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m-ISOMETRIC TRANSFORMATIONS OF HILBERT SPACE,II
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In the first part of this series [AgSt], a model for operators satisfying the
e .
equation > (—=1)F(T)(T*)™~* T™~k = 0 was given as multiplication by ¢'® on a Hilbert
k=0

space whose inner product is defined in terms of periodic distributions. In this paper and
the next, we relate this model theory for the case when m = 2 to a disconjugacy theory for
a subclass of Toeplitz operators of the type studied by Boutet de Monvel and Guillemin,
classical function theoretic ideas on the Dirichlet space, and the theory of nonstationary
stochastic processes.
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Introduction
In this paper we shall continue studying the bounded linear transformations T of a
complex Hilbert space H that satisfy an identity of the form

m

T*mm (
1

) T el (T;) TR 4 (1) = 0

for a positive integer m by specializing to the case of m = 2. Operators T satisfying the
above equation are said to be m-isometries.

Some notation and results from the first part of this series [AgSt]: We now
recall a few results and restate a few definitions from the first part of this series. When
expedient, we shall specialize the results and definitions to the case of 2-isometries.

If T is a 2-isometry, then Ay is defined to be the quantity T*T — 1. It was shown
that if T is a 2-isometry, then Ar is a positive operator and in the case that 7" is finitely
cyclic, Ap is compact.

A 2-isometry T is said to be pure if it has no isometric direct summand.

DDO’s of order m are the objects which were used in Section 3 [AgSt] to give a
distributional model for bicyclic invertible (m+1)-isometries. We now restate the definition
of DDO.

Let D = C*°(0D), the Frechet space of infinitely differentiable functions on the unit
circle. Let D’ denote the dual of D, the space of distributions on the circle.

We define a linear operator D: D — D via the formula

1d

Dop=-20.
=T m?

Now recall that if 3 € D’ and ¢ € D then ¢ € D’ can be defined by

wB(v) = Blev).  veD.

Thus, if 3 € D', B can be regarded naturally as a map 8: D — D’ by defining

Bly) = 8.

Definition A distribution differential operator DDO of order 0 is a map L: D — D’ that
has the form L = Sy for some By € D', By # 0. A distribution differential operator DDO
of order 1 is a map L: D — D’ that has the form L = 81D + B, where §o, 51 € D' and

B1 #0.
If L is a DDO and ¢, € D, let us agree to define ¥ Ly: D — D’ by

(WLe) (X) =¥L{px).  XeD.



With this definition observe that if L is a DDO of order m and ¢,% € D, then ¥ Ly is a
DDO of order < m. The formal derivative of a DDO or order 1 is defined as follows.

Definition If L = 8, D+ g is a DDO of order 1, then we define the DDO c—i% L by setting

d
d_DL B

DTO’s of order m are the objects which were used in Section 3 to give a distributional
model for cyclic (m+1)-isometries. We now restate the definition of DTO.
Define D, C D by

Dy,={peD:p(n)=0 if n<0}.

We let P denote the canonical projection of D onto D, defined by

ey = {7 " 20

In like fashion, let D!, denote the space of analytic distributions defined by
D ={ueD:u(n)=0 if n<0}.

D!, can be regarded as the space of boundary values of analytic functions on D whose power
series coefficients form a temperate sequence. We let P denote the canonical projection of
D’ onto D!, defined by
~ u{n) n>0
Py = {12

0 n<0’

Definition A distribution Toeplitz operator (DTO) is a linear mapping A: D, — D) that
has the form

A=PL|D,

for some DDO L. If A is a DTO, we define the order of A to be the order of L where L is
as above.

If T € £(H) is a 2-isometry and v € H, then since the unilateral array (T*t~y, Tk2+)
is linear on diagonals it is natural to define the slope p and intercept 3 of (T,7) to be the
elements of D’ defined by the formulas

[ TR T (TRyy) k20
“(’“)“{<T7,Tjk+13> BT k) k<0

and (T*v, vy k>0
~ _ Y =
ﬁ(k)_{(%T"“w k<0’



On the other hand there exist a pair of distributions fy and 3; such that
A= P(BD+ 5o)| Da-

Furthermore, the formulas that relate the above distributions are given by 8; = u and
By =B+ (1~ P)(Dp) .

The modelling of multicyclic (resp., multi bicylic invertible) m-isometries requires the
use of matrices whose elements are DTO (resp.,DDO).

If ny and ms are positive integers, D™"2 denotes the space of ny X ng matrices with
entries in D. Likewise, let DDO;!'™2 denote the space of ny x ng matrices with DDO entries
L., with the order of L, < m and let DTO}'™ denote the space of n1 X ny matrices with
DTO entries A,; with the order of A,.; <m

The proof of the lifting theorem which is proven is Section 7 requires the use of 2
classes of DDO (smooth and regular) which were introduced n Section 4. We now restate
these definitions.

Definition If L = Y 8, DO € DDO™™, then L is smooth if each §; is a matrix of
smooth functions. L is regular if L is smooth and /3, > 0 on dD (i.e., the n X n matrix
Bon (€%) is strictly positive definite for all ¢*¥ € 8D where m = ord (L)).

We remarked above that a distributional model for invertible n-bicyclic 2-isometries
was developed in Section 3 using DDO and DTO. The rest of this introduction will restate
the notation which was used to obtain
(1) an element of DDO™™ from an invertible n-bicyclic m-isometry,

(2) an invertible n-bicyclic m-isometry from certain elements of DDO™",
(3) an element of DTO™™ from an n-cyclic m-isometry and
(4) an n-cyclic m-isometry from certain elements of DTO™™.

If H is a Hilbert space, T € L£(H) is an invertible m-isometry and v € H is a nonzero
vector, then ~ is bicyclic for T'| \/{T*v: k € Z} and so there exists a uniquely associated
Dirichlet operator given by Theorem 3.14 (of Section 3). We will denote this associated
Dirichlet operator by (T,~) .

If T € £(H) is an m-isometry and v € H one can set

H, = \/{Tkﬁr: k>0}

and
T,=T|H,.

With this setup, T} is a cyclic m-isometry and v is a cyclic vector for T,. Accordingly by
Theorem 3.23, there exists a unique analytic Dirichlet operator A with the property that
(T,,~) is unitarily equivalent to (M4, 1). We shall let (T, 4)" denote the unique DDO such
that A = P(T,~) | D,.



There is a certain amount of ambiguity in the (T, 'y)A notation. Observe that if T €
L(H) is an invertible m-isometry and v € H then according to the remark following the
proof of Theorem 3.14 (T, 7)  is the unique Dirichlet operator such that

(D)1, (D7) = (T,7) (9)(D)

for all ¢, 1 € D. On the other hand, (T,~)" as just defined in previous paragraph has the
defining property

(@(T)yr,9(T)) = A(w)(¥)
= (T,7) ()(®)
for all ¢, ¥ € D,. Recalling the remark following the proof of Lemma 3.3, we find that
these two definitions of (T,v) agree.

If L > 0is a DDO, we define the form space of L, H?, to be the completion of D with
respect to the sesquilinear form [-,-], on D x D given by

[, ] = L(e)(#).

Specifically, one sets My = {¢ € D: [p,p]r = 0}, observes by the Cauchy—Schwarz
inequality that [+, -], induces a inner product on D/ M, and lets HZ denote the completion
of D/Mp.

Likewise, if A > 0 is a DTO, we define the form space of A, H%, to be the completion
of D, with respect to the sesquilinear form [-,-|4 on D, x D, given by

[, ¥]a = A(p)(¥) .

If L > 0is a DDO, then one can attempt to define a linear operator My, on H? via
the formula

(MLp)(e?) = e“p(e”).
In general, this operator need not be well-defined on D/ My and, even if it is, may not

extend to a bounded operator on H?. The following definition precisely identifies those
DDO L with the property that L > 0 and M|, is a well-defined bounded operator.

Definition A Dirichlet operator is a DDO L with the property that either there exists a
constant ¢ > 1 such that
0<L-—c 279 etf

orord (L) =0and L > 0.

Corresponding definitions of positivity for DTO A, a form space of A and M4 on H?
are given in Section 3.

The following definition precisely identifies those DTO A with the property that A > 0
and M4 is a well-defined bounded operator.



Definition An analytic Dirichlet operator is a DTO A with the property that either there
exists a constant ¢ > 1 such that

0< A—c 2 WAe?

or ord (A} =0and A > 0.
1
Finally, f ¢y = | : | € D™, we define ¢* € D™ by setting
Pn

11[)* - (1]}11“- »Ilzjn)-

Brief Description of Sections 5 through 7: In Section 5 a certain class of 2-isometries
motivated by statistical considerations is introduced, the Brownian unitaries. The irre-
ducible Brownian unitaries correspond to the time shift operator on a scaled Brownian
motion process and are referred to as Brownian shifts (Definition 5.5). Each Brownian
shift is determined by a nonrandom rotation angle 6 and a positive covariance scalar ¢. It
turns out that there is a direct integral theory for Brownian unitaries (Theorem 5.20), each
is a direct integral with multiplicity over angles of Brownian shifts of a fixed covariance o.
The scalar o is referred to as the covariance of the Brownian unitary. Furthermore, the
Brownian shifts in addition to their appearance as the time shift for perhaps the most ubig-
uitous of nonstationary Gaussian stochastic processes have elegent characterizations on the
level of operator theory (Proposition 5.6) as well as within the field of DDO (Proposition

5.2). The principal result of Section 5, the Lifting Theorem for 2-Isometries (Theorem

5.80), asserts that the general 2-isometry T with ||Ar|| < o2

can be represented as the
restriction to an invariant subspace of a Brownian unitary of covariance o.

The proof of the Lifting Theorem in Section 5 consists of a synthesis of a proof of
the Sz.-Nagy Dilation Theorem and a proof of the familiar fact that isometries possess
extensions to unitaries, and in particular, is purely algebraic in character. The original
proof of the Lifting Theorem was analytic in character and derives from first principles
the class of objects the 2-isometries are to be lifted to (i.e., the Brownian unitaries). The
main analytic content here is a discongugacy theory for regular first order DDO with L™
coefficients discussed in Section 6 (Lemmas 6.7 and 6.16 and Proposition 6.17).

A second class of operators discussed at length in Section 5 is the collection of direct
integrals with multiplicity in ¢ of Brownian shifts with varying covariance which we refer
to as Brownian isometries. This class not only arises naturally in Theorem 6.20 which
studics the extensions of 2-isometries defined as multiplication by €% on the form domain
of Toeplitz operators (i.e., (0.5) with m = 1,8, = %, and 8 = wg% with w € L*) but
also arises naturally in the general theory of Brownian unitary extensions which is studied
in Section 9. Both the classes of Brownian unitaries and Brownian isometries possess

clegant C*-algebraic characterizations (Theorems 5.20 and 5.48).



§5. Brownian shifts, Brownian unitaries and Brownian
isometries

In this section, we introduce three special classes of 2-isometries — Brownian shifts,
Brownian unitaries and Brownian isometries. The introduction of the first and second
classes is motivated by statistical considerations as described below.

Let S, = {Xo, X1, ...} be a discretely observed mean 0 Brownian motion in R scaled
80 as to have covariance,

E(Xlekz) =1 +0’2 min{kl,kg} .

If we modify the process by rotating the real axis non-randomly in the complex plane by
# radians per unit time, then a new process S, ¢ is obtained with covariance given by

(5.1) E(Xi, Xy,) = ek1=k2)0 (1 4 52 min {ky, k2 }) .

Stationary processes are characterized by the fact that the time shift operator 7" defined
on the Hilbert space associated with the process by requiring

TXe=Xkt1 k>0

to be an isometry. What is the time shift operator on our modified Brownian motion
process?

Proposition 5.2. IfT,;y denotes the time shift operator of the process S,, then T, 4 is
unitarily equivalent to the block operator

S 1®1
Bo,giB = [0 U( ei9 )}

acting on H? @ C where S is multiplication by z on H? and 1®1: C — H? js defined by
(1 l)(e)(z)=¢c, ceC,zeD.

Proor. Let ‘H denote the Hilbert space of the process S, 4. Thus, ‘H is the completion
of the formal linear combinations of the variables Xy, X7,... with respect to the inner
product (-, -) given by

(5.3) (Xiys Xiy) = E(Xk, Xk,) -

We densely define a linear map Uy: H — H? @ C by requiring that

Zlc _ eikO
(5.4) Uo(Xe)= |7 Zz—e®

eikG



for each k > 0. First observe using (5.1), (5.3) and (5.4) that
(Uo(Xk, ), Un( X)) = (Xiey. X )

a formula which implies that Uy is isometric. Hence Uy extends by continuity to an isometry
U defined on H. Also, observe that

\/{Uo(Xk): k<n}= (\/{zk: k<nl)aC

for each n > 0. Thus, U is a Hilbert space isomorphisni.
Finally, note using (5.4) and the block form of B, .0, that

U(XE) = (B, 0)U(Xo) . k>0.
Thus, if & > 0, then

k .
UTo0(Xk) = U(X1) = (Byoo) ™ U(Xo)
k
= Ba.(f“’ (Bat(f”’) U(X()>
= BU.V.”’U(Xk)

and it is seen that
UT, 0= B, U

This shows that U implements a unitary equivalence between T, 5 and B, -+ and concludes
the proof of Proposition 5.2.

Proposition 5.2 motivates the following definition.

Definition 5.5. The Brownian shift of covariance o (¢ > 0) and angle # is the block
operator B, ..o acting on H 2 g C defined by

S o{lwl
Ba’,clg = |:0 (({i() ):l -

The Brownian shift of covariance 0 and angle § is the operator multiplication by ¢ acting
on C.

It should be clear that Brownian shifts arigse naturally in the theory of non-stationary
random processes. The following proposition makes it clear that Brownian shifts also arise
naturally in the theory of 2-isometries. Recall that if T is a finitely cyclic 2-isometry, then

Ap > 0 and Ap is compact. What are the 2-isometries with rank Ay = 17



Proposition 5.6. Let T € L{H) be a 2-isometry. rank Ap = 1 if and only if T is unitarily
equivalent to an operator of the form V @ B, .is (the V summand may be absent) where
V is an isometry, ¢ > 0 and 8 € R.

ProOOF. By Theorem 1.26, T" has the form V @& T where T is a pure 2-isometry. Note
that since rank Ar = 1, rank A, = 1. By Theorem 1.26, Ty has the form

(5.7) TO:[VX f?l}

acting on ker A, ® C where W is an isometry. Also note that (1.31) in Theorem 1.26
implies that

(5.8) W*f=0.

Using (5.7}, we thus find
0 0
O fI2+lef=1]"

Since T5 A1, To = A, we deduce that

A, =

(5.9) LA + Jef? = Dlel* = [I£1* + fe® — 1.

Since rank A, = 1, A, # 0 and we conclude from (5.9) that [c|?> = 1. Let ¢ = e*.

Now, note that since f € ker W*_ in fact W is a pure isometry of multiplicity 1. This
is because \/{W¥*f: k > 0} is reducing for W and Ty, is pure.

The proof of Proposition 5.6 is now completed by observing that if U: H? — ker Ap,
is the Hilbert space isomorphism such that U*WU is the unilateral shift acting on H? and
Ul = f/Ifll, then

UeI)Ty(UaI)= By -

Before proceeding, let us note that there exists a pure 2-isometry 7" such that
rank A7 = 2 and T is not a direct sum of two Brownian shifts. Indeed, if
T e L(H? @ H?®CqoC) is given by

S 0 V2wl 0

10 S 0 o1
= 0 0 1 b
0 O 0 -1

then T is a 2-isometry and rank Aqp =2 ifb# O or o # 0. If b # 0, then ker (T* — 1) is not
orthogonal to ker (T* 4+ 1) and so T is not a direct sum of Brownian shifts. Proposition
1.25 guarantees that T is a pure 2-isometry.



As a final characterization of Brownian shifts we now turn to their identification in
terms of analytic Dirichlet operators.

Observe that if B, .. is a Brownian shift and v = (J:) € H? @ C, then by Theorem
3.23 there exist an analytic Dirichlet operator A = PL| D, such that

L)) = ((Bo) 12 ¥ (Bro) ). ¥ D
To compute the slope of L for this special case, simply note that

. d A .
/el(k‘_’”)edu = (@ L) (e'18) (e~ th20) (Definition of slope)

= [AMA(eiklg)7 e“”g]A (Proposition 3.13)

= <AB0,9 Bfijelw, Bi?elg'\/> (Definition 5.5)

_ U2|C|Zei(k1—k2)9 7

so that pu = o2|c[28,:0.
The previous calculation turns out to be the whole story.

Proposition 5.10. Let T € £(H) be a nonisometric cyclic 2-isometry. T is a Brownian
shift if and only if for every v € ‘H either

(i) the slope of (T,~y) is a nonzero point mass or
(ii) the slope of (T,v) is zero and T'| \/{T*~: k > 0} is a pure cyclic isometry.

PRrROOF. If T is a Brownian shift then by the remarks preceding the proposition either (i)
or (ii) holds for each v € H ((i) holds if ¢ # 0 and (ii) holds if ¢ = 0). Conversely, assume
that T is a nonisometric cyclic 2-isometry such that either (i) or (ii) holds for each v € H.
Fix a cyclic vector v for T. Since T is nonisometric (ii) is false so (i) must hold. Let w6,

be the slope of A = (T',~v) (w > 0). Thus, by Proposition 3.13,

d

(A7 p(T)y, (T)y) = D Alp) (@)

/ pp(wdb,e)

7}())|2
s

I

= wlp(e

and it follows that
ker Ap D {p(T)y: o(e?) =0},

But, since v is cyclic for T,

codim {p(T)~: e(e?®y =0} < 1.



Hence, rank A < 1 and since T is assumed non-isometric, in fact, rank A = 1. Applying
Proposition 5.6 we deduce that either T is a Brownian shift or 7" has the form V & B, i
for some isometry V. The proof of Proposition 5.10 will be complete once we have ruled
out the possibility of T having an isometric direct summand. We argue by contradiction.
Accordingly, assume that T =V @ B, ¢ for some isometry V.

We first claim that V is unitary. Since T is cyclic, ind (T') > —1. But

ind (T') = ind (V) + ind (Bs ) = ind (V) — 1.

Hence ind (V) > 0 and V is unitary. Now, since T is cyclic, so also is V' cyclic. Choosing
f eyelic for V' and applying (ii) with v = f & 0 gives that V is a pure isometry. This
contradiction concludes the proof of Proposition 5.10.

In the theory of stationary stochastic processes, the one dimensional process Sy with
covariance function
Ey (X, X,) = exk17+2?

plays a precminent role. The time shift operator is just the rank one unitary [e*], and the
central theorem in the subject is that every stationary process E is an average of these
one dimensional processes. Specifically, there exists a positive measure p such that

B (X0 X0) = [ e 0du(e).

The underlying operator theory consists of two observations. Firstly, in the bilateral case,
the spectral theorem, which asserts that every unitary is a direct integral of rank 1 unitaries
(i.c. rank one operators [¢'?]). Secondly, in the unilateral case, the well known fact that
every isometry has an extension to a unitary operator.

In the theory of 2-stationary processes, it turns out that processes with time shift
operator B3, ..o play the role that rank one unitaries play in the theory of stationary
processes.  Thus, a basic question in the theory of 2-stationary processes would be to
identify the class of direct integrals of Brownian shifts. This class of operators would play
the role for 2-stationary processes that unitary operators play in the theory of stationary
processes.

Definition 5.11 A Brownian unitary of covariance 0 is a unitary operator. A Broum-
ian unitary of covariance o > 0 is an operator which is unitarily equivalent to

U® / B dyu(9)
Jp

(the U summand may be absent) acting on H ® Q)(HQ ® C)Y™ M du(h) where U € L(H)

is unitary, g is a nonzero finite positive measure on [0,27) and n: [0,27) > NU {0} is a

ji-measurable multiplicity function.

A characterization of Brownian unitaries can be given in terms of block operators.



Proposition 5.12. B is a Brownian unitary of covariance 0, if and only if B is unitary.
B € L(K) is a Brownian unitary of covariance o > 0 if and only if B has the block matrix
form

(5.13) B= {‘6 ”Iﬂ

with respect to a decomposition C = K1 @ Ky where
(i) V € L(Ky) is an isometry,
(it U € L£(K3) is unitary, and
(iii) E: K — K; is an isometry which maps K, onto ker V*.

PrOOF. The first assertion of the proposition comes directly from Definition 5.11.

To sce the second assertion, first assume that B € £(K) is a Brownian unitary of
covariance ¢ > 0 so that B has the form

B=Uy® / B" W du)
o o

acting on K = Ko & f@(H2 ® C)Ydu() where Uy € L(Ky) is unitary, p is a positive
measure on [0, 27) and n(0) is a g-measurable multiplicity function. If we define

WiKo® [ (# 00" du(0) — (Koo [ (HOdu(0) o | (o
[ B [22)
by

W(k@ / {ky0 @ ;0170 dpu(6 > (kea / (k01 du(e ) / {e;.0)" %) du(6)
Jo

then W is a Hilbert space isomorphism and

Uy © 0
WB=]0 V ¢cE|W
0O 0 U
where
(5.14) V([ 1ol i) = [ (58,0172 duto)
& .

(here, S € £(H?) is the unilateral shift),



and

(5.16) E </€B{Cj,0}?i91) ) /{(; o} dp(6

ur o

0
i (n(6))
Since maps f@(C du(f) onto ker [ 0 v

H
block form.
Now suppose that B is given by (5.13) and that (i), (ii), and (iii} hold. Since F maps

K2 onto ker V*, the subspace My C K; defined by

} = 0 & ker V*, B has the desired

My = \/{V*EK,: k > 0}

reduces V and V| M% is unitary. If we set Eg: Ky — ker V* by Egk = Fk for all k € Ky
and define the linear map

W:(KieMp)@®HE, &K: — (K1 o M) e M @K,

densely by
WiaespANydk)=cop(V)Ewydk

for x € Ky & My, p a polynomial and y, k € Ko, then W is a Hilbert space isomorphism
and

VKoM, 0 0 ViIKieM; 0 0
0 VIiM, ocE| W=W 0 My oE;
0 0 U 0 0 U

where Fq: Ky — H,%,z is the inclusion map. By the spectral theorem, there exists a positive
measure 4 on 0D and a p-measurable multiplicity function n(#) such that

U= /@ ¢ duu(6)

acting on f@ CMOdu(6). If L: H,2C2 DKy — ‘f@(HZ ® C)™®)du(f) is a densely defined

linear map given by
7 0 n(8
L (30 [ (ol Q) [ ;01 8auto))

=/mmw@@m@mm,
J B

then L is a Hilbert space isomorphism and

M, oE n
L { S "Ul} = (/ By du(())) L.



Since E maps onto ker V*, V| K1 & M is unitary. Thus B is unitarily equivalent to

o,etf

B%WH&@MM@AFWWW@

and so is a Brownian unitary of covariance ¢. This establishes Proposition 5.12.

Before continuing we remark that if B is a Brownian unitary of covariance ¢ and if
M is defined as in the proof of Proposition 5.12, then B decomposes as

(5.17) B=Uy® By

with respect to My @ M3 where Uy is unitary and By is a Brownian unitary of covariance
o of the special form

(5.18) By = [V ”E}

0 U

where V is a pure isometry, U is unitary, and F is a Hilbert space isomorphism onto ker V*.
Observe that in the decomposition (5.17) By is exactly the pure part of B as defined in
Definition 1.8. In particular, a Brownian unitary of covariance o is pure if and only if it
has the block form of (5.18).

We introduce the following notation for pure Brownian unitaries. If By has the form
given in (5.18), then it is well known that V is unitarily equivalent to the operator M)
acting on HE, .. This fact together with the notation we have already introduced for
Brownian shifts suggests that we define

() U

(5.19) B,y = {M* “E}

whenever U € L(K)} is a unitary operator and E: X — H is a Hilbert space isomorphism.
In (5.19), M) acts on H% and H is regarded as a subspace of HZ, in the usual way. We
note that since dim K = dim H one can always assume E is the identity in (5.19). It turns
out however to be more convenient to carry E around as a marker. In any event, two pure
Brownian unitaries B, g, iy, and By g, y, are unitarily equivalent if and only if U} and U,
are unitarily equivalent.

Now, recall that the spectral theorem asserts that a unitary operator U (defined by
requiring UU* = U*U = 1) is a direct integral of the rank one operators [¢*?]. Thus, the
spectral theorem for unitary operators may be thought of as giving an algebraic charac-
terization of the operators that are unitarily equivalent to direct integrals of [e’(’] We now
derive an analogous theorem for Brownian unitarics.



Theorem 5.20. (Spectral Theorem for Brownian unitaries) Let T € L(H), A =
T*T — 1, and o = ||A||2. Suppose that ¢ > 0. T € L(H) is a Brownian unitary if and
only if

(i) T*2T? - 21*T +1 =0,

(i) A(TT* — DA =0,
(iii) ¢~2A is a projection, and
(iv) there exists a projection Q € L(H) such that (02 — A)(TT* — I)(0? — A) =

ot(o? - 1)Q.

PROOF. To see that (i)-(iv) hold if T is a Brownian unitary, first observe that if Ty satisfy
(i)-(iv), then [, Tpdp(6) satisfies (i)-(iv). Therefore, it suffices to show every unitary
and every Brownian shift of covariance o satisfies (i)-(iv). This follows directly from
computation.

Suppose now that (i)-(iv) hold. Since o > 0, A # 0 and so ran A # {0}. We claim
that ran A # H. For if ran A = H, then T*T = 1 4 ¢2. Consequently, T' = /1 + o2 V for
some isometry V', which would violate (i) since ¢ > 0. Summarizing, we have shown that
if H; =ker A and Hy = (ran A)~, then H = H; @ H2 is a nontrivial decomi)osition of H.

Now, by Theorem 1.26, T has the block matrix form

(5.21) T = [‘6 ”);E]

with respect to the decomposition H = H; @ Ho where

(5.22) V € L{H;) is an isometry,

(5.23) o*E*E+ X*X — 1 is injective,

(5.24) X (®E*E+X*X-DX =0*E*E+X"X -1,
and

(5.25) E maps Hz densely into kerV*.

Using (5.21) one obtains the formula

0 0
(5.26) A= [o PEE+X'X 1]
Thus, (iii) and (5.23) imply that

(5.27) *E*E+X*X —I =02,



Now, (5.24) and (5.27) imply that X is an isometry and so by another application of (5.27),
E is an isometry. In particular, note that (5.26) becomes

0.0
(5.28) A = {0 02} .

We claim that in fact X is unitary. Substituting (5.21) and (5.28) into (ii) gives the
equation
(XX -1)=0.

Accordingly, X X* =1, and X is unitary. Also, observe that

* 2 * *
(5.20) T = [VV +0?EE* -1 oEX } _

o X E* 0
Now, substituting (5.28) and (5.29) into (iv) yields the equation

* 2 *
(5.30) 4 [VV +0lEE -1 0

0 0} =o' - 1)Q.
We claim that (5.30) implies that

(5.31) VV* +0?EE* is invertible.

If o = 1. then (5.30) implics that

VV* +oEE" =1,

so that (5.31) holds. If & # 1, then (5.30) implies that @) has the form

_{@o O
=% 4]

where necessarily (Qo is a projection. In particular, we obtain the equation,
VV* + 0?EE* = (1 - Qo) + 0%Qo,

and again we see that (5.31) holds.

Summarizing we have shown that T has the form given in (5.21) where V is an
isometry, X is unitary, E is an isometry whose range is dense in ker V* (and hence equals
ker V*), and V*E = (. Hence T is a Brownian unitary and the proof of Theorem 5.20 is
completoe.

Theorem 5.20 has the following immediate corollary.



Lemma 5.32. If B € L(H) is a Brownian unitary of covariance 0 and M C H is a
reducing subspace for B, then either B | M is unitary or B| M is a Brownian unitary of
covariance o.

Before giving the algebraic proof of the lifting theorem (Theorem 5.80 below), we
present another class of 2-isometries which we shall call Brownian isometries. This class
of 2-isometries arises naturally not only in the analytic proof of the lifting theorem given
in Section 6 (Theorem 6.20) but also in the theory of minimal lifts considered in Section
9.

Note that in the definition of Brownian unitaries the direct integrals were taken over
Brownian shifts of a constant covariance 0. We now consider direct integrals where we
vary both the covariance and angle of the Brownian shifts.

Definition 5.33. A Brownian isometry of covariance 0 is an isometry. A Brownian
isometry of covariance o > () is an operator B such that 0% = ||B*B ~ I|| and which is
unitarily equivalent to

(5.34) Vo@/ Big, v, dp(t)
2]

(the Vo summand may be absent) acting on H @ [ Hg, ® Kidpu(t) where Vo € L(H) is
an isometry, 4 is a nonzero positive measure on (0, ], U; € L(K,) is unitary for p-a.e. t,
E, € L(K) is a Hilbert space isomorphism, Byg, v, € L(HE, ® K;) is given by (5.19) and
the following two measurability conditions are satisfied:

(5.35) t — dim K; is a g-measurable function

(5.36) If X,={te(0,0]:dim K; =n},u,(E) = p(EN X,)
for all measurable F and for all n € NU {oo}, and K;, and K4,
are identified for ty,t, € X,,, then the maps on X,, given by
t > E; and ¢t — U, are u, measurable. (Recall that t — F,
is measurable if and only if t — {E;z,y) is measurable for all
z and y.)
As in the case of Brownian unitaries, Brownian isometries can both be expressed in the

form of block operators (Proposition 5.12) as well as characterized algebraically (Theorem
5.20).

Proposition 5.37. B is a Brownian isometry of covariance 0O if and only if B is an
isometry. B € L(K) is a Brownian isometry of covariance o > 0 if and only if 6% =
||B*B — I|| and B has the block matrix form

(5.38) B= Fg "UE}



with respect to a decomposition K = K1 & Ky where
(i) V € L(K:) is an isometry,

(i1) U € L(K3) is unitary ,

(i) F: Ko — Ky is an injective contraction which maps K5 into ker V™, and

(iv) E*E commutes with U.

Proor. The first assertion of the proposition follows directly from Definition 5.33.

To see the second assertion, first assume that B is the Brownian isometry of (5.34).
If the operators V', E, and U are defined by the formulas,

U :/ Updp(t)
®
1
E=- / tE dp(t), and
T Jep
V=W GB/ Mdp(t),
@
then (i)-(iv) are obtained and B has the desired block form.
Now suppose that B has the form given in (5.38) and that (i)-(iv) hold. If we set
My =\/{V*EK,: k > 0},
then, since V*FE = 0, M, reduces V. Thus B decomposes as

V|/C1 o M, 0 0
(5.39) B= 0 VIiM, oF
0 0 U

acting on K = (K1 © M) & My & K. Furthermore, by construction ran E is dense in
ker (V | M1)*. Since E is injective it follows that there exists a Hilbert space isomorphism
L: Ky — ker (V| M;)* and a positive P € L(K;) such that E = LP. Consequently, I3 is
unitarily equivalent to an operator of the form

Vo 0 0
(5.40) 0 M, oP
0o 0 U

actingon K; & M1 & H,2C2 @ Ky. Here Vg = V | Ky 3 M1 is an isometry. To express (5.40)
in the form (5.34) first observe that since E*E commutes with U, so also P = (E* E)z
commutes with UU. Consequently, if we express

(5.41) P:/ tdu(t)
&



acting on
®

then U has the form
(5.43) U= / Updpu(t) .

&
Furthermore, since (5.42) gives a decomposition of the initial space of My, M), decomposes
(5.44) M, = / Mydp(t).

B

Combining (5.40)-(5.44) gives the desired resolution of B as a direct integral and concludes
the proof of Proposition 5.37.

Before continuing we remark that if B is a Brownian isometry of covariance ¢ and if
M, is defined as in the proof of Proposition 5.37, then B decomposes as

(5.45) B =V, By

with respect to M; @ Mi where Vj is an isometry and By is a Brownian isometry of
covariance ¢ of the special form

(5.46) By = [‘0/ "(}E ]

where V is a pure isometry, U is unitary and E is an injective contraction with (ran )~ =
ker V*. Observe that in the decomposition (5.45) By is exactly the pure part of B as defined
in Definition 1.8. In particular, a Brownian isometry of covariance ¢ is pure if and only if
it has the block form of (5.46).

We introduce the following notation for pure Brownian isometries. If By has the form
given in (5.46), then it is well known that V is unitarily equivalent to the operator M
acting on HZ,,.. This fact together with the notation we have already introduced for
Brownian unitaries suggest that we define

(5.47) Bopy = [M* "E}

0 U

whenever I/ € £(K) is a unitary operator, £ : K — H is an injective contraction with
dense range and E*E commutes with U. In (5.47), M) acts on H%, and H is regarded as
a subspace of H in the usual way.



Theorem 5.48. (Spectral Theorem for Brownian isometries) Let T € L(H) and A =
T*T — 1. T is a Brownian isometry if and only if

() T2T2 - 2T*T+1=0
(il) ATT* = DA =0

PROOF. As in the proof of Proposition 5.12, to prove that (i} and (ii} hold for any Brownian
isometry, it suffices to show that (i) and (ii) hold for every isometry and every Brownian
shift, facts that follow directly from computation.

Suppose now that (i) and (ii) hold. Set ¢ = ||A|}% If 0 =0, then T is an isometry
and so T is a Brownian isometry. Thus assume o > 0. As in the proof of Theorem 5.20 if
Hi = ker A and Hy = (ranA)~, then H = H; & H, is a nontrivial decomposition of H
and with respect to this decomposition

V oF
(5.49) T = [ 0y }
where
(5.50) V e L(H;) is an isometry,
(5.51) o?E*E + X*X — 1 is injective,
(5.52) X (*E*E+ X' X-DX=0’E'E+X*X I,
and
(5.53) E maps H, into kerV".

Now, by Proposition 5.37, T will be a Brownian isometry provided X is unitary, E is an
injective contraction and E*E commutes with X.
To see that X is unitary observe that (5.49) implies the formula

0 0
(5.54) B=10 PEE+XX—1]|°
Substituting (5.54) into (ii) yields

(5.55) (?E*E+ XX -D)(XX* - D@*E'E+ X" X —-1)=0.

Since 0?E*E + X*X — I is injective, (5.52) implies that X is injective and (5.55) implies

that X is a co-isometry. Thus X is an injective co-isometry, i.e. a unitary.



To see that E is an injective contraction observe that since X is unitary, (5.54) becomes

0 0
2=0 gopos)

acting on ker A ® (ran A)~ and that by definition 02 = ||A||.
Finally, to see that £ E commutes with X note that since X is unitary, (5.52) becomes

(5.56) c*X"E*EX = d’E’E.
Multiplying (5.56) on the left by o =2.X yields
E*EX =XE'E

and so X commutes with E*E. Thus, T is a Brownian isometry, and the proof of Theorem
5.48 is complete.

Note that Theorem 5.48 has the following immediate corollary.

Corollary 5.57. If B € L(H) is a Brownian isometry of covariance o and M C H is a
reducing suhspace for B, then B|{ M is a Brownian isometry of covariance < o.

The qualitative difference between Corollary 5.57 and Lemma 5.32 is whether the
covariance can decrease or not.

Before giving the algebraic proof of the Lifting theorem (Theorem 5.80), we show
that every Brownian isometry of covariance o lifts to a Brownian unitary of covariance o
{Proposition 5.79). In section 7, we shall use Proposition 5.79 to complete the analytic
proof of Theorem 5.80.

Our first result which describes the invariant subspaces of Brownian shifts is a refor-
mulation of Theorem 7 in [Sa]. Observe that if M is an invariant subspace for B, s, then
M must be of one of the following two types. Let us agree to say that M is of type I if

MC H* @ {0}.
Otherwise, there exists a vector g € H? such that
(5.58) M=C m + Mo
where

(5.59) Mo =(H*®{0})NnM



and we shall say that M is of type II. By Beurling’s theorem [B] it should be clear that
to each invariant subspace of type I there exists a unique (up to scalar multiple) inner
function ¢ such

(5.60) M = pH?* @ {0}

and conversely any inner function gives rise via (5.60) to an invariant subspace of type L.
To understand invariant subspaces of type II our first observation is that in formula
(5.58) g is uniquely determined by M provided we require that

(5.61) [?] LMN(H2s{0)),.

According, if M is an invariant subspace of type II, we define gaq to be the vector in H 2
satisfying (5.58), (5.59) and (5.61). In addition we can attach to any invariant subspace
M of type II the inner function @4 such that

(5.62) Mo = o H? @ {0}.

It should be clear that the issue of describing the invariant subspace lattice of B, s in
function theoretic terms is precisely to describe which pairs (gar, ¢ 1) arise from invariant
subspaces M of type II.

Proposition 5.63. Ifo > 0, 0 € [0,27) and M is an invariant subspace for B, s of type
II, then @4 has a radial limit at e* and

—_— — eie
(5.64) oa = opr(e) P ML),

Conversely, if o is an inner function such ¢ has radial limit @(e'®) at ¥ and

(5.65) fﬂ)_

2
7z — et €H,

then there exists a unique invariant subspace M of type II for B, .i» such that oa = @.

PRrROOF. First assume that M is an invariant subspace of type II for B, .i¢. Let g = gum
and ¢ = paq. Since

Bo.eso [ﬂ = [zge; U] = ¢ m n {(z—e“’) 9+0} EM,

(5.62) implies that

(5.66) (z—e®Yg+0 € H?.



Furthermore, (5.61) implies that
(5.67) gL oH?.
Now, (5.66) and (5.67) imply that
/z”((z — g +0)g g—:r =0 for n>0.

Hence there exists h € H! such that

(5.68) (z—e®g+0)g=2z2h forae zecdD.
Taking conjugates in (5.68) and using the identity z — ¥ = —eifz(z — e?), yields the
formula

oe®2g + 0 = zh +eh forae ze dD.

Hence we deduce that

h=aeyg

which via (5.68) implies that in fact

(5.69) (z—€eg+0)§=0e2g.

Taking absolute values in (5.69) and using (5.66) yields an inner function v such that
(5.70) (z—eg+0=0pp.

Now we claim that ¢ is constant. Noting that (5.70) implies that

ey =1
I T aw
we calculate using (5.67) and the identity
b
EC ity .oz, ettedD

that if n > 0, then




Hence v is constant.
The first assertions of Proposition 5.63 now follow by observing that (5.70) implies
both that the radial limit of ¢ at e exists ((e’) = 1) and also that formula (5.64) holds.
Now assume that ¢ is an inner function that has radial limit ¢(e*) at ¢ and that
(5.65) holds. Let

g =op(et

and note that if M is defined by
M=C [ﬂ Vv (eH? ® {0}),

then M is an invariant subspace for B, .0 of type I. Furthermore, by construction @ =
. To see that M is unique note that if M is any invariant subspace of type II such that
wm, = ¢, then (5.64) implies that gar, = g so that My = M. This concludes the proof
of Proposition 5.63.

Lemma 5.71. If o > 0, § € [0,27), N is an invariant subspace for B, ..o and M is an
invariant subspace for B, . of type II, then

(5.72) MCN
if and only if

(5.73) gmMGleN.

PROOF. Since by construction ga @ 1 is an element of M it should be clear that (5.72)
implies (5.73). Conversely suppose that (5.73) holds. By {5.58) and (5.62)

M =Clgm & 1)+ (pmH® @ {0}).
Thus, it suffices to show that o ® 0 € M. But, by (5.64),
aom(eD)om B0 =((z = )gam +0) &0
=(Bsg — (),7’0)(9_,\4 @l)eN.
This establishes Lemma 5.71.

The preceeding lemma in addition to identifying the order structure for Lat (B, )
immediately implies the following result.



Corollary 5.74. If o >0, 8 € [0,27), and M is an invariant subspace for B, .. of type
M.

II, then g @ 1 is cyclic for B, e

By Proposition 5.6 if B, .is is a Brownian shift and M is an invariant subspace for
B, .is of type II, then a priori

dim ranAB i | M =1.
The following proposition identifies the space ran &Np | m-

Proposition 5.75. Ifc >0, 8 € [0,27) and M is an invariant subspace for B, .o of type
11, then

(5.76) ran Ag ;i m=Clgm ®1).

Furthermore, B, ..o | M is a Brownian shift of covariance,

a

&77) EAPVEL

and of angle 8.

PRrOOF. Let v = (1 + |lga¢/l?)? and note by definitions of gas and @ a4 that

gm D1
v

M@0, zppmBO,...
is an orthonormal basis for M. Since
Ap _,=00d1)®(0a1),
Ap yim =0 Pm0®1)® P08 1)

o? @1 @1
am o IM _

v2 v v

Hence, (5.76) holds and B, s
by Proposition 1.25 and Corollary 5.74, B, .o | M is a pure 2-isometry. Since

M is a 2-isometry with covariance given by (5.77). Now,

rank Apg|a = 1, Proposition 5.6 implies that B, .o | M is a Brownian shift.
To see that € gives the angle of B, .ie | M simply observe that if B is any Brownian
shift and ~ is a unit vector chosen in ran Ap, then the angle of B is given by the formula

e = (B~,7) .

Hence, since

((Boe 1) 220 24813

o,et? )

14

10

€



the angle of B, .0 | M is § and the proof of Proposition 5.75 is complete.

We remark before continuing that if B is a Brownian shift, then
dim ker (|Ap]] — Ap) = 1 and Corollary 5.74 implies that if v is a unit vector in
ker ([|A 3l — &p), then v is cycelic for B. In Section 8 we shall prove these facts hold
for an arbitrary cyclic pure 2-isometry (Theorem 8.19).
The main application of the previous foray into the function theory of Brownian shifts
will be via Lemma 5.78 below. Fix o > 0, 0 € [0,27) and o € D. If B, is defined by
z-

Brt<z) =

l — vz

then note that by Proposition 5.63 an invariant subspace M, of type Il can be defined for
B, .0 that satisfies the condition

CM, = B(y -

Furthermore (5.64) implies that

o (L ol)E (L= o)z

Im, = ae

1— e 1 — @z
Noting that
lom, P = o* 10T

[1— @et®]2”

——U—l:v Dy =(0,0).
{(wnm,ma "e } (07)

Thus, by an application of Proposition 5.75 one obtains the following lemma.

one sees that,

Lemma 5.78. If 0 < a, < 0 and 6 € |0,27), there exists an isometry L € L{H? ¢ C)
such that H
LBn“‘pu) = B(T,M() I .

Recalling that Brownian isometries (resp., unitaries) of covariance o are defined as
direct integrals of Brownian shifts of covariance less than or equal to (resp,. equal to) o it
should he clear that Lemma 5.78 and the theory of direct integrals implies the following

result.

Proposition 5.79. If By € L{H) is a Brownian isometry of covariance oy and g < o,

then there exists a Hilbert space K, a Brownian unitary of covariance o and an isometry
L:H —> K such that
LBy = BL.



We now show that Proposition 5.79 holds not just for the general Brownian isometry
of covariance < ¢ but in fact for the general 2-isometry of covariance < o, a result which
shows that Brownian unitaries play the role in the theory of 2-isometries that unitaries
play in the theory of isometries.

Theorem 5.80. IfT is a 2-isometry of covariance o, then T has an extension to a Brown-
ian unitary of covariance o.

Proor. We will attach to the 2-isometry T a certain isometry V and a certain contraction

C. The Brownian unitary extension of T will be constructed from a unitary extension U
of V and an isometric dilation S of C'*.

1 3
= (1% o)
ag

Ho = (rané) ™~ .

Let T € L(H), set

and let

Define Cy: {(ranéT) + (Ho © (ranéT)) — Ho by
Co(6Tz) =bz, z€H,

and
Co|Ho © (ranédT)™ = 0.

To see that Cy is well defined and extends by continuity to a contraction
C:Hy — Hg

we observe that if z € H and y € Hy & (ranéT')~, then

(5.81) 16T + gl — | Co6T + )| = (Ara, z) + Iyl

Also note that (5.81) implies the defect identity,

(5.82) (TY (1 - C*CYT = At

In (5.82), 6T is regarded as an operator into Hy.

Now, set.

H; = (ran Aé)* .

Let V: ran A% — ran Aé be defined by

V(J(Aéw) = AT%«T.’L’ , TEH.



Since T*ApT = A, Vg is an isometry and hence extends by continuity to an isometry
V. Hl - ‘Hl .

Now let §* be a coisometric extension of ' acting on a space Ky, i.c., Ky is a Hilbert

space containing Hy, S € L(Ky) is an isometry such that Hy is invariant for .57 and
(5.83) C'=5"|Hy.

Such a coisometric extension can be obtained from an isometric dilation of " [Sz.-N-F].
Also choose a Hilbert space Ky O Hy and a wnitary U € £(Ky) such that H, is invariant
for U and

(5.84) V=U|H,.

Observing that the operators S and U above and the spaces they act on can be artiicially

enlarged, it is clear that we may assume that
dim (K1 ¢ Hy) = dim M
where
M =ran(l— 85 ((1 = 95" )(ran 6T)) " .

1
Now define Ey: ran AF + (Ky -+ Hy) — (1 = S57)Ky by choosing a Hilbert space
isomorphism F: Ky ¢» H; — M and setting

)

EgAZe=(1—-5S5)¢Tr. veXH

and
E()IK:l o Hy = FL
Observe using (5.83) and (5.84) that
|EoAda]? = (1 — SS™)8Tx. 8Tx)
= (1 — C"C)Tw.8T )
= {Aypur. 1}

TN
— 2 .=
= ||AGa|”.
Hence, Fy is an isometry and extends by continuity to a Hilbert space isomorphism

E: K1 — (1—SS)K.



Also note that

1

(5.85) (1-857)6T = EAZ.
Now note that
B— S okb
|0 U

acting on Ko@® XK, is a Brownian unitary of covariance o, and that the map L: H — Kg®K,
defined by

. 1 1
L(z) =6z - AZx
o
is an isometry. Thus, the proof of Theorem 5.80 will be complete if it is shown that

(5.86) LT = BL.

To see (5.86) holds note that the equation has the two components,

(5.87) §Tx = 86z + EA2x,
and

1 .1 1 1
. — NiTae=U—-Nxzx,
(5.88) 5 BrTa SOt

for all z € H. To prove (5.87) note using (5.85), (5.83), and the definition of C, that
0Tx = S5"6Tx+ (1 — 55™)6Tx
= $§*8Tz + EAdx
= SC8Tw + EAia
= Sox+ EDGx

The proof of (5.88) follows in a similar fashion using (5.84) and the definition of V. This
concludes the proof of Theorem 5.80.

We will close this section with a theorem that demonstrates the optimality of Theorem
5.80 in any model theory for 2-isometries based on lifting. Let F, denote the collection
of 2-isometries T' with cov (T) < &. Suppose that B C F, is any subcollection with the
property that

(5.89) BeB and M reducing for B implies that B|M € B.

We claim that if B is a collection of operators providing a model for the general 2-
isometry as in Theorem 5.80 (i.e., every element of F, has an extension to a B € B), then
necessarily B contains the Brownian unitaries of covariance . The heart of the matter
rests in the following lemma.



Lemma 5.90. If T € L£L(H) is a 2-isometry of covariance ¢ and M C 'H is an invariant

subspace for T such that T'| M is a Brownian unitary of covariance o, then M reduces T

ProoF. Let B =T | M. T has the block representation,

V oF X
(5.91) T=10 U Y
0 0 VA4

with respect to the decomposition H = ker Ap @ran A ® ML for some operators X :
ML S kerAp, Y MY S ranAp and Z € £L{M1). Furthermore since B is a Brownian
unitary of covariance o,

(5.92) V  is an isometry ,
(5.93) V'E=0,

(5.94) ranV +ran £ = ker Apg,
and

(5.95) U is unitary.

To prove the lemma it suffices to show that X =0 and ¥ = 0.

Now, computing Ap gives
0 0 VX
(5.96) Ap = 0 o? cE*X +U*Y
XV oX*E+Y'U X*'X+Y'Y+2°Z-1
In particular, since Ay > 0,
(5.97) XV =0.
Also, since B is a Brownian unitary of covariance .
ran Ag = ker((72 A

and since 02 — Ag > 0 and B = T| M,

ker (02 — Ap) C ker (0% — Ap).



Hence, one deduces from (5.96) that
(5.98) o X*E+Y*U =0.
Now using (5.96), (5.97) and (5.98) and the fact T* AT — Ar = 0 gives

0 0 0
0 0 oUY|=0.

Hence (5.95) implies that Y = 0.
To see that X = 0 note that since ¥ = 0, (5.98) implies that X*E = 0. Hence by
(5.94) and (5.97), X* = 0. This concludes the proof of Lemma. 5.90.

Lemma 5.90 does not generalize to Brownian isometries. Indeed, by Lemma 5.78
By o 0 By 0 extends to B = By g0 @ By 6, but by Lemma 5.32 every direct summand
of B is a Brownian unitary.

We now are able to prove our promised result that the Brownian unitaries give an
optimal model theory for 2-isometries.

Theorem 5.99. Fix o > 0. If B is a subcollection of F, satisfying property (5.89) and
with the property that every element of F, has an extension to an element of B, then B

contains the Brownian unitaries of covariance o.

Proov. Suppose B C F, has the properties of the theorem and fix a Brownian unitary
B of covariance o. Evidently, there exists T € B and an invariant subspace M for T such
that B = T| M. By Lemma 5.90, M is reducing for T. Hence by (5.89), B € B. This
concludes the proof of Theorem 5.99.

§6. A Disconjugacy Theorem for Matricial Toeplitz Op-
erators

In this section we shall generalize the results of [Agd] to the matricial case. If L
15 & DDO and the coefficients of L are functions, then the DTO A = PL|D, has an
extension to a densely defined self-adjoint operator on H? and this extension is a Toeplitz
operator in the sense of Boutet de Monvel and Guillemin [M-G]. In [M-G], working
on a general compact, strictly pseudoconvex domain with smooth boundary, the authors
establish discreteness of spectrum, Fredholm properties and an analysis of the asymptotic
behavior of the spectrum for the class of elliptic Toeplitz operators. There is, however,
another qualitative phenomenon present in the classical theory of elliptic ODFE, namely
disconjugacy. In [Ag4] it was shown that the classical disconjugacy theorem for 2nd order



ODE (as well as the related Sturm-Liouville phenomena) generalize to the Toeplitz case
where L has the form,
L=D+w

with w € L (0D). This result, which implies that certain cyclic 2-isometries possess a
cyclic vector which is an eigenfunction for L, was then used in [Ag4] to establish Lemma
6.7 below in the special case where T is cyclic and has a “Wiener-Hopf form” as defined in
Section 4. In this section we shall generalize the results just described from the scalar to
the matrix case. In particular, we establish a disconjugacy theorem for matriz DTO and
then use this theorem to show how to concretely calculate a Brownian isometric extension
for the 2-isometry M4 in terms of the spectral information of A.

Recall from Section 4 that if T € £L(H) is an n-cyclic 2-isometry, then we say that T'
possesses a Wiener-Hopf form if there exists a cyclic n-tuple v = (y1,... ,7vn) for T such
that the matricial DDO (T,7)  has the form,

~ do
6.1 T,v) =—D+f.
(61) (1) = 5D+ b
i.e., f1 = —. Furthermore recall from Theorem 4.18 that any regular 2-isometry possesses

a Wiener—H7T0pf form.

Now, if L is as in (6.1) and if we set A = PL|D™', then A is completely determined
by g, the intercept of L. Furthermore, if 8y € (L%)™", then we may regard A as an
unbounded operator on (H2)™!. Specifically, if w € (L*®)™", recall that the Toeplitz
operator T, : (H?)™! — (H?)™! is defined by

Ty,f = P(wf)

where P denotes the orthogonal projection of (L?)™! onto (H2)™!. It is easy to verify
that if A, is defined on (H?)™?! by

dom (Ay) = {f € (HY)™: f' e (H})™}

(6.2)
Apf=Df+T,f, f€dom(A4,),

then A,, is an unbounded self adjoint operator. Noting the formula,

do de
(6.3) (A, ) (— D+ w—> ()W), 1 € D

2 27
it is clear that the study of n-cyclic 2-isometries that possess a Wiener-Hopf form with
bounded intercept corresponds to the study of the operators multiplication by z on the
form domain of the operators A4,, defined in (6.2).



Accordingly, if w € (L*™)™™ and A, is defined as in (6.2), let us agree to say A,, is
positive (A,, > 0) if
{Awf /Y20 forall fedom(A,).

Let us agree to say that A, is an analytic Dirichlet operator if there exists a positive
constant ¢ such that

(6.4) Ay —e>0.

If A, is positive, define Hi, the form domain of A,,, to be the completion of dom (A,,)

with respect to the bilinear form,

[f’ g]w = <Awf7 g) .

Evidently, using (6.3) and Lemma 3.28, A, is an analytic Dirichlet operator if and only if
the operator M,,, defined densely on H? by

(Myf)(z) = 2f(z), [ €dom(Ay),

is a well-defined bounded operator. Also, in this event, H2 C (H%)™! (here, H? denotes
the classical Hardy space). It should be clear also that if A, is an analytic Dirichlet
operator, then M, is a 2-isometry. If we set A, = Ay, then Proposition 3.41 implies
that

(6.5) [Awfvg]w - <fvg> f:g € H12u'

Formula (6.5) has a very interesting consequence that allows one to see why spec-
tral information about A,, might have interesting model theoretic consequences for the
2-isometry M,,. A priori, the spectrum of A,, consists entirely of eigenvalues of finitc mul-
tiplicity clustering at +oo. Thus (6.4) implies that A, is compactly invertible. Formula
(6.5) is the assertion that
(6.6) At =Ny,

i.e., AyAyh="hforall he H2 and AyAy,h=hforall h € dom (A,).

We begin with a generalization of Lemma 1.2 from [Ag4].

Lemma 6.7. Let w € (L®)™" with w(e®) = w(e'?)* fora.e@. If A, > 0and f1,... , fx €
dom (A,,) with A, fr =0 for each r = 1,...k, then the following are equivalent.

(1) fi,..., fr are linearly independent .

(ii) For each a € D, f1{a),..., fx(a) are linearly independent.



(iii) There exists a € D such that fi(a),... , fr(a) are linearly independent.

PRrROOF. Observe that (ii} = (iii) and (iii} = (i) are tautologies. To see that (i) = (ii)

assume that fq,... , fx are linearly independent. Let o € D and fix ¢;,... , ¢, € C with
k
(6.8) > erfr(e) =0.
r=1

The proof of Lemma 6.7 will be complete once it is shown that ¢, = 0 for each r. Set

k

(6.9) flz) = Z orfr(z), zeD.

r=1
Evidently (6.8) implies that if B(z) is defined by

B(Z)“ Z—«

- — ’
1—az

zeD,

then there exists ¢ € dom (A,,) such that f = Bg. Computing as in the proof of Lemma
1.7 in [Ag4] we find that ¢ = 0. Thus, f = 0, and hence, since f1,..., fi are linearly
independent, ¢, = 0 for each r and the proof of Lemma 6.7 is complete.

Lemma 6.7 has interesting applications for the spectral theory of the covariance op-
erator Anp of an n-cyclic 2-isometry 7. First assume that 7' is an n-cyclic 2-isometry with
cyclic n-tuple v and with (7,7)  in Wiener-Hopf form with bounded intercept w. Thus,
T is unitarily equivalent to M,, acting on H;f,. For « € D and 2 € C" choose k, , € H?
with the property that

(6.10) [f kaww = (fla). 2)en, [ e HE.

There are many ways to deduce the existence and uniqueness of such k, ., but perhaps
the most definitive analysis is provided by (6.5) which implies that

(611) kn,z = A’lugu.m
where s, . is the Szegé kernel for (H?)™! (i.c., so.. = 7=%=7 has the property (f, $a..) =
(f(@),2)cn for f e (HE)™).
Now, first observe that (6.6) implies that
(6.12) ker (A, — p1) = ker (J|Aw]l = D)

where p; denotes the first eigenvalue of A,,. Sccondly, note that if & € D, then

(6.13) feran(M, —«) ifandonly if f(a)=0.



Now assume that fy, ..., fi € ker (||Aw}| — Ay) are chosen to be linearly independent.
By (6.12) and Lemma 6.7 applied to A,,_,,, no nontrivial linear combination of fy,... , fx
vanishes at . Hence, by (6.13), no nontrivial linear combination of f1,..., fi meets
ran (M, — ). Summarizing, we have shown that

(6.14) ker (/||| = D) Nran (My, — a) = {0} .

The assertion (6.14) is an intrinsic statement about the covariance operator of an
n-cyclic 2-isometry in Wiener-Hopf form with bounded intercept. In fact (6.14) is true for
a general nonisometric 2-isometry.

Proposition 6.15. If T is a nonisometric 2-isometry and a € D, then

ker (J|Ar|| — Ar) Nran(T — o) = {0}.

PROOF. We leave as an exercise in algebra the fact that Proposition 6.15 holds when T is
a nonunitary Brownian unitary. If T is a nonisometric 2-isometry with o2 =.||Ar| > 0,
choose a Brownian unitary extension B for T of covariance ¢ (Theorem 5.80). Evidently,

ker (02 — Ar) C ker (02 — Ag),

and
ran (T — o) Cran(B — @).

Since

ker (02 — Ag)Nran (B — a) = {0},

the conclusion of Proposition 6.15 follows.

We remark before continuing that by the manner in which we prove Proposition 6.15
we have shown that the lifting theorem (Theorem 5.80) implies the disconjugacy theorem
(Lemma, 6.7). Conversely, in Theorem 6.20 we shall see how the disconjugacy theorem
implies the lifting theorem.

Our next result bears the same relation to Lemma 1.2 in [Ag4] that the lemma just
proved bears to Lemma 1.7 in [Ag4]. The differences between Lemma 6.16 below and
Lemma 6.7 are that now o € dD (rather than « € D) and the DTO A, is not assumed to
be positive definite.

Lemma 6.16. Let w € (L®)™" with w(e?) = w(e®)* for a.e. €. If fi,.. ,fx €
dom (A,,) with A, fr = 0 for each r = 1,... |k, then the following three statements are
equivalent.

(1) f1,-.. ., frx are linearly independent.



(ii) For cach a € 9D, fi(a),... , fu{a) are linearly independent.
(iii) There exists a € JD such that fi(a), ..., fx(a) are linearly independent.

PROOF. As in the proof of Lemma 6.7, it suffices to prove that (i) = (ii). Accordingly,
assume that fy,... fx are linearly independent. Let @ € JD and fix ¢;,... ,¢x € € such
that (6.8) holds. If f is defined as in (6.9), then, as in the proof of Lemma 1.2 from [Ag4],
there exists g € (H?)™! such that f = (z — «)g. Also as in the proof of Lemma 1.7, the
cquation

0= (Ay(z — a)g, (+a)g)

implies that ¢ = 0. Since g = 0, so also f = 0 and since f1, ..., fi are linearly independent,
we deduce that ¢, = 0 for each r. This concludes the proof of Lemma 6.16.

Lemma 6.7 and 6.16 have many interesting implications for both the theory of first
order Toeplitz operators as well as the theory of 2-isometries. We content ourselves with

the following proposition.

Proposition 6.17. If w ¢ (L=)"", w(e’) = w(e?)* for almost every e € D, and
A, > 0, then dim ker Ay < m. If f1,..., fx € ker A,, are linearly independent, then
file),. .., fula) are linearly independent for cach oo € D™,

Now, Proposition 6.17 will turn out to have a remarkable interpretation (6.24 below)
for the case when T is a 2-isometry of the form T = M,,,. We begin with a characterization
of H2 when w € (L®)™". Note that with our current notation H{ is the direct sum of n
copies of the Dirichlet space.

Proposition 6.18. If w € (L>®)"" and A, is an analytic Dirichlet operator, then there
oxist constants ¢y, ¢y > 0 such that

(6.19) cillela < llella, < ezlielia,

for all p € D™'. In particular, M, is similar to a direct sum of n copies of the Dirichlet
shift, and if F' = (fys) is a matrix of analytic functions with f., € H? for allr,s < m, then
I is a multiplier of H2,

Proor. The latter assertion of the proposition follows from (6.19) and the fact that if
f'e H?, then f is a multiplier of the Dirichlet space.
To prove (6.19) first note that if € D™!, then

4 = (Do, @) + (wp, ¥)
< max {1, [wlleo} llell%, -

llel



Secondly, note that since

(IT=wp, p) <1 —wllelp, )
=11 = wlloo[Dwep, ¢lw
< 1Al = wlleollelly, »
we obtain that
lells, = (Do, @) + (0, @)
= llell%, + (L —w)p, o)
< (1 +[[Aull 11 = wlleo)llell, -

Thus (6.19) holds with c; = max {1, ||w]|e}? and ¢; = (1 + [|Ay]|]J1 — w||so) "% and the
proof of Proposition 6.18 is complete.

The remainder of this section will be devoted to proving the following theorem.
Theorem 6.20. Let w € (L*°)™" be such that w(e'?) = w(e")* for a.e. € and such that

Ay, is an analytic Dirichlet operator with || A, || = o2 (equivalently, the first eigenvalue of
A, is 07%). There exists v € (L%)™" such that

(6.21) v(e)> 02 for ae e?edD,
(6.22) Ay_p >0 and
(6.23) dim ker A,_, =n.

If v € (L*°)™™ is any matrix function satisfying (6.21) - (6.23), then
(6.24) ker A, _, iscyclic for M, .

Furthermore, if v € (L>)™" is any matrix function satisfying (6.21)-(6.24), if f1,..., fa
is any basis for ker (A, _,) and if B is defined by

df
b= /@ By 40

then B has covariance o and the slope and intercept sequences of (My; f1,. .. , f.) and

(B;/@ [meigﬁofl(ew)} o), [v(e""ﬁofn@’“} )



are the same. In particular, M,, has an extension to a Brownian unitary of covariance .

The remainder of this section will be devoted to the proof of Theorem 6.20. We first
construct an element v € (L*)™" with the properties (6.21), (6.22) and (6.23). Once
this is accomplished we invoke Proposition 6.17 to deduce that if n vectors fy,... , f, €
ker (Ay—,) are chosen linearly independent, then (fi,..., fu) is a cyclic n-tuple for M,,.
Finally, the proof of 6.20 will be completed by a direct calculation using the formulas

(6.25) Apfr=Plf,) r=1,...,n.

To construct v € (L®)™" with the desired properties we shall proceed by induction
using the following simple perturbation lemma.

Lemma 6.26. Suppose u € (L>®)"" A, > 0 and dim ker A, = k. If0 < k < n, then
there exists v € (L*)™™ such that
v >0,

Aufn = 0 »

and
dim ker A4,_, > k.

PROOF. Let fi,...,fr span ker A,. Let P(e*®) denote the orthogonal projection of
C™ onto {f1(e), ...  fe(@)}E € €™ Thus, P € (L), P(e) > 0 for almost every
¢ € 3D (in fact, P is continuous) and

ran Tp Cran A, .

By the discreteness of the spectrum of A,, it follows that there exists a largest positive
constant t such that
tTP < Au .

The proof of Lemma 6.26 is completed by letting v = tI°.
The existence of v € (L°°)™" satisfying (6.21), (6.22) and (6.23) now follows by
considering the following set S:

S ={k>1: there exists v € (L>)™" such that (6.21) and (6.22) holds and such that
dim ker A, = k}.

First note that (6.6) implies that o~2 is the first eigenvalue of A,,. Hence if v is defined
by v(e*?) = o2, then (6.21) and (6.22) hold. Thus, dim ker A, _,-» € S. On the other
hand, Lemma 6.26 asserts that if 1 < & < n and k € 5, then there exists k; > k with
k1 € §. Finally, Proposition 6.17 asserts that if £ € S, then £ < n. Hencen € S and a v
with the desired properties exists.



Now assume that v € (L°)™" is any matrix function satisfying (6.21)-(6.23). Choose
n vectors f, € (H?)™! with ker A,_, = \V{f-: 1 <r <n}. We claim that (fi,..., fn)
is a cyclic n-tuple for M,,. First observe that since f. € (H?)™!, Proposition 6.18 implies
that f, is in fact an element of H2. Now let f.;(2) denote the s*" component of f,(z) and
define F' € (Hol(D))™™ by
F(z) = (frs(2)) .-

Since f! € (H?)™!, F € C(D~)™", and Propositions 6.17 and 6.18 imply that F~! is a
multiplier of H2. Since F~!f, = e, (where the jth component of e, is 0 if j # r and is
the constant function 1 if j = r), we deduce that (f,) is a cyclic n-tuple for M,,.

We now conclude the proof of Theorem 6.20. Let v € (L*°)™" satisfy (6.21)-(6.23),

fix a basis fi1,..., f, for ker Ay_,, and define a Brownian isometry B by the formula,
de
B:/B(le)—% 0 9"
e U € 2
If vectors zy, ... ,x, are defined by

then a straightforward calculation using formula (6.25) gives that

<Bkl'ra:1:s> = <M1lf;frafs> , and
(6.27) { (BpB 2, 1,) = (D, ME Sy, £2)

Now, if f = (f,) and = = (z,), then (6.27) implies that (B,z) = (M,, f) . Hence since f
is a c¢yclic tuple for M,,, Theorem 3.49 implies that there exists an isometry L such that

LT =BL , and

6.28
( ) L(f,) =z, , foreach r.

We claim that cov (B) = . To see this simply note that (6.21) implies that
cov (B) < o, and (6.28) implies that cov (B) > 0.

Finally, we note that (6.28) implies that T has a Brownian isometric extension of
covariance o. A Brownian unitary extension of covariance o for T is obtained by an
application Proposition 5.79.

§7. Another proof of the Lifting theorem

In this section we shall show how to prove Theorem 5.80 using the disconjugacy results
of the previous section. This proof of Theorem 5.80 is considerably more involved than the
algebraic proof given in Section 5 and imparts correspondingly more structural information.
It was the way the theorem was originally discovered and proven and the proof technique



has considerably greater power than is present in the proof given in Section 5. This proof
technique involves an application of the Arveson extension theorem for completely positive
maps [Arvl, Arv2] to a certain self adjoint subspace H, of a C*-algebra C, that is defined
in a concrete way using the one parameter family of Brownian shifts B, ... Specifically,

de
C, is the C*-subalgebra of £ (/ (H2 P (C) %> generated by ¢, where ¢, is defined by

' de
Co — / Bg’cze —
o 27

and H, is the self adjoint subspace of C, generated by
+J 7 T
{cc,cL7 : Z,jZO}

It turns out that an operator B € L(H) is a Brownian unitary of covariance o if and
only if B = (¢, ) for some unital *-representation of C, on H (Lemma 7.9). This fact then
allows one to see via work of Stinespring [Sti] and the work of Arveson earlier referred to
that an operator T has an extension to a Brownian unitary of covariance o if and only if
the map

(7.0) H, > h(ey) — h(T)

is completely positive. Thus, modulo C*-algebra the spatial question of whether or not
every 2-isometry lifts to a Brownian unitary reduces to the analytical question of whether
or not the map defined in (7.0) is completely positive whenever T is a 2-isometry of
covariance o (Theorem 7.12). This idea of using C*-algebra to reduce lifting questions to
concrete analytical issues was first used in [Agl] to show that 3-symmetric operators have
extensions to jordan blocks. Other applications of the proof technique have been in the
following papers: [Ag2], an application to coanalytic models; [Ag5], an application to sub
n-normal operators; [Ag6], an application to hypercontractive and subnormal operators;
[AgT7], an application to annular spectral sets; [M1], [M2], applications to 3-isometries
and subbrownian operators; [F], an application to polynomially subnormal tuples; [C-P],
an application to polynomially hyponormal operators; [St], an application to isosymmetric
operators.

The remainder of the section is devoted to establishing that indeed the map defined
in (7.0) is completely positive. A first observation is that it suffices to show completely
positivity in the case where T is a finitely cyclic 2-isometry T (Reduction 1 below). It
turns out that the complete positivity of (7.0) in this case is stable under the convolution
operation on the underlying DDO of T' introduced in Section 4 (Reduction 2 below). This
latter question is then resolved by a direct calculation using Theorem 6.20.



For m and n positive integers, let C™"{z, y] denote the polynomials in z and y with
m % n matrix coefficients. If

h= Z cijyjmi € C™" [z, y)

and a is an element of a C*-algebra A with unit, then define h(a) € A™" (here, A™" is
the space of m x n matrices with entries in A) by

(h(a))rs = Z (cl-j)rsa*’ai , 1<r<m, 1<s<n.
1,7

We record for future use that with this notation the following facts hold. Let H be a
complex Hilbert space. Let T € £L(H) and fix h € C™™[z, y].

(7.1) If m: L(H) — L(K) is a unital *-representation then h(n(T)) =
(id,, ©o m)(R(T)).

(7.2) If M C H is invariant for T, then h(T| M) = Pygmh(T) | M.

Furthermore, if for f € C™"[x,y], we define f € C™™[z,y] by setting
flzyw)=flw,2)" , zweC

then

(7.3) WTY* =hn(T),

and

(74) If feC"™[a] and v e H™ then (R(T)f(T)y, f(T)y) = {(f hf)(T)v, 7).

In (7.4), f(T)vy is defined as in (3.43). Now if L € DDO", let u denote the matrix
distribution on the torus defined in (3.36), and then define a matrix distribution u;, by
setting

(7.5) ur(p) =ulp”™) , €D

[t is casy to sce using (3.36) and the definition of L, that u),, = (ur);. Consequently, one
also sees that if w € D, then

(7.6) Ups, = W * UL, .



Lemma 7.7. If T € L(H) is an m-isometry, v € H™!, and L = (T, v)A, then
(MT),7) = ur(h(e®, e 1))
for all h € C""[xz,y].

PrROOF. If p,9 € CY™[z], then ¢ ¢ € C™"[z,y]. Furthermore, polynomials of the form
¥ span C™"{z,y]. Hence by linearity it suffices to establish Lemma 7.7 for the case when
h =1 ¢. Let u be the distribution of (3.36). Calculating, we find that

1

(R(Tyy,7) = (¥ )T, )
{(@(T)y, »(T))
=L{e")(¥™)

u(p” (e®)yT(e2)*)
= u((P(e®) ("))
ur (Y(e%) p(e))
ur (¥ (e7%%)p(e’))
L(h(e®, e7)),

I
%

I
o

4

which establishes Lemma 7.7.
The proof of Theorem 5.80 will be accomplished by a concrete application of the
following abstract result from [Ag2, Ag3].

Theorem 7.8. Let C be a C*-algebra with unit and fix c € C. An operator T € L(H)
has the form

w(e)|H

where 7 : C' — L(K) is a unital x-representation (i.e., 7 Is an algebra homomorphism,
7(z*) =n(x)* forallz € C, and n(1) = 1), K 2 'H, and H is invariant for w(c) if and only
if h(T) > 0 whenever m > 1, h € C™™[z,y] and h{c) > 0.

Theorem 7.8 is applied in our present circumstance as follows. Define
¢ €L (_/’m H? @C%) by
' de
Co = B, ci0 —,
Ja 2
and let C, denote the C*-subalgebra of £ (fep H2qC g—ﬁ) generated by ¢,. With the

definitions above, the operators #«(c) in Theorem 7.8 consist precisely of the Brownian
unitaries of covariance o.



Lemma 7.9. B € L(H) is a Brownian unitary of covariance o if and only if therc exists
a unital *-representation r: C; — L(H) such that n{c,) = B.

Proor. First note that Theorem 5.20 implies immediately that #{c,} is a Brownian uni-
tary of covariance ¢ whenever 7 is a unital *-representation. Conversely, if B € L(H) is a
Brownian unitary of covariance o, then by Definition 5.11, there exists a positive measure
1 supported on dD and a measurable multiplicity function ny such that

o,e'?

(7.10) B / B™) qu(0) e U
D

Now, notice (using the fact that 8 — h(B, ) is continuous) that ¢, is constructed so as
to have the property,

(7.11) If m > 1 and h € C™™[z,y], then h(c,) > 0 if and only if h(B, .0) > 0
for all 6 € [0, 2n). .

Combining (7.10) and (7.11) we thus arc able to deduce that for each m > 1, if

h € C™™[z,y] and h{c,) > 0, then hA(B) > 0. Consequently, by Theorem 7.8, there
exists a Hilbert space X 2 H and a unital *-representation n: C, — L£{X) such that H
is invariant for 7w(c,) and B = w(c,)|H. Since B and w(c,) are Brownian unitaries of
covariance o, Theorem 5.90 implies that H is reducing for #(c,). Since ¢, generates C,,
H is in fact reducing for m(x) for every = € C,. Hence the formula

molz) =7n(x)|H , z€C,

defines a unital xrepresentation xg : C, — L(H). Since mglc,) = w(es)|H = B, this
concludes the proof of Lemma 7.9.

Accordingly, we obtain the following corollary of Theorem 7.8.

Theorem 7.12. An operator T' has an extension to a Brownian unitary of covariance o
if and only if

(7.13) h{cs)>0=h(T)>0forallm > 1 and all h € C™™[z, y].

We now prove Theorem 5.80. Fix a 2-isometry T of covariance o. By Theorem 7.12
we need to show that (7.13) holds for T.

The proof that condition (7.13) holds for T will consist of a sequence of three reduc-
tions culminating in needing only to establish (7.13) in the case when T is a finitely cyclic
2-isometry possessing a Wiener-Hopf form with bounded intercept. For this special case
(7.13) is established by appeal to Theorem 6.20. A simple fact which we shall require is
the following.



Lemma 7.14. Ifog < o1, m > 1, h € C™™[z,y], and h(cs,) > 0, then h{c,,) > 0.

PrOOF. Let H = j® H:gpC %. By Proposition 5.79 there exists a Brownian unitary B
of covariance o7 such that

Coo =B|H.

Since h{c,,) > 0, Lemma 7.9 implies h(B) > 0. Hence by (7.2), h(cy,) > 0.
For our first reduction we claim that it it enough to show that (7.13) holds when T is
finitely cyclic.

Reduction 1. If (7.13) holds for all finitely cyclic 2-isometries T' of covariance o, then
(7.13) holds for all 2-isometries T' of covariance o.

Proor. Note that if T € L(H), m > 1 and h € C™™[z,y], then
R(T) >0 ifand only if (h(T)y,7) >0 forall ¢ H™?!.

Since by (7.2)
(W(T)v,7) = (WD) N3 7)

it follows that
MT)>0 ifandonlyif A(T|N,)>0 forall veH™™.

Now, let T € L(H) be a 2-isometry of covariance o. If m > 1, and ~,... , v € H,
then T| N, is an m-cyclic 2-isometry of covariance oy < ¢ so that by Lemma 7.14 and
by assumption, (7.13) holds for T |N,. Hence, if m > 1, h € C"™™[z,y], and h(c,) > 0,
h(T|N,) > 0 for all v € H™!. Thus, by (7.15), h(T) > 0. This shows that (7.13) holds
for T and completes the proof of Reduction 1.

Our next reduction uses an approximate identity to approximate the general finitely
cyclic 2-isometry by regular 2-isometries.

Reduction 2. If (7.13) holds for all n-cyclic 2-isometries T of covariance ¢ such that
(T,~) is regular for some cyclic n-tuple v, then (7.13) holds for all n-cyclic 2-isometries
T of covariance o.

Proor. Fix T € L(H) an n-cyclic 2-isometry of covariance ¢ and fix v € H™!, a cyclic
n-tuple for 7.

Let L = (T,7) . set A= PL|D™! and fix an approximate identity {w;} C D (w; >
0). Using (3.25) it is casy to check that if A; is defined by

1
A, =P (L + (D + 1)) |pt
| J



then there exists an ey > 0 such that A; ., is an analytic Dirichlet operator and
cov (Aje) < cov(A) = o for all 5.
Now, if A; is defined by
Aj=w; % Aje,

then Proposition 4.11 implies that A; is an analytic Dirichlet operator and cov (4;) < o.
Since d J ”
€0

— A= A+ 22

dD “ 7 T 4D + j 2w
is weakly definite, Proposition 4.15 implies that A; is regular. Consequently, by the hy-
pothesis of Reduction 2 and Lemma 7.14, (7.13) holds for My, .

We now show that (7.13) holds for T Accordingly, fix m > 1, h € C™™|z,y] and

assume that h(c,) > 0. We need to show that A(T) > 0. Since the vectors of the form
F(T)y are dense in H™* it suffices to show that

(h(T)F(T)y, F(T)7) 2 0

whenever F' € D", But

{(M(T)F(T)y, F(T)y) = {((F hF)(T)y,7) (7.4)
= up,(F hF (e, e %)) (Lemma 7.7)
= lim (w; *uy)(F hF (", e702))
j—oo
= lim uy,.r(F RE(e?, %))
3—00
= lim up, (F hF (', e ) (A; = PL; | DM
j—o0
= lim (A(Ma,)F(Ma,)e, F(Ma, )e)
j—oo

>0.

Thus h(T") > 0 which completes the proof of Reduction 2.

Our final reduction rests on the cbservation that if T is a finitely cyclic 2-isometry
possessing a cyclic n-tuple p such that (T, ) is regular, then by Theorem 4.18 there
exists a cyclic n-tuple ~ for 7 such that L = (T,~)  is in Wiener-Hopf form with bounded

intercept (in fact, smooth). Thus, we obtain the following.

Reduction 3. If (7.13) holds for all T = M, of covariance ¢ where A is an n x n
matricial analytic DTO in Wiener-Hopf form with bounded intercept, then (7.13) holds
for all n-cyclic regular 2-isometries of covariance o.

We now are able to conclude the proof of Theorem 5.80 by observing that in light of
the three reductions that it suffices to prove that (7.13) holds when T'= M4, cov(T) = ¢



and A is an analytic DTO in Wiener-Hopf forin with bounded intercept. By Theorem

6.20, there exists a Hilbert space X 2 H% and a Brownian unitary B € £(K) of covariance
o such that H3 is invariant for B and T = B|Hj. Thus, if m > 1, h € C™™[z,y], and

h{c,

) > 0, then h(B) > 0 and so also by (7.2) h(T) > (. This shows that (7.13) holds for

T and completes the proof of Theorem 5.80.
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