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In the first part of this series [AgSt], a model for operators satisfying the 

iequation t (-l)k(r;:)(T*)m-k Tm- k = 0 was given as multiplication by e </> on a Hilbert 
k=() 

space whosc inner product is defined in terms of periodic distributions. In this paper and 

the next, wc relate this model theory for the ca.'3e when m = 2 to a disconjugacy theory for 

a subclass of Toeplitz operators of the type studied by Boutet de Monvel and Guillemin, 

cla.ssical function theoretic ideas on the Dirichlet space, and the theory of nonstationary 

stochastic processes. 
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Introduct ion 

In this  paper  we shall continue s tudying the bounded linear t ransformat ions  T of a 

complex Hilber t  space 7- / that  satisfy an identi ty of the form 

T*mTrn-  ( 7 ) T * " - ' T m  I + ( 2 Z ) T "  ' T  m-2 . . . .  + ( - - l > m = 0  

for a posi t ive integer rn by specializing to the case of m 2. Opera tors  T satisfying the 

above equat ion are said to be m-isometrics.  

S o m e  notat ion and r e s u l t s  f r o m  t h e  f i r s t  p a r t  o f  t h i s  s e r i e s  [AgSt ] :  We now 

recall a few results  and res ta te  a few definitions from the first par t  of this series. When  

expedient ,  we shall specialize the results and definitions to the case of 2-isometrics. 

If T is a 2-isometry, then A T is defined to be the quant i ty  T*T 1. It  was shown 

tha t  if T is a 2-isometry, then A T is a positive opera tor  and in the case tha t  T is finitely 

cyclic, AT is compact .  

A 2-isometry T is said to be pure if it has no isometric direct summand.  

DDO's  of order m are the objects  which were used in Section 3 [AgSt ]  to give a 

d is t r ibut ional  model  for bicyclic invertible (m+  1)-isometrics. We now res ta te  the definition 

of DDO. 

Let 7) C~176 the Prechet space of infinitely differentiable functions on the unit  

circle. Let 7)' denote the dual  of 7), the space of dis tr ibut ions on the circle. 

We define a linear opera tor  D:  7) -+ D via the formula 

l d  
D~ 7 7 ~ .  

Now recall tha t  if/3 E D '  and E 7) then ~0/3 E 7)' can be defined by 

~/3(~) =/3(~v;),  e 7). 

Thus, if/3 E D' ,  /3 can be regarded natural ly  as a map /3 :  7) 79' by defining 

/3(~) ~/3. 

Definit ion A distribution differential operator" DDO of order 0 is a map  L : 7) 7)' tha t  

has the form L =/3o for some/3o E/)% /30 r 0. A distribution differential operator DDO 

of order 1 is a map  L : 7) D '  tha t  has the form L = /31D +/3o where/30, /3a E 7)' and 

/31 r 
If L is a DDO and p , ~  E 79, let us agree to define ~bL~: 7) 7)~ by 

(~bL~) (X) ~bL(~X), X E 7). 
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W i t h  this definition observe tha t  if L is a DDO of order m and % ~b E 79, then ~bL~ is a 

DDO of order _< m. The formal derivative of a DDO or order 1 is defined as follows. 

d 
D e f i n i t i o n  If L = /31D +/30 is a DDO of order 1, then we define the DDO d-D L by set t ing 

d 
- - L = / 3 1 .  
dD 

D T O ' s  of order m are the objects  which were used in Section 3 to give a d is t r ibut ional  

model  for cyclic (m+l) - i somet r ies .  We now resta te  the definition of DTO. 

Define Da C D by 

7 ? a = { q o E T ) : ~ p ( n ) = 0  if n < 0 } .  

We let P denote the  canonical project ion of 7? onto 77a defined by 

(P~) (n)= ~ - 
n < 0 

In like fashion, let 79" denote the space of analyt ic  dis tr ibut ions defined by 

7?'a={UED':u^(n)=O if n < O } .  

7?" can be regarded as the space of boundary  values of analyt ic  functions on I[3 whose power 

series coefficients form a t empera te  sequence. We let P denote the canonical projec t ion  of 

D '  onto 77'a defined by 

{ u^(n) n > 0  
(P~)(~)= 0 n < 0  

D e f i n i t i o n  A distribution Toeplitz operator (DTO) is a linear mapping A:  7?a - "  79" tha t  

has the  form 

A =  PL[7?a 

for some DDO L. If A is a D T 0 ,  we define the order of A to be the order of L where L is 

as above. 

If T C s is a 2-isometry and -y E H, then since the uni lateral  ar ray (T<-y, Tk2-y} 

is linear on diagonals  it  is na tura l  to define the slope p and intercept/3 of (T, 7) to be the  

elements of 77' defined by the formulas 

and 

^ f (Tk-4-1-y, T-y) (Tk"/ ,  -y) ]~ > 0 
(k) ~, (T-y,T-k+l-y) ( '7 ,T  k,y) k < 0 

{(T 
k-r,-y> k > 0  

S ( k )  <-y ,T-k-y)  k < 0 

^ 

-
~-

= " 



 

On the other  hand  there exist a pair  of distr ibutions/3o and /31 such tha t  

A P( f l lD  +/30) I ~ .  

Fur thermore ,  the  formulas tha t  relate the above dis t r ibut ions are given by 131 and 

/30 = / 3  + (1 P ) ( D # )  . 

The modell ing of multicyclic (resp., multi  bicylic invertible) rn-isometries requires the 

use of matr ices  whose elements are DTO (resp.,DDO). 

If nl  and n2 are posit ive integers, ~D T M ' n 2  denotes the space of n~ x n2 matr ices  with 

entries in 29. Likewise, let DDO~'n2  denote the space of n l  x n2 matrices with DDO entries 

L ~  with the order of L~.~ < m and let D T O ~  ~'~ denote the space of n l  x n2 matr ices  with 

DTO entries A ~  with the  order of A,-~ < m 

The proof  of the  lifting theorem which is proven is Section 7 requires the use of 2 

classes of DDO (smooth and regular) which were introduced n Section 4. We now res ta te  

these definitions. 

D e f i n i t i o n  If L flieD (e) E DDO ..... , then L is smooth if each fie is a mat r ix  of 

smooth  flmctions. L is regular if L is smooth  and fl,,~ > 0 on 0ID (i.e., the n • n mat r ix  

/3,~(e ~ )  is s tr ict ly posit ive definite for all e i~ E cgD where m = o r d  (L)).  

We remarked above tha t  a dis t r ibut ional  model  for invertible n-bicyclic 2-isometries 

was developed in Section 3 using DDO and DTO. The rest of this in t roduct ion will res ta te  

the no ta t ion  which was used to obta in  

(1) an element of D D O  n,n fl'om an invertible n-bicyclic m-isometry,  

(2) an invertible n-bicyclic m-isometry  from certain elements of D D O  n,' ,  

(3) an element of D T O  n'~ fl'om an n-cyclic m-isometry  and 

(4) an n-cyclic rn-isometry from certain elements of D T O  ~'~. 

If 7-I is a Hilbert  space, T E Z;(~) is an invertible m- isometry  and '7 E is a nonzero 

vector, then '7 is bicyclic for T I V{Tk'7 : k E Z} and so there exists a uniquely a.ssociated 

Dirichlet opera tor  given by Theorem 3.14 (of Section 3). We will denote this  associated 

Dirichlet opera tor  by (T,'7)~. 

If T E s is an m-isometry  and '7 E 7{ one (:an set 

and 

~ = T / ~ .  

With  this setup, T~ is a cyclic m-isometry  and ? is a cyclic vector for T~. Accordingly by 

Theorem 3.23, there  exists a. unique analyt ic  Dirichlet opera tor  A with the proper ty  tha t  

(T~,'7) is uni tar i ly  equivalent to (MA, 1). We shall let (7",'7)~ denote the  unique DDO such 

tha t  A P(T,  "7)^17)~. 
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There is a certain amount of ambiguity in the (T, 7) notation. Observe that  if T C 

s is an invertible m-isometry and 7 C 7-/then according to the remark following the 

proof of Theorem 3.14 (T, 7) ̂  is the unique Dirichlet operator such that  

(~(T)y, r (T, 7)^(~)(r 

for all ~, r 6 D. On the other hand, (T, 7) as just defined in previous paragraph has the 

defining property 

(~(T)7, r A((p)(~) 

(T ,  

for all ~, E Da. Recalling the remark following the proof of Lemma 3.3, we find that  

these two definitions of (T, 7) agree. 

If L > 0 is a DDO, we define the form space of L, H 2, to be the completion of 79 with 

respect to the sesquilinear form [., "]L on D x D given by 

[F, r L(~)(~).  

Specifically, one sets AdL {qo E D:  [p, ~]L 0}, observes by the Cauchy-Schwarz 

inequality tha t  [., "]L induces a inner product on D/.AdL, and lets H~ denote the completion 

of D / M E .  

Likewise, if A > 0 is a DTO, we define the form space of A, H~, to be the completion 

of Da with respect to the sesquilinear form [., ']A on Da • Da given by 

[~, r A(~) ( r  

If L > 0 is a DDO, then one can a t tempt  to define a linear operator M L o n  H~ via 

the formula 

(ML )(e . 

In general, this operator need not be well-defined on D/A/lL and, even if it is, may not 

extend to a bounded operator on H~. The following definition precisely identifies those 

DDO L with the property that  L _> 0 and ML is a well-defined bounded operator. 

D e f i n i t i o n  A Dirichlet operator is a DDO L with the property that  either there exists a 

constant c > 1 such that  

0 < L c 2 c - i ~  e iO 

o r o r d ( L )  = 0 a n d L > 0 .  

Corresponding definitions of positivity for DTO A, a form space of A and M A  o n  H 2 

are given in Section 3. 

The following definition precisely identifies those DTO A with the property that  A _> 0 

and M A  is a well-defined bounded operator. 
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Definit ion An analytic Dirichlet operator is a DTO A with the proper ty  tha t  ei ther there 

exists a constant  c > 1 such tha t  

O<_A-c 2e i~176 

o r o r d ( A ) = 0 a n d A _ > 0 .  

Finally,  If  f~ 7? ~'1, we define ~p* G 7? l 'n by set t ing 

~* ( ~ 1 , . . .  , '~n)-  

Brief Description of Sections 5 through 7: In Section 5 a cer tain class of 2-isometries 

mot iva ted  by s ta t i s t ica l  considerations is introduced,  the Brownian unitaries.  The  irre- 

ducible Brownian unitaries correspond to the t ime shift opera tor  on a scaled Brownian 

motion process and are referred to as Brownian shifts (Definition 5.5). Each Brownian 

shift is de termined by a nonrandom rota t ion angle 0 and a posit ive covariance scalar or. I t  

turns  out  tha t  there is a direct integral  theory for Brownian unitaries (Theorem 5.20), each 

is a direct integral  with mult ipl ic i ty  over angles of Brownian shifts of a fixed covariance ~. 

The scalar cr is referred to as the covariance of the Brownian unitary. Fur thermore ,  the 

Brownian shifts in addi t ion to their appearance  as the t ime shift for perhaps  the  most  ubiq- 

uitous of nons ta t ionary  Gaussian stochast ic  processes have elegent character izat ions  on tile 

level of opera tor  theory (Proposi t ion 5.6) as well as within the field of DDO (Proposi t ion 

5.2). Tim principal  result  of Section 5, tire Lifting Theorem for 2-Isometries (Theorem 

5.80), asserts  tha t  tile general 2-isometry T with [[AT[[ c~ 2 (',an be represented as the 

restr ict ion to an invariant subspace of a Brownian uni tary  of covariance cy. 

The  proof of the Lifting Theorem in Section 5 consists of a synthesis of a proof  of 

the Sz.-Nagy Dilat ion Theorem and a proof of the familiar fact tha t  isometrics possess 

extensions to unitaries,  and in pm-tieular, is purely algebraic in character.  The  original 

proof of tim Lifting Theorem was analyt ic  iir character  and derives from first principles 

the class of objects  tire 2-isometries are to be litZed to (i.e., the Brownian unitaries) .  The 

main analyt ic  content  here is a discongugacy theory for regular first order DDO with L 

coefficients discussed in Section 6 (Lemmas 6.7 and 6.16 and Proposi t ion 6.17). 

A second (:lass of operators  discussed at length in Section 5 is the collection of direct  

irrtegrals with mult ipl ic i ty  in 0 of Brownian shifts with vawin9 covariance which we refer 

to as Brownian isometrics. This  class not only ~z'ises natural ly  in Theorem 6.20 which 

studies tim (~xtensions of 2-isolnetries defined as mult ipl icat ion by e i~ on the form domain 

of Toepli tz oi)erators (i.e., (0.5) with m 1, [~1 dO and/~0 wdo with w G L but  

also arises na tura l ly  in the general theory of Brownian uni ta ry  extensions which is s tudied 

in Section 9. Both  the classes of Brownian unitaries and Brownian isometries possess 

elegant C*-algebraie character izat ions (Theorems 5.20 and 5.48). 

= " ~ 
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= = ~ 



  

~5. B r o w n i a n  s h i f t s ,  B r o w n i a n  u n i t a r i e s  a n d  B r o w n i a n  
i s o m e t r i e s  

In this section, we introduce three special classes of 2-isometries Brownian shifts, 

Brownian unitaries and Brownian isometrics. The introduction of the first and second 

classes is motivated by statistical considerations as described below. 

Let S~ {Xo, X 1 , . . .  } be a discretely observed mean 0 Brownian motion in R scaled 

so as to have covariance, 

E (Xk lXk~)  1 + a 2 rain {kl, k2}. 

If we modify the process by rotating the real axis non-randomly in the complex plane by 

0 radians per unit time, then a new process So,o is obtained with covariance given by 

(5.I) E (Xk~X---~) 2 ei(k~-k2)0(1 + a2 rain {kl, k2}). 

Stat ionary processes are characterized by the fact that  the time shift operator T defined 

on the Hilbert space associated with the process by requiring 

T X ~  Xk+I , k > O 

to be an isometry. What  is the time shift operator on our modified Brownian motion 

process? 

P r o p o s i t i o n  5.2. I f  Ta,o denotes the t ime shift  operator o f  the process Sc~,o, then Ta,o is 

unitarily equivalent to the block operator 

Bongo [ S  a ( l |  
, 0 e iO ] 

acting o n  H 2 C where S is multiplication by z o n  H 2 and 1 | 1 : C -* H 2 is defined by 

(1 o 1)(~)(z)= c, ccC,  z e D  

PROOF. Let 7-I denote the Hilbert space of the process S~,,o. Thus, 7-/ is the completion 

of the formal linear combinations of the variables X o , X 1 , . . .  with respect to the inner 

product  (., .) given by 

(5.3) (Xkl, Xk2 ) E ( X k l  Xk2) .  

We densely define a linear map Uo : 7-/--* H 2 �9 C by requiring that  

I zk  eikO 

(5.4) Uo(Xk) a z Z e iO , 

eikO 

-

= 

= 

= 

= 

= 

~ 

= 

_ 

-



  

for each k > 0. First observe using (5.1), (5.3) and (5.4) that  

(U{}(X]~ 1 ), U o ( X ~ 2 ) )  (X/~;l , X~2) ,  

a formula which implies that  U0 is isometric. Hence go extends by continuity to an isolnetry 

U defined on ~ .  Also, observe that  

V{u0(x~):  k < ~} ( V { ~ :  k < ~,,})ec 

for each n > 0. Thus, U is a Hilbert space isomorphism. 

Finally, note using (5.4) and the block tbrm of B~,,~o, that  

u(xk) (B.s,)~:u(xo) ~: > o. 

Thus, if k _> 0, then 

UT.,o(Xk) : U ( X k + 0  (B~,~ , , )  k+'  U(Xo) 

k 
: B~.,,~,, ( B ~ / , )  u(xo) 

B~.,~,,U(Xk) 

and it is seen that  

UT~,o B~,,~,oU. 

This shows that  U implements a unitary equivalence between f~,o and B~.~,, and concludes 

the proof of Proposition 5.2. 

Proposit ion 5.2 motivates the following defilfition. 

D e f i n i t i o n  5.5. Tile Brownian shift of  covarianee cr (~ > O) and angle 0 is the block 

operator B~,~0 acting on H 2 @ C defined by 

[b' c r ( l ~ l ) ]  
B~ 0 (/) 

The Brownian shift of covariance 0 and angle 0 is the operator nmltiplication by (io acting 

on C. 

It should be clear that Brownian shifts arise naturally in the theory of non-stationary 

random processes. The following proposition makes it clear that  Brownian shifts also arise 

naturally in the theory of 2-isometries. Recall that  if T is a finitely cyclic 2-isometry, then 

AT > 0 and AT is compact. What  are the 2-isometries with rank A~r 1'? 
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P r o p o s i t i o n  5 .6 .  Let T E f~(~) be a 2-isometry. rank A T  1 if  and only i f T  is unitarily 

equivalent to an operator of  the form V (9 B~,,~o (the V summand m a y  be absent) where 

V is an isometry, a > 0 a n d  0 E R. 

PROOF. By T h e o r e m  1.26, T has the  form V (9 To where To is a pure  2-isometry.  Note 

t ha t  since r a n k A T  1, r ank  A T  o 1. By Theorem 1.26, To has the  form 

ac t ing  on  ker A T  o (9 C where W is an  isometry.  Also no te  t ha t  (1.31) in T h e o r e m  1.26 

implies t ha t  

(s .s)  

Using (5.7), we thus  find 

W ' f = 0 .  

T E s 2 (9 H 2 (9 C (9 C) is given by 

T =  S 0 cr 1 
0 1 

0 0 

t hen  T is a 2- isometry  and  rank  A T  2 if b 0 or cr 7~ 0. If b 7~ 0, t hen  ker (T* 1) is no t  

o r thogona l  to ker (T* + 1) a n d  so T is not a direct  s u m  of Brown ian  shifts. P ropos i t ion  

1.25 guaran tees  t ha t  T is a pure  2-isometry. 

0 Ilfll 2 + l c l  2 - 1  " 

Since T~)AToTo ATo, we deduce t ha t  

(5.0) (llfll 2 + Icl 2 1)lcI 2 Ilfll 2 + Icl 2 1. 

Since r a n k  A T  0 1, ATo # 0 and  we conclude from (5.9) tha t  Icl z 1. Let c e i~ 

Now, no te  t ha t  since f E ker W*, in fact W is a pure  i sometry  of mul t ip l i c i ty  1. This  

is because  V { W k f :  k _> 0} is reducing for I/V and  To is pure.  

The  proof  of P ropos i t ion  5.6 is now comple ted  by observ ing  t h a t  if U : H 2 --+ ker A T  o 

is the  Hi lber t  space i somorphism such tha t  U * W U  is the  un i l a te ra l  shift ac t ing  on  H 2 and  

U1 f / I l f l l ,  t h e n  

( u  (9 I )*To(U (9 I)  Bull,~,o . 

Before proceeding,  let us no te  t ha t  there exists a pure  2- isometry  T such t h a t  

r ank  A T  2 and  T is not a direct  sum of two Brownian  shifts. Indeed,  if 

= 

= = 

= 
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-
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As a final characterization of Brownian shifts we now turn to their identification in 

terms of analytic Dirichlet operators. 

Observe that  if B~,r is a Brownian shift and 7 ( ~ )  E H 2 �9 C, then by Theorem 

3.23 there exist an analytic Dirichlet operator A P L  IDa such that  

To compute the slope of L for this special case, simply note that  

/ e~(<-k')~ ( L )  (e'kl~ -'k2~ ) (Definition of slope) 

[AMA(eiklO), eik~O]A (Proposition 3.13) 

,~k~ % B k~ ~ \  (Definition 5.5) : AB~, o l~cr,e~O~ c~,e~O '// 

~ 2 l c l 2 e * ( < - k = ) ~  

so that  # c;21cl2@0. 

The previous calculation turns out to be the whole story. 

P r o p o s i t i o n  5.10. Let T E s be a nonisometric cyclic 2-isometry. T is a Brownian 

shift i f  and only i f  for every 7 E 7-/ either 

(i) the slope of  (T, 7)" is a nonzero point mass or 

(ii) the slope of  (T, ~/)^ is zero and T I V{Tk'Y : k > 0} is a pure cyclic isometry. 

PROOF. If T is a Brownian shift then by the remarks preceding the proposition either (i) 

or (ii) holds for each 3' E ((i) holds if c r 0 and (ii) holds if c 0). Conversely, assume 

that  T is a nonisometric cyclic 2-isometry such that  either (i) or (ii) holds for each 7 c ?g. 

Fix a cyclic vector 7 fbr T. Since T is nonisometric (ii) is false so (i) must hold. Let w~5,,,o 

be the slope of A (T, 7) ̂  (w > 0). Thus, by Proposition 3.13, 

and it fl)llows that  

But, since "7 is cyclic fl)r T, 

d 
(AT ~(T)3', cp(T)3'} A(qo)(~) 

, , , ;1~(r176 , 

her AT _D {9~(T)7: 9~(~ '.'~ 0}. 

codim {99(T)7: 99(e ''~ 0} _< 1. 

= 

= 

= ~--~ 
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~ = 
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= ~ 
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Hence, rank AT < 1 and since T is assumed non-isometric,  in fact, rank AT 1. Apply ing  

Propos i t ion  5.6 we deduce tha t  either T is a Brownian shift or T has the form V | B~,~o 

for some isometry V. The  proof of Proposi t ion 5.10 will be complete once we have ruled 

out the possibi l i ty  of T having an isometric direct summand.  We argue by contradict ion.  

Accordingly,  assume tha t  T V | B~,o for some isometry V. 

We ill'st claim tha t  V is unitary. Since T is cyclic, ind (T) _> - 1 .  But  

ind (T) ind (V) + ind (B~,o) ind (V) 1. 

Hence in(t (V) > 0 and V is unitary. Now, since T is cyclic, so also is V cyclic. Choosing 

.f cyclic for V and applying (ii) with 7 f | 0 gives tha t  V is a pure isometry. This 

contradic t ion concludes the proof of Proposi t ion 5.10. 

In the theory of s ta t ionary  stochastic processes, the one dimensional  process So with 

covariance f]mction 

plays a preeminent  role. The t ime shift opera tor  is jus t  the rank one un i ta ry  [ei~ and the 

central  theorem in the subject  is tha t  every s ta t ionary  process E is an average of these 

one dimensional  processes. Specifically, there  exists a positive measure # such tha t  

/ 
The underlying opera tor  theory consists of two observations. First ly,  in the b i la tera l  case, 

the spectra l  theorem, which asserts tha t  every uni tary  is a direct integral  of rank  1 unitar ies  

(i.e. rank one opera tors  [e':~ Secondly, in the lmilateral  case, the well known fact tha t  

(*.very isoinetry has an extension to a uni ta ry  operator .  

In the theory of 2-s ta t ionary processes, it turns  out tha t  processes with t ime shift 

opera tor  [J~,,,{o play the role tha t  rank one unitaries play in the theory of s ta t ionary  

processes. Thus, a basic question in the theory of 2-s ta t ionary processes would be to 

identify the class of direct integrals of Brownian shifts. This class of opera tors  would play 

tim role fl)r 2-s ta t ionary processes tha t  uni tary  operators  play in the theory of s ta t ionary  

t)rocesses. 

D e f i n i t i o n  5.11 A Bro'wniart ~m.itarw of covariartce 0 is a un i ta ry  operator .  A Brown- 

iar~, "tmitar':q of cova'riance cr > 0 is an opera tor  which is uni tar i ly  equivalent to 

(the U SUlnmand may be absent)  act ing on 7-/(f)f~)(H 2 @ C)(n(~ where U e s 

is unitary,  # is a. nonzero finite positive measure on [0, 2rr) and n: [0, 2re) --+ N U {ee l  is a 

#-me~ksurable mult ipl ic i ty  function. 

A character izat ion of Brownian unitaries can be given in terms of block operators .  

= 

~ 

= = - 

=  



P r o p o s i t i o n  5.12. B is a Brownian unitary of covariance O, if and only if B is unitary. 

B C L;(K) is a Brownian unitary of covariance er > 0 if and only if B has the block matrix 

form 

,5,3, 

with respect to a decomposition/C ]C1 �9  where 

(i) V C s is an isometry, 

(ii) U E Z2(/C2) is unitary, and 

(iii) E : / C  2 K21 is an isometry which maps/C2 onto ker V*. 

PROOF. The first assertion of tile proposition comes directly fi'om Definition 5.11. 

To see the second assertion, first assume that  B E s is a Brownian unitary of 

covariance er > 0 so that  B has the form 

B Uo @ lo ,o alzlt*) 

acting on /C /Co | J'~(H 2 | C)(n(~ where Uo E /2(K:o) is unitary, # is a positive 

measure on [0, 2rr) and n(0) is a #-measurable multiplicity function. If we define 

[ f w : / c o  � 9  (H 2 �9 C)C"(~ (/co �9 (S2)n(~ � 9  C("(~ 
J @  . J |  

by 

~(o) d ,~(o) ~(o) 
W (k(@ .i| {kJ'~176 P(O)) (k@ .fd~ {kj,O}j=l d#(O))@ ./~ {ca,o}j._ l d#(O) 

where 

(here, S E / 2 ( H  2) is the unilateral shift), 

go 0 0] 
W B 0 V ere W 

0 0 U 

then W is a Hilbert space isomorphism and 

= 

-~ 

= 

= 

-~ 

= 

= 



  

and 

n(O) 
(5.16) E(/{cj,o};'(=~ , . 

Since fm C('~(~ onto ker 0 @ ker /3 has the desired 

block form. 

Now suppose that  B is given by (5.13) and that (i), (ii), and (iii) hold. Since E nmps 

KT~ onto ker V*, the subspace Jtdl C K71 defined by 

J~l : V{ykE~2 : 1~" > 0} 

reduces V and V [ Ad~ is unitary. If we set E0 :/C2 --+ ker V* by E0k Ek  for all k }C2 

and define the linear map 

w:  (Ic, e M x ) O H ~  e r 2  -+ (/Cl O M ~ ) O M ~  e7C2 

densely by 

W(x  p(A)y k) : :,: <~ v(v)E, ,y  k 

for x E /(71 @ J~l, P a polynomial and y, k r /C2, then W is a Hilbert space isomorphism 

and 

0 V I J~l W W 0 .A//A GE 1 
0 0 0 0 U 

where E1 :/(:2 --+ H~2 is the inclusion map. By the spectral theorem, there exists a positive 

measure/Z on cOD and a/z-measurable nmltiplicity fimction n(O) such that. 

U ./e ei~ 

acting on fe C(n(~ If L:  H 2 Ic2 @ IC2 ---+ .f@(H 2 @ C)(n(~ is a densely defined 

linear map given by 

n(e) L (p(.~, .I@ {cJ'~176 ./{dj., }3=1 d/z(0,) 

.L{P(A)cJ'e @ dj,o}5~<~ 

then L is a Hilbert space isomorphism and 

. . . .  , 
U ~,~o a#(~)) L. 

= 

= ~ 

~ ~ ~ 

= 

= 

�9 

= 



 

Since E maps onto ker V*, V I]~ 1 @ ~ 1  is unitary. Thus B is uni tar i ly  equivalent to 

~i n(n(O)) . . . .  

and so is a Brownian uni ta ry  of covariance c7. This establishes Proposi t ion 5.12. 

Before continuing we remark  tha t  if B is a Brownian uni ta ry  of covariance cr and if 

-/~1 is defined as in the  proof of Proposi t ion 5.12, then B decomposes as 

(5.17) B U0 �9 B0 

with respect, to 2k41 �9 2k, t~  where Uo is uni tary  and/3o is a Brownian un i ta ry  of (:()variance 

of the  special form 

where V is a pure isometry, U is unitary, and E is a Hilbert  space isomorphism onto ker V*. 

Observe tha t  in the  decomposi t ion (5.17) B0 is exactly the pure par t  of B as defined in 

Definition 1.8. In par t icular ,  a Brownian uni tary  of covariance cr is pure if and only if. it 

has the block form of (5.18). 

We introduce the following notat ion for pure Brownian unitaries.  If B0 has the form 

given in (5.18), then it is well known tha t  V is uni tar i ly equivalent to the opera tor  Mx 

act ing on H~e r V*" This fact together  with the nota t ion we have already introduced fl)r 

Brownian shifts suggests tha t  we define 

(5.19) B ~ E u = [  M ~ "  0 crEJu 

whenever U G L;(K) is a uni tary  opera tor  and E : / C  7-/is a Hilbert  space isomorphism. 

In (5.19), Mx acts on H ~  and 7-t is regarded as a subspace of H ~  in the usual way. We 

note tha t  since dim K dim ? / o n e  can always assume E is the ident i ty  in (5.19). It turns  

out  however to be more convenient to carry E around as a marker. In any event, two tmre 

Brownian unitaries B~E~,u, and B~,c2,u~ are unitar i ly equivalent if and only if Ut and U,~ 

are uni tar i ly  equivalent. 

Now, recall tha t  the spectral  theorem asserts tha t  a uni tary  opera tor  U (defined by 

requiring UU U*U 1) is a direct integral of the rank one operators  [e~:~ Thus, the 

spectral  theorem for un i ta ry  operators  may be thought  of as giving an algebraic charac- 

ter izat ion of the operators  tha t  are unitari ly equiwdent to direct integrals of [e';~ We now 

derive an analogous theorem for Brownian unitaries. 

= 

-~ 

= 

~ = -



 

T h e o r e m  5.20. (SpectrM Theorem  for Brownian  unitaries) L e t  T E E ( ~ ) ,  A 

T * T  I ,  and 0. IIAII f. Suppose  that  a > O. T E s is a Brownian  un i tary  i f  and 

only  i f  

(i) T * 2 T  2 2 T * T  + I O, 

(ii) A ( T T *  I ) A  O, 

(iii) 0 . - 2 ~  is a project ion,  and 

(iv) there exis ts  a pro jec t ion  Q �9 s such that  (0.2 A ) ( T T *  I ) ( o  2 - / k )  

0"4(0 .2 - -  1)0.  

PROOF. To see tha t  (i)-(iv) hold if T is a Brownian unitary, first observe that  if To satisfy 

(i)-(iv), then f .  Tod#(O) satisfies (i)-(iv). Therefore, it suffices to show every uni tary  

and every Brownian shift of covariance 0. satisfies (i)-(iv). This follows directly from 

computat ion.  

Suppose now tha t  (i)-(iv) hold. Since a > 0, A r 0 and so r a n A  r {0}. We claim 

tha t  ran A r 7-{. For if ran A 7-/, then T * T  1 + a 2. Consequently, T v/1 + 0.2 V for 

some isometry V, which would violate (i) since 0. > 0. Summarizing, we have shown tha t  

i f  "]-/1 ker A and 7-f2 (ran A) - ,  then 7f 7-{1 (~ ~t~2 is a nontrivial decomposit ion of 7-/. 

Now, by Theorem 1.26, T has the block matr ix  form 

with respect  to the decomposition 7-I ~1 | 7-/2 where 

(5.22) V C s is an isometry,  

(5.23) 0.2E*E + X * X  I is injective, 

(5.24) 

and 

(5.25) E maps  7-12 

Using (5.21) one obtains the formula 

(5.26) A = [ 0 0  

Thus, (iii) and (5.23) imply tha t  

(5.27) 

X * ( o - 2 E * E  + X * X  I ) X  0.2E*E + X * X  I ,  

densely into ker V*. 

o 

o 2 E * E  + X ' X -  1 

0 .2E*E + X * X  I 0.2. 

= 

=-

- = 

- = 

_ - = 

= = = 

= = = 

= 

-

- = -

" 

- = 



  

Now, (5.24) and (5.27) imply that  X is an isometry and so by another application of (5.27), 

E is an isometry. In particular, note that  (5.26) becomes 

[~176 1 (5.28) /~ 0 c, 2 

Wc claim that  in fact X is unitary. Substituting (5.21) and (5.28) into (ii) gives the 

equation 

cr4(XX * 1) 0. 

Accordingly, X X *  1, and X is unitary. Also, observe that  

(5.29) T T , _  I [VV* + o - 2 E E * -  I crEX*] 
c, X E* 0 " 

Now, substituting (5.28) and (5.29) into (iv) yields the equation 

(5.30) c7 4 [VV*  + cr2EE* 1 0  00] cr4(cr2 1)Q, 

We claim that  (5.30) implies that  

(5.31) VV* + cr'2EE * is invertible. 

If (r 1, then (5.30) implies that  

VV* + cIEE* 1, 

so that  (5.31) holds. If c7 • t, then (5.30) implies that  Q has tile form 

where necessarily Qo is a projection. In particular, we obtain the equation, 

VV* + cr2EE * (1 Q0) + ~2Q0, 

and again w(~ see that  (5.31) holds. 

Summarizing we have shown that  T has the ibrm given in (5.21) where V is an 

isometry, X is Ulfitary, E is an isometry whose range is dense in ker V* (and hence equals 

ker V*), and V*E 0. Hence T is a Brownian unitary and the proof of Theorem 5.20 is 

(:omi)h~te_ 

Theorem 5.20 has the tollowing immediate corollary. 

' 

-

= 

= 

- = -

= 

= 

= -

= 



  

L e m m a  5.32. / f  B �9 s is a Brownian unitary of  covariance and A4 C 7[ is a 

reducing subspace for B, then either B lad is unitary or B lad is a Brownian unitary o f  

covariance or. 

Before giving the algebraic proof of the lifting theorem (Theorem 5.80 below), we 

present another class of 2-isometries which we shall call Brownian isometries. This class 

of 2-isometries arises naturally not only in the analytic proof of the lifting theorem given 

in Section 6 (Theorem 6.20) but also in the theory of minimal lifts considered in Section 

9. 

Note tha t  in the definition of Brownian unitaries the direct integrals were taken over 

Brownian shifts of a constant covariance o. We now consider direct integrals where we 

vm'y both the covariance and angle of the Brownian shifts. 

D e f i n i t i o n  5.33. A Brownian isometry of covariance 0 is an isometry. A Brownian 

isometry of covarianee > 0 is an operator B such that  ~r 2 IIB*B Ill and which is 

unitarily equivalent to 

(5.34) Vo @ /| BtE~,u~dp(t) 

H 2 ICtdp(t) where /2(7[) is (the V0 summand may be absent) acting on 7[ | f~ pc~ | 170 E 

an isometry, # is a nonzero positive measure on (0, cr], Ut E s is unitary for #-a.e. t, 

Et C s is a Hilbert space isomorphism, BtE ,  U~ E s | is given by (5.19) and 

the following two measurability conditions are satisfied: 

(5.35) t H dim K:t is a #-measurable function 

(5.36) If X,~ {t �9 (0, ~]: dim ~t  n}, pn(E)  # ( E  N Xn)  

for all measurable E and for all n �9 N tO {oc}, and ~t l  and KJt~ 

are identified for tl,  t2 �9 Xn, then the maps on X,~ given by 

t Et and t H U t  are #n measurable. (Recall that  t ~-+ Et 

is measurable if and only if t (Etx,  y) is measurable for all 

x and y.) 

As in the case of Brownian unitaries, Brownian isometries can both be expressed in the 

form of block operators (Proposition 5.12) as well as characterized algebraically (Theorem 

5.20). 

P r o p o s i t i o n  5.37. B is a Brownian isometry of  covariance 0 if  and only i f  B is an 

isometry, t3 E f_.(JC) is a Brownian isometry of covariance ~r > 0 if  and only if ~r 2 

I I B * B  111 ~nd B has the block matrix form 

~ 

~ = -

= = = 

~ 

~ 

= 

-



 

with respect to a decomposition IC IC1 @ iC2 where 

(i) V E s is an isometry, 

(ii) g E g(tC2) is ml i tary ,  

(iii) E: /C2 + /C1  is an injective contraction which maps K2 into kerV*, and 

(iv) E * E  commutes with U. 

PROOF. Tile first assertion of the proposition follows directly from Definition 5.33. 

To see the second assertion, first assume that B is the Brownian isometry of (5.34). 

If the operators V, E, and U are defined by the tormulas, 

U / '  Utd/t(t ) , 
a@ 

E ; 1 / and 

V Vo o / M:,d#(t) 
) 

then (i)-(iv) are obtained and B has the desired block form. 

Now suppose that  B has the form given in (5.38) and that  (i)-(iv) hold. If we set 

./Iv~ 1 V { V k E K ~ 2  : k 0 } ,  

then, since V * E  O, 541 reduces V. Thus B decomposes as 

(5.39) I 
V [K~I ~) M1 0 0 ] 

B 0 V ]M1 :rE 

0 0 U 

acting on ]C (/C1 O .A,41) @ J ~ l  @ K72. Furthermore, by construction ran E is (lense in 

ker (V I A41)*. Since E is injective it follows that  there exists a Hilbert space isomorphism 

L:/(72 --+ ker (VlJt41)* and a positive P E s such that  E LP.  Consequently, B is 

unitarily equivalent to an operator of the form 

(5.40) 
0 o] 

Ma 

0 

acting on ]~1 O-A/J1 @ H2 *c2 �9 tO2. Here 1/0 V I/Ca (3 A41 is an isometry. To express (5.40) 
. 1 

in the form (5.34) first observe that  since E*E  conmmtes with U, so also P (E E)5 

commutes with U. Consequently, if we express 

(5.41) P = / ~  td#( t ) ,  

= 

=  

= ~ 

= 

= 

= 

= 

= 

= 



 

acting on 

(5.42) 

then U has the form 

(5.43) 

~2 = Je ~tdp(t) 

u = fr U~d,(t). 

Furthermore, since (5.42) gives a decomposition of the initial space of M~, Mx decomposes 

Ma =/~ M~dp(t). (5.44) 

Combining (5.40)-(5.44) gives the desired resolution of B as a direct integral and concludes 

the proof of Proposition 5.37. 

Before continuing we remark that  if B is a Brownian isometry of covariance cr and if 

A4t is defined as in the proof of Proposition 5.37, then B decomposes as 

(5.45) B v0 �9 B0 

with respect to 541 | 54~  where V0 is an isometry and Bo is a Brownian isometfy of 

covarianee ~r of the special form 

where V is a pure isometry, U is unitary and E is an injective contraction with (ran E) 

ker V*. Observe that  in the decomposition (5.45)/3o is exactly the pure part  of B as defined 

in Definition 1.8. In particular, a Brownian isometry of covariance cl is pure if and only if 

it has the block form of (5.46). 

We introduce the following notation for pure Brownian isometrics. If B0 has the form 

given in (5.46), then it is well known that  V is unitarily equivalent to the operator 54a 

acting on Ht~,rV.. This fact together with the notation we have already introduced for 

Brownian unitaries suggest that  we define 

whenever U E s is a unitary operator, E :  /~ is an injective contraction with 

dense range and E*E commutes with U. In (5.47), 54x acts on H ~  and 7-/is regarded as 

a subspa.ce of H~  in the usual way. 

= 

= 

~ ~ 



  

T h e o r e m  5.48. (Spectral  Theorem tbr Brownian  isometries)  Le t  T E s and A 

T * T  I .  T is a Brownian  i s o m e t i y  i f  and only  i f  

(i) T * 2 T  2 2 T * T  + I 0 

(ii) A ( T T *  I ) A  O 

PROOF. As in the proof of Proposition 5.12, to prove that  (i) and (ii) hold for any Brownian 

isometry, it suffices to show that  (i) and (ii) hold tbr every isometry and every Brownian 

shift, facts tha t  follow directly fi'om computation. 

Suppose now that  (i) and (ii) hold. Set (7 =[]A]I�89 If a 0, then T is an isometry 

and so T is a Brownian isometry. Thus assume (7 > 0. As in the proof of Theorem 5.20 if 

7{1 ker A and ~2 ( r an /k ) - ,  then H H1 | H2 is a nontrivial decomposition of 7-{ 

and with respect to this decomposition 

where 

(5.50) V C ~(~~1) is an isometry, 

(5.51) (72E*E + X * X  I is injective, 

X * ( ( 7 2 E * E  + X ' X -  I ) X  (72E*E + X ' X -  I ,  (5.52) 

and 

(5.53) E maps 7-(2 into kerV*.  

Now, by Proposition 5.37, T will be a Brownian isometry provided X is unitary, E is an 

injective contraction and E * E  commutes with X. 

To see that  X is unitary observe that  (5.49) implies the formula 

[~ ~ l (5.54) A (72E*E + X * X  I 

Substituting (5.54) into (ii) yields 

(5.55) ( ( 7 2 E * Z  + X * X  r ) ( X X *  r ) ( ~ 2 Z ~ Z  + X * X  I )  O. 

Since (72E*/~ + X * X  [ is injective, (5.52) implies that  X is injective and (5.55) implies 

that  X is a co-isometry. Thus X is an injective co-isometry, i.e. a unitary. 

= 

-

- = 

- = 

= 

= = = 

-

= 

= - " 

- - = 

-



  

To see tha t  E is an in.jective contract ion observe tha t  since X is unitary,  (5.54) becomes 

[00 01 A c , 2 E . E  

act ing on ker A ~) (ran A ) -  and tha t  by definition a2 IIAII. 
Finally,  to see tha t  E * E  commutes with X note tha t  since X is unitary,  (5.52) becomes 

(5.56) o 2 X * E * E X  o 2 E * E .  

Mult iplying (5.56) on the left by ~r 2X yields 

E * E X  X E * E  

and so X commutes  with E * E .  Thus, T is a Brownian isometry, and the proof  of Theorem 

5.48 is complete.  

Note tha t  Theorem 5.48 has the following immedia te  corollary. 

C o r o l l a r y  5.57.  I f  B s is a Brownian i s o m e t w  o f  covariance and Ad C is a 

reducing subspace  for B ,  then B I M is a Brownian i sometry  of  covariance <_ ~r. 

Tile qual i ta t ive  difference between Corollary 5.57 and Lemma 5.32 is whether  the 

covariance can decrease or not. 

Bel'ore giving ti le algebraic proof  of the  Lifting theorem (Theorem 5.80), we show 

tha t  every Brownian isometry of covariance c, lifts to a Brownian un i ta ry  of covariance cr 

(Proposi t ion  5.79). In section 7, we shall use Proposi t ion 5.79 to coinplete the  analyt ic  

proof  of Th(,,orem 5.80. 

Our  first result  which describes the invariant subspaces of Brownian shifts is a refor- 

mulat ion of Theorem 7 in [Sa]. Observe tha t  if A/l is an invariant subspace for Ba,e~o , then 

M nmst  t)e of one of the following two types. Let us agree to say tha t  A4 is of type I if 

M C H2 | {0} 

Otherwise,  there exists a vector 9 6 H 2 such tha t  

where 

(5.59) Mo (H 2 e {o}) n M 

= 

= 

= 

= 

~ ~ ~ 

-

=  



  

and we shall say that  Ad is of type II. By Beurling's theorem [B] it should be clear that  

to each invariant subspace of type I there exists a unique (up to scalar multiple) inner 

function such 

(5.60) Ad ~ H  2 | {0} 

and conversely any inner function gives rise via (5.60) to an invariant subspace of type I. 

To understand invariant subspaces of type II our first observation is that  in formula 

(5.58) g is uniquely determined by AA provided we require that  

(5.61) [~] s 1 7 4  

According, if Ad is an invariant subspace of type II, we define g34 to be the vector in H 2 

satisfying (5.58), (5.59) and (5.61). In addition we (:an at tach to any invariant subspace 

3,t of type iI  the inner function ~34 such that  

(5.62) Ado ?)34H 2 | {0}. 

It should be clear tha t  the issue of describing the invariant subspace lattice of B~,,~o in 

function theoretic terms is precisely to describe which pairs (g34, ?)34) arise from invariant 

subspaces M of type II. 

P r o p o s i t i o n  5.63. / f a  > 0, 0 �9 [0, 27r) and M is an invariant subspace  for Bcr,e~o o f  t ype  

II, then  ?)34 has a radial l imi t  at e i~ and 

(5.64) 934 a ~ M  (e i~  ?)34 ~34  (e i~ 
Z - -  e i O  

Conversely,  i f?)  is an inner  funct ion such ?) has radial l imi t  qo(e ~'~ at  e i~ and 

(5.65) ~-? ) ( e i~  - e  �9 H2 ' 

then there ex is t s  a unique invariant  subspace  M o f  t ype  H for B~,e~O such tha t  ?)34 ~. 

PROOF. First assume that  3d is an invariant subspace of type II for B~,~o. Let g 934 

and ~a ?)M. Since 

E ll l 1 B,,,~,o L ei~ + 0 �9 A d '  

(5.62) implies that  

(5.66) (z ei~ + cr �9 ~oH 2 . 

~ 

= 

= 

= -

~~ 

= 

= 

= 

= = 

-



  

Furthermore, (5.61) implies that  

(5.67) g / ~ H  2 . 

Now, (5.66) and (5.67) imply that  

zn(  (z e~~ + ~,)g o 

Hence there exists h C H 1 such that  

for n > 0. 

(5.68) ( ( z -  e i~ q- cr)) =_ z h  for a.e. z E DD. 

Taking conjugates in (5.68) and using the identity z e i~ - e i ~  ei~ yields the 

formula 

c r e i ~ 1 7 6  fora.e,  zEOID.  

Hence we deduce that  

h crei~ 

which via (5.68) implies that  in fact 

(5.69) ( (z  e i~ + cr).q ae i~  z g .  

Taking absolute values in (5.69) and using (5.66) yields an inner function ~b such that  

(5.70) (z  e~~ + c, c , ~ r  

Now we claim that  ~b is constant. Noting that  (5.70) implies that  

g O- Z e iO 

we calculate using (5.67) and the identity 

Z - -  e iO 

e i ~  z , Z ,  e i t  E O I D  

Z - -  e iO 

that  if n > 0, then 

~ / z ,  z ei___~ 0 dt  

z e ~ ( ~ r  1) --27r 

- - e i O ~  zn+l(~ ~) 2~ 

_eiO / zn+l~b dt  
27c 

- ~ = 

- = -

= 

- = 

- = 

= - -

= ~ -

- ~~ -

= -

= ~ 



  

Hence ~b is constant .  

The  first assertions of Proposi t ion 5.63 now follow by observing tha t  (5.70) implies 

bo th  tha t  the  radial  l imit of p at e exists (qo(e ~/~) and also tha t  fbrmula (5.64) holds. 

Now assume tha t  qo is an inner function tha t  has radial  l imit ~(e  i~ at  e and tha t  

(5.65) holds. Let 
~ ( ~ )  ~ ( ~ o )  

g s 

and note tha t  if ~4 is defined by 

M = C [ ~ ]  V (99H2 @ {0}) , 

then 3.4 is an invariant  subspace for B~,~{o of type II. Furthermore,  by construct ion ~M 

~. To see tha t  J%4 is unique note tha t  if A/I 1 is any invariant subspace of type  II  such tha t  

~oz4~ ~o, then (5.64) implies tha t  g ~ ,  .q so tha t  J~l J~.  This concludes the proof  

of Proposi t ion  5.63. 

L e m m a  5.71.  /for > 0, 0 E [0, 2re), AT is an invariant subspace for B~,~,o and jr4 is an 

invariant subspace tbr B~,~o of type H, then 

(5.72) JVI c_ AT 

if and only if 

(5.73) gJw (~ 1 E AT. 

PROOF. Since by construct ion gM @ 1 is an element of A/I it should be clear tha t  (5.72) 

implies (5.73). Conversely suppose tha t  (5.73) holds. By (5.58) and (5.62) 

Jbl C(9 @ ]) + (~,mH 2 @ {0}) 

Thus, it suffices to show tha t  9%vl @ 0 C A/'. But, by (5.64), 

c ~ M ( e " ~  <{9 0 ((z  ,~%.q:~ + c,) 0 

: (B~,0 (#0)(g,~ 1) c AT. 

This establishes Lemma 5.71. 

The  preceeding lemma in addi t ion to identifying tile order s t ructure  fbr Lat  (B,,,~{,,) 

immedia te ly  implies tile following result.  

~~ ~~ = 

~~ 

= _ ~ 

= 

- = = 

-- ~  

= -- ~ 

- ~ 



  

C o r o l l a r y  5.74.  I f  > 0, 0 r [0, 21r), and 54 is an invariant subspace for B~,~,o of  type 

II, then 9 ~  | 1 is cyclic for B~,r ]54. 

By Propos i t ion  5.6 if B~,~o is a Brownian shift and M is an invariant subspace for 

B~,~,o of type  II, then a priori  

dim ran AB , ~  I.A 4 1. 

The  following proposi t ion identifies the space ran AN ,~{e IA d. 

Proposition 5.75. I f  > 0, 0 E [0, 2rr) and 54 is an invariant subspaee for B~,~o of type 

11, then 

(5.76) ran /k B 0 I:~ C ( g ~  | 1). 
a , e  z 

Nzrthermore, B~,~o 1 54 is a Brownian shift of covariance, 

(7  

(5.77) (1 + IlgMll2)�89 

and of  angle 0. 

PROOF. Let t, (1 + IIg:~[12)} and note by definitions of gM and qoM tha t  

gM O 1  
, qo :~ |  z ~ |  

/ J  

is an or thonormal  basis for 3.4. Since 

AB ,0 = ~ 2 ( 0 r 1 6 2  

A B  e~o 13,1 ~283A(0@ 1) @ P M ( 0 @  1) 

~2 g A 4 |  9 ~ |  
( ~  

//,2 /i, /I' 

Hence, (5.76) holds and B~,e~O I JM is a 2-isometry with covariance given by (5.77). Now, 

by Proposition 1.25 and Corollary 5.74, B~,e~O I M is a pure 2-isometry. Since 

rank Z~siA4 I, Proposition 5.6 implies that B~,e,e 17bl is a Brownian shift. 

To see that 0 gives the angle of B~,e~O I J t4 simply observe that if B is any Brownian 

shift and is a unit vector chosen in ran AB, then the angle of B is given by the formula 

e { B ' r , ' ~ > .  

Hence, since 

- - , - - -  B ~ , ~ o  9 M  O 1  , 1 

lJ 1; 11' 

e iO , 

~ 

= 

~ 

= 

' 

= 

= 

- - _ _ - -

=  

~  

~~ = 

~ 

= 



  

the angle of/d(~,,,,0 {AA is 0 and the proof of Proposi t ion 5.75 is cornplete. 

We remark before continuing that  if B is a Brownian shift, then 

dim ker(llAl~[] A,~) 1 and Corollary 5.74 implies that  if ~, is a. unit  vector in 

ke r ( [ [A /~H-  /kl~), then ? is cyclic f~)r B. In Section 8 we stroll prove these facts hold 

tbr an a rb i t r a ry  cyclic pure 2-isometry (Theorem 8.19). 

The  main applica.tion of the previous tbray into the function theory of Brownian shifts 

will lm via Lemma. 5.78 below. Fix cr > 0, 0 6 [0, 2re) and c* C ID. If Ba is defined by 

g - - ( t  
B , ~ ( ~ )  - - - 

( ~ Z  

then note tha t  by Proposi t ion 5.63 a.n invariant subspa.ce .kd~, of type  II  can be defined for 

B,,,,:,, that  satisfies the condit ion 

9ZM. H, , .  

Furt.he, rmor(: (5.(i4) iInI)lies that 

Noting tha t  

()11(! s(}(}s ~]l~ll, 

f l / ,4 , ,  o c  1 (~:r iO 1 OzZ 

Thus, by an apl)lica.tioil of Proposi t ion 5.75 one ot)ta.ins the following lemma. 

L e m m a  5.78. I t  0 (/_ r~o < a and 0 E [0, 2~r), there  ex i s t s  an i s o m e t  W L s 2 (t) C) 

sm:h t h a t  

L B  ...... . ,  B,~, . .~L.  

l~,ecaHing tha.t Brownian isometrics (resp., unit~ries) of cow~xiance cr ~re defined as 

direct iifl egra.ls of Browniaal shifts of cow~da.nce less than or equal to (resp,. equal to) cr it 

slumld be clear tha.t Lenmm 5.78 and the theory of direct integra.ls implies the fidlowing 

result.. 

P r o p o s i t i o n  5.79.  I t  B(i ff s is a, B r o w n b m  i s o m e t  W o f  cova,rianc(~ Cro a n d  Cro < or, 

then  t h e n '  ~'xists a t l i l b e r t  sl)ac(~ ]C, a 13rownbm m ~ i t a w  o f  covarim~ce cr a n d  an i s o m e t w  

L: 7-/ . ]C ,~lu:h t, lmt  

L B o  H L .  

= 

l - -

= 

= 

~ 

= 

= 



  

We now show tha t  Proposi t ion 5.79 holds not jus t  for the general Brownian isometry 

of covariance _< cr but  in fact for the general 2-isometry of covariance _< or, a result  which 

shows tha t  Brownian unitaries play the role in the theory of 2-isometrics tha t  unitaries 

play in the  theory of isometrics. 

T h e o r e m  5.80. / / 'T  is a 2-isometry o f  covariance ~, then T has an extension to a Brown- 

Jan unitary or" covariance ~. 

PROOF. We. will a t t ach  to the  2-isometry T a certain isometry V and a cer ta in  contrac t ion  

C. The  Brownian un i ta ry  extension of T will be constructed from a un i ta ry  extension U 

of V and an isometric di lat ion S of C* 

Let T E L;(~), set 

and let 

( 1 
5 =  1- -  AT 

~0  (ran 5 ) - .  

Define Co: ( ranST)  + (7% e ( ranST))  + tf0 by 

and 

C o ( 6 T z )  ~ x  , z l-t, 

Co [ ~0  @ (ran S T ) -  0. 

To see tha t  Co is well defined and extends by continuity to a contract ion 

C:  7-/o ~ o  

we observe tha t  if z E and y C 7-(o O (ran c~T) , then 

(5.81) ][6Tx + yl[2 I[Co(STx + y)l12 (ATX,  X> + 11Yl[2. 

Also note tha t  (5.81) implies the defect identity, 

(5.82) (8T)*(1 C*C)ST  A T .  

In (5.82), aT is regarded as an opera tor  into 7%. 

Now, set 
1 

~-[1 (ran A ~ ) - .  

1 1 

Let Vo : ran  A ~  ran A ~  be defined by 

1 1 

A ~ T z  E ~ .  V o ( A ~ x )  , z 

~ -

= 

= ~ 

= 

~ 

~ 

_ = 

- = 

= 

~ 

= 



  

Since T*A,rT AT,  Vo is an i somet ry  and hence extends  })y cont inui ty  to an i somet ry  

W: "]-/1 ' H I .  

Now let S* be a. coisometr ic  ex tens ion  of ( '  noting on a sI)a(:e }Co, i.e., ]Co is a Hillmrt 

space con ta in ing  7-/o, S E g(]Co) is an i sometry  such tha t  7-{o is inw~,riant for ,if* and 

(5.83) C 5'* I '~.  �9 

Such a. co isometr ic  ex tens ion  ca.n be ob ta ined  from an isometr ic  d i la t ion of C" [Sz.-N-F]. 

Also choose a Hi lber t  st)ace ]Cj D ']-{1 aIl(| a l l l l i t a i 'y  (f C /~(](~1) SllCh that 'HI is iuvarian! 

for U a,nd 

(5.84) V U l 'g~ .  

Obse rv ing  t h a t  the  ope ra to r s  b' and U above and the  st)ace.~ they  act on can be ml  iH('iallv 

enlarged,  it is clear t ha t  we may  assume tha t  

d i m  (1(71 '1~1 ) d i m  ]v4 

where  

Jr4 ran (1 b 'b '*) '  : ((1 b 'Y*)(ran aT))  . 

• 
Now define E0 : ran  A.~, + (Kt ~ )  (1 HH*)/Co by choosing a Hi lber t  space 

i somorph i sm F :  K1 (> 7-[1 - '  JVl a.nd se t t ing  

EoA.y,a: (1 S S * ) a T : r ,  :~: 7-/ 

&nd 

E0 blot' : ~ l  F .  

Observe  using (5.83) and (5.84) tha t  

1 

IlZoA~,:dl" ((1 HS*)bT:r.  (STx) 

((1 C*C)rST:r, 6T:r} 

( A T : , : ,  ,,) 

Hence,  E0 is an i somet ry  and ex tends  by cont inui ty  to a Hilber t  space i somorph i sm 

E :  J~l ~> (1 - H H * ) K : o  �9 

= 

- ~  

" 

= -

~ ~ -

i 

~ 

= 

= -

= -

-



  

Also note that  

(5.85) 

Now note that 

_1 

acting on/C0@~1 is a Brownian uni tary of covariance ~, and that  the map L: K0@K1 

defined by 
i 

C(x)  ~z �9 -1 AYr x 
o- 

is an isometry. Thus, the proof of Theorem 5.80 will be complete if it is shown that  

(5 . s6 )  L T  B L .  

(5.s7) 

and 

(5.ss) 

To see (5.86) holds note that  the equation has the two components, 

2 

~ T x  S(5x + E A ~ x ,  

1 1 1 �89 
A T T z  U A T z , 

( f  (:r 

for all z C ~ .  To prove (5.87) note using (5.85), (5.83), and the definition of C, that  

5 T x  S S * 6 T z  + (1 S S * ) ~ T x  

• 

S S * 6 T z  + E A ? c x  

! 

S C ~ T z  + E A ~ x  

S ~ z  + EAr~ ,x .  

The proof of' (5.88) follows in a similar fashion using (5.84) and the definition of V. This 

concludes the proof of Theorem 5.80. 

We will close this section with a theorem that  demonstrates tile optimali ty of Theorem 

5.80 in any model theory for 2-isometries based on lifting. Let 5% denote the collection 

of 2-isornetries T with cov (T) < or. Suppose that B c 5c~ is any subcollection with tile 

property that  

(5.89) B E 13 and Ad reducing for B implies that B IAd  C 13. 

We claim that  if B is a collection of operators providing a model for the general 2- 

isometry as in Theorem 5.80 (i.e., every element of 5c~ has an extension to a / 3  B), then 

necessarily B contains the Brownian unitaries of covariance (r. The heart of the mat ter  

rests in the following lemma. 

~ -~ 

= 

= 

= 

-- = -

= -
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= 
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L e m m a  5.90.  / f  T C /2(7-{) is a 2-isometry  o f  covariance rr and Ad C_ 7-{ is an invariant 

subspace  for T such that  T I Ad is a Brownian  uni tary  o f  covariance c~, then Ad reduces T .  

PFtOOF. Let B T IAd. T has the block representa t ion ,  

(5.91) T 

V <rE 

0 U 

0 0 

wi th  respect  to the  decompos i t ion  7-{ ker A n  ~) r an  A u  G 3/12 for some opera tors  X : 

Ad z --* ker A u ,  Y :  Adz  r a n A B  and  Z E s177  Fur the rmore  since B is a Brownian  

un i t a ry  of covariance ~, 

(5.92) V is an  i somet ry ,  

(5.93) V*E O, 

{5.94) r an  V + ran  E ker A B ,  

and  

{5.95) U is u n i t a r y .  

To prove t i le l e m m a  it suffices to show tha t  X 0 and  Y 0. 

Now, c o m p u t i n g  AT, gives 

[0 0 
(5.96) A T  0 ~2 

X * V  c rX*E  + Y * U  

In  par t icu lar ,  since A T  > 0, 

(5.97) X * V  -- O. 

Also, since B is a Brownian  u n i t a ry  of covariance (r, 

ran  5 B  ker (a 2 5 t ~ ) ,  

and  since cr 2 A T > 0 and  B T [ A/I, 

ker (cT 2 At~ ) C ker (cy 2 A T ) .  

c~E*X + U * Y  

X * X  + Y * Y  + Z * Z  I 

= 

= 

-

~ 

=  

= 

= 

= 

-

= -

- - = 



 

Hence, one deduces from (5.96) tha t  

(5.98) a X * E  + Y * U  O. 

Now using (5.96), (5.97) anti (5.98) and the fact T * A T T  A T 0 gives 

!] 0 cr 2 *Y  

0 cr2Y*U 

Hence (5.95) implies tha t  Y 0. 

- 0 .  

To see tha t  X 0 note tha t  since Y 0, (5.98) implies tha t  X * E  0. Hence by 

(5.94) and (5.97), X* 0. This concludes the proof of Lemma 5.90. 

Lelnma 5.90 does not  generalize to Brownian isometrics. Indeed, by Lemma 5.78 

/31,,.~, ~, B2.,,-~ extends  to 13 B2,~,~o (t) B2,~o, but  by Lemma 5.32 every direct  summand  

of 13 is a Brownian unitary. 

We now are able to prove our promised result tha t  the Brownian unitaries give an 

opt i lnal  inodel theory for 2-isometries. 

T h e o r e m  5.99.  F i x  cr > O. If~3 is a subcollect ion o f  .T~ sat is fy ing p roper t y  (5.89) and 

with  the prot)erty  that  every d e m e n t  of has an extension to an d e m e n t  o f /3 ,  t h e n / 3  

contains  tho Brownian  unitaries of covariance or. 

PRoo l  e. Sul)pose /3 C 5c-~ has the propert ies  of the theorem and fix a Brownian uni ta ry  

B of c(wariance or. Evidently, there exists T E/3 and an invariant subspace f14 for T such 

tha t  B TIM. By Lemma 5.90, A4 is reducing for T. Hence by (5.89), B C B. This  

conchldes the proof  of Theoretn 5.99. 

,~6. A Disconjugacy  Theorem for Matricial Toepl i tz  Op- 
erators 

In this section we. shall  generalize tile results of [Ag4] to the  mat, riciM case. If L 

is a DDO and tile coefficients of L are functions, then the DTO A PLITPa  has an 

extension to a densely defined self-adjoint opera tor  on H 2 and this extension is a Toepli tz 

opera tor  ill the sense of Boutet  de Monvel and Guil lemin [M-G] .  In [M-G] ,  working 

on a general  coinpact ,  s tr ict ly pseudoeonvex domain with smooth  boundm'y, the  authors  

establ ish discreteness of spectrunL Fredholm propert ies  and an analysis  of the  asympto t ic  

behavior  of the spec t rum for the class of elliptic Toeplitz operators .  There  is, however, 

another  qual i ta t ive  phenomenon present in the classical theory of elliptic O D E ,  namely 

disconjugacy. In [Ag4] it was shown tha t  the classical disconjugacy theorem for 2rid order 

= 

- = 

= 

= = = 

-

-

~-~ 

= 

= 



 

O D E  (as well as the related Sturm-Liouville phenomena) generalize to the Toeplitz case 

where L has the form, 

L = D + w  

with w C L~(0D) .  This result, which implies that  certain cyclic 2-isometrics possess a 

cyclic vector which is an eigenfunction for L, was then used in [Ag4] to establish Lemma 

6.7 below in the special case where T is cyclic and has a "Wiener-Hopf form" as defined in 

Section 4. In this section we shall generalize the results just described from the scalar to 

the matrix case. In particular, we establish a disconjugacy theorem for matrix DTO and 

then use this theorem to show how to concretely calculate a Brownian isometric extension 

for the 2-isometry -VIA in terms of the spectral information of A. 

Recall from Section 4 that  if T E 12(7-/) is an n-cyclic 2-isometry, then we say that  T 

possesses a Wiener-Hopf form if there exists a cyclic n-tuple ~, (71, . . .  ,%)  for T such 

that  the matricial DDO (T, 7) has the form, 

__dO D + (30. 
(6.1) (T,y)  27r 

i . e . ,  1~1 dO. Furthermore recall from Theorem 4.18 that  any regular 2-isometry possesses 
27r 

a Wiener-Hopf form. 

Now, if L is as in (6.1) and if we set A P L  17P2 '1 , then A is completely determined 

by /40, the intercept of L. Furthermore, if [30 C (L~176 ~''~, then we may regard A as an 

unbounded operator on (H2) hA. Specifically, if w c (L~176 ~'~, recall that  the Toeplitz 

operator T~: (H2) ~'1 --+ (H2) n'l is defined by 

%,,f P ( w f )  

where P denotes the orthogonal projection of (L2) nA onto (H2) ~z,1. It is easy to veri(y 

that  if A~ is defined on (H2) n'l by 

(6.2) 
dom (A~) { f  C (H2)n'l : f ' E  (H2) n'l} 

A,,~f D f  + T.of, f E dom (Aw), 

then A~ is an unbounded self adjoint operator. Noting the formula, 

(dO w dO T)n,  1 
(6.3) (A,,,~, "6}= ~ T D +  2 r r ) (~ ) ( r  9 , ~ b E - - a  

it is clear that  the study of n-cyclic 2-isometries that  possess a Wiener-Hopf form with 

bounded intercept corresponds to the study of the operators multiplication by z on the 

form domain of the operators A~ defined in (6.2). 

= 

~ 

= 

= 
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Accordingly, if w �9 (L~176 n'n and A~ is defined as in (6.2), let us agree to say At,, is 

positive (At, >_ 0) if 

( A w f ,  f ) > _ O  for all f � 9  

Let us agree to say that  A,o is an analytic Dirichlet operator if there exists a positive 

constant c such that  

(6.4) A~, c _> 0. 

If A~ is positive, define H2~, the form domain of A~,, to be the completion of dora (At,) 

with respect to the bilinear form, 

[f,g]~ (At, f , .q) .  

Evidently, using (6.3) and Lemma 3.28, Aw is an analytic Dirichlet operator if and only if 

the operator M~, defined densely on H 2 by 

( M ~ f ) ( z )  z f ( z ) ,  f �9 dom(Aw),  

is a well-defined bounded operator. Also, in this event, H~j c_ (H2) n,1 (here, H 2 denotes 

the classical Hardy space). It should be clear also that  if A., is an analytic Dirichlet 

operator, then M~, is a 2-isometry. If we set A w AM~, then Proposition 3.41 implies 

that  

(6.5) [A~f ,g ]~  (f ,g)  f , g  �9 H ~ .  

Formula (6.5) has a very interesting consequence that  allows one to see why spec- 

tral information about A~ might have interesting model theoretic consequences for the 

2-isometry M~. A priori, the spectrum of A~ consists entirely of eigenvalues of finite mul- 

tiplicity clustering at +oc.  Thus (6.4) implies that  Aw is compactly invertible. Formula 

(6.5) is tile assertion that  

(6.6) Aw 1 A~,, 

i.e., A ~ / k ~ h  h for all h �9 H~ and A ~ , A ~ h  h for all h �9 dom (Aw). 

We begin with a generalization of Lemma 1.2 from [Ag4]. 

L e m m a  6.7. Let  w C (L~176 n'" with w(e  i~ w(eie) * for a.e O. I f  A~  >_ 0 and .fl . . . .  , fk  E 

dora (Aw) wi th  Awf~  0 for each r 1 , . . .  k, then the following are equivalent.  

(i) f l , . . .  , .fk are l inearly independent  . 

(ii) For each a E D, fl(c~), �9 , fk(a)  are linearly independent .  

-
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(iii) There  exists  a E D such that  f l ( a ) , . . .  , .f~.(c,) are linearly independent .  

PROOF. Observe  t h a t  (ii) (iii) and  (iii) => (i) are tau to logies .  To see t h a t  (i) => (ii) 

a s sume  t h a t  f l ,  �9 �9 , fk are l inear ly  independen t .  Let  c, E D and  fix C l , . . .  , ck C C wi th  

k 

(6.8) Z o. 
' r ' = l  

The  p roo f  of L e m m a  6.7 will  be comple te  once it is shown t h a t  c,. 0 for each r. Set  

k 

(6.9) f ( z )  Z c.,.f,,(z), z C ID. 

"V= I 

E v i d e n t l y  (6.8) impl ies  t h a t  if B ( z )  is defined by 

B ( z )  1 -  ~ z  z E D , 

t hen  the re  exis ts  g E dora  (A~0) such t h a t  f Bg.  C o m p u t i n g  as in the  p r o o f  of L e m m a  

1.7 in [Ag4]  we find t h a t  g 0. Thus,  f (}, and  hence,  s ince f l , . . .  ,.fk are  l inear ly  

i ndependen t ,  c.,. 0 for each r and  the p roo f  of L e m m a  6.7 is comple te .  

L e m m a  6.7 has  in te res t ing  app l i ca t ions  for t i le spec t r a l  theory  of the  covar iance  op- 

e ra to r  /'~T of an  n-cycl ic  2 - i somet ry  T. F i r s t  a s sume t h a t  T is an n-cycl ic  2 - i somet ry  wi th  
^ 

cyclic n - t up l e  7 and  wi th  (T, 7) in W i e n e r - H o p f  fbrm wi th  b o u n d e d  in t e rcep t  w. Thus ,  

T is un i t a r i l y  equiva lent  to  M~ ac t ing  on H,~,. For ct C ID and  x E C '~ choose k ...... E H,,~ 

wi th  the  p r o p e r t y  t h a t  

(6.10) [f, k~,~]~ (f(et),  x},:,~, f E H 2 . 

T h e r e  are  m a n y  ways to deduce  the  exis tence  and  uniqueness  of such k~, , ,  bu t  p e r h a p s  

the  mos t  def ini t ive  analys is  is p rov ided  by (6.5) which implies  t h a t  

(6.11) k~,,x A,~,.s . . . .  

where  s~.,. is the  Szeg6 kernel  for (H2)  '~'1 (i.e., s ...... 1 ~ o  has  the  p r o p e r t y  (.f, s . . . .  } 

(f(cQ,x}r for f C (H2) '~ ' l ) .  

Now, first  observe  t h a t  (6.6) implies  t h a t  

(6.12) ker (Aw Pl)  ker (IIA,,,II &w) 

where  pl  deno tes  the  first  e igenvalue of A~,. Secondly,  no te  that. if cz E ID, then  

(6.13) .[ 'E ran(~l.,,~ (~) if and  only if .f(c~) O. 

~ 

= 

= 

- ' 

= 

= = 

= 

= 

= 

= 

- = -

- = 



  

Now assume tha t  f l , . .  �9 , fk �9 ker ( I IA~  I I -  zx~) are chosen to be l inearly independent .  

By (6.12) and Lemma 6.7 applied to A ~ _ w ,  no nontrivial  linear combinat ion of f ~ , . . .  , fk 

vanishes at  a.  Hence, by (6.13), no nontr ivial  linear combinat ion of f l , . . . ,  fk meets 

ran (M~ a) .  Summarizing,  we have shown tha t  

(6.14) ker (llZX~ll - / % )  n ran (Mw a)  : { 0 } .  

The assert ion (6.14) is an intrinsic s ta tement  about  the covariance opera tor  of an 

n-cyclic 2- isometry in Wiener-Hopf  form with bounded intercept.  In fact (6.14) is t rue for 

a general  nonisometr ic  2-isometry. 

P r o p o s i t i o n  6 .15.  I f  T is a nonisometr ic  2- isometry  and a E lD, then 

ker (ll/XTII - ~ T )  n ran (T - a)  : { 0 } .  

PROOF. We leave as an exercise in algebra the fact tha t  Proposi t ion 6.15 holds when T is 

a nonuni ta ry  Brownian unitary. If T is a nonisometric 2-isometry with ~2 =.IIATll  > 0, 

choose a Brownian un i ta ry  extension B for T of covariance a (Theorem 5.80). Evidently,  

ker  (0 -2 ~ T )  ker ((72 A B ) ,  

and  

Since 

ran (T - c~) C_ ran (B - a). 

ker (o.2 A B  ) n ran ( B -  a)  { 0 } ,  

the conclusion of Proposi t ion  6.15 follows. 

We remark  before continuing tha t  by the manner in which we prove Propos i t ion  6.15 

we have shown tha t  the lifting theorem (Theorem 5.80) implies the  disconjugacy theorem 

(Lemma 6.7). Conversely, in Theorem 6.20 we shall see how the disconjugacy theorem 

implies the lifting theorem. 

Our  next result  bears  the same relat ion to Lemma 1.2 in [Ag4] tha t  the l emma jus t  

proved bears  to Lemma 1.7 in [Ag4]. The differences between Lemma 6.16 below and 

Lemma 6.7 are tha t  now a E 0ID (rather than  ~t E lD) and the DTO A~ is not assumed to 

be posi t ive definite. 

L e m m a  6.16.  Le t  w C (L ~ )  . . . .  wi th  w(e w(d~  * for a.e. e I f  f l , . . - ,  fk C 

dom (A~,) wi th  AwfT  0 for each r 1 , . . .  , k, then the following three s t a t emen t s  are 

equivalent.  

(i) f l , -  . . . .  fk are linearly independent .  

-

-

-- ~ -
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(ii) For each c~ E OD, f l (cz)  . . . . .  fk(c~) are  l inearly independent .  

(iii) There  ex i s t s  OD such that  f ~ ( c ~ ) , . . .  , fk(c~) are  l inearly i n d e p e n d e n t .  

PROOF. As in the  p roof  of L e m m a  6.7, it suifices to prove tha t  (i) (ii). Accordingly,  

a ssume t h a t  f l , . . ,  fk are l inearly independent .  Let  c, E 0D  and fix c l , . . .  , ck E C such 

tha t  (6.8) hohts. If  J' is defined as in (6.9), then,  as in the  p roof  of L e m m a  1.2 fronl lAg4] ,  

there  exists  9 E (H2)  '~'~ such tha t  .f (z (t).q. Also as in the  p roof  of L e m m a  1.7, the  

equa t ion  

0 (A~ . ( z  c~)g, (z  + a).q) 

implies  t ha t  9 0. Since 9 0, so also f 0 and since f l ,  . �9 �9 , fk are l inearly independen t ,  

we deduce  t h a t  c~. 0 for each r. This  concludes t i le p roof  of L e m m a  6.16. 

L e m m a  6.7 and 6.16 have m a n y  in teres t ing  impl ica t ions  for b o t h  the  t heo ry  of first 

()rder Toei) l i tz  ope ra to r s  as well as the  theory  of 2-isometries.  We con ten t  ourselves  wi th  

the  fol lowing I)roposit ion.  

P r o p o s i t i o n  6 .17 .  I f  w C (L '~) ...... , w(e  ';~ w(e~~ * for ahnost  every  e i~ E 0D, and 

A~,, > O, th(~n d im ker Aw <_ n. I f  f l , . . .  , .fk C ker Aw are  l inearly  independent ,  then 

./'1 ((~) . . . . . .  /'~:((~) are  l inearly independent  for (!ach oz C D - .  

Now, P ropos i t i on  6.17 will tu rn  out  to have a r emarkab le  i n t e rp re t a t i on  (6.24 below) 

t})r the  case when  T is a 2- isometry  of the  form T Mw. We begin  wi th  a cha rac te r i za t ion  

,,f H~2,, when 'm E (L~176 '~'''. Note  tha t  wi th  our current  no t a t i on  H~ is t i le d i rect  s u m  of n 

(:opics of the  Dir ichle t  space. 

P r o p o s i t i o n  6 .18 .  H w (L~ ~'''' and A~,, is an analyt ic  Dirichlet  operator,  then there 

(,xist cons tan t s  (:~, c.) > 0 sm:h that  

(6.19) 

tbr all C ~'~"~. In particlflar, M~,, is s imilar to a direct  sum o f  n copies o f  the  Dirichlet  

.~hift, and i f  F (f,.~) is a m a t r i x  of" analyt ic  fhnct ions  wi th  .f~'.~ E H 2 for all r, ,s < n,  then 

F is a mul t ip l ier  o f  H~2,,. 

I)l~oov. T h e  l a t t e r  asser t ion of the  propos i t ion  follows f rom (6.19) and  t i le fact  t ha t  if 

.['~ C H 2, then  J' is a multiI)lie.r of the  Dir ichlet  space. 

To t)r()ve (6.19) first note  tha t  if E --,.~D""'I, then  
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Secondly, note that since 

((1 w)q), qo} < I11 wlloo<~,~> 

II1 w l loo [ /xw~,  ~]w 

_< II/%11 II1 w l l oo l l ~ l l ~ ,  

we obtain that 

I1~11~ + <(1 w ) ~ ,  ~> 

_< (~- + IIA,,,II II1 w l l o o ) l l ~ l l , ~  �9 

T h , s  (6.19) ho lds w i t h  c~ --  m a x  {1, 11~11oo}�89 and Cl -- (1 + I IAwl l  II1 - w l loo) - �89  and the 

proof of Proposition 6.18 is complete. 

The remainder of this section will be devoted to proving the following theorem. 

T h e o r e m  6.20. Let w E (Lee) n'n be such that w(e i~ w(e~~ * for a.e. e i~ and such that 

A~ is an analytic Diriehlet operator with IIAm II a N (equivalently, the first eigenvalue of 

A~ is cr 2). There exists v E (L~ n''  such that 

(6.21) v(e i~ >_ a 2 for a.e. e i~ E iN) , 

(6.22) Aw-v _> 0 and 

(6.23) dim ker A ~ _ ~  n .  

I f  v E (L ~ )  ...... is any matrix function satisfying (6.21) (6.23), then 

(6.24) ker A~-v  is cyclic for M~ . 

Furthermore, if  v E (L~)  n'n is any matrix function satisfying (6.21)-(6.24), if  f l , . . .  , fn 

is any basis for ker (A~-v) and if B is defined by 

f B~(~,o) �89 dO t 3 - -  ~ ,  

then B has covariance and the slope and intercept sequences of (Mw; f l , . . .  , fn) and 

( B ; / r  [v(eio)Ofl(e~O ) ] d O . ,  0 dO 
2-~"" /| [v(ei~189 i~ ~ )  

- -

= -

-

= -
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are the  same. In particular, Mw has an extension to a Brownian uni tary  of  covariance or. 

The remainder  of this section will be devoted to the proof of Theorem 6.20. We first 

construct  an element v G (L~176 n'n with the propert ies  (6.21), (6.22) and (6.23). Once 

this is accomplished we invoke Proposi t ion 6.17 to deduce tha t  if n vectors f l , . - -  , f,, C 

ker (Aw-,,)  are chosen linearly independent ,  then ( . f l , . . .  , f,~) is a cyclic n-tuph; for M,,,. 

Finally, the proof  of 6.20 will be completed by a direct calculation using the formulas 

(6.25) A , , , f , . = P ( v f , . )  r =  1 , . . . , n .  

To construct  v E (L~176 n ' '  with the desired propert ies  we shall proceed by induction 

using the following simple pe r tu rba t ion  lemma. 

L e m m a  6.26.  Suppose  u E (L ~176 ..... , A~ > 0 and dim ker A~ 

there exists  v E (L ..... such that  

v > O, 

and 

A . . . .  >_ 0, 

dim ker A,, .,, > k.  

k. I f ()  < k < ',, then 

PROOF. Let f l , . - -  , fk  span ker A~. Let P(e  denote the orthogonal  project ion of 

C n onto { f l ( e i ~  f k (e i~  • C_ C '~. Thns, P E (L~176 '~'~, P(e. iO) >>_ 0 for ahnost  every 

e i~ E OD (in fact, P is continuous) and 

ran Tp C_ ran A,, .  

By the discreteness of the spec t rum of A~, it follows tha t  there exists a largest posit ive 

constant  t such tha t  

tTp  < A, , .  

The proof  of Lemma 6.26 is completed by let t ing v tP .  

Tile existence of v r (L ~176 ..... satisfying (6.21), (6.22) and (6.23) now folh,ws by 

considering the following set S: 

S {k _> 1: there  exists v E (L ~176 ..... such tha t  (6.21) and (6.22) holds and such that  

dim ker A ..... , . = k } .  

Fi rs t  note tha t  (6.6) implies tha t  a -2 is the first eigenvalue of A~. Hence if v is defined 

by v(e rr -2,  then (6.21) and (6.22) hold. Thus, dim ker A . . . . .  C S. On the other 

hand, Lemma 6.26 asserts tha t  if 1 _< k < n and k E S, then there exists kl > k with 

kl E S. Finally, Proposi t ion 6.17 asserts tha t  if k G S, then k <_ n. Hence rz G S and a v 

with the desired proper t ies  exists. 
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Now assume tha t  v C (L~176  n'n is any mat r ix  function satisfying (6.21)-(6.23). Choose 

n vectors f~ (H2) n' l  with ker Aw-v V{f~:  1 < r < n}. We claim tha t  ( f l , . - .  , f~) 

is a cyclic n- tuple  for Mw. Firs t  observe tha t  since f" E (H2) n ' l ,  Proposi t ion 6.18 implies 

tha t  f~ is in fact an element of H~. Now let fi..~(z) denote the  s th component  of f i . ( z )  and 

define F E ( H o l ( D ) )  n''~ by 

F ( z )  ( f r s (z ) ) .  

Since f '  E (H2) n ' l ,  F E C(ID-) n'n, and Proposi t ions 6.17 and 6.18 imply tha t  F -1 is a 

mult ipl ier  of H 2. Since F - l f r  er  (where the j t h  component  of e~ is 0 if j r r and is 

the constant  function 1 if j r) ,  we deduce tha t  (f, .)  is a cyclic n- tuple  for Mw. 

We now conclude the proof of Theorem 6.20. Let v E (L~~ n'" satisfy (6.21)-(6.23), 

fix a basis f l , . . .  , f n  for ker A ~ - v ,  and define a Brownian isometry B by the formula, 

B Bv(~'~189176 2-7" 

If vectors X l , . . .  , x,~ are defined by 

X r  - - I  v(~%~ f,,(e% 2~ 

then a s t ra ightforward calculat ion using formula (6.25) gives tha t  

(B%,., ~,} k ( M ; f ~ , f ~ )  , and 
(6.27) ( A B B k x r ,  k 

Now, if f (f~) and x (x,~), then (6.27) implies tha t  (B, x) (M~, f)^. Hence since f 

is a cyclic tuple  for M,~, Theorem 3.49 implies tha t  there exists an isometry L such tha t  

L T  B L  , and 

(6.28) L(.f,,) x,, , tbr each r .  

We claim tha t  coy (B) a. To see this simply note tha t  (6.21) implies tha t  

cov (B) < ~r, and (6.28) implies tha t  cov (B) _> or. 

Finally, we note tha t  (6.28) implies that  T has a Brownian isometric extension of 

covariancc or. A Brownian uni ta ry  extension of covariance a for T is obta ined  by an 

appl ica t ion  Proposi t ion  5.79. 

,~7. A n o t h e r  p r o o f  of  t h e  L i f t ing  t h e o r e m  
In this section we shall show how to prove Theorem 5.80 using the disconjugacy results  

of the previous section. This proof of Theorem 5.80 is considerably more involved than  the 

algebraic proof  given in Section 5 and impar ts  correspondingly more s t ruc tura l  information.  

It was the way the theorem was originally discovered and proven and the proof  technique 
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has considerably greater power than is present in the proof given in Section 5. This proof 

technique involves an application of the Arveson extension theorem for completely positive 

maps [ A r v l ,  A r v 2 ]  to a certain self adjoint subspace H~ of a C*-algebra C~ that  is defined 

in a concrete way using the one parameter fanfily of Brownian shifts B~,,~o. Specifically, 

(/ C~ is the C*-subalgebra of/2 (H 2 | C) generated by c~ where c~ is defined by 

c,, j(,~ B~ ~o dO 
' 27c 

and H~ is the self adjoint subspace of C~ generated by 

: _> 0} 

It  turns out that  an operator B E s is a Brownian unitary of covaria~lce if and 

only if B ~r(c~) for some unital * representation of C~ on 7-/(Lemma 7.9). This fact then 

allows one to see via work of Stinespring [Sti] and the work of Arveson earlier referred to 

that  an operator T has an extension to a Brownian unitary of covariance (r if and only if 

the map 

(7.0) H~ h(c~) h(T) 

is completely positive. Thus, modulo C*-algebra the spatial question of whether or not 

every 2-isometry lifts to a Brownian unitary reduces to the analytical question of whether 

or not the map defined in (7.0) is completely positive whenever T is a 2-isometry of 

covariance ~r (Theorem 7.12). This idea of using C*-algebra to reduce lifting questions to 

concrete analytical issues was first used in [Agl]  to show that  3-symmetric operators have 

extensions to jordan blocks. Other applications of the proof technique have been in the 

following papers: [Ag2], an application to coanalytic models; [Ag5], an application to sub 

n-normal operators; [Ag6], an application to hypercontractive and subnormal operators; 

[AgT], an application to annular spectral sets; [M1], [M2], applications to 3-isometries 

and subbrownian operators; [F], an application to polynomially subnormal tuples; [C-P],  

an application to polynomially hyponormal operators; [St], an application to isosymmetric 

operators. 

The remainder of the section is devoted to establishing that  indeed the map defined 

in (7.0) is completely positive. A first observation is that  it suffices to show completely 

positivity in the case where T is a finitely cyclic 2-isometry T (Reduction 1 below). It 

turns out that  the complete positivity of (7.0) in this case is stable under the convolution 

operation on the underlying DDO of T introduced in Section 4 (Reduction 2 below). This 

latter question is then resolved by a direct calculation using Theorem 6.20. 
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For m and n posit ive integers, let C . . . .  [x, y] denote the polynomials  in x and y with 

rn x n mat r ix  coefficients. If 

h  u.vJx �9 

and a is an elelnent of a C*-algebra A with unit,  then define h(a) E A m ' '  (here, A ..... is 

the space of m x n matr ices  with entries in A) by 

(h,(a))rs (cij)rsa*Oa i , 1 < r  < m ,  1 < s < n .  
i , j  

We record tbr fllture use tha t  with this nota t ion the following facts hold. Let  7-/ be a 

complex Hilber t  space. Let T �9 s and fix h, �9 C ..... Ix, y]. 

(7.1) If re: s --+ s is a uni ta l  , - representa t ion  then h(rc(T)) 

(id,. C,'.) 7r)(h(T)). 

(7.2) I f ~ 4  C_ is invariant for T, then h ( T I M )  P~(~)h(T)I M(n).  

Furthermore ,  if for f C C m'*~[x, y], we define f"  E C n'm[x, y] by set t ing 

f ' ( z , w )  = f ( w , z ) *  , z , w � 9  

then 

(7.3) h(T)* h, ( T ) ,  

and 

(7.4) I t  . f � 9  C ...... [x] and 7 �9 7-/'*'1, then { h ( T ) f ( T ) % f ( T ) @  { ( f ' h f ) ( T ) % 7 ) .  

In (7.4), f ( T ) 7  is defined as in (3.43). Now if L �9 D D O ~  n, let u denote the mat r ix  

d is t r ibut ion  on the torus dcfined in (3.36), and then define a mat r ix  dis t r ibut ion UL by 

set t ing 

(7 .s)  , �9 v " , " .  

[t is easy t() see using (3.36) and tile definition of Lt tha t  ULt (UL)t. Consequently, one 

also sees tha t  if CO ~D, then 

( 7 . { 5 )  'll, w . L  : CO * " l tL  . 
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L e m m a  7.7. / f T  E Z2(~) is an m-isometry, 7 ~ n , , ,  and L (T, 7) ~, then 

(h(T)7,  7> ~zc(h(ei~ e ~o2)) 

for all h E C .... [x,y]. 

PROOF. If ~, C ca'n[x], then E C ..... [z, y]. Furthermore, polynomials of the form 

span Cn,'~[x, Yl. Hence by linearity it suffices to establish Lemma 7.7 for the case when 

h ~ .  Let u be the distribution of (3.36). Calculating, we find that  

(h(T)7,  ~/) ((r ~/) 

(~ (T)~ ,  V,(T)7> 

L(~)(~/S  * ) 

~, ,(~ ( ~ o ~ ) < ( ~ 0 ~ ) . )  

" , l , L ( ~ / ) ' ( e - i 0 2 ) ~ ( ~ ' i 0 1 ) )  

which establishes Lemma 7.7. 

The proof of Theorem 5.80 will be accomplished by a concrete application of the 

following abstract  result from [Ag2, Ag3]. 

T h e o r e m  7.8. Let C be a C*-algebra with unit and fix c E C. An operator T E s 

has the ~brm 

~(~)l~ 

where 7r : C ---* 12(1C) is a unital .-representation (i.e., 7r is an algebra homomorphism, 

7c(z*) 7r(x)* for MIx  E C, and 7r(1) 1), IC D_ ~ ,  and 7-{ is invariant for 7r(c) if and only 

i f h ( T )  > O whenever m >_ l, h E C . . . . .  [z,y] and h(c) > O. 

Theorem 7.8 is applied in our present circumstance as follows. Define 

by 

co / i  B ~ o  dO 
�9 2 7 r  

(. c d~ ) and let C~ denote the C*-subalgebra of s f ,  H2 (> 2~j generated by c~. With  the 

definitions above, the operators or(c) in Theorem 7.8 consist precisely of tile Brownish 

unitaries of covariance or. 
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L e m m a  7.9. B E s is a Brownian unitary of  covariance i f  and only i f  there exists 

a unital ,-representation 7r: C~ ---* s such that 7c(c~) B. 

PROOF. Fi rs t  note tha t  Theorem 5.20 implies immediately tha t  7r(c,) is a Brownian uni- 

ta ry  of covariance whenever 7r is a unital  , - representat ion.  Conversely, if' B E s is a 

Brownian un i ta ry  of covariance o, then by Definition 5.11, there exists a posit ive measure 

# suppor ted  on 0I) and a measurable  mult ipl ici ty function no such tha t  

[ d (O) u (7.10) B .1,o ~'~0 

Now, notice (using the fact tha t  0 ~-* h,(B~,,e~) is continuous) tha t  c~ is const ructed  so a.s 

to have the property,  

(7.11) If m, _> 1 and h E C'~'m[x,y],  then h(c~) _> 0 if and only if h(Br162 >_ 0 

for all 0 E [0, 2~r). 

Combining (7.10) and (7.11) we thus are able to deduce tha t  for each m _> 1, if 

h E C . . . .  [:r,y] and h.(c~) > 0, then h(B) >_ O. Consequently, by Theorem 7.8, there 

exists a Hi lber t  space K _D and a unital  *-representat ion 7r: C~ /2(/C) such tha t  7-/ 

is invariant  for 7c(co) and B 7c(c~) I ~ .  Since B and 7c(c~) are Brownian unitaries of 

covariance or, Theorem 5.90 implies tha t  7-/ is reducing for lr(c~). Since c~ generates C~, 

is in fact reducing for 7r(x) for every x E C~. Hence the formula 

t 0 ( x )  , x 

defines a uni ta l  , - representa t ion  lr0 : C~, s Since lr0(c~) 7r(c~) [ ~  B, this 

concludes the  proof  of Lemma 7.9. 

Accordingly,  we obta in  the following corollary of Theorem 7.8. 

T h e o r e m  7.12.  An operator T has an extension to a Brownian unitary of  covariance 

i f  and onl, y if  

(7.13) h(c~) > O h(T) >_0 for all rn. >_ 1 and all h E C . . . . .  [x,y]. 

We now prove Theorem 5.80. Fix a 2-isometry T of covariance e. By Theorem 7.12 

we need to show tha t  (7.13) holds for T. 

The  proof  tha t  condit ion (7.13) holds for T will consist of a sequence of three reduc- 

tions culminat ing  in needing only to establish (7.13) in the case when T is a finitely cyclic 

2-isometry possessing a Wiener-Hopf  form with bounded intercept.  For this special  case 

(7.13) is es tabl ished by appeal  to Theorem 6.20. A simple fact which we shall  require is 

the following. 
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L e m m a  7.14.  I f  ~o <_ o1, ??1 >_ 1, h E C . . . .  [x ,y] ,  and h(c~,) >_ O, then h(c~o) _> 0. 

a0 By Proposi t ion 5.79 there exists a Brownian uni ta ry  B PROOF. Let 7-I J~ H 2 | C ~ .  

of covariance or1 such tha t  

c ,  0 B I ~ .  

Since h ( c ~ )  > 0, Lemma 7.9 implies h(B) >_ O. Hence by (7.2), h(c~o) >_ O. 

For our first reduct ion we claim tha t  it it enough to show tha t  (7.13) holds when T is 

finitely cyclic. 

R e d u c t i o n  1. If (7.13) holds for all finitely cyclic 2-isometrics T of covariance o, then 

(7.13) holds for all 2-isometrics T of covariance or. 

PaOOF. Note tha t  i f T  E C ( ~ ) ,  m _> 1 and h E C ....... [z,y], then 

h(T) >> 0 if and only if (h(T)~,?) >_ 0 for all 2 C ~_[rr~,l. 

Since by (7.2) 

it follows tha t  

( h ( r ) n , n )  (h (T) l a ;~ )n ,n ) ,  

h(T)_> 0 if and o n l y i f  h(TIN'n) > 0  for all ~/ET-I ....... . 

Now, let T C ( ~ )  be a 2-isometry of covariance o. If m _> 1, and ~/1,... ,7.n~ 7-(, 

then TIA/~ is an m-cyclic 2-isometry of covariance o0 < cr so tha t  by Lemma 7.14 and 

by assumption,  (7.13) holds for TIJV~. Hence, if m _> 1, h, E C . . . .  [x,y], and h(c~) > 0. 

h(ZiArw) > 0 for all ? C  ~,~,1. Thus, by (7.15), h.(T) > 0. This shows that. (7.13) holds 

for T and completes  the proof' of Reduction 1. 

Our next reduct ion uses an approximate  identi ty to approximate  the general finitely 

cyclic 2-isometry by regular  2-isometrics. 

R e d u c t i o n  2. If (7.13) holds for all n-cyclic 2-isometrics T of covariance c, such tha t  

(T, 7)" is regular  for some cyclic rL-tuple % then (7.13) holds for all n-cyclic 2-isometrics 

T of covariance o. 

PROOF. Fix T E /2(7-/) an rz-cyclic 2-isometry of covariance o and fix ~/ E ~ , . . i  a cyclic 

n- tuple  fl)r T. 

Let L (T, 2~)', set A PLIZ~ n'* and fix an approximate  identi ty {aaj} C ~9 (w 3 > 

0). Using (3.25) it is easy to check that  if Aj,~ is defined by 

= 

= 

= 

~ ~ 

= = 



then there  exists an e0 > 0 such tha t  Aj,eo is an analyt ic  Dirichlet opera tor  and  

coy (Aj,~o) _< cov (A) a for all j .  

Now, if Aj is defined by 

Aj wj �9 Aj,co , 

then Propos i t ion  4.11 implies tha t  Aj is an analyt ic  Dirichlet opera tor  and cov (Aj) <_ or. 

Since 
d d eo dO 

dD A j,~o dD A +  - f  2--s 

is weakly definite, Propos i t ion  4.15 implies tha t  Aj  is regular. Consequently, by the hy- 

pothesis  of Reduct ion  2 and Lemma 7.14, (7.13) holds for MA3. 

We now show tha t  (7.13) holds for T. Accordingly, fix m > 1, h E cm'~[x,y] and 

assume tha t  h(e~) > O. We need to show tha t  h(T) > O. Since the vectors of the  form 

F(T)'7 are dense in ~,~,1 it suffices to show tha t  

(h(T)F(T)y ,  F(T)~/) > 0 

m , n  whenever F E / ) ~  . But  

(h (T)F(T)% F(T)"/} ((FVhF)(T)% !/} (7.4) 

UL (FVhF(e i~ , e (Lemma 7.7) 

lim (wj * UL)(FVhF(e i~ c-i~ 
j ~ o o  

lira uwj.L(YVhF(ei~176 
j ~ o o  

^ i 0 1  lim UL~(Fhf (e  ,e ion)) ( d j = P L j l T p ~ , l )  
j ~ o o  

l im (h(MAj)F(MA~ )e, F(MAj )e) 
j ~ o c  

> 0 .  

Thus h(T) >_ 0 which completes the proof of Reduct ion 2. 

Our  final reduct ion rests on the observation tha t  if T is a finitely cyclic 2-isometry 

possessing a cyclic n- tuple  # such tha t  (T, >)^ is regular,  then by Theorem 4.18 there 

exists a cyclic n - tup le  "7 for T such tha t  L (T, 7) ̂  is in Wiener-Hopf  form with bounded  

intercept  (in fact, smooth) .  Thus, we obta in  the  following. 

R e d u c t i o n  3. If (7.13) holds for all T MA of covariance a where A is an n x n 

matr ic ia l  analyt ic  DTO in Wiener-Hopf  form with bounded intercept ,  then (7.13) holds 

for all n-cyclic regular  2-isometrics of covariance a. 

We now are able to conclude the proof  of Theorem 5.80 by observing tha t  in light of 

the  three reduct ions tha t  it suffices to prove tha t  (7.13) holds when T MA, cov (T) cr 

= 

= 

= 

= 

= -~~ 

= 

= 

= 

= 

= 

= 

= = 



and A is an analytic DTO in Wiener-Hopf form with bounded intercept. By Theorein 

6.20, there exists a Hilbert space/C _D H~ and a Brownian unitary B s of covariance 

cr such that H~ is invariant for B and T B ] H~. Thus, if m >_ 1, h. E C ...... [x, y], and 

h.(c~) _> 0, then h(B) >_ 0 and so also by (7.2) h(r) >_ O. This shows that (7.13) holds for 

T and completes the proof of Theorem 5.80. 
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