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M-ESTIMATION OF LINEAR MODELS WITH DEPENDENT
ERRORS1

BY WEI BIAO WU

University of Chicago

We study asymptotic properties ofM-estimates of regression parameters
in linear models in which errors are dependent. Weak and strong Bahadur
representations of theM-estimates are derived and a central limit theorem is
established. The results are applied to linear models with errors being short-
range dependent linear processes, heavy-tailed linear processes and some
widely used nonlinear time series.

1. Introduction. Consider the linear model

yi = x′
iβ + ei, 1 ≤ i ≤ n,(1)

where β is a p× 1 unknown regression coefficient vector, xi = (xi1, . . . , xip)′ are
p × 1 known (nonstochastic) design vectors and ei are errors. We estimate the
unknown parameter vector β by minimizing

n∑
i=1

ρ(yi − x′
iβ),(2)

where ρ is a convex function. Important examples include Huber’s estimate with
ρ(x)= (x21|x|≤c)/2 + (c|x| − c2/2)1|x|>c, c > 0, the Lq regression estimate with
ρ(x)= |x|q , 1 ≤ q ≤ 2, and regression quantiles with ρ(x)= ρα(x)= αx+ + (1−
α)(−x)+, 0 < α < 1, where x+ = max(x,0). In particular, if q = 1 or α = 1/2,
then the minimizer of (2) is called the least absolute deviation (LAD) estimate.
See [2] and [68] for Lq regression estimates and [35] for regression quantiles. See
also [34] for an excellent account of quantile regression.

Let β̂n be the minimizer of (2) and let β0 be the true parameter. There is a
substantial amount of work concerning asymptotic properties of β̂n − β0 for var-
ious forms of ρ (not necessarily convex); see, for example, [2–4, 7, 8, 10, 12,
26, 30, 32, 49, 57, 66, 67] and [69] among others. Deep results such as Bahadur
representations have also been obtained. However, in the majority of the previous
work it is assumed that the errors ei are independent. The asymptotic problem
of M-estimation of linear models with dependent errors is practically important,
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however theoretically challenging. Huber [29, 30] commented that the assumption
of independence is a serious restriction. See also [24].

In this paper we shall relax the independence assumption in the classical
M-estimation theory so that a very general class of dependent errors is allowed.
Specifically, we shall establish a Bahadur representation and a central limit the-
orem for β̂n − β0 for the linear model (1) with the errors (ei) being stationary
causal processes. In the early literature very restrictive assumptions were imposed
on the error process (ei). Typical examples are strongly mixing processes of var-
ious types. See [13, 36] and [41] among others for strong mixing processes and
[45] for ϕ-mixing processes. Berlinet, Liese and Vajda [9] obtained consistency
of M-estimators for regression models with strong mixing errors. Gastwirth and
Rubin [20] considered the behavior of L-estimators of strong mixing Gaussian
processes and first-order autoregressive processes with double exponential mar-
ginals. It is generally not easy to verify strong mixing conditions. For example,
for linear processes to be strong mixing, very restrictive conditions are needed on
the decay rate of the coefficients [17, 22, 40, 60]. Portnoy [43, 44] and Lee and
Martin [38] investigated the effect of dependence on robust location estimators by
assuming that the errors are autoregressive moving average processes with finite
orders.

To the best of our knowledge, it seems that the problem of Bahadur represen-
tations has been rarely studied for M-estimates of linear models with nonstrong
mixing errors. The Bahadur-type representations provide significant insight into
the asymptotic behavior of an estimator by approximating it by a linear form. For
sample quantiles it has been investigated by Hesse [27], Babu and Singh [5] and
Wu [62], among others. Babu [4] considered LAD estimators for linear models
with strong mixing errors.

For the errors (ei) we confine ourselves to stationary causal processes. Namely,
let

ei =G(. . . , εi−1, εi),(3)

where εk , k ∈ Z, are independent and identically distributed (i.i.d.) random vari-
ables andG is a measurable function such that ei is a proper random variable. Here
Z is the set of integers. The framework (3) is a natural paradigm for nonlinear time
series models and it represents a huge class of stationary processes which appear
frequently in practice. As in [46, 53, 59] and [63], (3) can be interpreted as a phys-
ical system with the innovations εi being the inputs that drive the system, G being
a filter and ei being the output. This interpretation leads to our dependence mea-
sures. The Wiener conjecture states that every stationary and ergodic process (ei)
can be expressed in the form of (3); see [33, 50, 51] and [55], page 204.

Let the shift process Fk = (. . . , εk−1, εk). For i ∈ N let Fi(u|F0) = P(ei ≤
u|F0) [resp., fi(u|F0)] be the conditional distribution (resp., density) function
of ei at u given F0 and let f be the marginal density of ei . Let l ≥ 0. For a
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function g, write g ∈ Cl if g has derivatives up to lth-order and g(l) is continu-
ous. Denote by f (l)i (u|F0) = ∂lfi(u|F0)/∂u

l the lth-order derivative if it exists.
Let (ε′i ) be an i.i.d. copy of (εi), F ∗

k = (. . . , ε−1, ε
′
0, ε1, . . . , εk) and e∗k =G(F ∗

k ).
Then F ∗

k is a coupled version of Fk with ε0 replaced by ε′0, F ∗
j = Fj , j < 0, and ek

and e∗k are identically distributed. Our short-range dependence (SRD) conditions
suggest that a certain distance between the two predictive distributions [ei |F0] and
[e∗i |F ∗

0 ] is summable over i ≥ 1. Since those conditions are directly related to the
data-generating mechanism of (ei), they are often easily verified; see applications
in Section 3.

The paper is structured as follows. Section 2 presents our main results on
Bahadur representations and central limit theorems for β̂n − β0. Section 3 con-
tains applications to linear models with errors being short-range dependent linear
processes, heavy-tailed linear processes where M-estimation is particularly rele-
vant, and some widely used nonlinear time series. Proofs are given in Section 4.

2. Main results. Without loss of generality, assume throughout the paper that
the true parameter β0 = 0. We first introduce some notation. Let �a� = min{k ∈
Z :k ≥ a} and �a	 = max{k ∈ Z :k ≤ a}, a ∈ R, be the usual ceiling and floor
functions. For a p-dimensional vector v = (v1, . . . , vp) let |v| = (∑p

i=1 v
2
i )

1/2.
A random vector V is said to be in Lq , q > 0, if E(|V |q) < ∞. In this case
write ‖V ‖q = [E(|V |q)]1/q and ‖V ‖ = ‖V ‖2. Let the covariance matrix of a
p-dimensional column random vector V be var(V )= E(V V ′)− E(V )E(V ′). De-
fine projection operators Pk , k ∈ Z, by PkV = E(V |Fk)− E(V |Fk−1), V ∈ L1.
The symbol C denotes a generic constant which may vary from place to place.
For a sequence of random variables (ηn) and a positive sequence (dn), write
ηn = oa.s.(dn) if ηn/dn converges to 0 almost surely and ηn = Oa.s.(dn) if ηn/dn
is almost surely bounded. We can similarly define the relations oP and OP. Let
N(µ,�) denote a multivariate normal distribution with mean vector µ and covari-
ance matrix �.

Let the model matrix Xn = (x1, . . . ,xn)′ and �n = X′
nXn. Assume that �n is

nonsingular for large n. It is convenient to consider the rescaled model

yi = z′
i,nθ + ei,(4)

where zi,n = �−1/2
n xi and θ = θn = �1/2

n β . Studying the asymptotic behavior
of β̂n is equivalent to studying that of θ̂n = �1/2

n β̂n, which is a minimizer of∑n
i=1 ρ(ei − z′

i,nθ). If there are multiple minimizers, we just choose any such min-
imizer. Observe that

∑n
i=1 zi,nz′

i,n = Idp , the p × p identity matrix. For q > 0
define

ζn(q)=
n∑
i=1

|zi,n|q and ξn(q)=
n∑
i=1

|xi |q .(5)
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Assume that ρ has derivative ψ . Define the kth-step-ahead predicted function

ψk(t;F0)= E[ψ(ek + t)|F0], k ≥ 0.(6)

The function ψk(·; ·) plays an important role in the study of the asymptotic behav-
ior of β̂n. We now list some regularity conditions on ρ, xi and the errors ei :

(A1) ρ is a convex function, E[ψ(e1)] = 0 and ‖ψ(e1)‖2 > 0.
(A2) ϕ(t) := E[ψ(e1 + t)] has a strictly positive derivative at t = 0.
(A3) m(t) := ‖ψ(e1 + t)−ψ(e1)‖ is continuous at t = 0.
(A4) rn := maxi≤n |zi,n| = maxi≤n(x′

i�
−1
n xi )1/2 = o(1).

Conditions (A1)–(A4) are standard and they are often imposed in the M-esti-
mation theory of linear models with independent errors; see, for example, [7].
In (A1), the error process (ei) itself is allowed to have infinite variance, which
is actually one of the primary reasons for robust estimation. Section 3 contains
an application to linear models with dependent heavy-tailed errors. Under (A2),
θ is estimable or separable. Condition (A3) is very mild. Note that ψ is nonde-
creasing and it has countably many discontinuity points. If ei has a continuous
distribution function and ‖ψ(e1 + t0)‖ + ‖ψ(e1 − t0)‖<∞ for some t0 > 0, then
limt→0ψ(e1 + t)=ψ(e1) almost surely and (A3) follows from the Lebesgue dom-
inated convergence theorem.

The uniform asymptotic negligibility condition (A4) is basically the Lindeberg–
Feller-type condition. With (A4), the diagonal elements of the hat matrix
Xn�−1

n X′
n are uniformly negligible. Let xi1, . . . ,xip be linearly independent,

1 ≤ i1 < · · · < ip , and Q = (xi1, . . . ,xip ). Then Q is nonsingular, Q′�−1
n Q→ 0

and consequently �−1
n → 0. The latter implies that the minimum eigenvalue of�n

diverges to ∞ and it is a classical condition for weak consistency of the least
squares estimators [18]. For the regression model (1) with i.i.d. errors ei having
mean 0 and finite variance, (A4) is necessary and sufficient for the least squares
estimator �−1

n X′
n(y1, . . . , yn)

′ to be asymptotically normal (see [30], Section 7.2,
and [21]).

Besides the classical conditions (A1)–(A4), to obtain asymptotic properties of
β̂n and θ̂n we certainly need appropriate dependence conditions [cf. (7) and (14)].
They are expressed in terms of ψk(·;F0). Recall F ∗

k = (. . . , ε−1, ε
′
0, ε1, . . . , εk)

and e∗k =G(F ∗
k ).

2.1. Asymptotic normality. Theorem 1 asserts that θ̂n can be approximated by
the linear form Tn = ∑n

i=1ψ(ei)zi,n with an oP(1) error. Due to the linearity it is
easier to deal with Tn, which is asymptotically normal under proper conditions (cf.
Lemma 2).

THEOREM 1. Assume (A1)–(A4) and, for some ε0 > 0,
∞∑
i=0

sup
|ε|≤ε0

‖E[ψ(ei + ε)|F0] − E[ψ(e∗i + ε)|F ∗
0 ]‖<∞.(7)
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Then we have

ϕ′(0)θ̂n −
n∑
i=1

ψ(ei)zi,n = oP(1)(8)

and θ̂n =OP(1). Additionally, if the limit

lim
n→∞

n−|k|∑
i=1

zi,nz′
i+k,n =�k(9)

exists for each k ∈ Z, then

ϕ′(0)θ̂n ⇒N(0,�), where �= ∑
k∈Z

E[ψ(e0)ψ(ek)]�k.(10)

Theorem 1 ensures the consistency of β̂n: θ̂n = OP(1) and �−1
n → 0 im-

plies that β̂n = oP(1). It is generally not trivial to establish the consistency of
M-estimators. The convexity condition is quite useful in proving consistency; see
[7, 23, 39] among others for regression models with independent errors. Recently,
Berlinet, Liese and Vajda [9] considered consistency ofM-estimates in regression
models with strong mixing errors. This paper requires that the regressors xi sat-
isfy the condition that n−1 ∑n

i=1 δxi converges to some probability measure, where
δ is the Dirac measure. This condition seems restrictive and it excludes some in-
teresting cases (cf. Remark 1). For linear models with stationary causal errors, it
is unclear how to establish the consistency and asymptotic normality without the
convexity of ρ.

We now discuss condition (7). Since ψi(ε;F0) = E[ψ(ei + ε)|F0] is the ith-
step-ahead predicted mean, the quantity ‖ψi(ε;F0) − ψi(ε;F ∗

0 )‖ = ‖E[ψ(ei +
ε)|F0] − E[ψ(e∗i + ε)|F ∗

0 ]‖ measures the contribution of ε0 in predicting
ψ(ei + ε). Hence (7) suggests short-range dependence in the sense that the cu-
mulative contribution of ε0 in predicting future values is finite. The following
proposition provides a sufficient condition for (7). Recall that Fi(·|F0) is the con-
ditional (or predictive) distribution function of ei given F0 and fi(·|F0) is the
conditional density. Let ψ(u; ε0)= |ψ(u+ ε0)| + |ψ(u− ε0)|.

PROPOSITION 1. Condition (7) holds under either (i)
∞∑
i=1

ω̄(i) <∞, where ω̄(i)=
∫

R

‖fi(u|F0)− fi(u|F ∗
0 )‖ψ(u; ε0) du,(11)

or (ii) ρ(x)= ρα(x)= αx+ + (1 − α)(−x)+, 0< α < 1, and

∞∑
i=1

ω(i) <∞, where ω(i)= sup
u∈R

‖Fi(u|F0)− Fi(u|F ∗
0 )‖.(12)
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Proposition 1 easily follows from the identities E(1ei≤u|F0) = Fi(u|F0) and
E[ψ(ei + ε)|F0] = ∫

R
ψ(u+ ε)fi(u|F0) du. We omit the details.

In Proposition 1, case (ii) corresponds to quantile regression, an important non-
least squares procedure. Condition (12) can be interpreted as follows. If the condi-
tional distribution [ei |F0] does not depend on ε0, then Fi(u|F0)− Fi(u|F ∗

0 )= 0.
The quantity supu ‖Fi(u|F0)−Fi(u|F ∗

0 )‖ can thus be interpreted as the contribu-
tion of ε0 in predicting ei . In other words, supu ‖Fi(u|F0)−Fi(u|F ∗

0 )‖ quantifies
the degree of dependence of the predictive distribution [ei |F0] on ε0. So (12) sug-
gests that the cumulative contribution of ε0 in predicting future values (ei)i≥1 is
finite. Condition (11) delivers a similar message by incorporating the information
of the target function ψ = ρ′ as weights into the distance between the two predic-
tive distributions [ei |F0] and [e∗i |F ∗

0 ]. To obtain Bahadur representations, stronger
versions of (11) and (12) are needed; see (27) and (28).

REMARK 1. Many of the earlier results require that xi , 1 ≤ i ≤ n, satisfy the
condition that �n/n converges to a positive definite matrix ([8, 32] among others).
This condition is not required in our setting. Consider the polynomial regression
with design vectors xi = (1, i, . . . , ip−1)′, 1 ≤ i ≤ n. Then �n/n does not have a
limit. Elementary but tedious calculations show that (A4) is satisfied and (9) holds
with �k = Idp . However, a condition of such type is needed in deriving strong
Bahadur representations; see Theorem 3.

REMARK 2. In the expression of � in (10), the presence of the terms
E[ψ(e0)ψ(ek)]�k , k �= 0, is due to the dependence of (ei).

REMARK 3. To apply Theorem 1 to quantile regression with ρ(x) = ρα(x),
since ψ(x) = α − 1x≤0 and ϕ(x) = α − F(−x), we need to ensure that ei has
a density at 0; see condition (A2). This problem is generally not easy. A sim-
ple sufficient condition is that the conditional density f1(·|F0) exists. Without
conditions of such type, the existence of marginal densities is not guaranteed.
For example, consider the process et = ∑∞

i=0 2εt−i/3i+1, where εt are i.i.d. and
P(εt = 1) = P(εt = −1) = 1/2. Then the conditional density does not exist and
the marginal distribution does not have a density either. Solomyak [52] considered
the absolute continuity of

∑∞
i=0 r

iεt−i , r ∈ (0,1).
2.2. Bahadur representations. Bahadur representations with appropriate rates

are useful in the study of the asymptotic behavior of statistical estimators. For
M-estimation under independent errors, various Bahadur representations have
been derived; see, for example, [2, 4, 11, 26] and [47] among others. In partic-
ular, He and Shao [26] obtained a sharp almost sure bound under very general
conditions on ρ. To obtain approximation rates for M-estimates of linear models
with dependent errors, we need extra conditions on the behavior of the function
ψ1(s;F0) at the neighborhood of s = 0:
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(A5) There exists an ε0 > 0 such that

Li := sup
|s|,|t |≤ε0, s �=t

|ψ1(s;Fi )−ψ1(t;Fi )|
|s − t | ∈ L1.(13)

(A6) Let ψ1(·;Fi ) ∈ Cl , l ≥ 0. For some ε0 > 0, sup|ε|≤ε0 ‖ψ(l)1 (ε;Fi )‖ <∞
and

∞∑
i=0

sup
|ε|≤ε0

∥∥E
[
ψ
(l)
1 (ε;Fi )|F0

] − E
[
ψ
(l)
1 (ε;F ∗

i )|F ∗
0

]∥∥<∞.(14)

Condition (A5) suggests that the function ψ1(s;Fi), |s| ≤ ε0, is stochastically
Lipschitz continuous at a neighborhood of 0. The function ψ itself does not have to
be Lipschitz continuous. Indeed, for ψ(x)= ρ′

α(x)= α − 1x≤0, if the conditional
density f1(·|F0) is bounded, then (13) holds. For this ψ , we need to assume that
the conditional density exists to ensure that ei has a density, which is a prerequisite
for Bahadur representations for quantile estimates (cf. Remark 3). If ψ ∈ Cl+1 sat-
isfies supu |ψ(k)(u)|<∞, 1 ≤ k ≤ l+ 1, then (13) holds and a sufficient condition
for (14) is that

∑∞
i=0 ‖ei − e∗i ‖ <∞. In this case the existence of a conditional

density is not required. Since E[ψ(e1 − s)|F0] = ∫
R
ψ(v)f1(v + s|F0) dv, by Fu-

bini’s theorem, a sufficient condition for (13) is
∫
R

|f ′
1(u|F0)|ψ(u, ε0) du ∈ L1.

The latter holds if
∫
R

‖f ′
1(u|F0)‖ψ(u, ε0) du <∞. The last condition (A6) is a

generalization of (7). Section 2.3 gives sufficient conditions for (14).
Define M-processes Kn(θ) = �n(θ) − E[�n(θ)] and K̃(β) = �̃n(β) −

E[�̃n(β)], where

�n(θ)=
n∑
i=1

ψ(ei − z′
i,nθ)zi,n and �̃n(β)=

n∑
i=1

ψ(ei − x′
iβ)xi ,

(15)
θ,β ∈ R

p.

TheM-process itself is an interesting subject of study and it plays an important role
inM-estimation theory. Welsh [58] consideredM-processes for linear models with
i.i.d. errors. Theorems 2 and 3 present local oscillation rates for the M-processes
Kn and K̃n. Corollary 1 provides a weak Bahadur representation for θ̂n. Theorem 3
deals with K̃ and gives a strong Bahadur representation for β̂n.

THEOREM 2. Assume (A1)–(A5) and assume (A6) holds with l = 0, . . . , p.
Let (δn)n∈N be a sequence of positive numbers such that

δn → ∞ and δnrn = δnmax
i≤n |zi,n| → 0.(16)

Then

sup
|θ |≤δn

|Kn(θ)−Kn(0)| =OP

[√
τn(δn) logn+ δn

√
ζn(4)

]
,(17)
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where

τn(δ)=
n∑
i=1

|zi,n|2[m2(|zi,n|δ)+m2(−|zi,n|δ)], δ > 0.(18)

COROLLARY 1. Assume (A1)–(A5) and assume (A6) holds with l = 0, . . . , p,
and ϕ(t) = tϕ′(0)+O(t2) as t → 0. Further assume �(θ̂n) =OP(rn). Then for
any sequence cn → ∞,

ϕ′(0)θ̂n −
n∑
i=1

ψ(ei)zi,n =OP

[√
τn(δn) logn+ δnrn],

(19)
where δn = min(cn, r

−1/2
n ).

In particular, if as t → 0, m(t)=O(|t |λ) for some λ > 0, then

ϕ′(0)θ̂n −
n∑
i=1

ψ(ei)zi,n =OP

[√
ζn(2 + 2λ) logn+ rn].(20)

REMARK 4. If ψ is continuous, it is easily seen that the minimizer θ̂n solves
the equation �(θ̂n) = 0. In the case that ψ is discontinuous, the latter equation
may not have a solution. To overcome this difficulty, in Corollary 1 we propose
the approximate equation �(θ̂n) = OP(rn). An important example for discontin-
uous ψ arises in quantile regression. Let ψ(x) = ρ′

α(x) = α − 1x≤0, 0 < α < 1.
The argument in Corollary 2 and Lemma 9 implies that the minimizer θ̂n satisfies
|�(θ̂n)| ≤ (p+ 1)rn almost surely.

THEOREM 3. (a) Assume (A1)–(A3), (A5) and assume (A6) holds with l =
0, . . . , p. (b) Let λn be the minimum eigenvalue of �n. Assume that

lim inf
n→∞ λn/n > 0, ξn(2)=O(n)

and

r̃n := max
j≤n |xj | =O[n1/2(logn)−2].(21)

Let bn = n−1/2(logn)3/2(log logn)1/2+ι, ι > 0, n̄ = 2�logn/ log 2� and q > 3/2.
Then (i)

sup
|β|≤bn

|K̃n(β)− K̃n(0)| =Oa.s.(Ln̄ +Bn̄),(22)

where Bn = bn√ξn(4)(logn)3/2(log logn)(1+ι)/2, Ln = √
τ̃n(2bn)(logn)q and

τ̃n(δ)=
n∑
i=1

|xi |2[m2(|xi |δ)+m2(−|xi |δ)], δ > 0.(23)
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If additionally ϕ(t)= tϕ′(0)+O(t2) and m(t)=O(√t) as t → 0 and �̃n(β̂n)=
Oa.s.(r̃n), then (ii) β̂n = Oa.s.(bn) and (iii) the strong Bahadur representation
holds:

ϕ′(0)�nβ̂n −
n∑
i=1

ψ(ei)xi =Oa.s.
(
Ln̄ +Bn̄ + ξn(3)b2

n + r̃n).(24)

COROLLARY 2. Assume that 0 is the αth quantile of ei , f (0) > 0 and there
is a constant C0 <∞ such that supu f1(u|F0) ≤ C0, f ∈ C1, supu∈R ‖F (l)1 (u|
Fi )‖<∞ and

∞∑
i=0

sup
u∈R

∥∥E
[
F
(l)
1 (u|Fi )|F0

] − E
[
F
(l)
1 (u|F ∗

i )|F ∗
0

]∥∥<∞, l = 0, . . . , p.(25)

Assume that xi satisfies conditions (b) in Theorem 3. Let β̂n be a minimizer of (2)
with ρα . Then (i) β̂n = oa.s.(bn) and (ii) the strong Bahadur representation holds:

f (0)�−1
n β̂n −

n∑
i=1

(α− 1ei≤0)xi =Oa.s.
(
Bn̄ +Ln̄ + ξn(3)b2

n + r̃n),(26)

where Bn = [bnξ1/2
n (4)](logn)3/2(log logn)3/4 and Ln = [bnξn(3)]1/2(logn)q .

We now discuss the bound in (24). Clearly the condition ξn(2) = O(n) im-
plies that r̃n = maxj≤n |xj | = O(n1/2). The condition on r̃n in (21) is not the
weakest possible. For presentational clarity we adopt (21) since otherwise it in-
volves quite tedious manipulations. If ψ is continuous, then �̃n(β̂n) = 0. If ad-
ditionally ξn(4) = O(n) and m(t) = O(|t |λ), 1/2 ≤ λ ≤ 1, the bound in (24) is
O[n(1−λ)/2(logn)q

′ ], q ′ > 3. For the bound in (26), elementary calculations show
that, if ξn(κ)=O(n), 2< κ < 4, then the bound is Oa.s.(n

1/κ); if ξn(4) =O(n),
then the bound becomes O[n1/4(logn)q

′ ], q ′ > 9/4. The latter bound is optimal
up to a multiplicative logarithmic factor since the classical [6] representation has
the bound Oa.s.[n−3/4(log logn)3/4].

If �n/n converges to a positive definite matrix Q (say), then ξn(2)=O(n) and
the limit of λn/n is the smallest eigenvalue of Q, which is strictly positive. To
apply Theorems 2 and 3 and Corollary 1, we also need to verify ϕ(t)= tϕ′(0)+
O(t2) and know the order of magnitude of m(·); see the definitions of τn(·) and
τ̃n(·) by (18) and (23). Examples 1 and 2 below concern some commonly used ρ.
Recall that f is the density of ei .

EXAMPLE 1. Assume (16). If ψ has a derivative ψ ′ satisfying sup|u|≤δ‖ψ ′(e1 + u)‖ <∞ for some δ > 0, then m(t) = O(|t |) as t → 0 and τn(δn) =
O[ζn(4)δ2

n]. The latter claim easily follows from ψ(e1 + t)−ψ(e1)= ∫ t
0 ψ

′(e1 +
u)du and m2(t) ≤ t ∫ t0 ‖ψ ′(e1 + u)‖2 du = O(t2). An important example is Hu-
ber’s function ρ(x) = (x21|x|≤c)/2 + (c|x| − c2/2)1|x|>c, c > 0. Then ψ(x) =
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max[min(x, c),−c] and ϕ′(t) = P(|e1 + t | ≤ c) = F(c − t) − F(−c − t). If
supx f (x) <∞, then ϕ(t)= tϕ′(0)+O(t2) and m(t)=O(|t |) as t → 0.

EXAMPLE 2 (Lq -regression estimates). Assume (16). Let ρ(t) = |t |q , 1 <
q ≤ 2, and assume supv f (v) < ∞. If q �= 3/2, then m(t) = O(|t |q ′/2) and

τn(δn) = O[ζn(2 + q ′)δq
′
n ], where q ′ = min(2,2q − 1). If q = 3/2, then m(t) =

O[|t | log(1/|t |)] and τn(δn) = ∑n
i=1 |zi,n|4(log |zi,n|)2O(δ2

n). Here the bound of
m(t) follows from [2]. The bound of τn(δn) when q �= 3/2 can easily be obtained.
If q = 3/2, since rnδn → 0, then | log |zi,nδn|| ≤ 2| log |zi,n|| for sufficiently large
n and the stated bound for τn(δn) follows.

If supx[f (x)+ |f ′(x)|] <∞ and e0 ∈ Lq−1, then ϕ(t) = tϕ′(0)+O(t2). To
this end note that ψ(x)= q|x|q−1sgn(x) and ψ ′(x)= q(q − 1)|x|q−2sgn(x). Let
|δ| ≤ 1 andD =ψ ′(e1 +δ)−ψ ′(e1). If |e1|> 3, then |D| ≤ |δ|. On the other hand,

E
(
D1|e1|≤3

) =
∫ 3

−3
ψ ′(u)[f (u)− f (u− δ)]du

+
[∫ −3+δ

−3
−

∫ 3+δ
3

]
ψ ′(u)f (u− δ) du,

which is also of the order O(δ) since supx |f ′(x)|<∞ and
∫ 3
−3 |ψ ′(u)|du <∞.

Therefore E[∫ t0 ψ ′(e1 + δ) − ψ ′(e1) dδ] = O(t2), which implies ϕ(t) − ϕ(0) =
tϕ′(0)+O(t2).

2.3. Sufficient conditions for (14). Recall the projections Pk· = E(·|Fk) −
E(·|Fk−1) and F ∗

k = (. . . , ε−1, ε
′
0, ε1, . . . , εk). Proposition 2 provides sufficient

conditions for (14) and (25). These sufficient conditions appear easy to work with;
see applications in Section 3. Lemma 1 follows from Theorem 1 in [63].

LEMMA 1. Assume that the processXt = g(Ft ) ∈ L2. Let gn(F0)= E[g(Fn)|
F0], n ≥ 0. Then ‖P0Xn‖ ≤ ‖g(Fn) − g(F ∗

n )‖ and ‖P0Xn‖ ≤ ‖gn(F0) −
gn(F

∗
0 )‖ ≤ 2‖P0Xn‖.

PROPOSITION 2. (i) Assume that f1(·|Fi ) ∈ Cl , l ≥ 0, and

∞∑
i=0

ω̄l(i) <∞,
(27)

where ω̄l(i)=
∫

R

∥∥f (l)1 (u|Fi )− f (l)1 (u|F ∗
i )

∥∥ψ(u; ε0) du.
Then

∑∞
i=0 sup|ε|≤ε0 ‖ψ(l)1 (ε;Fi )−ψ(l)1 (ε;F ∗

i )‖<∞ and (14) holds.
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(ii) Let ρ(x)= ρα(x)= αx+ + (1 −α)(−x)+, 0< α < 1. Then (25) holds if for
0 ≤ l ≤ p

∞∑
i=0

ωl(i) <∞, where ωl(i)= sup
u∈R

∥∥F (l)1 (u|Fi )− F (l)1 (u|F ∗
i )

∥∥.(28)

PROOF. (i) Since ψ1(t;Fi ) = ∫
R
ψ(v)f1(v − t |Fi ) dv, by Lemma 1, for

|t | ≤ ε0,∥∥E
[
ψ
(l)
1 (t;Fi )|F0

] − E
[
ψ
(l)
1 (t;F ∗

i )|F ∗
0

]∥∥
≤ 2

∥∥ψ(l)1 (t;Fi )−ψ(l)1 (t;F ∗
i )

∥∥
= 2

∥∥∥∥
∫

R

ψ(v)
[
f
(l)
1 (v − t |Fi )− f (l)1 (v − t |F ∗

i )
]
dv

∥∥∥∥
≤ 2

∫
R

|ψ(v)|∥∥f (l)1 (v − t |Fi )− f (l)1 (v − t |F ∗
i )

∥∥dv ≤ 2ω̄l(i).

So (i) holds.
(ii) This easily follows from Lemma 1. �

3. Applications. This section contains applications of results in Section 2 to
linear models with errors being linear processes and some widely used nonlinear
time series. For such processes the SRD conditions (27) and (28) can be verified.

3.1. Linear processes. Let εi be i.i.d. random variables and ai real numbers
such that

ei =
∞∑
j=0

aj εi−j(29)

exists. Without loss of generality let a0 = 1. Let Fε be the distribution function
of ε0 and let fε be its density. Propositions 3 and 4 provide simple sufficient
conditions for (28) and (27), respectively. For γ ∈ R let the weighted measure
wγ (du)= (1 + |u|)γ du. The proof of Proposition 4 is given in [64].

PROPOSITION 3. Assume that ε0 ∈ Lq , q > 0, and that for some C0 <∞,

sup
u

∣∣f (l)ε (u)∣∣<C0, l = 0, . . . , p.(30)

Then ωl(i)=O(|ai |q ′/2), q ′ = min(2, q). Consequently (28) holds if

∞∑
j=0

|aj |q ′/2 <∞.(31)
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PROOF. Let Zn = ∑∞
j=1 aj εn−j and Z∗

n = Zn − anε0 + anε′0. Then F1(u|
Fn−1)= Fε(u−Zn). By (30), since min(1, |x|2)≤ |x|δ , 0 ≤ δ ≤ 2,

ωl(n)= sup
u

∥∥F (l)ε (u−Zn)− F (l)ε (u−Z∗
n)

∥∥
≤ ‖min(2C0,C0|anε0 − anε′0|)‖(32)

≤ 2C0‖|anε0 − anε′0|q
′/2‖ =O(|an|q ′/2).

The second assertion is obvious. �

PROPOSITION 4. Let 1< γ ≤ q . Assume E(ε0)= 0, ε0 ∈ Lq , κγ = ∫
R
ψ2(u)×

w−γ (du) <∞ and

p+1∑
k=0

∫
R

∣∣f (k)ε (v)∣∣2wγ (dv) <∞.(33)

Then ω̄l(i) = O(|ai |q ′/2), 0 ≤ l ≤ p, where q ′ = min(2, q), and (27) holds un-
der (31).

The condition κγ <∞ controls the tails of ψ . Both Propositions 3 and 4 al-
low dependent and heavy-tailed errors. For the linear model (1) with heavy-tailed
errors, it is more desirable to apply the M-estimation technique to estimate the
unknown β since the least squares procedure may result in estimators with erratic
behavior. A popular model for such heavy-tailed processes is the moving average
process ei = ∑∞

j=0 aj εi−j , where εi are i.i.d. random variables with stable distrib-
utions and ai are coefficients such that ei is well defined. Recently there has been
a substantial interest in linear processes with heavy-tailed innovations; see [28,
54] and [61] among others. Davis, Knight and Liu [14] studied the behavior of the
M-estimator in causal autoregressive models, while Davis and Wu [15] considered
M-estimation in linear models. In the latter two papers the errors are assumed to
be heavy-tailed, however, independent.

EXAMPLE 3. Let τ ≥ 0 be an integer and ι ∈ (1,2). Assume that the den-
sity fε ∈ Cτ satisfies f (τ)ε (t) ∼ |t |−1−τ−ιh(|t |) as t → ±∞, where h is a slowly
varying function [31], namely limx→∞ h(xλ)/h(x) = 1 for all λ > 0. By Kara-
mata’s theorem [31], simple calculations show that there exist real constants Cj ,

0 ≤ j < τ , such that f (j)ε (t) ∼ Cj |t |−j−1−ιh(|t |) as t → ∞, and, for some con-
stant C, 1 −Fε(t)∼ C|t |−ιh(|t |) and Fε(−t)∼ C|t |−ιh(|t |) as t → ∞. So εi is in
the domain of attraction of a stable distribution with index ι [31]. Let γ < 1 + 2ι.
Then

∫
R
[f (j)ε (t)]2wγ (dt) <∞, 0 ≤ j ≤ τ . Hence (33) holds. As an interesting

special case, let εi be i.i.d. standard symmetric-α-stable (SαS) random variables
with index ι ∈ (1,2). By Theorem 2.4.2 in [31], the density fε(t) ∼ cι|t |−1−ι
as |t | → ∞, where cι = π−1ζ(1 + ι) sin(ιπ/2). A similar argument shows that
f
(τ)
ε (t)∼ cι,τ |t |−1−τ−ι, where cι,τ = cι∏τi=1(−i − ι).
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EXAMPLE 4. If ei have finite variance, then (31) with q ′/2 = 1 implies that
the covariances are absolutely summable. It seems that the robust estimation prob-
lem of (1) with SRD linear process errors has been rarely studied in the literature.
If (31) is barely violated, for example, if an = n−µ, 1/2 < µ < 1, then the er-
rors are long-range dependent (LRD). In the LRD case, the M-estimates behave
very differently from those in the i.i.d. or weakly dependent error cases in that
they are asymptotically first-order equivalent, in probability, to the least squares
estimate [37].

REMARK 5. The condition (31) seems almost necessary for the asymptotic
normality of θ̂n. Let εi be i.i.d. standard SαS random variables with index ι ∈ (1,2)
and an ∼ n−µ, n ∈ N. Then (31) is reduced to ιµ > 2. Surgailis [54] showed that,
if ιµ < 2, then the empirical process of ei satisfies a non-central limit theorem
and the normalizing sequence is no longer

√
n. The asymptotic distribution of our

estimate θ̂n is unknown when ιµ < 2.

3.2. Nonlinear time series. Many nonlinear time series models have the form

ei =R(ei−1, εi),(34)

where R is a measurable function and εi are i.i.d. innovations. Diaconis and Freed-
man [16] showed that (34) has a stationary solution if for some q > 0 and t0,

E(log �ε0) < 0 and �ε0 + |R(t0, ε0)| ∈ Lq,
(35)

where �ε0 = sup
x �=x′

|R(x, ε0)−R(x′, ε0)|
|x − x′| .

In this case iterations of (34) lead to (3). Due to the Markovian structure of
(ei), we can let F1(u|ei) = F1(u|Fi ) and f1(u|ei) = f1(u|Fi ) be the condi-
tional distribution and density functions. Then F1(u|v) = P[R(v, εi) ≤ u] and
f1(u|v)= ∂F1(u|v)/∂u.

PROPOSITION 5. Assume that there exists a constant C0 <∞ such that

sup
u,v

∣∣∣∣∂F
(l)
1 (u|v)
∂v

∣∣∣∣ + sup
u,v

∣∣F (l)1 (u|v)
∣∣<C0, l = 0, . . . , p.(36)

Then under (35) we have ωl(i)=O(χi) for some χ ∈ (0,1) and hence (28) holds.

PROOF. Let (ε′i )i∈Z be an i.i.d. copy of (εi)i∈Z and, for i ≥ 0, e∗i =
G(. . . , ε−1, ε

′
0, ε1, . . . , εi) and e′i = G(. . . , ε′−1, ε

′
0, ε1, . . . , εi). By Theorem 2

in [65], under (35) there exist ς > 0 and � ∈ (0,1) such that ‖e′i − ei‖ς =
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O(�i). So ‖e∗i − ei‖ς = O(‖e′i − ei‖ς + ‖e′i − e∗i ‖ς ) = O(�i). Observe that

F
(l)
1 (u|Fn−1)= F (l)1 (u|en−1). As in (32), by (36),

∥∥F (l)1 (u|Fn−1)− F (l)1 (u|F ∗
n−1)

∥∥ = ∥∥F (l)1 (u|en−1)− F (l)1 (u|e∗n−1)
∥∥

≤ ‖min(2C0,C0|en−1 − e∗n−1|)‖
≤ 2C0

∥∥|en−1 − e∗n−1|min(1,ς/2)∥∥ =O(χn),
where χ = �min(1,ς/2). �

EXAMPLE 5. Consider the autoregressive conditional heteroscedasticity
(ARCH) model

ei = εi−1

√
a2 + b2e2

i−1,

where εi are i.i.d. innovations and a, b are real parameters such that

E(log |bε0|) < 0 and ε0 ∈ Lq(37)

for some q > 0. Then �ε0 = |bε0| and (35) holds. Note that (37) imposes very
mild moment conditions and it even allows |ei | to have infinite mean. Let Fε
(resp. fε) be the distribution (resp. density) function of ε0. Assume that fε satis-
fies (30). Since F1(u|v)= Fε(u/

√
a2 + b2v2), simple calculations show that (30)

implies (36). As an interesting special case, let εi have the standard Student
t-distribution with degrees of freedom k > 0. Then the density fε(t) = [k/(k +
t2)](1+k)/2/Ck , where Ck = k1/2B(1/2, k/2) and B(·, ·) is the beta function.
Clearly (30) and (35) are satisfied. In certain applications it is desirable to use
ARCH models with Student-t innovations to allow heavy tails [56].

Proposition 6 below gives a sufficient condition for (27) for the process

ei = ν(ei−1)+ εi,(38)

where ν is a Lipschitz continuous function such that the Lipschitz constant

�ν := sup
a �=b

|ν(a)− ν(b)|
|a − b| < 1(39)

and E(|εi |α) <∞ for some α > 1. The condition �ν < 1 implies that the non-
linear time series (38) has a unique stationary distribution. A prominent exam-
ple of (38) is the threshold autoregressive process ei+1 = α1e

+
i + α2(−ei)+ +

εi+1, where α1, α2 are real coefficients [55]. In this example (39) is satisfied if
max(|α1|, |α2|) < 1. If the process (34) is of the form (38), then condition (27) can
be simplified.
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PROPOSITION 6. Assume
∫
R
ψ2(t)w−γ (dt) <∞ for some γ > 1. Further

assume (39), εi ∈ Lq , γ < q < γ + 2 and that fε satisfies (33). Then there exists
χ ∈ (0,1) such that

ω̄l(i)=O(χi), 0 ≤ l ≤ p.(40)

REMARK 6. In Proposition 6, εi are allowed to have infinite variances. Propo-
sition 6 follows from Theorem 2 in [65]. For a proof see [64].

4. Proofs of results in Section 2.2.

LEMMA 2. Let Tn = ∑n
i=1ψ(ei)zi,n.

(i) Assume E[ψ(ei)] = 0, ‖ψ(ei)‖<∞ and
∞∑
i=1

‖E[ψ(ei)|F0] − E[ψ(e∗i )|F ∗
0 ]‖<∞.(41)

Then ‖Tn‖ =O(1).
(ii) If in addition (9) and (A4) hold, then Tn ⇒N(0,�).

PROOF. (i) For k ≥ 0 let Jk = ∑n
i=1 Pi−kψ(ei)zi,n. Note that the summands

of Jk are martingale differences. By the orthogonality, since
∑n
i=1 zi,nz′

i,n = Idp
and k ≥ 0,

‖Jk‖2 =
n∑
i=1

‖Pi−kψ(ei)zi,n‖2 =
n∑
i=1

|zi,n|2‖P0ψ(ek)‖2 = p‖P0ψ(ek)‖2.(42)

By Lemma 1, ‖P0ψ(ek)‖ ≤ ‖E[ψ(ek)|F0] − E[ψ(e∗k)|F ∗
0 ]‖. By (41),∑∞

k=0 ‖Jk‖<∞ and consequently ‖Tn‖ =O(1) since Tn = ∑∞
k=0 Jk .

(ii) We now show Tn ⇒N(0,�). Let c be a p-dimensional column vector with
|c| = 1 and ui,n = c′zi,n. By the Cramér–Wold device, it suffices to verify that

n∑
i=1

ui,nψ(ei)⇒N(0, c′�c).(43)

Since
∑n
i=1 zi,nz′

i,n = Idp , dn := (∑n
i=1 u

2
i,n)

1/2 = 1. By (A4),

lim
n→∞

maxi≤n |ui,n|
dn

= 0.(44)

By (9), for each k ≥ 0,

lim
n→∞

∑n−k
i=1 ui,nui+k,n

d2
n

= c′�kc.(45)

Write ψ(ei) = ∑∞
j=0 αjηi,i−j , where αj = ‖Pi−jψ(ei)‖ and ηi,i−j =

Pi−jψ(ei)/αj . Then (41) entails
∑∞
j=0 αj <∞. By the argument in the proof
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of Theorem 1(i) in [25], (44) and (45) imply (43). (Theorem 1(i) in [25] is not
yet directly applicable: condition (5,a) therein requires dn → ∞ and condition
(7) therein requires

∑
k∈Z c′�kc > 0. However, a careful examination of Han-

nan’s [25] proof indicates that his conditions (5,a) and (7) are not needed in de-
riving (43) from (44) and (45). Also note that there is a typo in [25], (5,b). The
correct version should be of the form (44).) �

LEMMA 3. Let (αni)ni=1, n ∈ N, be a triangular array of real numbers such
that

∑n
i=1 α

2
ni ≤ 1 and �n := maxi≤n |αni | → 0. Assume (A1), (A3) and (7). Let

ηn,i = ρ(ei − αni)− ρ(ei)+ αniψ(ei). Then var(
∑n
i=1 ηn,i)→ 0.

PROOF. Let I ∈ N and 0<µ< ε0. By (A3), (7) and Lemma 1, we have

∞∑
k=0

sup
|ε|≤µ

‖P0[ψ(ek)−ψ(ek − ε)]‖ ≤
I∑
k=0

sup
|ε|≤µ

‖ψ(ek)−ψ(ek − ε)‖
(46)

+
∞∑

k=1+I
2 sup

|ε|≤µ
‖P0ψ(ek − ε)‖ → 0

by first letting µ→ 0 and then I → ∞. Let An = ∑n
i=1 α

2
ni and

Zk,n(t)=
n∑
i=1

Pi−k[ψ(ei)−ψ(ei − αnit)]αni, 0 ≤ t ≤ 1, k ≥ 0.

Note that the summands of Zk(t) are martingale differences. Since �n → 0,

sup
0≤t≤1

‖Zk,n(t)‖2 = sup
0≤t≤1

n∑
i=1

α2
ni‖Pi−k[ψ(ei)−ψ(ei − αnit)]‖2

(47)
≤ An sup

|ε|≤µ
‖P0[ψ(ek)−ψ(ek − ε)]‖2

holds for large n. Since ηn,i = ∫ 1
0 [ψ(ei)−ψ(ei − tαni)]αni dt and An ≤ 1,∥∥∥∥∥

n∑
i=1

(ηn,i − Eηn,i)

∥∥∥∥∥ =
∥∥∥∥∥

∞∑
k=0

∫ 1

0
Zk,n(t) dt

∥∥∥∥∥ ≤
∞∑
k=0

∫ 1

0
‖Zk,n(t)‖dt,

which by (46) and (47) converges to 0 as n→ ∞ and µ ↓ 0. �

PROPOSITION 7. Under conditions of Theorem 1, we have for any c > 0 that

Dn(c) := sup
|θ |≤c

∣∣∣∣∣
n∑
i=1

[ρ(ei − z′
i,nθ)− ρ(ei)+ z′

i,nθψ(ei)] − ϕ
′(0)
2

|θ |2
∣∣∣∣∣ → 0(48)

in probability.
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PROOF. We should use the argument in [7]. Let ηi(θ) = ρ(ei − z′
i,nθ) −

ρ(ei) + z′
i,nθψ(ei). For a fixed vector θ with |θ | ≤ c, let αni = z′

i,nθ . Then∑n
i=1 α

2
ni ≤ c2 and maxi≤n |αni | ≤ crn → 0. By Lemma 3, var[∑n

i=1 ηi(θ)] → 0.
Note that

∑n
i=1 zi,nz′

i,n = Idp . By Lemma 1 in [7], under (A1) and (A2) the bias

n∑
i=1

E[ηi(θ)] − ϕ
′(0)
2

|θ |2 =
n∑
i=1

[
ϕ′(0)

2
|z′
i,nθ |2 + o(|z′

i,nθ |2)
]

− ϕ
′(0)
2

|θ |2

= ϕ
′(0)
2

n∑
i=1

[θ ′zi,nz′
i,nθ + o(|z′

i,nθ |2)] − ϕ
′(0)
2

|θ |2

= o[ζn(2)].
So

∑n
i=1 ηi(θ)→ ϕ′(0)|θ |2/2 pointwise. Since ηi(θ), 1 ≤ i ≤ n, are convex func-

tions of θ , by the convexity lemma in ([42], page 187), we have uniform in-
probability convergence. (A nonstochastic version is given in [48], Theorem 10.8,
page 90. A subsequencing argument leads to the in-probability-convergence ver-
sion. See also Appendix II in [1] and [7] for more details.) �

PROOF OF THEOREM 1. The relation (8) easily follows from properties of
convex functions; see, for example, the proofs of Theorems 2.2 and 2.4 in [7] and
Theorem 1 in [42]. We omit the details. A proof is given in [64]. That θ̂n =OP(1)
follows easily from Lemma 2 and (8). If (9) holds, again by Lemma 2 we have the
central limit theorem (10). �

PROOF OF THEOREM 2. Write Kn =Mn +Nn, where

Mn(θ)=
n∑
i=1

{ψ(ei − z′
i,nθ)− E[ψ(ei − z′

i,nθ)|Fi−1]}zi,n(49)

and, noting that E[ψ(ei − z′
i,nθ)|Fi−1] =ψ1(−z′

i,nθ;Fi−1),

Nn(θ)=
n∑
i=1

{ψ1(−z′
i,nθ;Fi−1)− ϕ(−z′

i,nθ)}zi,n.(50)

The summands of Mn form (triangular array) martingale differences with re-
spect to the filter σ(Fi ). Since

∑n
i=1 zi,nz′

i,n = Idp , we have n−1/2 = O(rn) and
by (16), n−2 = O(r4

n) = O[δnζn(4)]. By Lemmas 4 and 5, (17) follows since
n−3 =O[δnζn(4)]. �

LEMMA 4. Assume (A5) and (16). Then

sup
|θ |≤δn

|Mn(θ)−Mn(0)| =OP

[√
τn(δn) logn+ n−3]

.(51)
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PROOF. Since p = ∑n
i=1 z′

i,nzi,n ≤ nr2
n , (16) implies that δn = o(√n ). It suf-

fices to show that the left-hand side of (51) has the bound OP[gn√τn(δn) logn+
n−3] for any positive sequence gn → ∞. Assume that gn ≥ 3 for all n. Let

φn = 2gn
√
τn(δn) logn, tn = gn

√
τn(δn)

loggn
, un = t2n,

ηi(θ)= [ψ(ei − z′
i,nθ)−ψ(ei)]zi,n, Tn = max

i≤n sup
|θ |≤δn

|ηi(θ)|,

Un =
n∑
i=1

E{[ψ(ei + |zi,n|δn)−ψ(ei − |zi,n|δn)]2|Fi−1}|zi,n|2.

Since ψ is monotone, for δ ≥ 0,

sup
|θ |≤δ

|ηi(θ)| ≤ |zi,n|max[|ψ(ei − |zi,n|δ)−ψ(ei)|, |ψ(ei + |zi,n|δ)−ψ(ei)|]

≤ |zi,n|[ψ(ei + |zi,n|δ)−ψ(ei − |zi,n|δ)].
So E[sup|θ |≤δ |ηi(θ)|2] ≤ 2|zi,n|2[m2(−|zi,n|δ) + m2(|zi,n|δ)], E(T 2

n ) ≤ 2τn(δn)
and

P(Tn ≥ tn)≤ t−2
n E(T 2

n )≤ 2t−2
n τn(δn)=O[(g−1

n loggn)
2] → 0.(52)

Similarly, E(Un)≤ 2τn(δn) and

P(Un ≥ un)≤ u−1
n E(Un)=O[(g−1

n loggn)
2] → 0.(53)

Write zi,n = (zi1,n, . . . , zip,n)′. For notational simplicity we write zij for zij,n,
1 ≤ j ≤ p. Let  p = {−1,+1}p . For i ∈ N let Dz(i)= (2 × 1zi1≥0 − 1, . . . ,2 ×
1zip≥0 − 1) ∈ p . For d ∈ p and 1 ≤ j ≤ p define

Mn,j,d(θ)=
n∑
i=1

{ψ(ei − z′
i,nθ)− E[ψ(ei − z′

i,nθ)|Fi−1]}zij1Dz(i)=d.

Since Mn = ∑
d∈ p(Mn,1,d, . . . ,Mn,p,d)

′, it suffices to show that (51) holds with
Mn therein replaced by Mn,j,d for all d ∈  p and 1 ≤ j ≤ p. To this end, for
presentational clarity we consider j = 1 and d = (1,−1,1,1, . . . ,1). The other
cases similarly follow.

Let |θ | ≤ δn, ηi,j,d(θ)= [ψ(ei − z′
i,nθ)−ψ(ei)]zij1Dz(i)=d and

Bn(θ)=
n∑
i=1

E
[
ηi,j,d(θ)1|ηi,j,d(θ)|>tn |Fi−1

]
.

Then for large n, since un = o(tnφn),

P
(|Bn(θ)| ≥ φn,Un ≤ un) ≤ P

[
t−1
n

n∑
i=1

E[η2
i,j,d(θ)|Fi−1] ≥ φn,Un ≤ un

]

(54)
≤ P(t−1

n Un ≥ φn,Un ≤ un)= 0.



M-ESTIMATION UNDER DEPENDENCE 513

Since Pi[ηi,j,d(θ)1|ηi,j,d(θ)|≤tn], i = 1, . . . , n, form bounded martingale differ-
ences, by Proposition 2.1 in [19] and (54), for |θ | ≤ δn,

P[|Mn,j,d(θ)−Mn,j,d(0)| ≥ 2φn,Tn ≤ tn,Un ≤ un]

≤ P

[∣∣∣∣∣
n∑
i=1

Pi
[
ηi,j,d(θ)1|ηi,j,d(θ)|≤tn

]∣∣∣∣∣ ≥ φn,Tn ≤ tn,Un ≤ un
]

+ P

[∣∣∣∣∣
n∑
i=1

Pi
[
ηi,j,d(θ)1|ηi,j,d(θ)|>tn

]∣∣∣∣∣ ≥ φn,Tn ≤ tn,Un ≤ un
]

(55)

=O[exp{−φ2
n/(4tnφn + 2un)}] + P

(|Bn(θ)| ≥ φn,Tn ≤ tn,Un ≤ un)
=O[exp{−φ2

n/(4tnφn + 2un)}].
Let � = n8 and G� = {(k1/�, . . . , kp/�) :ki ∈ Z, |ki | ≤ n9}. Note that G� has
(2n9 + 1)p points. By (55), since tnφn logn = o(φ2

n) and un logn = o(φ2
n), for

any ς > 1 we have

P

[
sup
θ∈G�

|Mn,1,d(θ)−Mn,1,d(0)| ≥ 2φn,Tn ≤ tn,Un ≤ un
]

(56)
=O(n9p)O[exp{−φ2

n/(4tnφn + 2un)}] =O(n−ςp),
which by (52) and (53) implies

lim
n→∞P

[
sup
θ∈G�

|Mn,1,d(θ)−Mn,1,d(0)| ≥ 2φn

]
= 0.(57)

For a ∈ R let �a�� = �a��/� and �a	� = �a�	/�. Write 〈a〉�,1 = �a	� and
〈a〉�,−1 = �a��. Let d = (d1, . . . , dp) ∈  p . For a vector θ = (θ1, . . . , θp)′ let
〈θ〉�,d = (〈θ1〉�,d1, . . . , 〈θp〉�,dp ). For example, for d = (1,−1,1,1, . . . ,1), we
have 〈θ〉�,d = (�θ1	�, �θ2��, �θ3	�, . . . , �θp	�) and 〈θ〉�,−d = (�θ1��, �θ2	�, �θ3��,
. . . , �θp��). Observe that for this d, ηi,1,d(〈θ〉�,−d) ≤ ηi,1,d(θ) ≤ ηi,j,d(〈θ〉�,d)
since ψ is nondecreasing.

Let |s|, |t | ≤ rnδn. By (13), |E[ψ(ei − t)−ψ(ei − s)|Fi−1]| ≤ Li−1|s − t | for
all large n since rnδn → 0. Let Vn = ∑n

i=1Li−1. Again by (13), P(Vn ≥ n4) ≤
n−4

E(Vn) = O(n−3). Since |θ − 〈θ〉�,d| = O(�−1), we have maxi≤n |z′
i,n(θ −

〈θ〉�,d)| = o(�−1), and by (16),

sup
|θ |≤δn

n∑
i=1

|E[ηi(〈θ〉�,d)− ηi(θ)|Fi−1]| ≤ C�−1Vn.

Therefore, for all |θ | ≤ δn,
Mn,1,d(〈θ〉�,−d)−Mn,1,d(0)−CVn/�

≤Mn,1,d(θ)−Mn,1,d(0)(58)

≤Mn,1,d(〈θ〉�,d)−Mn,1,d(0)+CVn/�,
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which implies (51) in view of (57) and Vn/�= oP(n
4/�)= oP(n

−3). �

LEMMA 5. Assume that (δn) satisfies (16) and (A6) holds with l = 0, . . . , p.
Then ∥∥∥∥ sup

|g|≤δn
|Nn(g)−Nn(0)|

∥∥∥∥ =O[√
ζn(4)δn

]
.(59)

PROOF. Let I = {α1, . . . , αq} ⊆ {1, . . . , p} be a nonempty set and 1 ≤ α1 <

· · · < αq . For a p-dimensional vector u = (u1, . . . , up) let uI = (u111∈I , . . . ,
up1p∈I ). Note that the j th component of uI is 0 if j /∈ I , 1 ≤ j ≤ p. Write∫ gI

0

∂qNn(uI )
∂uI

duI =
∫ gα1

0
. . .

∫ gαq

0

∂qNn(uI )
∂uα1 · · · ∂uαq

duα1 · · · duαq
and wi = zi,nzi,α1 · · · zi,αq . Observe that

∣∣∣∣∂
qNn(uI )
∂uI

∣∣∣∣ =
∣∣∣∣∣
n∑
i=1

[
ψ
(q)
1 (−z′

i,nuI ;Fi−1)− ϕ(q)(−z′
i,nuI )

]
wi

∣∣∣∣∣.
Let |u| ≤ pδn and k ∈ N. Since maxi≤n |zi,nu| ≤ prnδn → 0, by Lemma 1, for
large n,∥∥∥∥∥

n∑
i=1

Pi−kψ(q)1 (−z′
i,nuI ;Fi−1)wi

∥∥∥∥∥
2

=
n∑
i=1

|wi |2
∥∥Pi−kψ(q)1 (−z′

i,nuI ;Fi−1)
∥∥2

≤
n∑
i=1

|wi |2 sup
|ε|≤ε0

∥∥E
[
ψ
(q)
1 (ε;Fk−1)|F0

] − E
[
ψ
(q)
1 (ε;F ∗

k−1)|F ∗
0

]∥∥2
.

As in the proof of (i) of Lemma 2, if (A6) holds with l = 0, . . . , p, then
‖∂qNn(uI )/∂uI‖ =O[ζ 1/2

n (2 + 2q)] uniformly over |u| ≤ pδn. Consequently,∥∥∥∥ sup
|g|≤δn

∫ gI

0

∣∣∣∣∂
qNn(uI )
∂uI

∣∣∣∣duI

∥∥∥∥ ≤
∥∥∥∥
∫ δn

−δn
. . .

∫ δn

−δn

∣∣∣∣∂
qNn(uI )
∂uI

∣∣∣∣duI

∥∥∥∥
≤

∫ δn

−δn
. . .

∫ δn

−δn

∥∥∥∥∂
qNn(uI )
∂uI

∥∥∥∥duI(60)

=O[δqnζ 1/2
n (2 + 2q)].

By (16), δqn
√
ζn(2 + 2q)=O[δn√ζn(4)]. So (59) follows from the identity

Nn(g)−Nn(0)=
∑

I⊆{1,...,p}

∫ gI

0

∂ |I |Nn(uI )
∂uI

duI ,(61)



M-ESTIMATION UNDER DEPENDENCE 515

where the summation is over all the 2p − 1 nonempty subsets of {1, . . . , p}. �

PROOF OF COROLLARY 1. The sequence (δn) clearly satisfies (16). Theo-
rem 1 implies that |θ̂n| =OP(1)= oP(δn). Note that Kn(0)= ∑n

i=1ψ(ei)zi,n and
Kn(θ̂n)= −∑n

i=1 ϕ(−z′
i,nθ̂n)zi,n +OP(rn). By Theorem 2, (19) follows from

n∑
i=1

[ϕ(−z′
i,nθ̂n)+ z′

i,nθ̂nϕ
′(0)]zi,n =

n∑
i=1

O[|z′
i,nθ̂n|2]|zi,n| =OP[ζn(3)]

in view of
∑n
i=1 zi,nz′

i,n = Idp , ζn(2) = p, ζn(3) ≤ rnζn(2) = O(rn) and ζn(4) =
O(r2

n). For (20), it suffices to show that the left-hand side has the bound
OP[cn√ζn(2 + 2λ) logn+ cnrn] for any sequence cn → ∞. The latter easily fol-
lows from (19) and m(t)=O(|t |λ). �

4.1. Proof of Theorem 3.

LEMMA 6. Under the assumptions of Theorem 3, we have (i)

sup
|β|≤bn

|K̃n(β)− K̃n(0)| =Oa.s.(Ln̄ +Bn̄)(62)

and (ii) for any ι > 0, K̃n(0) = oa.s.(hn), where hn = n1/2(logn)3/2 ×
(log logn)1/2+ι/4.

PROOF. As in the proof of Theorem 2, write K̃n = M̃n + Ñn, where

M̃n(β)=
n∑
i=1

{ψ(ei − x′
iβ)− E[ψ(ei − x′

iβ)|Fi−1]}xi ,

Ñn(β)=
n∑
i=1

{ψ1(−x′
iβ;Fi−1)− ϕ(−x′

iβ)}xi .

Since n−5/2 = o(Bn̄), by Lemmas 7 and 8, (i) holds. For (ii), as with the argument
in (42), we have ‖K̃n(0)‖ =O(ξ1/2

n )=O(√n ). So the stated almost sure bound
follows from the Borel–Cantelli lemma and (68) in view of the argument in (69).

�

LEMMA 7. Let (πi)i≥1 be a sequence of bounded positive numbers for which
there exists a constant c0 ≥ 1 such that

max
n≤i≤2n

πi ≤ c0 min
n≤i≤2n

πi holds for all large n.(63)

Assume (A5) and r̃n =O(√n ). Let �d = 2c0π2d and q > 3/2. Then as d→ ∞,

sup
|β|≤�d

max
n≤2d

|M̃n(β)− M̃n(0)| =Oa.s.
[√
τ̃2d (�d)d

q + 2−5d/2]
.(64)
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Lemma 7 is proved in [64]. The argument is similar to the one used for
Lemma 4.

LEMMA 8. Let (πi)i≥1 be a positive sequence satisfying (63) and πn =
o[n−1/2(logn)2]; let �d = 2c0π2d . Assume (21) and assume (A6) holds with
l = 0, . . . , p. Then we have (i)∥∥∥∥ sup

|g|≤πn
|Ñn(g)− Ñn(0)|

∥∥∥∥ =O[√
ξn(4)πn

]
(65)

and (ii) as d→ ∞, for any ι > 0,

max
n≤2d

sup
|g|≤�d

|Ñn(g)− Ñn(0)|2 = oa.s.[ξ2d (4)� 2
d d

3(logd)1+ι].(66)

PROOF. Let Qn,j (β) = ∑n
i=1ψ1(−x′

iβ;Fi−1)xij , 1 ≤ j ≤ p, and Sn(β) =
Qn,j (β)−Qn,j (0). Since πn = o[n−1/2(logn)2], by (21), πnr̃n̄ → 0. It is easily
seen that the argument in the proof of Lemma 5 implies that there exists a positive
constant C <∞ such that

E

{
sup

|β|≤�d
|Sn(β)− Sn′(β)|2

}
≤ C

p∑
q=1

�
2q
d

n∑
i=n′+1

|xi |2+2q(67)

holds uniformly over 1 ≤ n′ < n≤ 2d . So (65) holds. We now show (66). Let supβ
denote sup|β|≤�d . By the maximal inequality (see [64])

∥∥∥∥max
n≤2d

sup
|β|≤�

|Sn(β)|
∥∥∥∥ ≤

d∑
i=0

[ 2d−i∑
m=1

E

{
sup

|β|≤�
∣∣S2im(β)− S2i (m−1)(β)

∣∣2}]1/2

,(68)

since ι > 0 and � 2q
d ξ2d (2 + 2q)=O(� 2

d ξ2d (4)), (67) implies that

∞∑
d=2

‖maxn≤2d sup|β|≤� |Sn(β)|‖2

ξ2d (4)�
2
d d

3(logd)1+ι =
∞∑
d=2

O[(d + 1)2]
d3(logd)1+ι <∞.(69)

By the Borel–Cantelli lemma, (66) holds in view of (63). �

PROOF OF THEOREM 3. By Lemma 6, we have (i) and

sup
|β|≤bn

|K̃n(β)| =Oa.s.(wn), where wn = Ln̄ + hn +Bn̄(70)

and bn = n−1/2(logn)3/2(log logn)1/2+ι. Let!n(β)= ∑n
i=1[ρ(ei−x′

iβ)−ρ(ei)]
and

An(β)= −
n∑
i=1

∫ 1

0
ϕ(−x′

iβt)x
′
iβ dt.
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Using ρ(ei)− ρ(ei − x′
iβ)=

∫ 1
0 ψ(ei − x′

iβt)x
′
iβ dt , we have by (70) that

sup
|β|≤bn

|!n(β)−An(β)| = sup
|β|≤bn

∣∣∣∣
∫ 1

0
K̃n(βt)β dt

∣∣∣∣ =Oa.s.(wnbn).

Let λ∗ = 2−1 lim infn→∞ λn/n. By (21), r̃nbn = o(1). Then ξn(3)b3
n=O(nr̃n)b3

n =
o(nb2

n). Since ϕ(δ)= ϕ(0)+ ϕ′(0)δ +O(δ2), we have for all large n that

inf|β|=bn
An(β)≥ 1

3ϕ
′(0)nλ∗b2

n.

Since m(t)=O(√t) as t → 0, Ln =O[ξ1/2
n (3)b1/2

n (logn)q]. Let 3/2< q < 7/4.
Under the condition ξn(2)=O(n), we have ξn(2+κ)≤ r̃κn ξn(2)=O(nr̃κn ), κ > 0.
Elementary calculations show that, with (21), hn = o(nbn), Ln̄ = o(nbn) and Bn̄ =
o(nbn). Therefore, wn = o(nbn) and consequently we have

inf|β|=bn
!n(β)≥ inf|β|=bn

An(β)− sup
|β|≤bn

|!n(β)−An(β)|

≥ 1
3ϕ

′(0)nλ∗b2
n +Oa.s.(wnbn)≥ 1

4ϕ
′(0)nλ∗b2

n

almost surely. By the convexity of the function !n(·),{
inf|β|≥bn

!n(β)≥ 1
4ϕ

′(0)nλ∗b2
n

}
=

{
inf|β|=bn

!n(β)≥ 1
4ϕ

′(0)nλ∗b2
n

}
.

Therefore the minimizer β̂n satisfies |β̂n| ≤ bn almost surely.
(iii) Let |β| ≤ bn. Since bnr̃n → 0, by Taylor’s expansion,

−
n∑
i=1

ϕ(−x′
iβ)xi =

n∑
i=1

[ϕ′(0)x′
iβ +O(|x′

iβ|2)]xi = ϕ′(0)�nβ +O[ξn(3)b2
n].

So (24) follows from (i) and (ii) in view of �̃n(β̂n)=Oa.s.(r̃n). �

PROOF OF COROLLARY 2. Clearly the condition supu f1(u|F0) ≤ C0 <∞
implies (A5). The other two conditions ϕ(t)= tϕ′(0)+O(t2) and m(t)=O(√t)
as t → 0 easily follow. Then we have (A1)–(A3) and (A6). By Theorem 3, it
remains to show that �̃n(β̂n) = Oa.s.(r̃n). Observe that ψ(x) = α − 1x≤0 and
ρα(x+ δ)−ρα(x)= δψ(x)+ δ+1x=0. Let!n(β)= ∑n

i=1[ρα(ei −x′
iβ)−ρα(ei)]

and v = �̃n(β̂n). Then

lim
ε↓0

!n(β̂n + εv)−!n(β̂n)
ε

=
n∑
i=1

(−x′
iv)ψ(ei − x′

i β̂n)+
n∑
i=1

(−x′
iv)

+1
ei=x′

i β̂n

= −(�̃n(β̂n))′v +
n∑
i=1

(−x′
iv)

+1
ei=x′

i β̂n
.
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Since !n(β̂n + εv) ≥ !n(β̂n) and (−x′
iv)

+ ≤ |x′
i ||v|, we have |�n(β̂n)| ≤∑n

i=1 |x′
i |1ei=x′

i β̂n
. By Lemma 9 and Schwarz’s inequality, |�̃n(β̂n)| ≤ (p + 1)r̃n

almost surely. �

LEMMA 9. Assume that supu |f1(u|F0)| ≤ C0 almost surely for some con-
stant C0. Then

sup
β

n∑
i=1

1ei=x′
iβ

|xi | ≤ (p+ 1)r̃n almost surely.(71)

PROOF. It suffices to show P(ei1 = x′
i1
β, . . . , eip+1 = x′

ip+1
β for some β) = 0

for all 1 ≤ i1 < · · · < ip+1. To this end, the argument in [4] is useful. Clearly
we can find u1, . . . , up+1 with u2

1 + · · · + u2
p+1 �= 0 such that u1xi1 + · · · +

up+1xip+1 = 0. Without loss of generality let up+1 = 1 and write η= ∑p
j=1 ujeij .

Then P(eip+1 = −η|Fip+1−1) = 0 almost surely. So P(u1ei1 + η = 0) = 0, which
completes the proof. �
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