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Abstract The paper concerns M-estimation with proba-

bilistic models of geodetic observations that is called MP

estimation. The special attention is paid to MP estimation

that includes the asymmetry and the excess kurtosis, which

are basic anomalies of empiric distributions of errors of

geodetic or astrometric observations (in comparison to the

Gaussian errors). It is assumed that the influence function

of MP estimation is equal to the differential equation that

defines the system of the Pearson distributions. The cen-

tral moments µk, k = 2, 3, 4, are the parameters of that

system and thus, they are also the parameters of the cho-

sen influence function. The MP estimation that includes the

Pearson type IV and VII distributions (MPD(l) method) is

analyzed in great detail from a theoretical point of view

as well as by applying numerical tests. The chosen distri-

butions are leptokurtic with asymmetry which refers to the

general characteristic of empirical distributions. Considering

M-estimation with probabilistic models, the Gram–Charlier

series are also applied to approximate the models in question

(MG−C method). The paper shows that MP estimation with

the application of probabilistic models belongs to the class

of robust estimations; MPD(l) method is especially effective

in that case. It is suggested that even in the absence of signifi-

cant anomalies the method in question should be regarded as

robust against gross errors while its robustness is controlled

by the pseudo-kurtosis.
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1 Introduction and motivation

When adjusting geodetic observations, anomalies (in rela-

tion to the conventional assumptions) are more often con-

sidered. The expected anomalies concern probability distri-

butions and/or moments of measurement errors. In this con-

text, for example, the observations which are affected by

gross errors are considered. Such disturbances are identified

in two basic ways. The first way assumes that gross errors

are regarded as random variables which have the same vari-

ance as other measurement errors but differ from them in

expected values. Thus, identification is carried out before

the least squares adjustment and by applying various testing

approaches (e.g., Baarda 1968; Prószyński 1997; Cen et al.

2003). Another approach is to use a robust method of estima-

tion, including L-estimation or R-estimation (Huber 1981;

Hodges and Lehmann 1963; Duchnowski 2011, 2013); L1-

norm estimation (Marshall 2002) or M-estimation (Huber

1981). While applying robust M-estimation, it is usu-

ally assumed that gross errors are realizations of random

variables which differ from other measurement errors in

variances.

Anomalies which concern the expected value and/or the

variance are however not the only ones which can be expected

in the sets of geodetic observations. The problem can con-

cern the higher order moments and hence asymmetry and

excess coefficients (namely, anomalies in relation to the nor-

mal distribution). In such a case, usage of M-estimation with

an adequate probabilistic model of measurement errors gives

the opportunity to estimate the parameters of the functional

model.

If the vector of the independent observations y is described

by the functional model y = F(X) + v, M-estimation can

be considered as the solution of the optimization problem

minX φ(y; X) = φ(y; X̂) with the objective function
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φ(y; X) =

n
∑

i=1

ρ(yi ; X) =

n
∑

i=1

ρ(vi ) (1)

(e.g., Huber 1981; Hampel et al. 1986). Here vi = yi −Fi (X)

is a random error of the observation. The error distribution Pθi

is indexed with the parameter θiǫ� (� is a space of the para-

meter). The class of the distributions P = {Pθi
: θ ∈ �} will

be regarded as a probabilistic model of the observation error,

and after some suitable rearrangements of the parameters,

as a probabilistic model of the observation. The functions

ρ(yi ; X) = ρ(vi ) are arbitrary components of the objec-

tive function φ(y; X) and usually only in general terms they

are referred to the probabilistic models of the observations.

However, the probabilistic models are strongly related to the

background of M-estimation, namely the maximum likeli-

hood method (ML-method, see, e.g., Serfling 1980; Huber

1981; Winkelmann and Boes 2006).

One should notice that, for example, the least squares

method (LS-method) also belongs to the class of M-

estimation. In such case ρ(y; X) = ρ(v) = pv2. Here,

p ∝ µ−1
2 is the weight of the observation related to the vari-

ance µ2 = σ 2 which is the central moment µk = µk(v) =

E{[v − E(v)]k]} for k = 2 (σ is the standard deviation, E(◦)

is the expected value). On the other hand, the subclass of

robust M-estimates is of great interest (Huber 1981; Hampel

et al. 1986; Serfling 1980). Application of that subclass in

geodetic adjustment is analyzed, for example, in Krarup and

Kubik 1983; Yang 1994; Huang and Mertikas 1995; Gui and

Zhang 1998. Generally, robust M-estimates are determined

by using the function ρ(v) =
⌢
p v2, where

⌢
p ∝

⌢
µ

−1

2 is the

equivalent weight (
⌢
µ2 =

⌢
σ

2
is the equivalent variance; see,

e.g., Krarup and Kubik 1983; Yang 1994, 1999; Koch 1996).

Considering M-estimation, which applies the presented

components of the objective function, only two moments

of v should be determined, namely E(v) and µ2(usually

E(v) = 0). Thus, the classes of distributions indexed with

the parameter θ ∈ {E(v), µ2} are the implicit probabilistic

models. The class of symmetric and mesokurtic distributions

is a very important group here. It consists of distributions for

which the asymmetry coefficient β1 = µ2
3/µ

3
2 is equal to

zero and the kurtosis β2 = µ4/µ2
2 is equal to 3 (within the

paper we will also use the asymmetry coefficient defined as

γ1 = sgn(µ3)β
1/2
1 and the excess γ 2 =β2 − 3). Note, that

β1 = 0 and β2 = 3 if a random variable is normally distrib-

uted, ND[E(v), µ2].

Applying such M-estimation we should hope that the val-

ues of the higher moments are close to the values for the

normal distribution, namely µ3 = µ5
∼= 0, µ4/µ

2
2

∼= 3 etc.

(similar assumptions might also concern other robust meth-

ods, see, for example, Duchnowski 2013). Such hope can be

based on the Gaussian theory of measurement errors; how-

ever, analyses of observations, among others geodetic mea-

surements, show that this is not always justified. The non-

zero asymmetry and excess may also concern the algorithms

for the Gaussian white noise simulations. For example, the

algorithm that was analyzed in Hu et al. (2001) showed the

kurtosis β2 = 3.10 ÷ 3.15 (it can be checked that the simu-

lator of the Gaussian random numbers in MatLab is also not

free of such anomalies; which will be used in the empirical

part of the paper).

Determination of deviations from the theoretical values

of the moments is especially important in the case of precise

observations. For example, Dzhun’ (1992) showed that every

astronomical instrument gives measurement errors with a

certain kurtosis, which is mostly close to β2 = 3.8. In con-

temporary astrometric experiments the kurtosis is even big-

ger, for example, within the project MERIT β2 = 4.858

(Dzhun’ 2012). Here, the asymmetry coefficient is equal to

β1 = 0.0048. The high value of the kurtosis means that

the random errors of the measurements are concentrated

around zero more than in the case of the Gaussian errors.

Winter (1978) obtained high positive excess when he ana-

lyzed the distribution of measurements of a precise distance

meter. Similar property can also be observed for other mea-

surement errors, e.g., Wassef (1959) obtained β2 = 3.8 for

precise leveling and Kukuča (1967) for hydrostatic leveling

(β1 = 0.012, β2 = 4.325).

Description of measurement errors only by the second

moments (or their estimates, for example, by RMS) is also not

enough in relation to modern techniques of measurements,

like the satellite laser ranging (SLR) or the global positioning

system (GPS). Hu et al. (2001) analyzed normalized residu-

als of SLR observations for Lageos-2 from 13 stations. The

kurtosis varied within the interval β2 = 2.69 ÷ 9.46 which

depended on the range of the additional parameters (e.g., dif-

ference of orbits, the Earth orientation parameters). It is worth

noting that only in one of the six cases, the kurtosis obtained

value <3. The similar values, namely β2 = 2.98 ÷ 9.26,

were obtained for the regional GPS network (GPS data of

10 sites, Hu et al. 2001). The authors of both analyses did

not compute the asymmetry coefficients, however, the val-

ues obtained for the third moment µ3 = −1.51 ÷ 0.01 (for

SLR data) and µ3 = −0.06 ÷ 0.12 (for GPS data) showed

the slight asymmetry especially in the first case. Luo et al.

(2011) presented the analysis of the influences of different

factors on the probability distribution of GNSS observables

(phase measurements from the SAPOS�). The analysis con-

cerned the representative studentized double difference resid-

uals (SDDR) and the results are consistent with the presented

in the previous paragraph. For 268 SDDR time series (5 base-

lines) and for the significance level α = 0.01, the authors

obtained γ 1 = −0.11 ÷ 0.11 and β2 = 2.79 ÷ 3.29 (with

the predominance of β2 > 3).

The review of the kurtosis and asymmetry of the empir-

ical distributions of the observations shows that the distrib-
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utions are generally leptokurtic (β2 > 3) with more or less

significant asymmetry (γ 1 �= 0). Romanowski and Green

(1983) showed that the leptokurtosis is a dominant property

of real sets of observations, especially of high precision ones.

Platykurtic distributions (β2 < 3) are also possible, however,

they are very rare.

Approximation of empirical distributions of measurement

errors, which kurtosis and asymmetry are known, can be con-

veniently done by applying theoretical distributions which

are “controlled” by the coefficients β1 and β2. To choose

such distribution one can use probability estimation methods.

Among others, one can apply the methods based on the Pear-

son distributions (Pearson 1920), the saddlepoint approxi-

mation (Daniels 1954), maximum entropy principle (MEP)

(Jaynes 1957) and the Johnson system (Johnson 1949). The

extensive comparative analysis which is presented in (Xi et

al. 2012) shows that none of those methods has an overall

advantage over others. However, the Pearson system presents

better accuracy for moderate asymmetry and for a wide

range of kurtosis. Note that for large asymmetry the method

which gains the advantage is MEP (probabilistic density

function approximated by maximizing the entropy subject to

the known moments). We showed previously that one should

not expect such large anomalies for geodetic observation sets.

Thus, but also on the basis of the previous papers of the author

(Wiśniewski 1985, 1987, 1991), we will assume that the sys-

tem of the Pearson distributions (PD-system) which contains

types I ÷ XII (Pearson 1920; Elderton 1953; Friori and Zenga

2009; Xi et al. 2012) is the set of theoretical distributions

which are steered by the four first moments.

The density functions of the PD-system have different

shapes: skewed or symmetric, limited or unlimited range,

bell-, U-, J-shaped (including the Gaussian bell curve as

a boundary case). It is obvious that only a few types of

PD-system can be applied in the theory of measurement

errors. Symmetric leptokurtic distributions are described by

the Pearson distributions of the type VII (PVII). Such dis-

tributions were applied, for example, to analyze errors of

precise levelling (Wassef 1959) and to approximate observa-

tion errors in astrometry (Dzhun’ 1969, 1991, 1992). PVII

were also the basis for the analysis of how kurtosis β2 > 3

affects LS-estimates (Wiśniewski 1985). The Pearson dis-

tributions of the type IV (PIV) are asymmetric leptokurtic

distributions which under β1 → 0 tends to PVII. Analyz-

ing empirical distributions of geodetic measurement errors

one could also consider type I (β1 > 0, β2 < 3) and its

boundary case, namely type II (β1 = 0, β2 < 3). However,

there are some problems which result from the limited range

of the random variable as well as the resulting U-shaped

weight function (Wiśniewski 1987, 1989, 1991). Fortunately

empirical distributions of observations are rarely platykurtic

(Romanowski and Green 1983). Thus, such distributions will

not be discussed within the paper in detail.

For small asymmetry and moderate excess one can con-

sider replacing a theoretical distribution by its expansion

derived from the normal distribution. This can be done by

applying the expansion with respect to orthogonal polyno-

mials which is called the Gram–Charlier of the type A (see,

e.g., Elderton 1953; Kolassa 2006; Berberan-Santos 2007).

It is important to know how non-normal distribution influ-

ences the estimates obtained. The problem is a general one

and from such point of view it is considered, for exam-

ple, in Mooijaart (1985); Klein and Moosbrugger (2000);

Mukhopadhyay (2005). It is also an issue discussed in the

applied statistics, for example, in marketing Andreassen et

al. (2006) and in econometrics Nagahara (2011). The influ-

ence of deviation of an empirical distribution from the normal

distribution on LS-estimates in the case of geodetic networks

was discussed in Gleinsvik (1971,1972) and Wiśniewski

(1985). It was shown that the asymmetry of the distribution,

which changed the expected value of the measurement errors,

also influenced the bias of the LS-estimates of the parameters

of the observation models. Such influences are reinforced or

weakened by the kurtosis.

To consider the asymmetry or excess of observations dur-

ing an adjustment procedure it is necessary to assume a cer-

tain probabilistic model of observations, which can be accept-

able. Such model results in a particular optimization problem

of ML-method, or equivalent particular influence and weight

functions of M-estimation. Within this paper we assume that

leptokurtic distributions with asymmetry are described by the

Pearson distribution of the types IV or VII; or are approxi-

mated by the Gram–Charlier series (G–C series). The opti-

mization problem of ML-method with the application of the

Pearson distributions was considered in my previous papers

(Wiśniewski 1987, 1989, 1991). Dumalski and Wiśniewski

(1994) proposed a method of adjustment based on G–C

series. The general form of the weight function, which is

related to the systems of the Pearson distributions, was pre-

sented in Dzhun’ (2011). We will propose a new variant of M-

estimation which depends on the variance but also on the kur-

tosis and the asymmetry of the observation error distribution.

2 Theoretical foundations

2.1 ML and MP estimates

Let Pθi
∈ P be distributions of independent random errors

vi and let they be indexed with the parameters: Ei =

E(vi ), µ2,i = µ2(vi ) = σ 2
i , µ3,i = µ3(vi ) and µ4,i =

µ4(vi ). To estimate the moments µ3 and µ4 one can apply

the methods proposed in the following papers (Wiśniewski

1995, 1996; Kasietczuk 1997). When we are interested in

estimation of only one of these parameters, then it is usually

assumed that the others are fixed (however, it is not neces-
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sary to know their particular values). The set of distributions

that are possible probabilistic models of geodetic observa-

tion errors will be denoted as Wv = {Pθi
: vi ∈ ℑv, θi ∈

ℑθ ⊂ �}; where ℑv is the set of possible values of random

errors, for example, ℑv = 〈a1, a2〉; ℑθ is the set of practi-

cally acceptable values of the parameter θi . Thus, we choose

a probabilistic model of measurement errors from the distri-

butions that belong to Wv (Wiśniewski 1987).

Let y = AX + v be a conventional functional model of

the observation vector y = [y1, . . . , yn]T(v = [v1, . . . , vn]T

is a vector of random errors, A ∈ Rn,r , rank(A) = r , is

a known matrix of coefficients, X ∈ (� = Rr ) is a vec-

tor of unknown parameters). Additionally, let independent

observations yi = ai X + vi , i = 1, 2, . . . , n, (ai − i th

row of the matrix A) have a fixed probability density func-

tion (PDF). Thus, each observation brings a piece of f -

information I (yi ; X) = − ln f (yi ; X) = − ln f (vi ) (see,

e.g., Jones and Jones 2000; Wiśniewski 2009). Considering

the parameter X, all observations included within the vector

y bring the global amount of information as follows

I (y; X) =

n
∑

i=1

I (yi ; X) = −

n
∑

i=1

ln f (yi ; X)

= −

n
∑

i=1

ln f (vi ) (2)

Note, that Eq. (2) is also an empirical version of Shannon’s

entropy (e.g. Ferrari and Yang 2010). Considering the global

amount of information, one can search such estimate of the

parameter X which minimizes the amount of information

included in the set of the observations (also information

which is rather unexpected). Thus, the estimate X̂ should

solve the optimization problem minX I (y; X) = I (y; X̂)

(assuming that such extremum exists). For example, let

vi ∼ ND[E(vi ) = 0, σ 2
i ] and yi ∼ ND[E(yi ) = ai X, σ 2

i ],

then on the basis of the following PDF, f (yi ; X) = f (vi ) ∝

exp(−piv
2
i /2), one can write I (yi ; X) = piv

2
i /2 and hence

I (y; X) ∝
∑n

i=1 piv
2
i . Since LS-estimate of the parameter

X minimizes the objective function φ(y; X) =
∑n

i=1 piv
2
i

then, for the normal distributions, it also minimizes the

amount of f -information related to the parameter X. How-

ever, such estimates do not show such property for the other

distribution which belongs to the set Wv . In such a case, the

global amount of information is minimized by ML-estimates.

Here, we look for the estimate X̂ which maximizes the like-

lihood

L(y; X) = ln

(

n
∏

i=1

f (vi )

)

=

n
∑

i=1

ln f (vi ) (3)

(see, e.g., Serfling 1980; Huber 1981; Koch 1990). Since

maxX L(y; X) ⇔ minX[−L(y; X) = I (y; X) = φ(y; X)],

where

φ(y; X) =

n
∑

i=1

[− ln f (vi )] =

n
∑

i=1

ρ(vi ) (4)

and ρ(vi ) = − ln f (vi ), then the idea of maximum

likelihood is equivalent to the postulate of the minimum

f -information related to X̂.

Now, let PDF be at least a twice differentiable function.

Then, the Newton method can be applied to solve the opti-

mization problem minX φ(y; X). Such solution uses the gra-

dient and the Hessian of the function of Eq. (4) (see, e.g.,

Teunissen 1990). Thus, let us write the following form for

the gradient

[gφ(X)]T =
∂φ(y; X)

∂X
=

∂

∂X

n
∑

i=1

ρ(vi ) =

n
∑

i=1

dρ(vi )

dvi

∂vi

∂X

= −[b(v)]TA (5)

where b(v) = [b(v1), . . . , b(vn)]T is a vector consisting of

the following elements

b(vi ) =
dρ(vi )

dvi

= −
d ln f (vi )

dvi

= −
1

f (vi )

d f (vi )

dvi

= −
f ′(vi )

f (vi )
(6)

and ∂vi/∂X = −ai (if it is convenient and not misleading,

the derivatives d j f/d f j , j = 1, 2, 3, 4, . . . will be denoted

as f ′, f ′′, f ′′′, f (4), . . .). If vi ∼ ND[E(vi ) = 0, σ 2
i ] and

f (vi ) ∝ exp(−piv
2
i /2), then b(vi ) = pivi .

To find out the form of the Hessian of the objective func-

tion of Eq. (4), one can write

Hφ(X) =
∂2φ(X)

∂X∂XT
=

∂gφ(X)

∂XT
= AT ∂ b(X)

∂XT
= ATR(X)A

(7)

The diagonal elements of the matrix R(X) = Diag[r(v1),

. . . , r(vn)] are computed as the values of the following func-

tion

r(vi ) =
d2ρ(vi )

dv2
i

= −
d

dvi

(

1

f (vi )

d f (vi )

dvi

)

= −

d2 f (vi )

dv2
i

f (vi ) −
(

d f (vi )
dvi

)2

[ f (vi )]2
(8)

which is also known as the rigor function (e.g. Kamiński and

Wiśniewski 1994). The necessary condition for the minimum

of the function from Eq. (4) is that the Hessian from Eq. (7)

be positively defined. It is obvious that such condition is

satisfied for ∀i : r(vi ) > 0.

The gradient of Eq. (5) and the Hessian of Eq. (7) are the

basis for the following iterative procedure ( j = 0, 1, . . . , k)

X j+1 = X j + dX j+1, v j+1 = y − AX j+1 (9)
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with the iterative change of the parameter

dX j+1 = −[Hφ(X j )]−1gφ(X j )

= [ATR(X j )A]−1ATb(v j ) (10)

The determination procedure of the ML-estimate of the

vector X ends for such X̂ = Xk that gφ(Xk) = 0 and

(Xk+1 − Xk = 0) ⇔ dXk+1 = 0.

ML-estimates can also be considered as a special case of

the broader class of the estimates, namely M-estimates which

are determined on the basis of influence functions. Let us

consider a set of probability distributions P = {PX : X ∈

Rr } with cumulative distributions F(yi ; X) = F(vi ), then

one can write the related influence function in the following

form (Hampel 1974; Serfling 1980; Huber 1981; Hampel et

al. 1986; Yang 1997)

IF(yi ; X, F) = −cIFψ(yi , X) = cIFψ(vi )
∂vi

∂XT
(11)

where cIF = ∫ ψ ′dF . Due to the proportion IF(yi ; X, F) ∝

ψ(vi ), the function ψ(vi ) is also very often called the influ-

ence function. X̂ is an M-estimate of the parameter X if it

solves the following equation (see, e.g., Hampel et al. 1986;

Yang 1999; Yang et al. 1999)

n
∑

i=1

ψ(yi , X) =

n
∑

i=1

ψ(vi )
∂vi

∂XT

= ψ(y, X) = ATψ(v) = 0 (12)

where ψ(v) = [ψ(v1), . . . , ψ(vn)]T. The function ψ(yi , X)

can be written (in relation to the objective function from

Eq. (1)) as follows

ψ(yi , X) =
∂ρ(yi , X)

∂yi

∂yi

∂XT

=
dρ(vi )

dvi

∂vi

∂XT
= −ψ(vi )a

T
i (13)

where

ψ(vi ) =
dρ(vi )

dvi

=
dρ(vi )

d(v2
i )

·
d(v2

i )

dvi

= w(vi )
d(v2

i )

dvi

= 2viw(vi ) (14)

Let

w(vi ) =
dρ(vi )

d(v2
i )

=
ψ(vi )

2vi

∝
ψ(vi )

vi

(15)

be a weight function (Huber 1981; Hampel et al. 1986; You-

cai and Mertikas 1995; Yang 1997). Then, for the fixed func-

tions ρ(vi ) one can write that gφ(X) = ATψ(v). Taking into

account the expressions in Eqs. (14) and (15), and consid-

ering the following vector ψ(v) = w(v)v, the Eq. (12) can

be rewritten as ATψ(v) = ATw(v)v = 0, where w(v) is a

diagonal matrix with the elements w(v)i i = w(vi ). For the

model v = y − AX, one can obtain the following iterative

solution

X̂ = [ATw(v̂)A]−1ATw(v̂)y (16)

where v̂ = y − AX̂.

From a practical point of view, the approximation of the

asymptotic covariance matrix is satisfactory in that case

(Yang 1997). Thus, let

C
X̂

= σ̂ 2
0,ψ [ATw(v̂)A]−1 (17)

where σ̂ 2
0,ψ is an iterative estimate of the variance coefficient

computed as

σ̂ 2
0,ψ =

1

n − r
v̂Tw(v)v̂ (18)

Note that Eqs. (17) and (18) follow from the applica-

tion of the empirical influence function EIF(yi , X) =

[ATw(v)A]−1aT
i w(vi )vi (Yang 1997).

The estimate from Eq. (16), which solves the Eq. (12),

also satisfies the necessary condition gφ(X) = 0 for the min-

imum of the function from Eq. (1). For ρ(vi ) = − ln f (vi ),

the following equality holds (see, e.g., Youcai and Mertikas

1995; Dzhun’ 2011)

w(vi ) =
dρ(vi )

d(v2
i )

∝
dρ(vi )

vi dvi

= −
1

vi f (vi )

d f (vi )

dvi

(19)

The estimate from Eq. (16) together with the weight function

from Eq. (19) can be regarded as MP estimator with the

explicit probabilistic model P = {PX : X ∈ Rr }.

In the case of LS-method, where ρ(vi ) = piv
2
i , we get

ψ(vi ) = 2pivi and w(vi ) = pi ∝ ψ(vi )/vi . Such vari-

ant of MP estimation is related to the set of normal distri-

butions P = {ND[E(vi ) = 0, σ 2
i ]}. Another example of

the probabilistic models in MP estimation is the following

set P = {(1 − ε)PX,α + εPX,β : X ∈ Rr }, 0 ≤ ε ≤ 1,

which is the basis for robust M-estimation (Huber 1981;

Hampel et al. 1986). Here, we assume that PX,α ∈ Wv

is an acceptable distribution of measurement errors, while

PX,β is an unacceptable (strange) distribution. Consider-

ing LS-method with the equivalent weights
⌢

pi ∝
⌢
µ

−1

2,i ,

we can write that PX,α = PX/µ2 = ND[ai X, σ 2
i ] and

PX,β = P
X/

⌢
µ2

= ND[ai X,
⌢
σ

2

i ], where
⌢
σ

2

i =
⌢
µ2,i is the

equivalent variance.

Remember that usually
⌢

pi = t (vi )pi , where 0 ≤ t (vi ) ≤

1 is an attenuation function (e.g., Krarup and Kubik 1983;

Yang 1994; Yang et al. 2002). In such a case, the equivalent

variance can be written as
⌢
µ2,i = µ2,i/t (vi ). Probabilistic

models are also applied in a development of M-estimation,

namely Msplit estimation (Wiśniewski 2009, 2010; Duch-

nowski and Wiśniewski 2011). In the basic variant of the

method in question, it is assumed that P = {PXα , PXβ
:

Xα, Xβ ∈ Rr } ⊂ Wv. Xα and Xβ are acceptable variants
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946 Z. Wiśniewski

of the same parameter X. Assuming that P is a set of nor-

mal distributions that differ from each other in the parameter

X, we get the squared Msplit estimation with the following

components of the objective function ρ(Xα, Xβ) = v2
iαv2

iβ .

2.2 Influence, weight and rigor functions in MP estimation:

robustness of the method

When P is a set of distributions which are symmetric about

v = 0, then E = E(v)= 0 and the mode M0 is at the origin of the

coordinate system, namely M0 = 0. For such distributions, it

holds that ψ(v) = −ψ(−v), and the weight functions w(v)

as well as the rigor functions are symmetric ones. For asym-

metric distributions, the expected value moves away from the

mode with the increase of the asymmetry coefficient, with

sgn(δ) = sgn(γ1), where δ = E − M0 is the shift between

the expected value and the mode. For such distributions the

origin on the coordinate system might lay: except the mode

(PDF(M0 �=0)), at the mode (PDF(M0=0)) or at the expected

value (PDF(E=0)).

For the mode of the variable v and for the arbitrary

ǫ > 0 it holds that ∀v0 �= M0 : P(v ∈ �M0(ǫ)) >

P(v ∈ �v0(ǫ)) where �M0(ǫ) = 〈M0 − ǫ, M0 + ǫ〉 and

�v0(ǫ) = 〈v0 − ǫ, v0 + ǫ〉. The postulate of the minimum

information is satisfied by the application of the individual

information I (y; X) = I (v − s) = I (ṽ) where s = M0 for

PDF(M0 �=0), s = 0 for PDF(M0=0) and s = −δ for PDF(E=0).

In such case, MP estimates should follow from the influ-

ence function determined on the basis of the objective func-

tion which is shifted, namely on the basis of its components

ρ(v − s) = ρ(ṽ). Thus

ψs(v) = ψ(ṽ) =
dρ(v − s)

dv
=

dρ(ṽ)

d(v2)

d(v2)

dv
= 2vws(v)

(20)

where

ws(v) = w(ṽ) =
dρ(ṽs)

d(v2)
=

ψs(v)

2v
∝

ψs(v)

v
(21)

is a weight function which is determined with respect to the

mode M0. If v = M0 �= 0 then ws(M0) = ψs(M0)/M0.

However, if M0 = 0 then lim v→0ws(v) = ψ ′
s(0) = rs(0)

(such value was derived by Kadaj (1988) for the symmetric

distributions and for the conventional influence function).

Considering the functions from Eqs. (20) and (21), one can

obtained the following rigor function

rs(v) = r(ṽ) =
d2ρ(ṽ)

dv2

=
dψs(v)

dv
= 2[ws(v) + vw′

s(v)] (22)

If the weight function ws(v) has a maximum at v = M0, then

w′
s(M0) = 0 and rs(M0) = 2ws(M0). It does not follow that

every rigor function of Eq. (22) has a maximum at that point.

Considering that r ′
s(v) = 2 [2w′

s(v)+vw′′
s (v)] it holds only if

w′′
s (M0) = 0. From a theoretical point of view, such property

is adverse; however, one can propose a following corrected

rigor function

rs,M0(v) = 2[ws(v) + (v − M0)w
′
s(v)]

= rs(v) − 2M0w
′
s(v) (23)

that is free of such property. Note that for such corrected

rigor function r ′
s,M0

(v) = 4w′
s(v) + 2vw′′

s (v) − 2M0w
′′
s (v),

hence maxv rs,M0(v) = rs,M0(M0) holds independently of

the value of the derivative w′′
s (v) at M0.

While analyzing the expected properties of MP estimates

we can apply the influence function IF(y; X, F) ∝ ψ(v)

to determine the following parameters: the maximum sen-

sitivity to gross errors, γ ∗ = sup v|ψ(v)|; the local-shift

sensitivity, λ∗ = sup v|[ψ(v + δv) − ψ(v)]/δv| and the

rejection point ρ∗
v = inf {v∗ : ψ(v) = 0, |v| > v∗ }

(Hampel 1974; Hampel et al. 1986). In the case of asymmetric

distributions, one can consider left- or right-handed rejection

points, namely ρ∗
− = inf {v∗

− : ψ(v) = 0, v < v∗
−} and

ρ∗
+ = inf {v∗

+ : ψ(v) = 0, v > v∗
+}. For γ1 = 0

we obtain |ρ∗
−| = |ρ∗

+| = ρ∗. Additionally, we also con-

sider a parameter which describes the maximum sensitivity

to observation disturbances

λ∗
r = sup

v
lim

δv→0

∣

∣

∣

∣

ψs(v + δv) − ψs(v)

δv

∣

∣

∣

∣

≡ sup
v

∣

∣

∣

∣

dψs(v)

dv

∣

∣

∣

∣

= sup
v

|rs(v)| (24)

Such parameter is of course related to the sensitivity λ∗ (for

the influence function IF(y−s; X, F) ∝ ψ(v−s) = ψs(v)).

The important problem is that this parameter is not achieved

at the mode. However, if it relates to the corrected rigor func-

tion, namely if

λ∗
r,M0

= sup
v

|rs,M0(v)| (25)

then maxv rs,M0(v) = rs,M0(M0) = λ∗
r,M0

⇔ max vws(v) =

ws(M0) = λ∗
w (if only such extreme points exist).

The class of M-estimates can be divided into the following

subclasses (Kadaj 1988): robust K−, neutral K0 and weak

K+. Let us extend such classification to MP estimates, thus

let

MP ∈ K− when ∀vi �= �M0(l), v j /∈ �M0(l) :

ws(vi ) ≤ λ∗
w, ws(v j ) < λ∗

w

MP ∈ K0 when ∀v : ws(v) = λ∗
w (26)

MP ∈ K+ when ∀vi �= �M0(l), v j /∈ �M0(l) :

ws(vi ) ≥ λ∗
w, ws(v j ) > λ∗

w

where �M0(l) = 〈M0 − l, M0 + l〉, l ≥ 0. For

example, in the case of LS-method and the set of the nor-

mal distributions we have ∀v : ws(v) = λ∗
w = p, hence
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LS ≡ MP={ND[0,σ 2]} ∈ K0. In the case of M-estimation with

the probabilistic model P = {(1−ε)Pα +εPβ} with implicit

distributions Pα and Pβ , and with application of the Huber

function (Huber 1981), one can write the following forms of

the weight functions (for v̄ = v/σ and, e.g., l = 2.0, 2.5, 3.0)

w(v̄) =

{

1 for |v̄| ≤ l

l
|v̄| for |v̄| > l

(27)

Here ∀v̄ ∈ �v̄ = 〈−l, l〉 : w(v̄) = λ∗
w and ∀v̄ /∈ �v̄ :

w(v̄) < λ∗
w, where λ∗

w = 1(�v̄ = 〈−l, l〉 is the interval for

acceptable standardized random errors v̄). Thus, such method

of M-estimation, which will be denoted as MH , belongs to

the subclass K−. On the other hand MP estimations which

have U-shaped weight functions will belong to the subclass

of weak estimations K+.

3 Probabilistic models

3.1 Pearson distributions

The Pearson distribution system can play an important role in

MP estimation with the weight function from Eq. (19). The

probability density functions of PD-system are solutions of

the following differential equation (Pearson 1920; Elderton

1953; Hald 2007; Nagahara 2007, 2011; Friori and Zenga

2009; Dzhun’ 2011; Xi et al. 2012)

�(v) =
1

f (v)

d f (v)

dv
=

d ln f (v)

dv

= −
(c0 + 3c2)v − σc1

σ 2c0 − σc1v + c2v2
(28)

where:

c0 = 4β2 − 3β1, c1 = γ1(β2 + 3), c2 = 2β2 − 3β1 − 6

(29)

The papers cited above also showed other variants of the

differential equation in question which depends on the para-

meter notation. The special role of the Pearson distributions

in M-estimation with probabilistic models follows from the

fact that Eq. (28) can be regarded as the influence function of

MP estimation, namely ψ(v) = −�(v) = − f ′(v)/ f (v).

Such assumption refers to the general proposition of the

application the expression �(v)/v as the weight function

in ML-method (Dzhun’ 2011).

The asymmetry β1 = γ 2
1 and kurtosis β2 are the para-

meters in Eq. (28), hence they are also parameters of the

influence function ψ(v) = −�(v). This allows us to obtain

M-estimates which can consider anomalies in observation

distributions (in this paper context). The range of the steering

parameters of M-estimation might have also another mean-

ing. For example, suppose that β2 is not necessarily the real

kurtosis of the distribution, then it can be the parameter which

influences the robustness of M-estimates (this will be noted

in the next part of the paper).

The Eq. (28) has three basic solutions, namely three func-

tion types: type I, IV and VI and additionally 10 transitional

functions (including the probability density function of the

normal distribution). The solution in question depends on

the roots of the equation σ 2c0 − σc1v + c2v
2 = 0, and are

classified by the criterion (e.g. Elderton 1953; Hald 2007)

k =
c2

1

4c0c2
=

β1(β2 + 3)2

4(4β2 − 3β1)(2β2 − 3β1 − 6)
(30)

If k < 0, then two real roots exist which differ from each

other in the sign. In such a case we get PDF of type I

(PDF’PIβ1>0,β2<3), which under β1 = 0 changes into type

II (PDF’PIIβ1=0,β2<3), and if additionally β2 = 3 it changes

into PDF of the normal distribution (PDF’NDβ1=0,β2=3).

PDFs of the types I and II have limited range and are usually

bell-shaped, but may be U-shaped and J-shaped (Elderton

1953). If 0 < k < 1, then the roots are complex, and the

solution of the Eq. (28) is the function of type IV, for which

PDF’PIVβ1>0,β2>3

β1 = 0
→ PDF’PVIIβ1=0,β2>3

β2 = 3
→ PDF’NDβ1=0,β2=3 (31)

Probability density functions from Eq. (31) have unlimited

range and are bell-shaped. If k > 1, the roots are real and

of the same sign, and one can get the curve of type VI (if

k = 1, then we can get the curve of type V). Those curves as

well as other transitional curves are rarely applied for PDF.

Since distributions of geodetic observations are usually lep-

tokurtic, most of all we will be interested in the distributions

PIV (0 < k < 1) and PVII (k = 0) (note the general rela-

tion from Eq. (31)). The leptokurtic model which includes

the chosen classes of the distributions will be denoted as

PPD(l) = {PIV, PVII : σ, β1, β2 > 3}. MP estimation which

applies such a model will be denoted as MPD(l). Conse-

quently, PPD(p) = {PI, PII : σ, β1, β2 < 3} is a model of

platykurtic distributions and PPD(m) = {PVII : σ, β1, β2 =

3} is a model of mesokurtic distributions.

Considering the model PPD(l), then k should be within

the interval 0 ≤ k < 1. If k = 0 and additionally β1 =

0, β2 = 3, then PPD(l) → PPD(m) ≡ PND. The conditions

concerning the value of k entail limitations of values of β1

and β2. Generally speaking, in the case of PDF’PIVβ1>0,β2>3

the tolerance of increasing asymmetry of the platykurtic dis-

tribution becomes greater in the case of increasing kurtosis.

If the excess is small and the asymmetry is large, then for

such PDF k exceeds the acceptable limits (Fig. 1).

For the function (28), the origin of the coordinate system

is at the point E = E(v) = 0 (Elderton 1953). The distance

between the expected value E = σc1/2c2 and the mode

M0 = σc1(c0 +c2)/2c2(c0 +3c2) is equal to δ = E − M0 =
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948 Z. Wiśniewski

Fig. 1 Values of the criterion k

σc1/(c0 + 3c2) (for PVII β1 = 0, hence c1 = 0 and δ = 0).

Thus creating the shifted influence function ψ(v−s) = ψ(ṽ)

(with the shift s = −δ) one can write

ψ(ṽ) = ψδ(v)

=
(c0 + 3c2)(v + δ) − σc1

σ 2c0 − σc1(v + δ) + c2(v + δ)2

=
(c0 + 3c2)v

σ 2c0 − σc1ṽ + c2ṽ2
(32)

Such influence function is related to the following PDF’PIV,

which mode M0 coincides with the origin (Elderton 1953;

Wiśniewski 1987, 1989)

f (v) ∝ (1 + v2
M0,a)−m exp(−ϑ arctgv2

M0,a) (33)

where: vM0,a = (v − M0)/a, a = σ z/4, ϑ = γ1(c
2
0 −

c2
2)/zc2

2, m = (c0 + 3c2)/2c2, z = 2(4c0c2 − c2
1)

1/2/c2. For

such PDF one can write the objective function of ML-method

as follows ρ(v) = m ln(1+v2
M0,a)+ϑ arctgv2

M0,a . If β1 = 0

and vM0,a = va = v/a, then one can obtain PDF’PVII in the

form f (v) ∝(1+v2
a)−m , and hence ρ(v) = mln(1+v2

a).

The weight function which corresponds to the influence

function from Eq. (32) has the following form

wδ(v) =
ψδ(v)

v
=

(c0 + 3c2)

σ 2c0 − σc1ṽ + c2ṽ2
(34)

Now let us find the point at which such function has the

maximum. The derivative w′
δ(v) is equal to zero for such

ṽ = v + δ = v + σc1(c0 + 3c2), for which

− σc1(c0 + 3c2) + 2c2(c0 + 3c2)v + 2σc2c1 = 0 (35)

and hence

v =
σc1(c0 + 3c2) − 2σc2c1

2c2(c0 + 3c2)
=

σc1(c0 + c2)

2c2(c0 + 3c2)
= M0

(36)

If β2 >3, then for each v �= M0 it holds that rδ,M0(v) ≤ λ∗
r,M0

and wδ(v) < λ∗
w. Thus, MP estimates, in which the model

PPD(l) = {PIV, PVII : σ, β1 ≥ 0, β2 > 3} is applied, belong

to the class of robust estimation, namely MPD(l) ∈ K−. The

Fig. 2 Functions characterizing ML and MP estimations; for σ = 1,

β1 = 0.64, β2 = 6.00 (k = 0.14, c0 = 22.08, c1 = 7.20, c2 = 4.08)

Fig. 3 Weight functions of MP estimation for PPD(l) = {PIV: σ =

1, β1 = 0.16, 3.4 < β2 < 8}

graphs of the functions which characterize that method are

presented in Fig. 2. The graphs of the weight functions for

the models PPD(l) = {PIV : σ = 1, β1 > 0, β2 > 3} and

PPD(l) = {PVII : σ = 1, β1 = 0, β2 > 3} are presented in

Figs. 3 and 4.

For the sake of comparing, let us now consider the weight

functions of MP estimation with the platykurtic Pearson dis-

tributions of type I and II. If the mode is at the origin, then

PDF’PI can be written as follows (Elderton 1953; Wiśniewski

1987, 1989)

f (v) ∝ (1 + v/a1)
m 1(1 − v/a2)

m 2 (37)

where: m1 = −2m + ϑ, m2 = −2m − ϑ . The quantity z,

which appears in the parameter ϑ (see, Eq. (33)), can be

written as z = 2(c2
1 − 4c0c2)

1/2/c2. For β1 = 0 one can

write that f (v) ∝ (1 − v2/a2)m . For the distributions PI and

PII, the variable v can vary within the interval 〈a1, a2〉, with
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Fig. 4 Weight functions of MP estimation and LS for PPD(l) =

{PVII: σ = 1, β1 = 0, 3 < β2 ≤ 8}→β2→3+PND = {ND: σ =

1, β1 = 0, β2 = 3}

Fig. 5 Weight function of MP estimation for the mixed model

PPD(l,p) = {PII, PVII: σ = 1, β1 = 0, 2.2 ≤ β2 ≤ 6}. If β2 = 2.2,

then a1 = −2.16, a2 = 2.16

a1 = σm1z/2(m1 + m2) and a2 = −a1m2/m1. If β1 = 0,

then c0 = 4β2, c1 = 0, c2 = 2β2 −6, ϑ = 0, m1 = m2 = m

and z = 2(−4c0c2)
1/2/c2 (for β2 < 3 and acceptable values

of the asymmetry coefficient β1, the quantity c2 has negative

values). In such a case a1 = σmz/4m = σ z/4, then for the

distribution PII we can write a1 = −a2 = −[2β2/(β2 −

3)]1/2.

The weight functions of MP estimation with symmetric

lepto- and platykurtic distributions PPD(l,p) = {PII, PVII:

σ = 1, β1 = 0, β2} is presented in Fig. 5.

For the distributions PI and PII it holds that ∀v �= M0 :

wδ(v) > λ∗
w. Thus, MP estimates for PPD(p) = {PI, PII:

σ, β1 ≥ 0, β2 < 3} belong to the class of the weak estimates

K+. Such models might be interesting in some particular

estimation problems. However, such problems are beyond

the scope and objective of this paper, thus the models in

question will not be discussed here anymore.

3.2 Gram–Charlier series

Assume that the set of distributions P = { f (v) : µk, k =

2, 3, 4, . . .} ⊂ Wv is not much different from the set

PPD(m) = {ND : σ, γ1 = 0, γ2 = 0}. Then, the func-

tion f (v) can be replaced by the sum f (v) = fND(v) +

ζ(v;µ2, µ3, . . .), where the remainder term ζ(v) is expanded

as a series of v (e.g. Elderton 1953). Here, we will apply an

orthogonal expansion, namely the Gram–Charlier A series

(Charlier 1906; Tomozawa 1974; Berberan-Santos 2007). A

similar asymptotic expansion was also proposed by Edge-

worth (see, e.g., Elderton 1953; Crawford and Walsh 1960;

Kolassa 2006). The Gram–Charlier series (G–C) can be pre-

sented as polynomials which are orthogonal with respect to

PDF’ND, namely (e.g. Hald 2007)

f (v) = f̃ (v)∞ =

∞
∑

j=0

λ j

σ j

j !

d j fND(v)

dv j

=

∞
∑

j=0

λ j

σ j

j !
(−1) jσ− j H j (v̄) fND(v)

= fND(v)h(v̄)∞ ∝ exp(−v2/2σ 2)h(v̄)∞ (38)

where h(v̄)∞ =
∑∞

j=0 λ j (−1) j H j (v̄)/j ! (for v̄ = v/σ)

in which, H j (v̄) is the Hermite polynomial of degree j for

which H
(i)
j (v̄) = j H

(i−1)
j−1 (v̄). We usually apply the first

few polynomials of G–C series. For example, if j = 4 then:

H0(v̄) = 1, H1(v̄) = v̄, H2(v̄) = v̄2 − 1, H3(v̄) = v̄3 −

3v̄, H4(v̄) = v̄4 − 6v̄2 + 3.

If PDF in the set of distributions P = { f (v) : σ, γ1, γ2}

is replaced by the function from Eq. (38), then the component

of the objective function of ML-method with the approximat-

ing model P̃G−C = { f̃∞(v) : σ, γ1, γ2} takes the following

form

ρ(v) = − ln f̃∞(v) =
v2

2σ 2
− ln h(v̄)∞ (39)

This is the basis for determination of the influence function of

MP estimation as well as the rigor function of ML-method,

hence

ψ(v) =
dρ(v)

dv
=

v

σ 2
−

h′(v̄)

σh(v̄)
(40)

r(v) =
d2ρ(v)

dv2
=

1

σ 2
−

h′′(v̄)h(v̄) − [h′(v̄)]2

σ 2[h(v̄)]2
(41)

The orthogonality condition can be used to determine the

coefficients λi , thus (see, e.g., Elderton 1953): λ0 = 1, λ1 =

λ2 = 0, λ3 = −γ1, λ4 = γ2, λ5 = −µ5/σ
5 + 10µ3/σ

3

etc. The terms of the G–C series for which j > 4 include

the respective moments of the order higher than k = 4. In

accordance with the paper assumptions (the distribution para-

meters are the moments of at most the fourth order), we will
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Fig. 6 Influence function for MP estimation with the approximating

model P̃G−C = { f̃ (v)4 : σ = 1, γ1 = 0, γ2}

Fig. 7 Weight function for MP estimation with the approximating

model P̃G−C = { f̃ (v)4 : σ, γ1 = 0, γ2}

not consider such terms of the G–C series. Such limitation

of the expansion leads to the following expression

h(v̄)4 = 1 +
1

6
γ1 H3(v̄) +

1

24
γ2 H4(v̄) (42)

and to the respective derivatives. Considering estimation of

the parameters from the functional model y = AX + v,

the series f̃ (v)4 = fND(v)h(v̄)4 can be sufficient in many

cases, especially for small asymmetry and moderate excess.

However, the G–C series that are discussed here are not

expected to have the same properties as non-approximated

PDFs (for example, for particular intervals of the variable

v, f̃ (v)4 might attain negative values). The functions that

characterize MP estimation with the approximating model

P̃ = { f̃ (v)4 : σ, γ1, γ2}, which will be denoted as MG−C,

are presented in Figs. 6 and 7.

The influence and weight functions show some unfavor-

able features for bigger values of observation errors and

growing excess (e.g., there is a point q from which the

functions tend to the respective functions of LS-method).

For some values of the excess, there are also points λ∗
w,1

and λ∗
w,2 at which the weight function has the local max-

ima (see, Fig. 7). When analyzing the weight function

w(v) = ψ(v)/v which is related to the influence func-

tion (40), it is worth noting that for the non-zero excess,

limv→0− w(v) = λ∗
w,1 = −∞ and limv→0+ w(v) = λ∗

w,2 =

+∞ (fluctuation of the weight function). Thus, in the close

neighborhood of the point v = 0, the weight function should

be numerically corrected. For example, let |vi | < ǫv then

w(vi ) := w(vi−1), where ǫv is the boundary point for accept-

able fluctuation of the weight function. Note, that such dis-

continuity does not concern the rigor function r(v) (in the

next section, MP estimates with the correction of the weight

function are verified by the corresponding ML-estimates)

4 Numerical tests

The basic properties of MP estimation with the probabilis-

tic model PPD(l) = {PIV,PVII: σ, β1, β2 > 3}(MPD(l)

method) as well as with the approximating model P̃G−C =

{ f̃ (v)4}(MG−C method), are illustrated with an example of

a simulated levelling network (Fig. 8). The network consists

of the five fixed points and four new points (A, B, C, D)

and 16 height differences which are measured. It is assumed

that each height difference is measured s times (in the main

tests s = 4). Thus, the known matrix of coefficient can be

written as A = A0 ⊗ 1s , where A0 ∈ Rn,r is a matrix

related to single measurements of the height differences

Fig. 8 Simulated levelling network
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hi , and 1s = [11, . . . , 1s]
T(⊗ is the Kronecker product).

All point heights are assumed to be equal to zero, namely

X = [HA, HB , HC , HD]T = 0, hence all measurement

results are equal to respective simulated measurement errors.

In accordance with the objective of the paper, the measure-

ment errors are characterized by non-zero asymmetry and the

excess. For small samples (for example, when n = 64), sets

which are simulated by the Gaussian random number gener-

ators show some anomalies in comparison with the assumed

normal distribution. Such property concerns also the one-

dimensional generator randn (n, 1) (n is a number of the

generated numbers) which is the component of MatLab. We

are interested in anomalies which concern the asymmetry

and the excess of measurement distribution. Thus, the sim-

ulation is to generate numbers vi , i = 1, . . . , n, with the

application of the function in question (for the theoretical

values of E(v) = 0, σ = 1 and γ1 = 0, β2 = 3). Then, for

such generated set, one can compute the empirical moments
⌣

E = n−1
∑n

i=1 vi ,
⌣
µk = n−1

∑n
i=1 (vi −

⌣

E)k, k = 2, 3, 4,

and hence the empirical values of the asymmetry coefficients
⌣
γ 1 =

⌣
µ3/(

⌣
σ)3,

⌣

β1 = (
⌣
γ 1)

2 and the empirical value of the

kurtosis
⌣

β2 =
⌣
µ4/(

⌣
σ)4 and the excess

⌣
γ 2 =

⌣

β2 − 3. To sim-

plify the notation the empirical values will be denoted as the

theoretical values, respectively. However, one should real-

ize that the estimates which will be determined afterwards

may be disturbed by the difference between theoretic and

empiric value of the respective moments. MP estimates with

the models PPD(l) and P̃G−C are compared to the neutral

LS-estimates and to the robust Huber M-estimates (see, Eq.

(27)). To compare the estimate, we will apply the root-mean-

squared (for X̂ = X̂PD(l), X̂G−C, X̂H )

RMS
X̂

= [(X̂ − X)T(X̂ − X)/r ]1/2 = (X̂TX̂/4)1/2 (43)

To verify MP estimates from Eq. (16), they are compared

with the respective ML-estimates which are computed on

the basis of the algorithm in Eqs. (9) and (10).

The very important problem which concerns the Huber

method (MH ) is to choose the value of l that defines the

interval �v̄ = 〈−l, l〉 for acceptable random errors v̄. It

is especially significant in the case of asymmetric distribu-

tions. For example, if the distribution has a positive asymme-

try coefficient, then some rather large positive errors should

be acceptable as random ones (a right heavy tail which is

acceptable), thus they should not be treated as gross errors.

Figure 9 shows six chosen histograms of the simulated obser-

vations (such sets will be applied to show the properties of

MP estimates). Such observations are not affected by gross

errors, thus LS-estimates and MH estimates of the parame-

ter X should be equal to each other. The analyses, which are

obtained for the vectors y1 and y3, show that the equality

X̂LS= X̂MH
holds for l ≥ 3 (Table 1). Despite some distur-

bances of the vector X̂MH
, the value l = 2.5, which is often

Fig. 9 Histograms of the observations forming the vectors y1, . . . y6

chosen in practice, can also be acceptable (this value will be

chosen to the numerical tests). The smaller values of l might

lead to unacceptable MH estimates of the parameter X (arbi-

trary reduction of the influence of some observations which

is not justified by the probabilistic model).

The new methods are supposed to be robust against out-

liers thus they are compared with the method which belongs

to the class of robust M-estimation. Tests were carried out for

many simulated sets of observations (usually s = 4, n = 64),

including the sets which were also affected by gross errors.

Mostly, it holds that RMS
X̂PD(l)

< RMS
X̂G−C

< RMS
X̂LS

,

and when gross errors occur RMS
X̂PD(l)

< RMS
X̂H

(in each

case MPD(l) and MG−C estimates with the correction of the

weight function for ǫv = 0.1σ were equal to the corre-

sponding ML-estimates). Note that if the observation sets

are free of gross errors and have small asymmetry then

X̂PD(l)= X̂G−C= X̂LS (regardless of the value of the kurto-

sis), which is in line with theoretical predictions. The detailed

results of the tests for the simulated vectors y1, . . . , y6 are

presented in Table 2. Gross errors of g = 10 and g = 20

affected the first measurement of the observation sets.

The MPD(l) estimates obtained are closer to the theoret-

ical assumed values of the vector X = 0 than LS- and MH

estimates. The approximating model P̃G−C = { f̃ (v)4} is not

promising here, especially in the case of the observation sets

which are affected by gross errors. This is due to the already

mentioned properties of the influence function and the weight

function of the method (for some values of v, they both tend

to the corresponding functions of the neutral LS-estimation).

It is also worth noting that MPD(l) estimates are more robust
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Table 1 Disturbances of MH estimates resulting from the chosen l which defines the interval �v̄ = 〈−l, l〉 for acceptable random errors v̄

For y1 For y3

LS MH LS MH

l = 1.5 l = 2.0 l = 2.5 l = 3.0 l = 1.5 l = 2.0 l = 2.5 l = 3.0 l = 3.5

ĤA −0.331 −0.211 −0.252 −0.296 −0.331 −0.271 0.034 −0.080 −0.214 −0.267 −0.331

ĤB −0.157 −0.123 −0.130 −0.148 −0.157 −0.128 −0.045 −0.077 −0.112 −0.126 −0.157

ĤC −0.083 0.039 −0.026 −0.074 −0.083 −0.062 0.048 0.002 0.040 −0.578 −0.083

ĤD −0.160 −0.112 −0.133 −0.151 −0.160 −0.398 0.068 −0.129 −0.307 −0.381 −0.160

RMS
X̂

0.204 0.134 0.157 0.186 0.204 0.251 0.050 0.085 0.196 0.243 0.251

Table 2 Comparison MPD(l) and MG−C estimates with neutral LS- and robust MH estimates

g = 0 g = 10 g = 20

LS MH MPD(l) MG−C LS MH MPD(l) MG−C L S MH MPD(l) MG−C

y1

ĤA −0.33 −0.30 −0.16 −0.23 0.22 −0.28 −0.09 0.27 0.76 −0.28 −0.11 0.83

ĤB −0.16 −0.15 −0.05 −0.15 −0.04 −0.14 −0.04 −0.05 0.08 −0.14 −0.04 0.08

ĤC −0.08 −0.07 0.07 0.01 −0.04 −0.07 0.07 0.04 0.01 −0.07 0.07 0.08

ĤD −0.16 −0.15 −0.03 −0.12 −0.04 −0.15 −0.01 −0.03 0.08 −0.15 −0.02 0.06

RMS
X̂

0.20 0.19 0.09 0.15 0.11 0.18 0.06 0.14 0.39 0.18 0.07 0.42

y2

ĤA −0.17 −0.14 −0.02 −0.04 0.37 −0.19 −0.02 0.40 0.92 −0.18 −0.05 0.89

ĤB −0.28 −0.28 −0.25 −0.30 −0.16 −0.29 −0.25 −0.19 −0.04 −0.29 −0.25 −0.07

ĤC −0.18 −0.20 −0.12 −0.20 −0.13 −0.20 −0.12 −0.15 −0.08 −0.20 −0.12 −0.10

ĤD −0.29 −0.26 −0.16 −0.20 −0.17 −0.27 −0.17 −0.09 −0.05 −0.27 −0.17 0.02

RMS
X̂

0.24 0.24 0.16 0.20 0.23 0.24 0.16 0.24 0.46 0.24 0.17 0.44

y3

ĤA −0.27 −0.21 0.06 −0.03 0.28 −0.20 0.08 0.31 0.82 −0.18 0.07 0.70

ĤB −0.13 −0.11 −0.01 −0.10 −0.01 −0.11 −0.01 −0.02 0.11 −0.10 −0.01 0.06

ĤC −0.06 0.04 0.05 −0.01 −0.01 −0.04 0.06 0.04 0.03 −0.04 0.05 0.04

ĤD −0.40 −0.30 0.03 0.02 −0.28 −0.32 0.04 0.13 −0.16 −0.31 0.04 0.07

RMS
X̂

0.25 0.20 0.04 0.05 0.20 0.20 0.05 0.17 0.42 0.20 0.05 0.36

y4

ĤA 0.38 0.38 0.28 0.34 0.92 0.41 0.37 0.75 1.47 0.40 0.32 1.22

ĤB 0.07 0.07 −0.12 −0.06 0.19 0.08 −0.10 0.04 0.31 0.08 −0.11 0.16

ĤC 0.16 0.16 0.03 0.08 0.21 0.16 0.04 0.12 0.26 0.16 0.03 0.16

ĤD 0.13 0.13 −0.04 0.02 0.25 0.14 −0.02 0.13 0.37 0.14 −0.03 0.24

RMS
X̂

0.22 0.22 0.16 0.18 0.50 0.24 0.19 0.39 0.78 0.23 0.17 0.64

y5

ĤA 0.22 0.22 0.14 0.12 0.76 0.30 0.26 0.61 1.31 0.29 0.21 1.12

ĤB 0.36 0.36 0.27 0.26 0.48 0.38 0.30 0.37 0.60 0.38 0.29 0.48

ĤC −0.05 −0.05 −0.08 −0.012 0.00 −0.04 −0.07 −0.08 0.05 −0.04 −0.07 −0.03

ĤD −0.03 −0.03 −0.09 −0.10 0.09 0.01 −0.06 −0.02 0.21 −0.02 −0.07 0.10

RMS
X̂

0.21 0.21 0.16 0.16 0.45 0.24 0.20 −0.36 0.73 0.24 0.19 0.61
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Table 2 continued

g = 0 g = 10 g = 20

LS MH MPD(l) MG−C LS MH MPD(l) MG−C L S MH MPD(l) MG−C

y6

ĤA 0.11 0.11 0.07 0.05 0.66 0.08 0.06 0.55 1.20 0.09 0.03 1.09

ĤB −0.06 −0.06 −0.07 −0.10 0.06 −0.07 −0.07 0.01 0.17 −0.07 −0.08 0.10

ĤC 0.11 0.11 0.08 0.08 0.16 0.11 0.08 0.13 0.21 0.11 0.08 0.17

ĤD 0.19 0.19 0.09 0.10 0.30 0.18 0.09 0.22 0.42 0.18 0.08 0.35

RMS
X̂

0.12 0.12 0.08 0.08 0.37 0.12 0.08 0.30 0.65 0.12 0.07 0.58

Table 3 Comparison of ratios rH = RMS
X̂H

/RMS
X̂LS

and rPD = RMS
X̂PD(l)

/RMS
X̂LS

y1 y2 y3 y4 y5 y6

rH rPD(l) rH rPD(l) rH rPD(l) rH rPD(l) rH rPD(l) rH rPD(l)

g = 0 0.95 0.45 1.00 0.66 0.80 0.16 1.00 0.73 1.00 0.76 1.00 0.67

g = 10 1.64 0.54 1.04 0.69 1.00 0.25 0.48 0.38 0.53 0.44 0.32 0.22

g = 20 0.46 0.18 0.52 0.37 0.48 0.12 0.29 0.22 0.33 0.26 0.18 0.11

Table 4 Estimates of the coefficient σ0

σ̂0,ψ

g = 0 g = 10 g = 20

LS MH MPD(l) MG−C LS MH MPD(l) MG−C LS MH MPD(l) MG−C

y1 1.01 0.99 1.07 1.01 1.77 1.04 1.20 1.74 3.03 1.03 1.25 3.00

y2 1.01 1.01 1.05 1.02 1.71 1.02 1.13 1.69 2.77 1.01 1.15 2.75

y3 1.04 1.04 0.97 0.95 1.75 1.04 1.04 1.72 2.93 1.02 1.05 2.90

y4 1.01 1.01 1.02 1.01 1.77 1.06 1.21 1.77 3.10 1.06 1.19 3.10

y5 1.02 1.02 1.12 1.04 1.51 1.06 1.24 1.53 2.55 1.06 1.23 2.58

y6 1.02 1.02 1.03 1.02 1.82 1.06 1.14 1.82 3.06 1.05 1.14 3.06

than MH estimates for l = 2.5. This becomes illuminat-

ing if one compares the ratios rH = RMS
X̂H

/RMS
X̂LS

and

rPD(l) = RMS
X̂PD(l)

/RMS
X̂LS

, which are listed in Table 3.

In one particular case, in which the gross error was rela-

tively small, MH estimate was worse than the conventional

LS-estimate.

Now let us compare the estimates σ̂0,ψ of the standard

deviation coefficient obtained for the methods compared here

(their values are presented in Table 4). The results obtained

are similar to the results of the estimation of the parameter

vector of the functional model. Thus, in the case of MG−C

method, the estimate σ̂0,ψ = [v̂Tw(v)v̂/(n − r)]1/2is very

similar to the non-robust estimate with the weight function

w(v) = σ−2In . On the other hand, the estimates obtained

in MH and MPD(l) methods are similar to each other. How-

ever, one should expect the larger values of the estimate for

larger values of the gross error in the case of MPD(l) method

(in comparison to the theoretical value σ0 = 1). To verify

such tendency, another test was carried out. It was assumed

a smaller observation set (s = 2, n = 32) with the moderate

asymmetry and excess (σ = 1.19, γ1 = −0.18, γ2 = 0.18).

Thus, we limited redundancy of the observations as well as

the distribution anomalies. Such assumptions allow us to

avoid blurring of the influence of gross errors on the esti-

mation results. The gross errors of the values g = 10, g = 20,

g = 40 and g = 80 affected the first measurement (as it was

previously). The test results show that the estimate of the

coefficient σ0 obtained by applying MPD(l) method is a little

bit worse than that obtained in the case of MH method (see,

Fig. 10). However, such difference is not growing with the

increase of the value of the gross error.

Such specific properties of MPD(l) estimates (considera-

tion of the known asymmetry and excess) seems substantial,

however, in some particular cases it would be more impor-
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Fig. 10 Influence of gross errors on the estimate of the coefficient σ0 in

LS, MH and MPD(l) methods (the additional observation set for which

σ = 1.19, γ1 = −0.18, γ2 = 0.18)

Table 5 MPD(l) estimates σ̂0,ψ with natural and with artificial values

of the kurtosis

σ̂0ψ

g = 0 g = 10 g = 20 g = 40 g = 80

β2 = 3.16 (natural) 1.09 2.13 2.42 2.40 2.36

β2 = 6.00 (artificial) 1.09 1.35 1.36 1.36 1.36

tant to make the estimate of X be highly robust (and hence

also the estimate of the variance coefficient from Eq. (18)).

MPD(l) estimate can be more robust if we increase artificially

the value of the kurtosis. Thus, let us consider the previ-

ously used observation set for which β2 = 3.18 (s = 2,

n = 32, σ = 1.19, γ1 = −0.18, γ2 = 0.18), and the same

values of the gross error. Then, one can obtain the results

for which RMS
X̂PD(l)

and σ̂0,ψ are presented in Fig. 11 (for

3.18 ≤ β2 ≤ 6.00) and in Table 5, respectively.

5 Conclusions

The Pearson distributions of types IV and VII are regarded

as probabilistic models of MP estimation which is discussed

in the paper. Such variant of MP estimation is denoted

as MPD(l). The platykurtic distributions of types I and II

seem also theoretically interesting. However, application

of those distributions as probabilistic models of observa-

tion errors should be justified convincingly, and the respec-

tive optimization procedure of MPD(p) estimation should

be proposed. In the case of the probabilistic models with

bounded domains, one should apply appropriate objective

functions with constraints. In the theoretical part of the

paper we paid attention only to the weight functions of

MP estimations with such models. The distributions PIV

and PVII, for which the values of the asymmetry coeffi-

cient and the excess are acceptable, were assumed to be

an alternative for some distributions which belong to the

set Wv . We also considered that a non-Gaussian probabil-

ity density function can be approximated by series, first of

all by the Gram–Charlier series. The influence functions

and the weight functions derived from the approximated

PDF are the basis for MP estimation which is denoted as

MG−C.

Considering the influence and weight functions, both

MPD(l) and MG−C estimation can be regarded as robust M-

estimations. Thus, the estimates obtained by applying those

methods (the estimates of the parameters of the functional

model and the estimates of the variance coefficient) were

compared with LS-estimates and the robust estimates of the

Huber method (MH ). The theoretical analysis show that

MG−C formally belongs to the class of robust estimations,

however, for the larger values of gross errors, the robustness

of the method is lost. The conclusion is also confirmed by

the numerical tests. It follows that MG−C estimation is only

“a bit” robust against gross errors. For example, if the gross

error is equal to g = 20, then the ratio RMS
X̂G−C

/RMS
X̂LS

is within the range 0.82 ÷ 1.07. Similar ration computed

for MPD(l) estimates is within the range 0.11 ÷ 0.37. The

results of MG−C estimation are also not promising for the sets

which are not affected by gross errors (in comparison with

MPD(l) estimates). In such case, the ratio RMS
X̂G−C

/RMS
X̂LS

is within the range 0.20 ÷ 0.83 (and 0.16 ÷ 0.76 for MPD(l)

estimates). If the further terms of the G–C series were applied,

one would obtain better results. However, in such a case the

higher order moments, namely µ5, µ6 etc. should be known.

Such moments are rarely determined for sets of geodetic

observations so far.

MPD(l) estimates are closer to the true values of the para-

meter X = 0 than the corresponding LS-estimates in most

cases which are presented in the paper (Sect. 4 shows several

such examples, see Tables 2 and 3). This conclusion con-

cerns sets affected by gross errors as well as the sets which

are free of such errors. One should pay attention to robust-

ness of MPD(l) estimates. Comparing those estimates with

the Huber estimates (for rather rigorous value of l = 2.5),

we can say that the ratio RMS
X̂PD(l)

/RMS
X̂LS

is smaller than

RMS
X̂H

/RMS
X̂LS

. The tests presented show that for the gross

error of g = 20 we obtained the ratio values within the range

0.18 ÷ 0.52 for MH estimates and 0.11 ÷ 0.37 for MPD(l)

estimates.

Estimation of the variance coefficients plays a major role

in quality assessment of the adjustment results (Sect. 4

presents the values of the respective estimates). Robustness

of the estimate σ̂ 2
0,ψ seems to be important from a theoret-

ical as well as a practical point of view. For the sets which
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Fig. 11 Growing robustness of

MPD(l) estimate of X by artificial

increasing of the kurtosis

are not affected by gross errors, the values of the estimates

of the variance coefficient obtained for the methods com-

pared are similar (see, Table 4 for g = 0). If gross errors

occur, then the estimates of the coefficient σ 2
0 obtained in the

case of MPD(l) method are a little bit larger than those for

MH estimation (however, they are always much smaller than

non-robust estimates obtained with application of the weight

function w(v) = σ−2In). The special tests show that the esti-

mates σ̂ 2
0,ψ obtained in MPD(l) method do not get worse with

the growing value of the gross error.

The robustness of MPD(l) estimates is related to value of

the kurtosis. Remember that MP method is a weak estima-

tion in the case of β2 < 3 (platykurtic distributions) and

the probabilistic model PPD(p) = {PI, PII}. For β2 = 3 and

the model PPD(m) ≡ PND (LS-method), it becomes a neu-

tral estimation. Robustness of the method increases with the

growing value of the kurtosis (if the asymmetry coefficient

is the same). Thus, if β1 = 0, then MPD(l) estimation can

be regarded as a robust M-estimation which robustness is

adjusted by β2. In such a case the kurtosis becomes only

a parameter which controls the robustness of the method

(pseudo-kurtosis); hence it does not have to be related to

the real values of the second and fourth moments. In such an

approach, the Gaussian distributions with an unacceptable

admixture are replaced with the Pearson distributions with

the equivalent kurtosis which is artificially overestimated.

Such replacement of the distribution is just formal, however,

it might be of importance to statistical interpretation of the

results (for example, it can be done by applying appropriate

statistical tests, which requires some additional theoretical

researches and analyses). In respect of robust M-estimation,

such an approach is related to changes in the influence func-

tion and the weight function which are easy to be planned.
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