M - ideals in complex function spaces and algebras.

Bent Hirsberg

This work was in part supported by the Danish Science Council J. no. 511-1105.

M-ideals in complex function spaces and algebras.

Introduction.

The aim of this note is to give a characterization of the M-ideals of a complex function space $A\subseteq {\mathcal C}_{\rm C}({\rm X})$.

The concept of an M-ideal was defined for real Banach spaces by Alfsen and Effros [AE], but it can be easily transferred to the complex case [Th. 1.3].

The main result is the following: Let J be a closed subspace of a complex function space A, then J is an M-ideal in A if and only if

$$J = \{a \in A \mid a \equiv 0 \text{ on } E\},\$$

where $E \subseteq X$ is an A-convex set having the properties: (i) $\mu \in M_1^+(\partial_A X)$, $\nu \in M_1^+(E)$, $\mu - \nu \in A^{\perp} \Longrightarrow \operatorname{Supp}(\mu) \subseteq E$ (ii) $\mu \in A^{\perp} \cap M(\partial_A X) \Longrightarrow \mu|_E \in A^{\perp}$

In case A is a uniform algebra these sets are precisely the p-sets (generalized peak sets).

Following the lines of [AE] we shall study M-ideals in A by means of the corresponding L-ideals in A*, which in turn are studied by geometric and analytic properties of the closed unit ball K in A*.

Although we have an isometric complex-linear representation of the given function space as the space of all complex-valued linear functions on K, it turns out that the smaller compact, convex set $Z = conv(S_A \cup -iS_A)$, where S_A denotes the state space of A, will contain enough structure to determine the Lideals. The set Z was first studied by Azimow in [Az]. Note also that the problems which always arize in the presence of complex orthogonal measures can to a certain extent be given a geometric treatment when we consider the compact, convex set Z [Prop. 2.4].

Another usefull tool in this context is the possibility of representing complex linear functionals by complex boundary measures of same norm, as was recently proved by Hustad in [Hu].

Specializing to uniform algebras we characterize the M-summands (see [AE, §5]), and we conclude by pointing out that the structure-topology of Alfsen and Effros [AE, §6] coincides with the symmetric facial topology studied by Ellis in [E].

This result yields a description of the structure space, Prim A (see [AE, §6]), in terms of concepts more familiar to function algebraists. Specifically, Prim A is (homeomorphic to) the Choquet-boundary of X endowed with the p-set topology.

The author wants to express his gratitude to E. Effros for Theorem 1.2 and to E. Alfsen for helpfull comments.

1. Preliminaries and notation,

Let W denote a real Banach space. Following [AE, §3] we define an <u>L-projection</u> e on W to be a linear map of W into itself such that,

i)
$$e^2 = e$$

ii) ||p|| = ||e(p)|| + ||p - e(p)|| $\forall p \in W$

and we define the range of an L-projection to be an L-ideal in $\mathbb V$.

To every L-ideal N = eW there is associated a <u>complementary</u> L-ideal N' = (I-e)W, cf [AE, §3]. We say that a closed subspace J of a real Banach space V is an <u>M-ideal</u> if the polar of J is an L-ideal in $W = V^*$.

Also, we define a linear map e of V into itself to be an <u>M-projection</u> if

i) $e^2 = e$

ii) $||v|| = \max\{||e(v)||, ||v - e(v)||\} \quad \forall v \in V$

and we define a subspace of V to be an <u>M-summand</u> if it is the range of an M-projection. It follows from [AE, Cor.5.16] that M-summands are M-ideals.

Lemma 1.2. Let N be an L-ideal in a real Banach-space W, and let e be the corresponding L-projection. If T is an isometry of W onto itself, then TN is an L-ideal and the corresponding L-projection e_{π} is given by

$$(1.1) e_m = T e T^{-1}$$

Also

$$(TN)' = T(N')$$

Proof: Straightforward verification.

If V is a complex Banach space, then we shall denote by V_r the <u>subordinate real space</u>, having the same vectors but equipped with real scalars only. By an elementary theorem [P, §6] it follows that there is a natural isometry φ of $(V^*)_r$ onto $(V_r)^*$, defined by

(1.2)
$$\varphi(p)(v) = \operatorname{Re} p(v)$$
 $v \in V$.

<u>Theorem 1.2</u>. (Effros) Let W be a complex Banach space with subordinate real space W_r . If N is an L-ideal in W_r then

- 3 -

N is a complex linear subspace of W.

<u>Proof</u>: It suffices to prove that $ip \in \mathbb{N}$ for all $p \in \mathbb{N}$. Let $p \in \mathbb{N}$ and consider

$$q = p - e_{\pi}p$$

where T is the isometry $T(p) = ip \quad \forall p \in W$ and e_T is defined as in (1.1).

Then

$$q = e(p) - e_T e(p) = e(p - e_T(p)) \in \mathbb{N}$$

since L-projections commute [AE, §3].

Also we shall have

$$iq = i(I - e_{m})(p) \in i(T(N')) = N'$$

Thus

$$\sqrt{2} \|q\| = \|q + iq\| = \|q\| + \|iq\| = 2\|q\|$$

such that q = 0 and hence $i p \in \mathbb{N}$.

<u>Corollary 1.3</u>. Let V be a complex Banach space with subordinate real space V_r . If J is an M-ideal in V_r , then J is a complex linear subspace of V.

<u>Proof</u>: By the bipolar theorem it suffices to show that the polar J^{O} of J in $W = V^{*}$ is a complex subspace of W. To this end, we first consider J as a real linear subspace of V_{r} , and we denote by J_{r}^{O} the polar of J in $(V_{r})^{*}$. J_{r}^{O} is an L-ideal in $(V_{r})^{*}$ since J is an M-ideal in V_{r} . If $\varphi: W_{r} \to (V_{r})^{*}$ is the isometry defined in (1.2), then $\varphi^{-1}(J_{r}^{O})$ is an L-ideal in W_{r} .

Moreover $J^{\circ} = \varphi^{-1}(J_r^{\circ})$ since $\varphi^{-1}(J_r^{\circ})$ is a complex linear subspace of W according to theorem 1.2.

The above results justify the use of the terms <u>L- and M-ideals</u> for <u>complex Banach spaces</u> to denote L- and M-ideals in the subordinate real spaces.

Let V be a complex Banach space, $W = V^*$, and K the closed unit ball of W. If N is a w*-colsed L-ideal in W with corresponding L-projection e, then it follows from [AE, Cor.4.2] that for a given $v \in V$ considered as a complex linear function in W one has:

(1.3)
$$(\mathbf{v} \circ \mathbf{e})(\mathbf{p}) = \int_{K} (\mathbf{v} \circ \mathbf{e}) d\mu \quad \forall \mathbf{p} \in K , \forall \mu \in M_{\mathbf{p}}^{+}(K)$$

and

(1.4)
$$(\mathbf{v} \circ \mathbf{e})(\mathbf{p}) = \int \mathbf{v} \, d\mu \qquad \forall \mathbf{p} \in K , \forall \mu \in \mathbb{M}_{p}^{+}(\partial_{\mathbf{e}}K)$$

NOK

where $M_p^+(K)$ denotes the set of all probability measures on K with barycenter p, and $M_p^+(\partial_e K)$ the set of all measures in $M_p^+(K)$ which are maximal in Choquets ordering (boundary measures).

2. M-ideals in complex function spaces.

In this section X shall denote a compact Hausdorff space and A a closed, linear subspace of $\mathscr{C}_{\mathbb{C}}(X)$, which separates the points of X and contains the constant functions. The <u>state</u>space of A i.e.

$$S_A = \{p \in A^* \mid p(1) = ||p|| = 1\}$$

is a w*-closed face of the closed unit ball K of A^* , We shall assume that K is endowed with w*-topology.

Since A separates the points of X , we have a homeomorphic embedding Φ of X into S_A , defined by

(2.1) $\Phi(\mathbf{x})(\mathbf{a}) = \mathbf{a}(\mathbf{x}) \quad \forall \mathbf{a} \in \mathbf{A}.$

We use θa to denote the function on A^* defined by (2.2) $\theta a(p) = \operatorname{Re} p(a) \quad \forall p \in A^*$.

For convenience we shall use the same symbol θa to denote the <u>restriction</u> of this function to various compact, convex subsets of A^* .

An enlargement of $\,{\rm S}_{\rm A}^{}$, which was introduced by Azimow, is the following set

$$(2.3) Z = conv(S_A \cup -iS_A)$$

Appealing to [Az, Prop 1] the embedding $a \rightarrow \theta a$ is a bicontinuous real linear isomorphism of A onto the space A(Z) of all real-valued w*-continuous affine functions on Z.

We shall denote by $M_1^+(S_A)$ resp. $M_1^+(Z)$ the w*-compact convex set of probability measures on S_A resp. Z. The set of extreme points of S_A resp. Z, K will be denoted by $\partial_e S_A$ resp. $\partial_e Z$, $\partial_e K$ and the Choquet boundary of X with respect to A is defined as the set

$$\partial_{A} X = \{ x \in X \mid \Phi(x) \in \partial_{e} S_{A} \}$$

It follows from [P, p.38] that $\partial_e S_A \subseteq \Phi(X)$. Moreover,

 $\partial_{\Theta} K = \{ \lambda \Phi(\mathbf{x}) \mid |\lambda| = 1 , \mathbf{x} \in \partial_{A} X \}$

cf [DS, p.441].

Also we agree to write $\mathbb{M}_{p}^{*}(S_{A})$ resp. $\mathbb{M}_{z}^{+}(Z)$ for the w*-compact convex set of probability measures on S_{A} resp. Z which has barycenter $p \in S_{A}$ resp. $z \in Z$. By $\mathbb{M}_{p}^{+}(\partial_{e}S_{A})$ resp. $\mathbb{M}_{z}^{+}(\partial_{e}Z)$ we denote the maximal representing measures for p resp. z(boundary measures).

A <u>real measure</u> μ on S_A resp. Z , K is said to be a <u>boundary measure</u> on S_A resp. Z , K if the total variation $|\mu|$ is a maximal element in the Choquet ordering, and we denote them by $M(\partial_e S_A)$ resp. $M(\partial_e Z)$, $M(\partial_e K)$.

Finally we denote by $\mathbb{M}(\partial_A X)$ those <u>complex</u> measures μ on X for which the direct image measure $\Phi(|\mu|)$ on S_A is an element of $\mathbb{M}(\partial_e S_A)$.

It is well-known (see e.g. [A, Prop.I.4.6]) that boundary measures are supported by the closure of the extreme boundary.

As mentioned we shall study M-ideals in A by considering the corresponding L-ideals in A^* . Let N be a w*-closed Lideal in A^* with corresponding L-projection e.

Lemma 2.1. Let $p \in S_A$. Then

 $e(p) \in conv(\{0\} \cup S_A)$

<u>Proof</u>: Let $p \in S_A$ and decompose

p = q + r

where q = e(p) and r = (I - e)(p). If q = 0 or r = 0 there is nothing to prove.

Otherwise

$$p = ||q||(\frac{q}{||q||}) + ||r||(\frac{r}{||r||})$$

- 7 -

is a convex combination of points in K. Since
$$S_A$$
 is a face
of K we obtain $\frac{q}{\|q\|} \in S_A$. Hence
 $e(p) = q \in conv(\{0\} \cup S_A)$.
Lemma 2.2. Let $p \in N \cap Z$ be of the form
 $p = \lambda p_1 + (1-\lambda)(-ip_2)$,

where $p_1, p_2 \in S_A$ and $0 < \lambda < 1$. Then $p_1, p_2 \in \mathbb{N} \cap \mathbb{Z}$.

<u>Proof</u>: Let $p \in \mathbb{N} \cap \mathbb{Z}$ be of the form

 $p = \lambda p_1 + (1-\lambda)(-ip_2)$, $p_i \in S_A$ i = 1,2 and $0 < \lambda < 1$

Decompose p_i as

$$p_i = q_i + r_i,$$

where $e(p_i) = q_i$ and $r_i = (I-e)(p_i)$ for i = 1,2. Since e(p) = p it follows that

(2.4)
$$0 = \lambda r_1 + (1-\lambda)(-ir_2)$$

Hence $q_i \neq 0$ for i = 1, 2. Now assume $r_1 \neq 0$; then

$$p_1 = \|q_1\| \left(\frac{q_1}{\|q_1\|}\right) + \|r_1\| \left(\frac{r_1}{\|r_1\|}\right)$$

is a convex combination, and we conclude that $\frac{r_1}{\|r_1\|} \in S_A$ which contradicts (2.4). Thus $r_i = 0$ and $p_i \in \mathbb{N}$ for i = 1, 2.

If Q is a closed face of a compact, convex set H , then the complementary face Q^r is the union of all faces disjoint from Q. Q is said to be a <u>split face</u> of H if Q' is convex and each point in $K \setminus (Q \cup Q')$ can be expressed uniquely as convex combination of a point in Q and a point in Q', cf [A,p.33].

We denote by $A_s(H)$ the smallest uniformly closed subspace of the space of all real valued bounded functions on H containing the bounded u.s.c. affine functions. According to [A, Th.II 6.12] and [An, Prop 3] we have that for a closed face Q of H the following statements are equivalent:

- (i) Q is a split face
- (ii) If $\mu \in M(\partial_e H)$ annihilates all continuous affine functions, then $\mu|_{\Omega}$ has the same property.
- (iii) If $a \in A_s(Q)$ then a has an extension $\widetilde{a} \in A_s(H)$ such that $\widetilde{a} \equiv 0$ on Q'.

We remark that the functions in $A_{s}(H)$ satisfy the barycentric calculus.

<u>Theorem 2.3</u>. Let N be a w*-closed L-ideal of A^* and let $F = N \cap Z$. Then F is a split face of Z, and F' = N' $\cap Z$.

<u>Proof</u>: Applying lemma 2.2 twice it follows that F is a face of Z. Let $z \in F'$ and $\mu \in M_z^+(\partial_e Z)$, then $\mu(F) = 0$ [H,Lem. 2.11].

Moreover, the Milman theorem implies that $\partial_e Z \subseteq (S_A U - i S_A)$ and hence $Supp(u) \subseteq (S_A U - i S_A)$.

Since these two sets are faces of K we may consider $\,\mu\,$ as a boundary measure on K .

According to (1.4) we also have

$$(\theta a \circ e)(z) = \int_{F} \theta a d\mu = 0 \quad \forall a \in A$$
,

where e is the L-projection corresponding to N .

Thus e(z) = 0, which in turn implies $z \in \mathbb{N}' \cap Z$. Conversely, assume $z \in \mathbb{N}' \cap Z$. Decompose

$$z = \lambda p_1 + (1 - \lambda) p_2$$

where $p_1 \in F$, $p_2 \in F'$ and $0 \le \lambda \le 1$.

Hence

$$z - (1-\lambda)p_2 = \lambda p_1 \in \mathbb{N} \cap \mathbb{N}^{\prime} = \{0\},$$

and so z = $p_2 \in F'$. Thus we have proved that F' = N' \cap Z . In particular, F' is convex.

From the above results we may establish the splitting property by proving

$$\mu \in A(Z)^{\perp} \cap M(\partial_e Z) \Longrightarrow \mu|_F \in A(Z)^{\perp}$$
.

To this end we consider $\mu \in A(Z)^{\perp} \cap M(\partial_e Z)$. As before $\mu \in M(\partial_e K)$, and also

$$\int_{K} \theta a \, d\mu = \int_{Z} \theta a \, d\mu = 0 \qquad \forall a \in A ,$$

i.e. $\mu \in A_{o}(K)^{\perp} \cap M(\partial_{e}K)$, where $A_{o}(K)$ is the space of all real-valued w*-continuous linear functions on K. By virtue of [AE, Th.4.5] $\mu|_{F} \in A_{o}(K)^{\perp}$, or equivalently $\mu|_{F} \in A(Z)^{\perp}$. q.e.d.

Remark: Under the hypothesis of Theorem 2.3 we have:

$$\mathbf{F} = \operatorname{conv}((\mathbf{F} \cap \mathbf{S}_{A}) \cup -\mathbf{i}(\mathbf{F} \cap \mathbf{S}_{A}))$$

Following Ellis [E] we shall say that a subset of Z of the form

$$conv(CU-iC)$$
, $C \subseteq S_A$

is symmetric.

Let ${\rm F}\,$ be a closed face of ${\rm S}_{\rm A}$, and put

(2.5)
$$\mathbf{E} = \Phi^{-1}(\mathbf{F} \cap \Phi(\mathbf{X})) ,$$

Then $F = \overline{\operatorname{conv}}(\Phi(E))$ and $F \cap \Phi(X) = \Phi(E)$.

<u>Proposition 2.4</u>. Let F be a closed face of S_A for which $S_F = conv(F \cup -iF)$ is a split face of Z. Then E satisfies the condition:

$$\mu \in A^{\perp} \cap M(\partial_A X) \Longrightarrow \mu|_E \in A^{\perp}$$
.

<u>Proof</u>: Let $\mu \in A^{\perp} \cap \mathbb{M}(\partial_A X)$ and put $\sigma = \tilde{\Psi}\mu$. Then σ is a complex maximal measure on S_A . Decompose σ as

$$\sigma = \lambda_1 \sigma_1 - \lambda_2 \sigma_2 + i \lambda_3 \sigma_3 - i \lambda_4 \sigma_4$$

where $\sigma_i \in M_1^+(\partial_e S_A)$ and $\lambda_i \ge 0$ for i = 1, 2, 3, 4. Since $\mu \in A^{1}$, $\lambda_1 = \lambda_2$ and $\lambda_3 = \lambda_4$.

Define p_i = barycenter of σ_i for i = 1, 2, 3, 4. Since $u \in A^{\perp}$ it follows that

(2.6)
$$0 = \lambda_1 p_1 - \lambda_2 p_2 + i \lambda_3 p_3 - i \lambda_4 p_4$$

Rewrite (2.6) as

(2.7)
$$\lambda_1 p_1 + \lambda_4 (-ip_4) = \lambda_2 p_2 + \lambda_3 (-ip_3) \in \mathbb{Z}$$

if we assume $\lambda_1 + \lambda_4 = \lambda_2 + \lambda_3 = 1$.

Define $\psi: S_A \rightarrow -iS_A$ by

$$\psi(p) = -ip \quad \forall p \in S_A$$

Let $a \in A$ and put $\theta a |_{S_F} = b \in A_s(S_F)$.

Since S_F is assumed to be a split face of Z we can find a function $\tilde{b} \in A_s(Z)$ which extends b and such that $\tilde{b} \equiv 0$ on S_F' . Moreover,

$$\lambda_1 \widetilde{\mathfrak{b}}(\mathfrak{p}_1) + \lambda_4 \widetilde{\mathfrak{b}}(-\mathfrak{i}\mathfrak{p}_4) = \lambda_2 \widetilde{\mathfrak{b}}(\mathfrak{p}_2) + \lambda_3 \widetilde{\mathfrak{b}}(-\mathfrak{i}\mathfrak{p}_3) ,$$

and since \tilde{b} satisfies the barycentric calculus we may rewrite this as

(2.8)
$$\lambda_1 \int_Z \widetilde{b} d\sigma_1 + \lambda_4 \int_Z \widetilde{b} d(\psi \sigma_4) - \lambda_2 \int_Z \widetilde{b} d\sigma_2 - \lambda_3 \int_Z \widetilde{b} d(\psi \sigma_3) = 0$$
.

Since every maximal measure on Z is carried by S_F and S_F' and since $S_F \cap S_A = F$, we may rewrite (2.8) as (2.9) $\lambda_1 \int_F \theta a d\sigma_1 + \lambda_4 \int_F \theta a \circ \psi d\sigma_4 - \lambda_2 \int_F \theta a d\sigma_2 - \lambda_3 \int_F \theta a \circ \psi d\sigma_3 = 0$

The measure $\,\mu\,$ can be decomposed as

$$(2.10) \qquad \mu = \lambda_{1}\mu_{1} - \lambda_{2}\mu_{2} + i\lambda_{3}\mu_{3} - i\lambda_{4}\mu_{4}$$
where $\mu_{i} = \Phi^{-1}\sigma_{i}$ for $i = 1, 2, 3, 4$. Now,
$$\int_{E} ad\mu = (\lambda_{1}\int_{E} Read\mu_{1} - \lambda_{2}\int_{E} Read\mu_{2} - \lambda_{3}\int_{E} Imad\mu_{3} + \lambda_{4}\int_{E} Imad\mu_{4})$$

$$+ i(\lambda_{1}\int_{E} Imad\mu_{1} - \lambda_{2}\int_{E} Imad\mu_{2} + \lambda_{3}\int_{E} Read\mu_{3} - \lambda_{4}\int_{E} Read\mu_{4})$$

Transforming the above integrals by the embedding map Φ and using the identity $\theta a(-ip) = Ima(p)$, we rewrite this as follows:

$$(2.11) \qquad \int_{E} \operatorname{adu} = (\lambda_{1} \int_{F} \theta a \, d\sigma_{1} - \lambda_{2} \int_{F} \theta a \, d\sigma_{2} - \lambda_{3} \int_{F} \theta a \circ \psi \, d\sigma_{3} + \lambda_{4} \int_{F} \theta a \circ \psi \, d\sigma_{4}) \\ + i (\lambda_{1} \int_{F} \theta (-ia) \, d\sigma_{1} - \lambda_{2} \int_{F} \theta (-ia) \, d\sigma_{2} - \lambda_{3} \int_{F} \theta (-ia) \circ \psi \, d\sigma_{3} + \\ + \lambda_{4} \int_{F} \theta (-ia) \circ \psi \, d\sigma_{1}) \\ \text{Combining (2.11) with (2.9) we get} \\ \int_{E} a \, d\mu = 0 \qquad \forall a \in A.$$

<u>Theorem 2.5</u>. Let F be a closed face of S_A for which $S_F = conv(FU-iF)$ is a split face of Z. Then

$$N = \lim_{\alpha} \mathbb{F}$$

is a w*-closed L-ideal in A^* .

<u>Proof</u>: Since S_F is a split face, N may be considered as a w*-closed real linear subspace of $A(Z)^*$ and from the connection between A and A(Z) cf. §1 it follows that N is w*-closed in A^* .

According to proposition 2.4 the following definition is legitimate,

$$e(p)(a) = \int_{E} a d\mu \quad \forall a \in A,$$

where E is as in (2.5) and μ is a maximal complex measure representing the point $p \in A^{\ast}$.

Clearly
$$e(A^*) \subseteq N$$
. Let $p \in N$ i.e.
 $p = \lambda_1 p_1 + \lambda_2 (-p_2) + \lambda_3 (ip_3) + \lambda_4 (-ip_4)$

where $p_i \in F$ and $\lambda_i \ge 0$ for i = 1, 2, 3, 4.

Choose measures $\sigma_i \in \mathbb{M}_{p_i}^+(\partial_e S_A)$ for i = 1, 2, 3, 4. Then $\operatorname{Supp}(\sigma_i) \subseteq \Phi(E)$ since F is a face of S_A . Define $\mu_i = \Phi^{-1}\sigma_i$ for i = 1, 2, 3, 4 and

$$\mu = \lambda_1 \mu_1 - \lambda_2 \mu_2 + i \lambda_3 \mu_3 - i \lambda_4 \mu_4$$

Now μ is a complex representing measure for p and $Supp(\mu) \subseteq E$, i.e.

$$e(p) = p$$

To prove that e is an L-projection, we shall need the fact that we may represent $p \in A^*$ by a measure $\mu \in M(\partial_A X)$ such

that $\|p\| = \|\mu\|$. This follows by a slight modification of a theorem of Hustad [Hu].

Having chosen $\mu\in \mathbb{M}(\partial_A X)$ representing $p\in A^*$ with $\|p\|$ = $\|\mu\|$, we shall have

 $\|p\| \le \|e(p)\| + \|p - e(p)\| \le \|\mu\|_E + \|\mu\|_{X \sim E} = \|\mu\| = \|p\| ,$ which implies

||p|| = ||e(p)|| + ||p - e(p)|| $\forall p \in A^*$

i.e. e in an L-projection with range N.

A compact subset $E \subseteq X$ is said to be <u>A-convex</u> if it satisfies:

$$\mathbf{E} = \{\mathbf{x} \in \mathbf{X} \mid |\mathbf{a}(\mathbf{x})| \leq \|\mathbf{a}\|_{\mathbf{E}} \quad \forall \mathbf{a} \in \mathbf{A}\}$$

If F is a closed face of S_A such that $S_F = \operatorname{conv}(F \cup -iF)$ is a split face of Z then the set $E = \Phi^{-1}(F \cap \Phi(X))$ is A-convex and has the following properties:

(i) $\mu \in M_1^+(\partial_A X)$, $\nu \in M_1^+(E)$, $\mu - \nu \in A^\perp \Longrightarrow \operatorname{Supp}(\mu) \subseteq E$. (ii) $\mu \in A^\perp \cap M(\partial_A X) \Longrightarrow \mu|_E \in A^\perp$.

If an A-convex subset E of X satisfies (i) and (ii) then we say that E is an <u>M-set</u>.

If $E\subseteq X$ is a compact subset then we denote by $S_{\rm E}^{}$ the following subset of $S_{\rm A}^{}$,

(2.12)
$$S_E = \overline{conv}(\Phi(E))$$
.

Clearly, if E is an M-set S_E is a closed face of S_A and $S_E \,\cap\, \Phi(X) = \Phi(E)$. Moreover,

Corollary 2.6. Let E be an M-set of X. Then

$$N = \overline{\lim_{C} \Phi(E)} W^{*}$$

is a w*-closed L-ideal of A^* .

<u>Proof</u>: Observe that $conv(S_E U - iS_E)$ is a split face of Z and define

$$e(p)(a) = \int_{E} a d\mu \quad \forall a \in A$$
,

where μ is a maximal representing measure for $p \in A^*$. Proceed as in the proof of Th. 2.5.

<u>Corollary 2.7</u>. Let E be an A-convex subset of X. Then the following statements are equivalent:

(i) E is an M-set.

(ii) $\operatorname{conv}(S_{\overline{E}} \cup -iS_{\overline{E}})$ is a split face of Z .

(iii) $\mathbb{N} = \lim_{\mathbb{C}} S_{E}$ is a w*-closed L-ideal.

Proof: Combine Th. 2.3 and Cor. 2.6.

Remark. Cf. [Az, Th.2,3] and [E] for similar results.

<u>Remark.</u> A closed face F of S_A is a split face of Z if and only if the following condition is satisfied:

$$\mu \in \mathbb{A}^{\perp} \cap \mathbb{M}(\partial_{\mathbb{A}} \mathbb{X}) \Longrightarrow \begin{cases} (\mu_{1} - \mu_{2})|_{\mathbb{E}} \in \mathbb{A}^{\perp} \\ (\mu_{3} - \mu_{4})|_{\mathbb{E}} \in \mathbb{A}^{\perp} \end{cases}$$

where $\mu = \mu_1 - \mu_2 + i(\mu_3 - \mu_4)$ and E as in (2.5).

Thus we see that not all split faces of Z are symmetric. Cf. [E].

Turning to the M-ideals in A we now have the following

Theorem 2.8. Let J be a closed subspace of A. Then the following statements are equivalent:

(i) J is an M-ideal.

(ii) $J = \{a \in A \mid a \equiv 0 \text{ on } E\}$,

where E is an M-set of X .

<u>Proof</u>: Assume J is an M-ideal of A, then $J^{\circ} \cap Z$ is a split face of Z since J° is an L-ideal. Moerover, we claim that

$$J^{O} = \lim_{\mathbb{C}} (J^{O} \cap S_{A})$$

Trivially, $\lim_{\mathbb{C}} (J^{\circ} \cap S_{A}) \subseteq J^{\circ}$. If $p \in \partial_{e}(J^{\circ} \cap K)$ then $p \in \partial_{e}(J^{\circ} \cap K) = J^{\circ} \cap \partial_{e}K$

Hence

$$p = \lambda q$$
, $|\lambda| = 1$, $q \in \partial_e S_A$

Thus

$$q = \lambda^{-1} p \in J^{O} \cap S_{A}$$

such that

$$p \in \lim_{\mathbb{C}} (J^{O} \cap S_{A})$$

It follows from theorem 2.5 that $\lim_{\mathbb{C}}(J^{O}\cap S_{A}^{-})$ is w*-closed and hence

$$\overline{\operatorname{conv}}(\partial_{e}(J^{O} \cap K)) \subseteq \operatorname{lin}_{\mathbb{C}}(J^{O} \cap S_{A})$$
.

This in turn implies

$$J^{O} = \lim_{\mathbb{C}} (J^{O} \cap S_{A})$$

Equivalently

$$J^{\circ} = \overline{\lim_{\mathbb{C}} (\Phi(E))^{W^{*}}},$$

where $E = \Phi^{-1}(J^{\circ} \cap \Phi(X))$.

- 17 -

Thus we see that

 $J = \{a \in A \mid a \equiv 0 \text{ on } E\},\$

and clearly E is an M-set.

Conversely, if J is of the form

 $J = \{a \in A \mid a \equiv 0 \text{ on } E\},\$

where E is an M-set, then $J^{\circ} = \overline{\lim_{\mathbb{C}} \Phi(E)}^{W^*}$ is an L-ideal according to Corollary 2.6.

3. The uniform algebra case.

In this section we make the further assumption that A is a uniform algebra [G].

A <u>peak set</u> E for A is a subset of X for which there exists a function $a \in A$ such that

a(x) = 1 $\forall x \in E$, |a(x)| < 1 $\forall x \in X \setminus E$

A <u>p-set</u> (generalized peak set) for A is an intersection of peak-sets for A. If X is metrizable then every p-set is a peak set [G, §12].

It follows from [G, Th.12.7] that the following is equivalent for a compact subset E of X :

(i) E is a p-set.

(ii) $\mu \in A^{\perp} \Longrightarrow \mu|_{E} \in A^{\perp}$.

Clearly, p-sets are M-sets. Moreover, since M-sets are A-convex it follows by a slight modification of [AH, Th.7.4] that M-sets are p-sets i.e. we may state

Theorem 3.1. Let A be a uniform algebra and J a closed sub-

space of A. Then the following statements are equivalent:(i) J is an M-ideal.

(ii) $J = \{a \in A \mid a \equiv 0 \text{ on } E\}$,

where E is a p-set for A .

Turning to the M-summands of A we shall have,

Theorem 3.2. Let J be a closed subspace of A. Then the following statements are equivalent:

- (i) J is an M-summand
- (ii) $J = \{a \in A \mid a \equiv 0 \text{ on } E\}$ where E is an <u>open-closed</u> p-set for A.

<u>Proof</u>: Trivially ii) \implies i) by virtue of theorem 3.1.

Conversely, assume J is an M-summand. Then

 $J = \{a \in A \mid a \equiv 0 \text{ on } E\},\$

where E is a p-set for A. To prove that E is open it suffices to prove that

 $\{x \in X \mid e(1)(x) = 1\} = X \setminus E$

where e is the M-projection corresponding to J. Clearly

$$\{x \in X \mid e(1)(x) = 1\} \subseteq X \setminus E$$
.

Let $x \notin E$, and μ a maximal measure on X representing x. Then $(\mu - \varepsilon_x) \in A^{\perp}$ and hence $\mu(E) = 0$. Moreover, if e* denotes the adjoint of e then $(eA)^{\circ} = (I - e^*)A^*$ and hence

$$1 \circ (I - e^*)(\Phi(x)) = \int 1 d\mu = 0$$

E

Thus

$$0 = (I - e^*)(\Phi(x))(1) = 1 - e(1)(x)$$

and we are done, cf [AE, Cor.5.16].

Finally we point out that since every point $x \in \partial_A X$ is a p-set for A and

$$J_{x} = \{a \in A \mid a(x) = 0\}$$

is the largest M-ideal contained in the kernel of $\Phi(\mathbf{x})$ then the <u>Structure-topology</u> [AE, §6] on $\partial_e K$ restricted to $\partial_e S_A$ coincides with the <u>symmetric facial topology</u> studied by Ellis in [E]. This follows from theorems 2.3 - 2.5.

Moreover, this topology coincides with the well known <u>p-set</u> topology.

Specifically, if $p \in \partial_e K$ then there exists a unique point $x_p \in \partial_A X$ and $\lambda_p \in \{z \in C \mid |z| = 1\}$ such that $p = \lambda_p \Phi(x_p)$ and hence the largest M-ideal contained in the kernel of p is J_{x_p} i.e. the above can be summed up in the following diagram:

where all the maps are continuous, q open, Φ and s homeomorphisms.

References.

- [A] E.M. Alfsen, <u>Compact convex sets and boundary integrals</u>, Ergebnisse der Math. 57 Springer Verlag, 1971.
- [AE] E.M. Alfsen and E. Effros, <u>Structure in real Banach Spaces</u> University of Oslo, Math.Inst.Preprint Series 1971 no.5.
- [AH] E.M. Alfsen and B. Hirsberg, <u>On dominated extensions in</u> <u>linear subspaces of $\mathcal{C}_{\mathbb{C}}(X)$ </u>, Pacific Journal of Mathematics 36 (3) 1971, 567-584.
- [An] T.B. Andersen, <u>On Banach space value extensions from split</u> <u>faces</u>, University of Oslo, Math.Inst.Preprint Series 1971 no.6.
- [Az] Azimo, <u>Decomposable compact convex sets and peak sets for</u> <u>function spaces</u>, Proc.Amer.Math.Soc 25 (1) 1970, 75-79.
- [DS] N. Dumford and . Schwarz, <u>Linear operators</u>, Part I, Interscience Publishers, New York.
- [E] A.J. Ellis, <u>On split faces and function algebras</u>, submitted to Math.Annalen.
- [G] T.W. Gamelin, Uniform algebras, Prentice Hall Series.
- [Hi] B. Hirsberg, <u>A measure theoretic characterization of parallel</u> and split faces and their connections with function spaces and algebras, Univ, of Århus, Math.Inst. Various Publication Series no.16 (1970).
- [Hu] O. Hustad, <u>A norm preserving complex Choquet Theorem</u>, to appear in Math.Scand.
- [P] R.R. Phelps, <u>Lectures on Choquet's theorem</u>, Van Nostrand, New York 1966.

University of Oslo, Oslo, Norway and University of Århus, Århus, Denmark