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Abstract

We analyze a single server queue with Poisson arrivals, two stages
of heterogeneous service with different (arbitrary) service time distribu-
tions subject to random breakdowns and compulsory server vacations
with general (arbitrary) vacation periods. After first-stage service the
server must provide the second stage service. However, after the com-
pletion of each second stage service, the server will take compulsory
vacation. The system may breakdown at random and repair time follow
exponential distribution. The time dependent probability generating
functions have been obtained in terms of their Laplace transforms and
the corresponding steady state results have been obtained explicitly.
Also the average number of customers in the queue and the average
waiting time are derived.
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1 Introduction

Vacation queues have been studied extensively by numerous authors including
Levy and Yechiali [10], Doshi [5] and Madan [11], [12] and [13] due to their
various applications in Communication systems, Computer network and etc.

Chae et al. [3], Chang and Takine [4] and Igaki [7] have studied queues with
generalized vacations. Vacation queues with c servers have been studied by
Tian et al. [15]. Choudhury and Borthakur [2] have studied vacation queues
with batch arrivals. Multiple vacations have been studied by Tian and Zhang
[17].

In this paper, we consider queueing system subject to compulsory server
vacation and random breakdowns. A queueing system might suddenly break
down and hence the server will not be able to continue providing service un-
less the system is repaired. Aissani and Artalejo [1], Takine and Sengupta [16],
Federgruen and So [6], Vinck and Bruneel [18] have studied different queueing
systems subject to random breakdowns. Jayawardene and Kella [8] have stud-
ied M/G/∞ queues with altering renewal breakdowns. Kulkarni and Choi [9]
and Wang et al [19] have studied retrial queues with system breakdowns and
repairs.

Madan and Maraghi [14] have studied batch arrival queueing system with
random breakdowns and Bernoulli schedule server vacations having general
vacation time. They have obtained steady state results in terms of the proba-
bility generating functions for the number of customers in the queue.

In this paper we consider queueing system with compulsory server vacation
and random breakdowns. Each arriving customer has to under go two stages
of service provided by a single server and the service time for two stages are
assumed to follow general distribution. As soon as the second stage of a
customer’s service is complete, the server will go for compulsory vacation. The
vacation times are also assumed to be general while we consider exponential
distribution for repair time. And once the system break down, it enters a
repair process and the customer whose service is interrupted goes back to the
head of the queue where the arrivals are Poisson. The customers arrive to the
system one by one and are served on a first come-first served basis.

The rest of the paper is organized as follows. The mathematical description
of our model is in Section 2 and equations governing the model are given in
Section 3. The time dependent solution have been obtained in Section 4 and
the corresponding steady state results have been derived explicitly in Section
5. Mean queue length and mean waiting time are computed in Section 6 and
in Section 7 respectively.
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2 Mathematical Description of the model

We assume the following to describe the queueing model of our study.

• Customers arrive at the system one by one in according to a Poisson
stream with arrival rate λ(> 0).

• Each customer undergoes two stages of heterogeneous service provided
by a single server on a first come first served basis. The service time
of the two stages follow different general (arbitrary) distributions with
distribution function Bj(v) and the density function bj(v), j = 1, 2

• Let µi(x)dx be the conditional probability of completion of the ith stage
of service during the interval (x, x + dx] given that elapsed time is x, so
that

µi(x) =
bi(x)

1 − Bi(x)
, i = 1, 2, (1)

and therefore,

bi(v) = µi(v)e
−

v�

0

µi(x)dx

, i = 1, 2. (2)

• As soon as the second stage of a customers’s service is complete, the
server will take compulsory vacation of random length.

• The vacation time also follow general (arbitrary) distribution with dis-
tribution function V (s) and the density function v(s). Let γ(x)dx be the
conditional probability of a completion of a vacation during the interval
(x, x + dx] given that the elapsed vacation time is x, so that

γ(x) =
v(x)

1 − V (x)
(3)

and therefore,

v(s) = γ(s)e
−

s�

0

γ(x)dx

. (4)

• On returning from vacation the server instantly starts serving the cus-
tomer at the head of the queue, if any.

• The customers are served according to the first come, first served rule.

• The system may break down at random and breakdowns are assumed to
occur according to a Poisson stream with mean breakdown rate α > 0.
Further we assume that once the system breaks down, the customer
whose service is interrupted comes back to the head of the queue.
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• Once the system breaks down, it enters a repair process immediately.
The repair times are exponentially distributed with mean repair rate
β > 0.

• Various stochastic processes involved in the system are assumed to be
independent of each other.

3 Definitions and equations governing the sys-

tem

We define
P

(1)
n (x, t)= Probability that at time t, the server is active providing first

stage of service and there are n(≥ 0) customers in the queue excluding the one
being served and the elapsed service time for this customer is x. Consequently

P
(1)
n (t) =

∞
∫

0

P
(1)
n (x, t)dx denotes the probability that at time t there are n

customers in the queue excluding the one customer in the first stage of service
irrespective of the value of x.

P
(2)
n (x, t)= Probability that at time t, the server is active providing second

stage of service and there are n(≥ 0) customers in the queue excluding the one
being served and the elapsed service time for this customer is x. Consequently

P
(2)
n (t) =

∞
∫

0

P
(2)
n (x, t)dx denotes the probability that at time t there are n

customers in the queue excluding the one customer in the second stage of
service irrespective of the value of x.

Vn(x, t)=Probability that at time t, the server is under vacation with elapsed
vacation time x and there are n(≥ 0) customers waiting in the queue for ser-

vice. Consequently Vn(t) =
∞
∫

0

Vn(x, t)dx denotes the probability that at time t

there are n customers in the queue and the server is under vacation irrespective
of the value of x.

Rn(t)=Probability that at time t, the server is inactive due to system break-
down and the system is under repair, while there are n(n ≥ 0) customers in
the queue.

Q(t)=Probability that at time t, there are no customers in the system and
the server is idle but available in the system.

The model is then, governed by the following set of differential-difference
equations:

∂

∂x
P (1)

n (x, t) +
∂

∂t
P (1)

n (x, t) + (λ + µ1(x) + α)P (1)
n (x, t) = λP

(1)
n−1(x, t),

n = 1, 2, . . . (5)
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∂

∂x
P

(1)
0 (x, t) +

∂

∂t
P

(1)
0 (x, t) + (λ + µ1(x) + α)P

(1)
0 (x, t) = 0, (6)

∂

∂x
P (2)

n (x, t) +
∂

∂t
P (2)

n (x, t) + (λ + µ2(x) + α)P (2)
n (x, t) = λP

(2)
n−1(x, t),

n = 1, 2, . . . (7)

∂

∂x
P

(2)
0 (x, t) +

∂

∂t
P

(2)
0 (x, t) + (λ + µ2(x) + α)P

(2)
0 (x, t) = 0, (8)

∂

∂x
Vn(x, t) +

∂

∂t
Vn(x, t) + (λ + γ(x))Vn(x, t) = λVn−1(x, t),

n = 1, 2, . . . (9)

∂

∂x
V0(x, t) +

∂

∂t
V0(x, t) + (λ + γ(x))V0(x, t) = 0, (10)

d

dt
Rn(t) = −(λ + β)Rn(t) + λRn−1(t) + α

∞
∫

0

P
(1)
n−1(x, t)dx + α

∞
∫

0

P
(2)
n−1(x, t)dx,

n = 1, 2, . . . (11)

d

dt
R0(t) = −(λ + β)R0(t), (12)

d

dt
Q(t) = −λQ(t) + R0(t)β +

∞
∫

0

V0(x, t)γ(x)dx , (13)

Equations (5)-(13) are to be solved subject to the following boundary condi-
tions:

P
(1)
0 (0, t) = Q(t)λ + R1(t)β +

∞
∫

0

V1(x, t)γ(x)dx, (14)

P (1)
n (0, t) = Rn+1(t)β +

∞
∫

0

Vn+1(x, t)γ(x)dx, n = 1, 2, . . . , (15)

P (2)
n (0, t) =

∞
∫

0

P (1)
n (x, t)µ1(x)dx, n = 0, 1, . . . , (16)

Vn(0, t) =

∞
∫

0

P (2)
n (x, t)µ2(x)dx, n = 0, 1, . . . (17)
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We assume that initially there is no customer in the system and the server is
idle. So the initial conditions are

V0(0) = Vn(0) = 0, Q(0) = 1 and

P j
n(0) = 0 for n = 0, 1, 2, . . . , j = 1, 2. (18)

4 Generating functions of the queue length:

The time-dependent solution

In this section we obtain the transient solution for the above set of differential-
difference equations.

Theorem 4.1 The system of differential difference equations to describe an
M/G/1 queue with two stages of heterogeneous service subject to compulsory
server vacation and random breakdowns are given by equations (5)-(17) with
initial conditions (18) and the generating functions of transient solution are
given by equations (61)-(64).

Proof We define the probability generating functions,

P
(1)
q (x, z, t) =

∞
∑

n=0

znP
(1)
n (x, t),

P
(1)
q (z, t) =

∞
∑

n=0

znP
(1)
n (t),

P
(2)
q (x, z, t) =

∞
∑

n=0

znP
(2)
n (x, t),

P
(2)
q (z, t) =

∞
∑

n=0

znP
(2)
n (t),

Vq(x, z, t) =
∞
∑

n=0

znVn(x, t),

Vq(z, t) =
∞
∑

n=0

znVn(t),

Rq(z, t) =
∞
∑

n=0

znRn(t).

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(19)

which are convergent inside the circle given by |z| ≤ 1 and define the Laplace
transform of a function f(t) as

f(s) =

∞
∫

0

e−stf(t)dt, ℜ(s) > 0. (20)
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Taking the Laplace transforms of equations (5) to (17) and using (18), we
obtain

∂

∂x
P

(1)

n (x, s) + (s + λ + µ1(x) + α)P
(1)

n (x, s) = λP
(1)

n−1(x, s), n = 1, 2, . . .

(21)

∂

∂x
P

(1)

0 (x, s) + (s + λ + µ1(x) + α)P
(1)

0 (x, s) = 0, (22)

∂

∂x
P

(2)

n (x, s) + (s + λ + µ2(x) + α)P
(2)

n (x, s) = λP
(2)

n−1(x, s), n = 1, 2, . . .

(23)

∂

∂x
P

(2)

0 (x, s) + (s + λ + µ2(x) + α)P
(2)

0 (x, s) = 0, (24)

∂

∂x
V n(x, s) + (s + λ + γ(x))V n(x, s) = λV n−1(x, s), n = 1, 2, . . .

(25)

∂

∂x
V 0(x, s) + (s + λ + γ(x))V 0(x, s) = 0, (26)

(s + λ + β)Rn(s) = λRn−1(s) + α

∞
∫

0

P
(1)

n−1(x, s)dx + α

∞
∫

0

P
(2)

n−1(x, s)dx,

n = 1, 2, . . . (27)

(s + λ + β)R0(s) = 0, (28)

(s + λ)Q(s) = 1 + R0(s) +

∞
∫

0

V 0(x, s)γ(x)dx, (29)

P
(1)

0 (0, s) = Q(s)λ + R1(s)β +

∞
∫

0

V 1(x, s)γ(x)dx, (30)

P
(1)

n (0, s) = Rn+1(s)β +

∞
∫

0

V n+1(x, s)γ(x)dx, n = 1, 2, . . . (31)

P
(2)

n (0, s) =

∞
∫

0

P
(1)

n (x, s)µ1(x)dx, n = 0, 1, . . . (32)

V n(0, s) =

∞
∫

0

P
(2)

n (x, s)µ2(x)dx, n = 0, 1, . . . . (33)
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Now multiplying equation (21) by zn and summing over n from 1 to ∞, adding
to equation (22) and using the generating functions defined in (19), we get

∂

∂x
P

(1)

q (x, z, s) + (s + λ − λz + µ1(x) + α)P
(1)

q (x, z, s) = 0. (34)

Performing similar operations on equations (23) to (28) we obtain

∂

∂x
P

(2)

q (x, z, s) + (s + λ − λz + µ2(x) + α)P
(2)

q (x, z, s) = 0, (35)

∂

∂x
V q(x, z, s) + (s + λ − λz + γ(x))V q(x, z, s) = 0. (36)

(s + λ − λz + β)Rq(z, s) = αz

⎡

⎣

∞
∫

0

P
(1)

q (x, z, s)dx +

∞
∫

0

P
(2)

q (x, z, s)dx

⎤

⎦ . (37)

For the boundary conditions, we multiply both sides of equation (30) by z,
multiply both sides of equation (31) by zn+1, sum over n from 1 to ∞, add the
two results and use equation (19) to get

zP
(1)

q (0, z, s) = λzQ(s) + βRq(z, s) − βR0(s) +

∞
∫

0

V q(x, z, s)γ(x)dx

−

∞
∫

0

V 0(x, s)γ(x)dx. (38)

Performing similar operations on equations (32) and (33), we obtain

P
(2)

q (0, z, s) =

∞
∫

0

P
(1)

q (x, z, s)µ1(x)dx. (39)

V q(0, z, s) =

∞
∫

0

P
(2)

q (x, z, s)µ2(x)dx. (40)

Using equation (29), equation (38) becomes

zP
(1)

q (0, z, s) = (1 − sQ(s)) + λ(z − 1)Q(s) + βRq(z, s) +

∞
∫

0

V q(x, z, s)γ(x)dx.

(41)
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Integrating equation (34) from 0 to x yields

P
(1)

q (x, z, s) = P
(1)

q (0, z, s) e
−(s+λ−λz+α)x−

x�

0

µ1(t)dt

, (42)

where P
(1)

q (0, z, s) is given by equation (41). Again integrating equation (42)
by parts with respect to x yields

P
(1)

q (z, s) = P
(1)

q (0, z, s)

[

1 − B1(s + λ − λz + α)

s + λ − λz + α

]

. (43)

where

B1(s + λ − λz + α) =

∞
∫

0

e−(s+λ−λz+α)xdB1(x) (44)

is the Laplace-Stieltjes transform of the first stage service time B1(x). Now
multiplying both sides of equation (42) by µ1(x) and integrating over x we
obtain

∞
∫

0

P
(1)

q (x, z, s)µ1(x)dx = P
(1)

q (0, z, s)B1(s + λ − λz + α). (45)

Similarly, on integrating equations (35) and (36) from 0 to x, we get

P
(2)

q (x, z, s) = P
(2)

q (0, z, s) e
−(s+λ−λz+α)x−

x�

0

µ2(t)dt

, (46)

V q(x, z, s) = V q(0, z, s) e
−(s+λ−λz)x−

x�

0

γ(t)dt

. (47)

where P
(2)

q (0, z, s) and V q(0, z, s) are given by equations (39) and (40). Again
integrating equations (46) and (47) by parts with respect to x yields

P
(2)

q (z, s) = P
(2)

q (0, z, s)

[

1 − B2(s + λ − λz + α)

s + λ − λz + α

]

, (48)

V q(z, s) = V q(0, z, s)

[

1 − V (s + λ − λz)

s + λ − λz

]

. (49)

where

B2(s + λ − λz + α) =

∞
∫

0

e−(s+λ−λz+α)xdB2(x) (50)



316 V. Thangaraj and S. Vanitha

is the Laplace-Stieltjes transform of the second stage service time B2(x). Now
multiplying both sides of equation (46) by µ2(x) and integrating over x we
obtain

∞
∫

0

P
(2)

q (x, z, s)µ2(x)dx = P
(2)

q (0, z, s)B2(s + λ − λz + α) (51)

and

V (s + λ − λz) =

∞
∫

0

e−(s+λ−λz)xdV (x) (52)

is the Laplace-Stieltjes transform of the vacation time V (x). Now multiplying
both sides of equation (47) by γ(x) and integrating over x we obtain

∞
∫

0

V q(x, z, s)γ(x)dx = V q(0, z, s)V (s + λ − λz). (53)

Now using equations (39), (45) and (51), we can write equation (40) as

V q(0, z, s) = P
(1)

q (0, z, s)B1(s + λ − λz + α)B2(s + λ − λz + α). (54)

Using above equation, equation (49) becomes

V q(z, s) = P
(1)

q (0, z, s)B1(s + λ − λz + α)B2(s + λ − λz + α)
[

1 − V (s + λ − λz)

(s + λ − λz)

]

. (55)

By using equation (54), equation (53) becomes

∞
∫

0

V q(x, z, s)γ(x)dx = P
(1)

q (0, z, s)B1(s + λ − λz + α)B2(s + λ − λz + α)

V (s + λ − λz). (56)

Now using equation (45), equation (39) reduces to

P
(2)

q (0, z, s) = P
(1)

q (0, z, s)B1(s + λ − λz + α). (57)

Using equations (45) and (57), equation (37) becomes

Rq(z, s) = αzP
(1)

q (0, z, s)

[

1 − B1(s + λ − λz + α)B2(s + λ − λz + α)

(s + λ − λz + α)(s + λ − λz + β)

]

.

(58)
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Now using equations (53) and (58) in equation (41) and solving for P q(0, z, s)
we get

P
(1)

q (0, z, s) =
f1(z)f2(z)

[

(1 − sQ(s)) + λ(z − 1)Q(s)
]

DR
(59)

where

DR = f1(z)f2(z)
{

z − B1[f1(z)]B2[f1(z)]V (s + λ − λz)
}

−βαz
{

1 − B1[f1(z)]B2[f1(z)]
}

, (60)

f1(z) = s + λ − λz + α and f2(z) = s + λ − λz + β.

Substituting the value of P
(1)

q (0, z, s) from equation (59) into equations (43),
(48), (55) and (58) we get

P
(1)

q (z, s) =
f2(z)

[

(1 − sQ(s)) + λ(z − 1)Q(s)
] [

1 − B1[f1(z)]
]

DR
,

(61)

P
(2)

q (z, s) =
f2(z)

[

(1 − sQ(s)) + λ(z − 1)Q(s)
]

B1[f1(z)]
[

1 − B2[f1(z)]
]

DR
,

(62)

V q(z, s) =
f1(z)f2(z)

[

(1 − sQ(s)) + λ(z − 1)Q(s)
]

B1[f1(z)]B2[f1(z)]

DR
[

1 − V (s + λ − λz)

s + λ − λz

]

, (63)

Rq(z, s) =
αz

[

(1 − sQ(s)) + λ(z − 1)Q(s)
] [

1 − B1[f1(z)]B2[f1(z)]
]

DR
.

(64)

where DR is given by equation (60). Thus P
(1)

q (z, s), P
(2)

q (z, s), V q(z, s) and

Rq(z, s) are completely determined from equations (61)-(64) which completes
the proof of the theorem.

5 The steady state results

In this section, we shall derive the steady state probability distribution for
our queueing model. To define the steady state probabilities, we supress the
argument t wherever it appears in the time-dependent analysis. This can be
obtained by applying the well-known Tauberian property,

lim
s→0

sf(s) = lim
t→∞

f(t). (65)
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In order to determine P
(1)

q (z, s), P
(2)

q (z, s), V q(z, s) and Rq(z, s) completely,
we have yet to determine the unknown Q which appears in the numerators of
the right hand sides of equations (61)-(64). For that purpose, we shall use the
normalizing condition

P (1)
q (1) + P (2)

q (1) + Vq(1) + Rq(1) + Q = 1. (66)

Theorem 5.1 The steady state probabilities for an M/G/1 queue with
two stages of heterogeneous service, following general distribution subject to
compulsory server vacation and random breakdowns are given by

P (1)
q (1) =

βλ
[

1 − B1(α)
]

Q

dr
, (67)

P (2)
q (1) =

βλB1(α)
[

1 − B2(α)
]

Q

dr
, (68)

Vq(1) =
λE(v)αβB1(α)B2(α)Q

dr
, (69)

Rq(1) =
αλ

[

1 − B1(α)B2(α)
]

Q

dr
, (70)

where

dr = αβB1(α)B2(α) − (α + β)λ
[

1 − B1(α)B2(α)
]

− αβλE(v)B1(α)B2(α),
(71)

and

Q = 1 − λ

[

1

βB1(α)B2(α)
+

1

αB1(α)B2(α)
−

1

β
−

1

α
+ E(v)

]

(72)

where P
(1)
q (1), P

(2)
q (1) , Vq(1), Rq(1) and Q are the steady state probabili-

ties that the server is providing first stage of service, second stage of service,
server under vacation, server under repair and the server being idle respectively
without regard to the number of customers in the system.

Proof Multiplying both sides of equations (61), (62), (63) and (64) by s,
taking limit as s → 0, applying property (65) and simplifying, we obtain

P (1)
q (z) =

f2(z)
(

1 − B1[f1(z)]
)

λ[z − 1]Q

DR
, (73)

P (2)
q (z) =

f2(z)B1[f1(z)]
(

1 − B2[f1(z)]
)

λ[z − 1]Q

DR
, (74)

Vq(z) =
f1(z)f2(z)B1[f1(z)]B2[f1(z)]

[

V (λ − λz) − 1
]

Q

DR
, (75)

Rq(z) =
λ [αz(z − 1)]

{

1 − B1[f1(z)]B2[f1(z)]
}

Q

DR
. (76)
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where DR is given by equation (60), f1(z) and f2(z) are as given in previous
section. Let Wq(z) denote the probability generating function of the queue
size irrespective of the state of the system. Then adding equations (61), (62)
(63) and (64) we obtain

Wq(z) = P (1)
q (z) + P (2)

q (z) + Vq(z) + Rq(z),

=
f2(z)

(

1 − B1[f1(z)]
)

λ[z − 1]Q

DR

+
f2(z)B1[f1(z)]

(

1 − B2[f1(z)]
)

λ[z − 1]Q

DR

+
f1(z)f2(z)B1[f1(z)]B2[f1(z)]

[

V (λ − λz) − 1
]

Q

DR

+
λ [αz(z − 1)]

{

1 − B1[f1(z)]B2[f1(z)]
}

Q

DR
. (77)

We see that for z = 1, Wq(z) is indeterminate of the form 0/0. Therefore, we
apply L’Hôpital’s rule and on simplifying we obtain the results (67) to (70),

where B1[0] = 0, B2[0] = 0, V [0] = 0 and −V
′

[0] = E(v), the mean vacation
time and

Wq(1) =
λQ

{

(α + β)
[

1 − B1(α)B1(α)
]

+ αβE(v)B1(α)B2(α)
}

dr
, (78)

where dr is given by equation (71). Therefore adding Q to equation (78),
equating to 1 and simplifying, we get

Q = 1 − λ

[

1

βB1(α)B2(α)
+

1

αB1(α)B2(α)
−

1

β
−

1

α
+ E(v)

]

(79)

And hence the utilization factor ρ of the system is given by

ρ = λ

(

1

βB1(α)B2(α)
+

1

αB1(α)B2(α)
−

1

β
−

1

α
+ E(v)

)

. (80)

where ρ < 1 is the stability condition under which the steady state exists.
Equation (79) gives the probability that the server is idle. Substituting for Q
from (79) into (77), we have completely and explicitly determined Wq(z), the
probability generating function of the queue size.

6 The average queue size and the average wait-

ing time

Let Lq denote the mean number of customers in the queue under the steady
state. Then

Lq =
d

dz
Wq(z)

∣

∣

∣

∣

z=1
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Since this formula gives 0/0 form, then we write Wq(z) given in (77) as Wq(z) =
N(z)

D(z)
where N(z) and D(z) are the numerator and denominator of the right

hand side of (77) respectively. Then we use

Lq = lim
z→1

d

dz
Pq(z),

= P
′

q(1),

= lim
z→1

D
′

(z)N
′′

(z) − N
′

(z)D
′′

(z)

2(D′(z))2
,

= lim
z→1

D
′

(1)N
′′

(1) − N
′

(1)D
′′

(1)

2(D′(1))2
. (81)

where primes and double primes in equation (81) denote the first and second
derivative at z = 1. Carrying out the derivatives at z = 1, we have

N
′

(1) = λQ
[

(α + β) + B1(α)B2(α)(αβE(v)− α − β)
]

, (82)

N
′′

(1) = 2Qλ2
[(

−1 +
α

λ

)

+ B1(α)B2(α)
(

1 −
α

λ
− αE(v) − βE(v)

+
1

2
αβE(v2)

)

+ B
′

1(α) [α + β − αβE(v)]

+B
′

2(α) [α + β − αβE(v)]
]

, (83)

D
′

(1) = −λ(α + β) + B1(α)B2(α) [αβ + λ(α + β) − αβE(v)] , (84)

D
′′

(1) = 2λ2

[(

1 −
α + β

λ

)

+ B1(α)B2(α) (−1 + αE(v) + βE(v)

−
1

2
αβE(v2)

)

+ B
′

1(α)

[

−
αβ

λ
− α − β + αβE(v)

]

+B
′

2(α)

[

−
αβ

λ
− α − β + αβE(v)

]]

. (85)

where E(v2) is the second moment of the vacation time and Q has been found
in (72). Then if we substitute the values of N

′

(1), N
′′

(1), D
′

(1) and D
′′

(1)
from equations (82) to (85) into equation (81) we obtain Lq in closed form.
Further, we find the average system size L using Little’s formula. Thus we
have

L = Lq + ρ (86)

where Lq has been found in equation (81) and ρ is obtained from equation
(80) as

ρ = 1 − Q. (87)
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7 The mean waiting time

Let Wq and W denote the mean waiting time in the queue and the system
respectively. Then using Little’s formula, we obtain,

Wq =
Lq

λ
(88)

W =
L

λ
(89)

where Lq and L have been found in equations (81) and (86).
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