x= C1 + C28��x�� is an envelope of the
class F for some constants C1 > 0; C2 > 0: Consider the functions

F1�s; x� x=





8��s− x��
ψ̃�s�

; for x 6= s;

0; otherwise

and

F2�s; x� x=




EF �x�

s− x
�s− x� ; for x 6= s;

0; otherwise.
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Let

F1 x= �F1�s; ·�x s ∈ Rd�;
F1; k x= �F1�s; ·�x s ∈ 1k� = �2−k8��s− ·��x s ∈ 1k�;
F
�j�

2 x= �F�j�2 �s; ·�x s ∈ Rd�; 1 ≤ j ≤ d:
Clearly, F1 =

⋃∞
0 F1; k: It’s also obvious that EF is an envelope of F1 and

F
�j�

2 ; 1 ≤ j ≤ d: The inequality
∣∣F�j��s1; x� −F�j��s2; x�

∣∣

=
∣∣∣∣
(
8��s1 − x��
ψ̃�s1�

− 8��s2 − x��
ψ̃�s2�

)
s
�j�
1 − x�j�
�s1 − x�

+ 8��s2 − x��
ψ̃�s2�

(
s
�j�
1 − x�j�
�s1 − x�

− s
�j�
2 − x�j�
�s2 − x�

)∣∣∣∣

≤
∣∣∣∣
8��s1 − x��
ψ̃�s1�

− 8��s2 − x��
ψ̃�s2�

∣∣∣∣+EF �x�
∣∣∣∣
s
�j�
1 − x�j�
�s1 − x�

− s
�j�
2 − x�j�
�s2 − x�

∣∣∣∣

≤ �F1�s1; x� −F1�s2; x�� +
∣∣F�j�2 �s1; x� −F

�j�
2 �s2; x�

∣∣

implies that for any 1 ≤ r < +∞ and Q ∈ P �Rd� with
∫
Rd E

r
F �x�Q�dx� < +∞,

the following estimate holds for the metrics dQ;r:

dQ;r�F�j��s1; ·�;F�j��s2; ·��
≤ dQ;r�F1�s1; ·�;F1�s2; ·�� + dQ;r�F

�j�
2 �s1; ·�;F

�j�
2 �s2; ·��:

It follows that

HdQ;r
�F �j�y ε� ≤HdQ;r

�F1y ε/2� +HdQ;r
�F �j�

2 y ε/2�
and

�A:17� Hr�F �j�y ε� ≤Hr�F1y ε/2� +Hr�F
�j�

2 y ε/2�:
In order to estimate the entropies, note that for all k ≥ 0 F1; k is a VC-subgraph
class with V�F1; k� depending only on d: The proof follows the lines of Pollard
(1984), Chapter 2, Example 26. Indeed, for all s ∈ 1k,

{
�x; t�x 2−k8��s− x�� ≥ t

}
=
{
�x; t�x �s− x�2 ≥ �8−1�2kt��2

}

=
{
�x; t�x

d∑
1

�s�j� − x�j��2 ≥ �8−1�2kt��2
}

=
{
�x; t�x P�x� − �8−1�2kt��2 ≥ 0

}
;

where P�x� is a polynomial of x = �x�1�; : : : ; x�d�� of the second degree. De-
note by H the linear span of the set of all such polynomials and a function
�8−1�2kt��2: Then for any s ∈ 1k the set ��x; t�x 2−k8��s − x�� ≥ t� can be
represented as ��x; t�x h�x; t� ≥ 0� for some h ∈ H : Thus, F1; k is a VC-
subgraph class and V�F1; k� depends only on d: It follows that for 1 ≤ r < +∞
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Nr�F1; ky ε� ≤ Cε−V; ε > 0 with constants C > 0;V > 0 depending only on
d and r: Since the function 2−kEF �·� is an envelope of F1; k; we have for all
Q ∈ P �Rd�,

NdQ;r

(
F1; ky ε2−k

(∫
X
Er

F dQ

)1/r)
≤ Cε−V; ε > 0;

or

NdQ;r

(
F1; ky ε

(∫
X
Er

F dQ

)1/r)
≤ C2−kVε−V; ε > 0:

Hence, for all Q ∈ P �Rd� and for all ε > 0,

NdQ;r

(
F1y ε

(∫
X
Er

F dQ

)1/r)
≤
∞∑
k=0

NdQ;r

(
F1; ky ε

(∫
X
Er

F dQ

)1/r)

≤ C
∞∑
1

2−kVε−V:

Therefore,

�A:18� Hr�F1y ε� = O
(

log
1
ε

)
as ε→ 0:

Now we show that all classes F
�j�

2 , 1 ≤ j ≤ d are VC-subgraph, too. We
have for any s ∈ Rd,

�A:19�

{
�x; t�x F�j�2 �s; x� ≥ t ≥ 0

}

=
{
�x; t�x s�j� − x�j� ≥ t�s− x�

EF �x�
; x 6= s; t ≥ 0

}⋃
��s;0��

=
{
�x; t�x �s�j� − x�j��2 − t

2∑d
k=1�s�k� − x�k��2
E2

F �x�
≥ 0;

x 6= s; t ≥ 0
}⋃
��s;0��:

Let H be the linear span of functions 1; x�j�; �x�j��2; t2; t2�x�j�/E2
F �x�� and

t2�x�j�/EF �x��2: Then the class of sets C x= ���x; t�x h�x; t� ≥ 0�x h ∈ H � is
Vapnik–Chervonenkis, and so is the class

C̃ x=
{
C ∩ ��x; t�x x 6= s; t ≥ 0�

}
∪
{
�s;0��x C ∈ C ; s ∈ Rd

}
:

By (A.19), for all s∈Rd, ��x; t�x F�j�2 �s; x�≥ t≥0�∈ C̃ : Therefore ���x; t�x
F
�j�
2 �s; x� ≥ t ≥ 0�x s ∈ Rd� is a Vapnik–Chervonenkis class. Quite similarly,

the class ���x; t�x F�j�2 �s; x� ≤ t ≤ 0�x s ∈ Rd� is Vapnik–Chervonenkis, too. It
follows that for all 1 ≤ j ≤ d, classes of functions F

�j�
2 are VC-subgraph, and

we have

�A:20� Hr

(
F
�j�

2 y ε
)
= O

(
log

1
ε

)
as ε→ 0:
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It follows from (A.17), (A.18) and (A.20) that for all 1 ≤ j ≤ d,

Hr

(
F �j�y ε

)
= O

(
log

1
ε

)
as ε→ 0;

which implies

�A:21� Hr�F y ε� = O
(

log
1
ε

)
as ε→ 0:

Condition (5.3) implies that
∫
Rd EF �x�P�dx� < +∞; which along with (A.21)

implies that F ∈ GC�P�; and (5.4) follows. It, in turn, implies (5.5) and (5.6).
Under condition (5.7) we have

∫
Rd E

2
F �x�P�dx�<+∞; which implies [again,

along with (A.21)] that F ∈ CLT�P�: It follows that the process

n1/2FPn
�s� −FP�s�
ψ̃�s�

= n1/2�Pn −P��F�s; ·��; s ∈ Rd

converges weakly in l∞�Rd� to

ξP�s�
ψ̃�s�

=
∫
Rd
F�s; x�WBP�dx�; s ∈ Rd:

By the definition of the function ψ̃; we have for all s ∈ Rd 1/2 ≤ �ψ�s�/ψ̃�s�� ≤
1: Therefore, (5.8) also holds. The kernel

G�s; x� x= 8��s− x��
ψ�s�

s− x
�s− x�I�s6=x�

is continuous in s at any point s0 6= x: Since P is nonatomic, it is, in fact,
continuous in s ∈ Rd for P-almost all x: This, by dominated convergence,
implies continuity of G�s; ·� in s ∈ Rd with respect to the metric ρP: Since
ξP�s� = ψ�s�WBP�G�s; ·��; WBP is a.s. ρP-continuous on �G�sy ·�x s ∈ Rd�; and ψ
is continuous in Rd; we can conclude that the process ξP is continuous on Rd:
This fact and (5.8) imply (5.9) and (5.10). 2

Proof of Theorem 5.7. We use Theorem 5.4. Condition (i) obviously
holds. Condition (ii) with ψ�s� x= 8��s�� ∨ 1 is a consequence of the follow-
ing fact (which is rather easy to prove): under conditions (5.1) and (5.2),
FP�s� = 8��s���s/�s�� + o�8��s��� as s → ∞: Condition (iii) follows from
Theorem 5.6. Next, since

δf�syx� x= Diam�∂f�syx�� =
{
ρϕ; for s = x;
0; otherwise;

we have

sup
s∈Rd

∫
Rd
δf�syx�Pn�dx� =

ρϕ
n
= o�n−1/2�:

So, condition (iv) also holds. Finally, condition (v) is obvious, since BPn = BP =
B�0yRϕ�; and the result follows from Theorem 5.4. 2
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Proof of Theorem 4.5. We apply Theorem 5.4 to F x= G; and R;Rn in-
stead of P;Pn: First note that GR is continuously differentiable in Rmd with
nonsingular derivative G′R�S�; S ∈ Rmd given by (4.4). This means that con-
dition (i) of Theorem 5.4 holds. Assume that ψ ≡ 1; so that (ii) holds. Note
that G is R-Donsker, since the class of functions

⋃m+d
j=1 �G�j��Sy ·; ·�x S ∈ Rmd�

is a Vapnik–Chervonenkis subgraph with a square integrable envelope, and
for all 1 ≤ j ≤ d, the functions G�j��Sy ·; ·� are ρR-continuous in S ∈ Rmd:
Thus (iii) holds. Next we have

δg�Syx;y� =
{ �x�; if Sx = y;

0; otherwise:

Therefore,

sup
S∈Rmd

∫
Rm+d

δg�Syx;y�Rn�dxydy� = sup
S∈Rmd

n∑
i=1

�Xi� I�SXi=Yi�:

Under conditions (i), (ii), we have EI�SX=Y��X� = 0; and rather standard em-
pirical processes argument shows that

sup
S∈Rmd

n∑
i=1

�Xi� I�SXi=Yi� = op�n
−1/2�;

so (iv) holds. By the law of large numbers in separable Banach spaces, the
sequence of stochastic processes n−1��VX1� + · · · + �VXn�� converges to the
function E�VX� uniformly in V ∈ Sdm−1: This implies condition (v).

Thus, we can use Theorem 5.4 to get the following asymptotic representa-
tion of any Jnx �×BR 7→ Rmd; such that Jn�T� ∈ ∂g−1

Rn
�T� for all T ∈ BR:

Jn = G−1
R − inv�G′R ◦G−1

R ��GRn
−GR� ◦G−1

R + op�n−1/2�;
which holds locally uniformly in BR:

Take r < 1: Using consistency of X̄n; it is easy to show that there exists a
compact K ⊂ BR such that with probability close to 1, t ⊗ X̄n ∈ K for all t
with �t� ≤ r and for all n large enough. It follows that uniformly in �t� ≤ r,

Jn�t⊗ X̄n� = G−1
R �t⊗ X̄n� − inv�G′R ◦G−1

R �t⊗ X̄n���GRn
−GR�

◦G−1
R �t⊗ X̄n� + op�n−1/2�:

Since G−1
R is uniformly continuous in K; n1/2�GRn

−GR� is asymptotically
equicontinuous and X̄n→ EX as n→∞; we have uniformly in �t� ≤ r,

Jn�t⊗ X̄n� = �G−1
R �t⊗ X̄n� −G−1

R �t⊗ EX�� +G−1
R �t⊗ EX�

− inv�G′R ◦G−1
R �t⊗ EX���GRn

−GR� ◦G−1
R �t⊗ EX� + op�n−1/2�:

Note that there exists Jnx � × BR 7→ Rmd; such that Jn�T� ∈ ∂g−1
Rn
�T� for

all T ∈ BR and Qn�t� = Jn�t ⊗ X̄n� for all t ∈ Bd: Using differentiability of
G−1
R and the condition �X̄n − EX� = OP�n−1/2�; we now easily get asymptotic

representation (4.5), and complete the proof. 2
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