M-ideals in complex function spaces and algebras.

Bent Hirsberg

This work was in part supported by the Danish Science Council J. no. 511-1105.

M-ideals in complex function spaces and algebras.

Introduction.
The aim of this note is to give a characterization of the M-ideals of a complex function space $A \subseteq \mathcal{G}_{\mathbb{C}}(X)$.

The concept of an M-ideal was defined for real Banach spaces by Alfsen and Effros [AE], but it can be easily transferred to the complex case [Th. 1.3].

The main result is the following: Let J be a closed subspace of a complex function space A, then J is an M-ideal in A if and only if

$$
J=\{a \in A \mid a \equiv 0 \text { on } E\},
$$

where $E \subseteq X$ is an A-convex set having the properties:

$$
\begin{equation*}
\mu \in \mathbb{M}_{1}^{+}\left(\partial_{A} X\right), \nu \in \mathbb{M}_{1}^{+}(E), \mu-\nu \in A^{\perp} \Longrightarrow \operatorname{Supp}(\mu) \subseteq E \tag{i}
\end{equation*}
$$

(ii) $\left.\mu \in A^{\perp} \cap \mathbb{M}\left(\partial_{A} X\right) \Longrightarrow \mu\right|_{E} \in A^{\perp}$

In case A is a uniform algebra these sets are precisely the p-sets (generalized peak sets).

Following the lines of [AE] we shall study M-ideals in A by means of the corresponding I-ideals in A^{*}, which in turn are studied by geometric and analytic properties of the closed unit ball K in A^{*}.

Although we have an isometric complex-linear representation of the given function space as the space of all complex-valued linear functions on K, it turns out that the smaller compact, convex set $Z=\operatorname{conv}\left(S_{A} U-i S_{A}\right)$, where S_{A} denotes the state space of A, will contain enough structure to determine the $\mathrm{L}-$ ideals. The set Z was first studied by Azimow in [Az]. Note
also that the problems which always arize in the presence of complex orthogonal measures can to a certain extent be given a geometric treatment when we consider the compact, convex set Z [Prop. 2.4].

Another usefull tool in this context is the possibility of representing complex linear functionals by complex boundary measures of same norm, as was recently proved by Hustad in [Hu].

Specializing to uniform algebras we characterize the M-summands (see [AE, §5]), and we conclude by pointing out that the structure-topology of Alfsen and Effros [AE, §6] coincides with the symmetric facial topology studied by Ellis in [E].

This result yields a description of the structure space, Prim A (see [AE, §6]), in terms of concepts more familiar to function algebraists. Specifically, Prim A is (homeomorphic to) the Choquet-boundary of X endowed with the p-set topology.

The author wants to express his gratitude to E. Effros for Theorem 1.2 and to E. Alfsen for helpfull comments.

1. Preliminaries and notation.

Let W denote a real Banach space. Following [AE, §3] we define an I-projection e on W to be a linear map of W into itself such that,
i) $e^{2}=e$
ii) $\|p\|=\|e(p)\|+\|p-e(p)\| \quad \forall p \in \mathbb{W}$
and we define the range of an I-projection to be an I-ideal in W.

To every I-ideal $N=e W$ there is associated a complementary I-ideal $N^{\prime}=(I-e) W$, of $[A E, \S 3]$.

We say that a closed subspace J of a real Banach space V is an \mathbb{M}-ideal if the polar of J is an L-ideal in $W=V^{*}$. Also, we define a linear map e of V into itself to be an M-projection if
i) $e^{2}=e$
ii) $\|v\|=\max \{\|e(v)\|,\|v-e(v)\|\} \quad \forall v \in V$ and we define a subspace of V to be an M-summand if it is the range of an M-projection. It follows from [AE, Cor.5.16] that M-summands are M-ideals.

Lemma 1.2. Let N be an L-ideal in a real Banach-space W, and let e be the corresponding L-projection. If T is an isometry of W onto itself, then $T \mathbb{N}$ is an I-ideal and the corresponding I-projection e_{T} is given by

$$
\begin{equation*}
e_{T}=T e T^{-1} \tag{1.1}
\end{equation*}
$$

Also

$$
(\mathbb{T N})^{\prime}=\mathbb{T}\left(\mathbb{N}^{\prime}\right)
$$

Proof: Straightforward verification.
If V is a complex Banach space, then we shall denote by V_{r} the subordinate real space, having the same vectors but equipped with real scalars only. By an elementary theorem [P, §6] it follows that there is a natural isometry φ of $\left(V^{*}\right)_{r}$ onto $\left(V_{r}\right)^{*}$, defined by

$$
\begin{equation*}
\varphi(p)(v)=\operatorname{Re} p(v) \quad v \in V \tag{1.2}
\end{equation*}
$$

Theorem 1.2. (Effros) Let W be a complex Banach space with subordinate real space W_{r}. If \mathbb{N} is an I-ideal in W_{r} then

N is a complex linear subspace of W.

Proof: It suffices to prove that $i p \in \mathbb{N}$ for all $p \in \mathbb{N}$. Let $p \in \mathbb{N}$ and consider

$$
q=p-e_{T} p
$$

where \mathbb{T} is the isometry $\mathbb{T}(p)=i p \quad \forall p \in W$ and e_{T} is defined as in (1.1).

Then

$$
q=e(p)-e_{T} e(p)=e\left(p-e_{T}(p)\right) \in \mathbb{N}
$$

since L-projections commute [AE, §3].
Also we shall have

$$
i q=i\left(I-e_{T}\right)(p) \in i\left(\mathbb{T}\left(\mathbb{N}^{\prime}\right)\right)=\mathbb{N}^{\prime}
$$

Thus

$$
\sqrt{2}\|q\|=\|q+i q\|=\|q\|+\|i q\|=2\|q\|
$$

such that $q=0$ and hence $i p \in \mathbb{N}$.

Corollary 1.3. Let V be a complex Banach space with subordinate real space V_{r}. If J is an M-ideal in V_{r}, then J is a complex linear subspace of V.

Proof: By the bipolar theorem it suffices to show that the polar J° of J in $W=V^{*}$ is a complex subspace of W. To this end, we first consider J as a real linear subspace of V_{r}, and we denote by J_{r}° the polar of J in $\left(V_{r}\right)^{*} . J_{r}^{\circ}$ is an I-ideal in $\left(V_{r}\right)^{*}$ since J is an M-ideal in V_{r}. If $\varphi: W_{r} \rightarrow\left(V_{r}\right)^{*}$ is the isometry defined in (1.2), then $0^{-1}\left(J_{r}^{0}\right)$ is an I-ideal in W_{r}.

Moreover $J^{0}=\varphi^{-1}\left(J_{r}^{0}\right)$ since $\varphi^{-1}\left(J_{r}^{0}\right)$ is a complex linear subspace of W according to theorem 1.2.

The above results justify the use of the terms L- and M-ideals for complex Banach spaces to denote I- and M-ideals in the subordinate real spaces.

Let V be a complex Banach space, $W=V^{*}$, and K the closed unit ball of W. If \mathbb{N} is a w*-colsed L-ideal in \mathbb{W} with corresponding L-projection e, then it follows from [AE, Cor.4.2] that for a given $V \in V$ considered as a complex linear function in W one has:

$$
\begin{equation*}
(v \circ e)(p)=\int_{K}(v \circ e) d \mu \quad \forall p \in K, \forall \mu \in M_{p}^{+}(K) \tag{1.3}
\end{equation*}
$$

and
(1.4)

$$
(v \circ e)(p)=\int_{N \cap K} v d \mu
$$

$$
\forall p \in K, \forall \mu \in \mathbb{M}_{p}^{+}\left(\partial_{e} K\right)
$$

where $\mathbb{M}_{p}^{+}(K)$ denotes the set of all probability measures on K with barycenter p, and $M_{p}^{+}\left(\partial_{e} K\right)$ the set of all measures in $M_{p}^{+}(K)$ which are maximal in Choquets ordering (boundary measures).

2. M-ideals in complex function spaces.

In this section X shall denote a compact Hausdorff space and A a closed, linear subspace of $\mathscr{C}_{\mathbb{C}}(X)$, which separates the points of X and contains the constant functions. The statespace of A i.e.

$$
S_{A}=\left\{p \in A^{*} \mid p(\eta)=\|p\|=1\right\}
$$

is a W^{*}-closed face of the closed unit ball K of A^{*}, We shall assume that K is endowed with w^{*}-topology.

Since A separates the points of X, we have a homeomorphic embedding Φ of X into S_{A}, defined by

$$
\begin{equation*}
\Phi(x)(a)=a(x) \quad \forall a \in A \tag{2.1}
\end{equation*}
$$

We use θ a to denote the function on A^{*} defined by

$$
\begin{equation*}
\theta a(p)=\operatorname{Re} p(a) \quad \forall p \in A^{*} \tag{2.2}
\end{equation*}
$$

For convenience we shall use the same symbol θ a to denote the restriction of this function to various compact, convex subsets of A^{*}.

An enlargement of S_{A}, which was introduced by Azimow, is the following set

$$
\begin{equation*}
Z=\operatorname{conv}\left(S_{A} U-i S_{A}\right) \tag{2.3}
\end{equation*}
$$

Appealing to [Az, Prop 1] the embedding $a \rightarrow \theta a$ is a bicontinuous real linear isomorphism of A onto the space $A(Z)$ of all real-valued w^{*}-continuous affine functions on Z.

We shall denote by $M_{1}^{+}\left(S_{A}\right)$ resp. $M_{1}^{+}(Z)$ the W^{*}-compact convex set of probability measures on S_{A} resp. Z. The set of extreme points of S_{A} resp. Z, K will be denoted by $\partial_{e} S_{A}$ resp. $\partial_{e} Z$, $\partial_{e} K$ and the Choquet boundary of X with respect to A is defined as the set

$$
\partial_{A} X=\left\{x \in X \mid \Phi(x) \in \partial_{e^{S}}\right\}
$$

It follows from [P, p.38] that $\partial_{e} S_{A} \subseteq \Phi(X)$. Moreover,

$$
\partial_{e} K=\left\{\lambda \Phi(x)| | \lambda \mid=1, x \in \partial_{A} X\right\}
$$

cf [DS, p. 441].

Also we agree to write $M_{p}^{*}\left(S_{A}\right)$ resp. $M_{Z}^{+}(Z)$ for the w^{*}-compact convex set of probability measures on S_{A} resp. Z which has barycenter $p \in S_{A}$ resp. $z \in Z$. By $M_{p}^{+}\left(\partial_{e} S_{A}\right)$ resp. $M_{Z}^{+}\left(\partial_{e} Z\right)$ we denote the maximal representing measures for p resp. z (boundary measures).

A real measure μ on S_{A} resp. Z, K is said to be a boundary measure on S_{A} resp. Z, K if the total variation $|\mu|$ is a maximal element in the Choquet ordering, and we denote them by $M\left(\partial_{e} S_{A}\right)$ resp. $M\left(\partial_{e} Z\right), \mathbb{M}\left(\partial_{e} K\right) \cdot$

Finally we denote by $M\left(\partial_{A} X\right)$ those complex measures μ on X for which the direct image measure $\Phi(|\mu|)$ on S_{A} is an element of $M\left(\partial_{e} S_{A}\right)$.

It is well-known (see e.g. [A, Prop.I.4.6]) that boundary measures are supported by the closure of the extreme boundary.

As mentioned we shall study M-ideals in A by considering the corresponding L-ideals in A^{*}. Let N be a w*-closed Iideal in A^{*} with corresponding L-projection e.

Lemma 2.1. Let $p \in S_{A}$. Then

$$
e(p) \in \operatorname{conv}\left(\{0\} \cup S_{A}\right)
$$

Proof: Let $p \in S_{A}$ and decompose

$$
p=q+r
$$

where $q=e(p)$ and $r=(I-e)(p)$. If $q=0$ or $r=0$ there is nothing to prove.

Otherwise

$$
p=\|q\|\left(\frac{q}{\|q\|}\right)+\|r\|\left(\frac{r}{\|r\|}\right)
$$

is a convex combination of points in K. Since S_{A} is a face of K we obtain $\frac{q}{\|q\|} \in S_{A}$. Hence

$$
e(p)=q \in \operatorname{conv}\left(\{0\} \cup S_{A}\right) .
$$

Lemma 2.2. Let $p \in \mathbb{N} \cap Z$ be of the form

$$
p=\lambda p_{1}+(1-\lambda)\left(-i p_{2}\right),
$$

where $p_{1}, p_{2} \in S_{A}$ and $0<\lambda<1$. Then $p_{1}, p_{2} \in \mathbb{N} \cap Z$.

Proof: Let $p \in \mathbb{N} \cap Z$ be of the form

$$
p=\lambda p_{1}+(1-\lambda)\left(-i p_{2}\right), p_{i} \in S_{A} \quad i=1,2 \text { and } 0<\lambda<1
$$

Decompose p_{i} as

$$
p_{i}=q_{i}+r_{i},
$$

where $e\left(p_{i}\right)=q_{i}$ and $r_{i}=(I-e)\left(p_{i}\right)$ for $i=1,2$.
Since $e(p)=p$ it follows that

$$
\begin{equation*}
0=\lambda r_{1}+(1-\lambda)\left(-i r_{2}\right) \tag{2.4}
\end{equation*}
$$

Hence $q_{i} \neq 0$ for $i=1,2$.
Now assume $r_{1} \neq 0$; then

$$
p_{1}=\left\|q_{1}\right\|\left(\frac{q_{1}}{\left\|q_{1}\right\|}\right)+\left\|r_{1}\right\|\left(\frac{r_{1}}{\left\|r_{1}\right\|}\right)
$$

is a convex combination, and we conclude that $\frac{r_{1}}{\left\|r_{1}\right\|} \in S_{A}$ which contradicts (2.4). Thus $r_{i}=0$ and $p_{i} \in N$ for $i=1,2$.

If Q is a closed face of a compact, convex set H, then the complementary face Q^{i} is the union of all faces disjoint
from Q. Q is said to be a split face of H if Q is convex and each point in $K \backslash\left(Q \cup Q^{\prime}\right)$ can be expressed uniquely as convex combination of a point in Q and a point in Q^{\prime}, of [A,p.33]. We denote by $A_{S}(H)$ the smallest uniformly closed subspace of the space of all real valued bounded functions on H containing the bounded u.s.c. affine functions. According to [A, Th. II 6.12] and [An, Prop 3] we have that for a closed face Q of H the following statements are equivalent:
(i) Q is a split face
(ii) If $\mu \in \mathbb{M}\left(\partial_{e} H\right)$ annihilates all continuous affine functions, then $\left.\mu\right|_{Q}$ has the same property.
(iii) If $a \in A_{S}(Q)$ then a has an extension $\tilde{a} \in A_{S}(H)$ such that $\tilde{a} \equiv 0$ on Q^{\prime}.

We remark that the functions in $A_{S}(H)$ satisfy the barycentric calculus.

Theorem 2.3. Let N be a w^{*}-closed L-ideal of A^{*} and let $F=N \cap Z$. Then F is a split face of Z, and $F^{\prime}=N^{\prime} \cap Z$.

Proof: Applying lemma 2.2 twice it follows that F is a face of Z. Let $z \in F^{\prime}$ and $\mu \in \mathbb{M}_{Z}^{+}\left(\partial_{e} Z\right)$, then $\mu(F)=0 \quad[H$, Lem. 2.11].

Moreover, the Milman theorem implies that $\partial_{e} Z \subseteq\left(S_{A} U-i S_{A}\right)$ and hence $\operatorname{Supp}(\mu) \subseteq\left(S_{A} U-i S_{A}\right)$.

Since these two sets are faces of K we may consider μ as a boundary measure on K.

According to (1.4) we also have

$$
(A a \circ e)(z)=\int_{F} \theta a d \mu=0 \quad \forall a \in A,
$$

where e is the L-projection corresponding to N. Thus $e(z)=0$, which in turn implies $z \in N^{\prime} \cap Z$.

Conversely, assume $z \in \mathbb{N}^{9} \cap Z$. Decompose

$$
z=\lambda p_{1}+(1-\lambda) p_{2}
$$

where $p_{1} \in F, p_{2} \in F^{\prime}$ and $0 \leq \lambda \leq 1$. Hence

$$
z-(1-\lambda) p_{2}=\lambda p_{1} \in \mathbb{N} \cap \mathbb{N}^{\prime}=\{0\}
$$

and so $z=p_{2} \in F^{\prime}$. Thus we have proved that $F^{\prime}=N^{\prime} \cap Z$. In particular, F^{\prime} is convex.

From the above results we may establish the splitting property by proving

$$
\left.u \in A(Z)^{\perp} \cap \mathbb{M}\left(\partial_{e} Z\right) \Longrightarrow \mu\right|_{F} \in A(Z)^{\perp} .
$$

To this end we consider $\mu \in A(Z)^{\perp} \cap \mathbb{M}\left(\partial_{e} Z\right)$. As before $\mu \in \mathbb{M}\left(\partial_{e} K\right)$, and also

$$
\int_{K} \theta a d \mu=\int_{Z} \theta a d \mu=0 \quad \forall a \in A,
$$

i.e. $\mu \in A_{0}(K)^{\perp} \cap \mathbb{M}\left(\partial_{e} K\right)$, where $A_{0}(K)$ is the space of all real-valued w^{*}-continuous linear functions on K. By virtue of [AE, Th.4.5] $\left.\mu\right|_{F} \in A_{O}(K)^{\perp}$, or equivalently $\left.\mu\right|_{F} \in A(Z)^{\perp}$. q.e.d.

Remark: Under the hypothesis of Theorem 2.3 we have:

$$
F=\operatorname{conv}\left(\left(F \cap S_{A}\right) U-i\left(F \cap S_{A}\right)\right)
$$

Following Ellis [E] we shall say that a subset of Z of the form

$$
\operatorname{conv}(C U-i C), C \subseteq S_{A}
$$

is symmetric.
Let F be a closed face of S_{A}, and put

$$
\begin{equation*}
E=\Phi^{-1}(F \cap \Phi(X)) \tag{2.5}
\end{equation*}
$$

Then $F=\overline{\operatorname{conv}(\Phi(E))}$ and $F \cap \Phi(X)=\Phi(E)$.

Proposition 2.4. Let F be a closed face of S_{A} for which $S_{F}=\operatorname{conv}(F U-i F)$ is a split face of Z. Then E satisfies the condition:

$$
\left.\mu \in A^{\perp} \cap \mathbb{M}\left(\partial_{A} X\right) \Longrightarrow \mu\right|_{E} \in A^{\perp} .
$$

Proof: Let $\mu \in A^{\perp} \cap M\left(\partial_{A} X\right)$ and put $\sigma=\Phi \mu$. Then σ is a complex maximal measure on S_{A}. Decompose σ as

$$
\sigma=\lambda_{1} \sigma_{1}-\lambda_{2} \sigma_{2}+i \lambda_{3} \sigma_{3}-i \lambda_{4} \sigma_{4}
$$

where $\sigma_{i} \in M_{1}^{+}\left(\partial_{e} S_{A}\right)$ and $\lambda_{i} \geq 0$ for $i=1,2,3,4$. Since $\mu \in A^{\perp}, \lambda_{1}=\lambda_{2}$ and $\lambda_{3}=\lambda_{4}$.

Define $p_{i}=$ barycenter of σ_{i} for $i=1,2,3,4$. Since $\mu \in A^{\perp}$ it follows that

$$
\begin{equation*}
0=\lambda_{1} p_{1}-\lambda_{2} p_{2}+i \lambda_{3} p_{3}-i \lambda_{4} p_{4} \tag{2.6}
\end{equation*}
$$

Rewrite (2.6) as

$$
\begin{equation*}
\lambda_{1} p_{1}+\lambda_{4}\left(-i p_{4}\right)=\lambda_{2} p_{2}+\lambda_{3}\left(-i p_{3}\right) \in Z \tag{2.7}
\end{equation*}
$$

if we assume $\lambda_{1}+\lambda_{4}=\lambda_{2}+\lambda_{3}=1$.
Define ty: $S_{A} \rightarrow-i S_{A}$ by

$$
\psi(p)=-i p \quad \forall p \in S_{A}
$$

Let $a \in A$ and put $\left.\theta a\right|_{S_{F}}=b \in A_{S}\left(S_{F}\right)$.
Since S_{F} is assumed to be a split face of Z we can find a function $\tilde{b} \in A_{S}(Z)$ which extends b and such that $\tilde{b} \equiv 0$ on S_{F}. Moreover,

$$
\lambda_{1} \tilde{b}\left(p_{1}\right)+\lambda_{4} \tilde{b}\left(-i p_{4}\right)=\lambda_{2} \tilde{b}\left(p_{2}\right)+\lambda_{3} \tilde{b}\left(-i p_{3}\right)
$$

and since \tilde{b} satisfies the barycentric calculus we may rewrite this as

$$
\begin{equation*}
\lambda_{1} \int_{Z} \tilde{b} d \sigma_{1}+\lambda_{4} \int_{Z} \tilde{b} d\left(\psi \sigma_{4}\right)-\lambda_{2} \int_{Z} \tilde{b} d \sigma_{2}-\lambda_{3} \int_{Z} \tilde{b} d\left(\psi \sigma_{3}\right)=0 \tag{2.8}
\end{equation*}
$$

Since every maximal measure on Z is carried by S_{F} and $S_{F}{ }^{\prime}$ and since $S_{F} \cap S_{A}=F$, we may rewrite (2.8) as

$$
\begin{equation*}
\lambda_{1} \int_{F} \theta a d \sigma_{1}+\lambda_{4} \int_{F} \theta a=\psi d \sigma_{4}-\lambda_{2} \int_{F} \theta a d \sigma_{2}-\lambda_{3} \int_{F} \theta a \circ \psi d \sigma_{3}=0 \tag{2.9}
\end{equation*}
$$

The measure μ can be decomposed as
(2.10)

$$
\mu=\lambda_{1} \mu_{1}-\lambda_{2} \mu_{2}+i \lambda_{3} \mu_{3}-i \lambda_{4} \mu_{4}
$$

where $\mu_{i}=\Phi^{-1} \sigma_{i}$ for $i=1,2,3,4$. Now,

$$
\begin{aligned}
\int_{E} \operatorname{ad} \mu & =\left(\lambda_{1} \int_{E} \operatorname{Rea} d \mu_{1}-\lambda_{2} \int_{E} \operatorname{Rea} d \mu_{2}-\lambda_{3} \int_{E} \operatorname{Ima} d \mu_{3}+\lambda_{4} \int_{E} \operatorname{Imad} \mu_{4}\right) \\
& +i\left(\lambda_{1} \int_{E} \operatorname{Ima} d \mu_{1}-\lambda_{2} \int_{E} \operatorname{Ima} d \mu_{2}+\lambda_{3} \int_{E} \operatorname{Rea} d \mu_{3}-\lambda_{4} \int_{E} \operatorname{Rea} d \mu_{4}\right)
\end{aligned}
$$

Transforming the above integrals by the embedding map Φ and using the identity $\theta a(-i p)=\operatorname{Ima}(p)$, we rewrite this as follows:

$$
\begin{align*}
\int_{E} a d u & =\left(\lambda_{1} \int_{F} \theta a d \sigma_{1}-\lambda_{2} \int_{F} \theta a d \sigma_{2}-\lambda_{3} \int_{F} \theta a \circ \psi d \sigma_{3}+\lambda_{4} \int_{F} \theta a \circ \psi d \sigma_{4}\right) \tag{2.11}\\
& +i\left(\lambda_{1} \int_{F} \theta(-i a) d \sigma_{1}-\lambda_{2} \int_{F} \theta(-i a) d \sigma_{2}-\lambda_{3} \int_{F} \theta(-i a) \circ \psi d \sigma_{3}+\right. \\
& \left.+\lambda_{4} \int_{F} \theta(-i a) \circ \psi d \sigma_{1}\right)
\end{align*}
$$

Combining (2.11) with (2.9) we get

$$
\int_{E} a d \mu=0 \quad \forall a \in A
$$

Theorem 2.5. Let F be a closed face of S_{A} for which $S_{F}=$ $\operatorname{conv}(F U-i F)$ is a split face of Z. Then

$$
N=\operatorname{lin}_{\mathbb{C}} F
$$

is a w^{*}-closed L-ideal in A^{*}.

Proof: Since S_{F} is a split face, N may be considered as a w^{*}-closed real linear subspace of $A(Z)^{*}$ and from the connection between A and $A(Z)$ cf. §1 it follows that N is w^{*}-closed in A^{*}.

According to proposition 2.4 the following definition is legitimate,

$$
e(p)(a)=\int_{E} a d \mu \quad \forall a \in A
$$

where E is as in (2.5) and μ is a maximal complex measure representing the point $p \in A^{*}$.

Clearly $e\left(A^{*}\right) \subseteq \mathbb{N}$. Let $p \in \mathbb{N}$ i.e.

$$
p=\lambda_{1} p_{1}+\lambda_{2}\left(-p_{2}\right)+\lambda_{3}\left(i p_{3}\right)+\lambda_{4}\left(-i p_{4}\right)
$$

where $p_{i} \in F$ and $\lambda_{i} \geq 0$ for $i=1,2,3,4$.
Choose measures $\sigma_{i} \in \mathbb{M}_{p_{i}}^{+}\left(\partial_{e} S_{A}\right)$ for $i=1,2,3,4$. Then $\operatorname{Supp}\left(\sigma_{i}\right) \subseteq \Phi(E)$ since F is a face of S_{A}. Define $\mu_{i}=\Phi^{-1} \sigma_{i}$ for $i=1,2,3,4$ and

$$
\mu=\lambda_{1} \mu_{1}-\lambda_{2} \mu_{2}+i \lambda_{3} \mu_{3}-i \lambda_{4} \mu_{4}
$$

Now μ is a complex representing measure for p and $\operatorname{Supp}(\mu) \subseteq E, \quad$ i.e.

$$
e(p)=p
$$

To prove that e is an L-projection, we shall need the fact that we may represent $p \in A^{*}$ by a measure $\mu \in \mathbb{M}\left(\partial_{A} X\right)$ such
that $\|\mathrm{p}\|=\|\mu\|$. This follows by a slight modification of a theorem of Hustad [Hu].

Having chosen $\mu \in \mathbb{M}\left(\partial_{A} X\right)$ representing $p \in A^{*}$ with $\|p\|=\|\mu\|$, we shall have

$$
\|p\| \leq\|e(p)\|+\|p-e(p)\| \leq\|\mu\|_{E}+\|\mu\|_{X E E}=\|\mu\|=\|p\|,
$$

which implies

$$
\|p\|=\|e(p)\|+\|p-e(p)\| \quad \forall p \in A^{*}
$$

i.e. e in an L-projection with range N.

A compact subset $E \subseteq X$ is said to be A-convex if it satisfies:

$$
E=\left\{x \in X| | a(x) \mid \leq\|a\|_{E} \quad \forall a \in A\right\}
$$

If F is a closed face of S_{A} such that $S_{F}=\operatorname{conv}(F U-i F)$ is a split face of Z then the set $E=\Phi^{-1}(F \cap \Phi(X))$ is A-convex and has the following properties:
(i) $\mu \in \mathbb{M}_{1}^{+}\left(\partial_{A} X\right), \nu \in \mathbb{M}_{1}^{+}(E), \mu-\nu \in A^{\perp} \Longrightarrow \operatorname{Supp}(\mu) \subseteq E$. (ii) $\left.\mu \in A^{\perp} \cap M\left(\partial_{A} X\right) \Longrightarrow \mu\right|_{E} \in A^{\perp}$.

If an A-convex subset E of X satisfies (i) and (ii) then we say that E is an M-set .

If $E \subseteq X$ is a compact subset then we denote by S_{E} the following subset of S_{A},

$$
\begin{equation*}
S_{E}=\overline{\operatorname{conv}}(\Phi(E)) \tag{2.12}
\end{equation*}
$$

Clearly, if E is an M-set S_{E} is a closed face of S_{A} and $S_{E} \cap \Phi(X)=\Phi(E)$.

Moreover,

Corollary 2.6. Let E be an M-set of X. Then

$$
\mathbb{N}={\overline{\operatorname{lin}_{C} \Phi(E)}}^{w^{*}}
$$

is a W^{*}-closed I-ideal of A^{*}.

Proof: Observe that $\operatorname{conv}\left(S_{E} U-i S_{E}\right)$ is a split face of Z and define

$$
e(p)(a)=\int_{E} a d \mu \quad \forall a \in A
$$

where μ is a maximal representing measure for $p \in A^{*}$. Proceed as in the proof of Th. 2.5.

Corollary 2.7. Let E be an A-convex subset of X. Then the following statements are equivalent:
(i) E is an M-set.
(ii) conv($\left.S_{E} U-i S_{E}\right)$ is a split face of Z.
(iii) $\mathbb{N}=\operatorname{lin}_{\mathbb{C}} S_{E}$ is a w^{*}-closed L-ideal.

Proof: Combine Th. 2.3 and Cor. 2.6.

Remark. Cf. [Az, Th.2,3] and [E] for similar results.

Remark. A closed face F of S_{A} is a split face of Z if and only if the following condition is satisfied:

$$
\mu \in A^{\perp} \cap \mathbb{M}\left(\partial_{A} X\right) \Longrightarrow\left\{\begin{array}{l}
\left.\left(\mu_{1}-\mu_{2}\right)\right|_{E} \in A^{\perp} \\
\left.\left(\mu_{3}-\mu_{4}\right)\right|_{E} \in A^{\perp}
\end{array}\right.
$$

where $\mu=\mu_{1}-\mu_{2}+i\left(\mu_{3}-\mu_{4}\right)$ and E as in (2.5).
Thus we see that not all split faces of Z are symmetric.
Cf. [E].
Turning to the M-ideals in A we now have the following

Theorem 2.8. Let J be a closed subspace of A. Then the following statements are equivalent:
(i) J is an M-ideal.
(ii) $J=\{a \in A \mid a \equiv 0$ on $E\}$,
where E is an M-set of X.

Proof: Assume J is an M-ideal of A, then $J^{0} \cap Z$ is a split face of Z since J° is an L-ideal. Moerover, we claim that

$$
J^{\circ}=\operatorname{lin}_{\mathbb{C}}\left(J^{\circ} \cap S_{A}\right)
$$

Trivially, $\operatorname{lin}_{\mathbb{C}}\left(J^{\circ} \cap S_{\mathbb{A}}\right) \subseteq J^{\circ}$. If $p \in \partial_{e}\left(J^{\circ} \cap K\right)$ then

$$
p \in \partial_{e}\left(J^{\circ} \cap K\right)=J^{\circ} \cap \partial_{e} K
$$

Hence

$$
p=\lambda q, \quad|\lambda|=1, \quad q \in \partial_{e} S_{A}
$$

Thus

$$
q=\lambda^{-1} p \in J^{O} \cap S_{A}
$$

such that

$$
\mathrm{p} \in \operatorname{lin}_{\mathbb{C}}\left(J^{\circ} \cap S_{A}\right)
$$

It follows from theorem 2.5 that $\operatorname{lin}_{\mathbb{C}}\left(J^{\circ} \cap S_{A}\right)$ is $w^{*}-c l o s e d$ and hence

$$
\overline{\operatorname{conv}}\left(\partial_{e}\left(J^{\circ} \cap K\right)\right) \subseteq \operatorname{lin}_{\mathbb{C}}\left(J^{\circ} \cap S_{A}\right)
$$

This in turn implies

$$
J^{\circ}=\operatorname{lin}_{\mathbb{C}}\left(J^{O} \cap S_{A}\right)
$$

Equivalently

$$
J^{0}={\overline{\operatorname{lin}_{\mathbb{C}}}(\Phi(\mathrm{E}))^{\mathbb{W}}}{ }^{*}
$$

where $E=\Phi^{-1}\left(J^{\circ} \cap \Phi(X)\right)$.

Thus we see that

$$
J=\{a \in A: a \equiv 0 \text { on } E\},
$$

and clearly E is an M-set.
Conversely, if J is of the form

$$
J=\{a \in A \mid a \equiv 0 \text { on } E\},
$$

where E is an M-set, then $J^{0}={\overline{\operatorname{lin}} \mathbb{C}^{\Phi}(E)}{ }^{*}$ is an I-ideal according to Corollary 2.6.
3. The uniform algebra case.

In this section we make the further assumption that A is a uniform algebra [G].

A peak set E for A is a subset of X for which there exists a function $a \in A$ such that

$$
a(x)=1 \quad \forall x \in E, \quad|a(x)|<1 \quad \forall x \in X \backslash E
$$

A p-set (generalized peak set) for A is an intersection of peak-sets for A. If X is metrizable then every p-set is a peak set [G, §12].

It follows from [G, Th.12.7] that the following is equivalent for a compact subset E of X :
(i) E is a p-set.
(ii) $\left.\mu \in A^{\perp} \Longrightarrow \mu\right|_{E} \in A^{\perp}$.

Clearly, p-sets are M-sets.
Moreover, since M-sets are A-convex it follows by a slight modification of [AH, Th.7.4] that M-sets are p-sets i.e. we may state

Theorem 3.1. Let A be a uniform algebra and J a closed sub-
space of A. Then the following statements are equivalent: (i) J is an M-ideal.
(ii) $J=\{a \in A \mid$
$a \equiv 0$ on
E\},
where E is a p-set for A.

Turning to the M-summands of A we shall have,

Theorem 3.2. Let J be a closed subspace of A. Then the following statements are equivalent:
(i) J is an M-summand

```
(ii) J = {a\inA | a O on E} where E is an open-closed
    p-set for A.
```

Proof: Trivially ii) \Rightarrow i) by virtue of theorem 3.1. Conversely, assume J is an \mathbb{M}-summand. Then

$$
J=\{a \in A \mid a \equiv 0 \text { on } \mathbb{E}\},
$$

where E is a p-set for A. To prove that E is open it suffices to prove that

$$
\{x \in X \mid e(11)(x)=1\}=X \backslash E
$$

where e is the M-projection corresponding to J . Clearly

$$
\{x \in X \mid e(\pi)(x)=1\} \subseteq X \backslash E .
$$

Let $\mathrm{x} \notin \mathrm{E}$, and μ a maximal measure on X representing x . Then $\left(\mu-\epsilon_{x}\right) \in A^{\perp}$ and hence $\mu(E)=0$. Moreover, if e^{*} denotes the adjoint of e then $(e A)^{0}=\left(I-e^{*}\right) A^{*}$ and hence

$$
\pi \circ\left(I-e^{*}\right)(\Phi(x))=\int_{\mathbb{E}} \pi d \mu=0
$$

Thus

$$
0=\left(I-e^{*}\right)(\Phi(x))(\eta)=1-e(\eta)(x)
$$

and we are done, of [AE, Cor.5.16].

Finally we point out that since every point $x \in \partial_{A} X$ is a p-set for A and

$$
J_{x}=\{a \in A \mid a(x)=0\}
$$

is the largest M-ideal contained in the kernel of $\Phi(x)$ then the Structure-topology [$\mathrm{AE}, \S 6$] on $\partial_{e} K$ restricted to $\partial_{e} S_{A}$ coincides with the symmetric facial topology studied by Ellis in [E]. This follows from theorems 2.3-2.5.

Moreover, this topology coincides with the well known p-set topology.

Specifically, if $p \in \partial_{e} K$ then there exists a unique point $x_{p} \in \partial_{A} X$ and $\lambda_{p} \in\{z \in C| | z \mid=1\}$ such that $p=\lambda_{p} \Phi\left(x_{p}\right)$ and hence the largest M-ideal contained in the kernel of p is $J_{x_{p}}$ i.e. the above can be summed up in the following diagram:

where all the maps are continuous, q open, Φ and s homeomorphisms.

References.

[A] E.M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Math. 57 Springer Verlag, 1971.
[AE] E.M. Alfsen and E. Effros, Structure in real Banach Spaces University of Oslo, Math. Inst. Preprint Series 1971 no. 5.
[AH] E.M. Alfsen and B. Hirsberg, On dominated extensions in linear subspaces of $\mathscr{O}_{\mathbb{C}}(X)$, Pacific Journal of Mathematics 36 (3) 1971, 567-584.
[An] T.B. Andersen, On Banach space value extensions from split faces, University of Oslo, Math. Inst.Preprint Series 1971 no. 6.
[Az] Azimo, Decomposable compact convex sets and peak sets for function spaces, Proc.Amer.Math.Soc 25 (1) 1970, 75-79.
[DS] N. Dumford and . Schwarz, Linear operators, Part I, Interscience Publishers, New York.
[E] A.J. Ellis, On split faces and function algebras, submitted to Math. Annalen.
[G] T.W. Gamelin, Uniform algebras, Prentice Hall Series.
[Hi] B. Hirsberg, A measure theoretic characterization of paralleland split faces and their connections with function spaces and algebras, Univ, of Arhus, Math. Inst. Various Publication Series no. 16 (1970).
[Hu] O. Hustad, A norm preserving complex Choquet Theorem, to appear in Math.Scand.
[P] R.R. Phelps, Lectures on Choquet's theorem, Van Nostrand, New York 1966.

University of Oslo,
Oslo, Norway
and
University of Århus,
Arhus, Denmark

