
M-LVC: Multiple Frames Prediction for Learned Video Compression

Jianping Lin Dong Liu∗ Houqiang Li Feng Wu

CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System,

University of Science and Technology of China, Hefei 230027, China

ljp105@mail.ustc.edu.cn, {dongeliu,lihq,fengwu}@ustc.edu.cn

Abstract

We propose an end-to-end learned video compression

scheme for low-latency scenarios. Previous methods are

limited in using the previous one frame as reference. Our

method introduces the usage of the previous multiple frames

as references. In our scheme, the motion vector (MV) field is

calculated between the current frame and the previous one.

With multiple reference frames and associated multiple MV

fields, our designed network can generate more accurate

prediction of the current frame, yielding less residual. Mul-

tiple reference frames also help generate MV prediction,

which reduces the coding cost of MV field. We use two deep

auto-encoders to compress the residual and the MV, respec-

tively. To compensate for the compression error of the auto-

encoders, we further design a MV refinement network and a

residual refinement network, taking use of the multiple ref-

erence frames as well. All the modules in our scheme are

jointly optimized through a single rate-distortion loss func-

tion. We use a step-by-step training strategy to optimize the

entire scheme. Experimental results show that the proposed

method outperforms the existing learned video compression

methods for low-latency mode. Our method also performs

better than H.265 in both PSNR and MS-SSIM. Our code

and models are publicly available.

1. Introduction

Video contributes to 75% of all Internet traffic in 2017,

and the percent is expected to reach 82% by 2022 [6]. Com-

pressing video into a smaller size is an urgent requirement

to reduce the transmission cost. Currently, Internet video is

usually compressed into H.264 [29] or H.265 format [21].

New video coding standards like H.266 and AV1 are up-

coming. While new standards promise an improvement in

∗This work was supported by the National Key Research and Develop-

ment Program of China under Grant 2018YFA0701603, and by the Natural

Science Foundation of China under Grants 61931014 and 61772483. Code

and models are available at https://github.com/JianpingLin/

M-LVC_CVPR2020. (Corresponding author: Dong Liu.)

compression ratio, such improvement is accompanied with

multiplied encoding complexity. Indeed, all the standards

in use or in the way coming follow the same framework,

that is motion-compensated prediction, block-based trans-

form, and handcrafted entropy coding. The framework has

been inherited for over three decades, and the development

within the framework is gradually saturated.

Recently, a series of studies try to build brand-new video

compression schemes on top of trained deep networks.

These studies can be divided into two classes according to

their targeted scenarios. As for the first class, Wu et al. pro-

posed a recurrent neural network (RNN) based approach for

interpolation-based video compression [30], where the mo-

tion information is achieved by the traditional block-based

motion estimation and is compressed by an image compres-

sion method. Later on, Djelouah et al. also proposed a

method for interpolation-based video compression, where

the interpolation model combines motion information com-

pression and image synthesis, and the same auto-encoder is

used for image and residual [7]. Interpolation-based com-

pression uses the previous and the subsequent frames as

references to compress the current frame, which is valid in

random-access scenarios like playback. However, it is less

applicable for low-latency scenarios like live transmission.

The second class of studies target low-latency case

and restrict the network to use merely temporally previ-

ous frames as references. For example, Lu et al. pro-

posed DVC, an end-to-end deep video compression model

that jointly learns motion estimation, motion compression,

motion compensation, and residual compression functions

[14]. In this model, only one previous frame is used for

motion compensation, which may not fully exploit the tem-

poral correlation in video frames. Rippel et al. proposed

another video compression model, which maintains a latent

state to memorize the information of the previous frames

[18]. Due to the presence of the latent state, the model is

difficult to train and sensitive to transmission error.

In this paper, we are interested in low-latency scenar-

ios and propose an end-to-end learned video compression

scheme. Our key idea is to use the previous multiple frames

3546

as references. Compared to DVC, which uses only one

reference frame, our used multiple reference frames en-

hance the prediction twofold. First, given multiple refer-

ence frames and associated multiple motion vector (MV)

fields, it is possible to derive multiple hypotheses for pre-

dicting the current frame; combination of the hypotheses

provides an ensemble. Second, given multiple MV fields, it

is possible to extrapolate so as to predict the following MV

field; using the MV prediction can reduce the coding cost of

MV field. Therefore, our method is termed Multiple frames

prediction for Learned Video Compression (M-LVC). Note

that in [18], the information of the previous multiple frames

is implicitly used to predict the current frame through the la-

tent state; but in our scheme, the multiple frames prediction

is explicitly addressed. Accordingly, our scheme is more

scalable (i.e. can use more or less references), more inter-

pretable (i.e. the prediction is fulfilled by motion compen-

sation), and easier to train per our observation.

Moreover, in our scheme, we design a MV refinement

network and a residual refinement network. Since we use

a deep auto-encoder to compress MV (resp. residual), the

compression is lossy and incurs error in the decoded MV

(resp. residual). The MV (resp. residual) refinement net-

work is used to compensate for the compression error and to

enhance the reconstruction quality. We also take use of the

multiple reference frames and/or associated multiple MV

fields in the residual/MV refinement network.

In summary, our technical contributions include:

• We introduce four effective modules into end-to-end

learned video compression: multiple frame-based MV

prediction, multiple frame-based motion compensa-

tion, MV refinement, and residual refinement. Ab-

lation study demonstrates the gain achieved by these

modules.

• We use a single rate-distortion loss function, together

with a step-by-step training strategy, to jointly opti-

mize all the modules in our scheme.

• We conduct extensive experiments on different

datasets with various resolutions and diverse content.

Our method outperforms the existing learned video

compression methods for low-latency mode. Our

method performs better than H.265 in both PSNR and

MS-SSIM.

2. Related Work

2.1. Learned Image Compression

Recently, deep learning-based image compression meth-

ods have achieved great progress [2, 3, 11, 15, 24, 25]. In-

stead of relying on handcrafted techniques like in conven-

tional image codecs, such as JPEG [26], JPEG2000 [20],

and BPG [4], new methods can learn a non-linear transform

from data and estimate the probabilities required for en-

tropy coding in an end-to-end manner. In [11,24,25], Long

Short Term Memory (LSTM) based auto-encoders are used

to progressively encode the difference between the original

image and the reconstructed image. In addition, there are

some studies utilizing convolutional neural network (CNN)

based auto-encoders to compress images [2, 3, 15, 23]. For

example, Ballé et al. [2] introduced a non-linear activation

function, generalized divisive normalization (GDN), into

CNN-based auto-encoder and estimated the probabilities of

latent representations using a fully-connected network. This

method outperformed JPEG2000. It does not take into ac-

count the input-adaptive entropy model. Ballé et al. later

in [3] introduced an input-adaptive entropy model by using

a zero-mean Gaussian distribution to model each latent rep-

resentation and the standard deviations are predicted by a

parametric transform. More recently, Minnen et al. [15] fur-

ther improved the above input-adaptive entropy model by

integrating a context-adaptive model; their method outper-

formed BPG. In this paper, the modules for compressing the

motion vector and the residual are based on the image com-

pression methods in [2,3]. We remark that new progress on

learned image compression models can be easily integrated

into our scheme.

2.2. Learned Video Compression

Compared with learned image compression, related

work for learned video compression is much less. In

2018, Wu et al. proposed a RNN-based approach for

interpolation-based video compression [30]. They first use

an image compression model to compress the key frames,

and then generate the remaining frames using hierarchical

interpolation. The motion information is extracted by tra-

ditional block-based motion estimation and encoded by a

traditional image compression method. Han et al. proposed

to use variational auto-encoders (VAEs) for compressing se-

quential data [8]. Their method jointly learns to transform

the original video into lower-dimensional representations

and to entropy code these representations according to a

temporally-conditioned probabilistic model. However, their

model is limited to low-resolution video. More recently,

Djelouah et al. proposed a scheme for interpolation-based

video compression, where the motion and blending coeffi-

cients are directly decoded from latent representations and

the residual is directly computed in the latent space [7]. But

the interpolation model and the residual compression model

are not jointly optimized.

While the above methods are designed for random-

access mode, some other methods have been developed for

low-latency mode. For example, Lu et al. proposed to

replace the modules in the traditional video compression

framework with CNN-based components, i.e. motion es-

3547

ME-Net MV

Decoder

ො𝑣𝑡 Decoded

MV

Buffer

MC-Net

ො𝑣𝑡
Decoded

Frame

Buffer

ො𝑥𝑡−1
ො𝑥𝑡−1

Residual

Encoder
Residual

Decoder

MV

Encoder𝑥𝑡

ҧ𝑥𝑡
𝑟𝑡 Ƹ𝑟𝑡

ො𝑥𝑡

𝑣𝑡

𝑥𝑡
Current Frame

−

𝑚𝑡 ෝ𝑚𝑡

𝑦𝑡 ො𝑦𝑡
(a)

ME-Net
MV

Refine-Net

MVD

Decoder

MAMVP-

Net

ො𝑣𝑡 Decoded

MV

Buffer

ො𝑣𝑡−3 ො𝑣𝑡−2 ො𝑣𝑡−1

MMC-Net

ො𝑣𝑡−3 ො𝑣𝑡−2 ො𝑣𝑡−1 ො𝑣𝑡
Decoded

Frame

Buffer

ො𝑥𝑡−4 ො𝑥𝑡−3 ො𝑥𝑡−2 ො𝑥𝑡−1ො𝑥𝑡−1

Residual

Encoder

Residual

Decoder

MVD

Encoder𝑥𝑡

Residual

Refine-Net

ҧ𝑥𝑡𝑟𝑡 Ƹ𝑟𝑡ො𝑥𝑡

ҧ𝑣𝑡
𝑣𝑡 𝑑𝑡 መ𝑑𝑡

𝑥𝑡
Current Frame

−

−

ො𝑣𝑡′

Ƹ𝑟𝑡′
ො𝑥𝑡−1𝑚𝑡 ෝ𝑚𝑡

𝑦𝑡 ො𝑦𝑡
(b)

Figure 1. (a) The scheme of DVC [14]. (b) Our scheme. Compared to DVC, our scheme has four new modules that are highlighted in

blue. In addition, our Decoded Frame Buffer stores multiple previously decoded frames as references. Our Decoded MV Buffer also stores

multiple decoded MV fields. Four reference frames are depicted in the figure, which is the default setting in this paper.

timation, motion compression, motion compensation, and

residual compression [14]. Their model directly compresses

the motion information, and uses only one previous frame

as reference for motion compensation. Rippel et al. pro-

posed to utilize the information of multiple reference frames

through maintaining a latent state [18]. Due to the presence

of the latent state, their model is difficult to train and sen-

sitive to transmission error. Our scheme is also tailored for

low-latency mode and we will compare to [14] more specif-

ically in the following.

3. Proposed Method

Notations. Let V = {x1, x2, . . . , xt, . . . } denotes the

original video sequence. xt, x̄t, and x̂t represent the orig-

inal, predicted, and decoded/reconstructed frames at time

step t, respectively. rt is the residual between the original

frame xt and the predicted frame x̄t. r̂
′

t represents the resid-

ual reconstructed by the residual auto-encoder, and r̂t is the

final decoded residual. In order to remove the temporal re-

dundancy between video frames, we use pixel-wise motion

vector (MV) field based on optical flow estimation. vt, v̄t,

and v̂t represent the original, predicted, and decoded MV

fields at time step t, respectively. dt is the MV difference

(MVD) between the original MV vt and the predicted MV

v̄t. d̂t is the MVD reconstructed by the MVD auto-encoder,

and v̂′t represents the reconstructed MV by adding d̂t to v̄t.

Since auto-encoder represents transform, the residual rt and

the MVD dt are transformed to yt and mt. ŷt and m̂t are

the corresponding quantized versions, respectively.

3.1. Overview of the Proposed Method

Fig. 1 presents the scheme of DVC [14] and our scheme

for a side-by-side comparison. Our scheme introduces four

new modules, which are all based on multiple reference

frames. The specific compression workflow of our scheme

is introduced as follows.

Step 1. Motion estimation and prediction. The cur-

rent frame xt and the reference frame x̂t−1 are fed into a

motion estimation network (ME-Net) to extract the motion

information vt. In this paper, the ME-Net is based on the

optical flow network FlowNet2.0 [10], which is at the state

of the art. Instead of directly encoding the pixel-wise MV

field vt like in Fig. 1 (a), which incurs a high coding cost,

we propose to use a MV prediction network (MAMVP-Net)

to predict the current MV field, which can largely remove

the temporal redundancy of MV fields. More information is

provided in Section 3.2.

Step 2. Motion compression and refinement. After

motion prediction, we use the MVD encoder-decoder net-

work to encode the difference dt between the original MV

vt and the predicted MV v̄t. Here the network structure

is similar to that in [2]. This MVD encoder-decoder net-

work can further remove the spatial redundancy present in

dt. Specifically, dt is first non-linearly mapped into the

latent representations mt, and then quantized to m̂t by a

rounding operation. The probability distributions of m̂t are

then estimated by the CNNs proposed in [2]. In the infer-

ence stage, m̂t is entropy coded into a bit stream using the

estimated distributions. Then, d̂t can be reconstructed from

the entropy decoded m̂t by the non-linear inverse transform.

Since the decoded d̂t contains error due to quantization, es-

pecially at low bit rates, we propose to use a MV refinement

network (MV Refine-Net) to reduce quantization error and

improve the quality. After that, the refined MV v̂t is cached

in the decoded MV buffer for next frames coding. More

details are presented in Section 3.3.

3548

Step 3. Motion compensation. After reconstructing the

MV, we use a motion compensation network (MMC-Net) to

obtain the predicted frame x̄t. Instead of only using one ref-

erence frame for motion compensation like in Fig. 1 (a), our

MMC-Net can generate a more accurate prediction frame

by using multiple reference frames. More information is

provided in Section 3.4.

Step 4. Residual compression and refinement. Af-

ter motion compensation, the residual encoder-decoder net-

work is used to encode the residual rt between the original

frame xt and the predicted frame x̄t. The network structure

is similar to that in [3]. This residual encoder-decoder net-

work can further remove the spatial redundancy present in

rt by a powerful non-linear transform, which is also used

in DVC [14] because of its effectiveness. Similar to the dt
compression, the residual rt is first transformed into yt, and

then quantized to ŷt. The probability distributions of ŷt are

then estimated by the CNNs proposed in [3]. In the infer-

ence stage, ŷt is entropy coded into a bit stream using the

estimated distributions. Then, r̂′t can be reconstructed from

the entropy decoded ŷt by the non-linear inverse transform.

The decoded r̂′t contains quantization error, so we propose

to use a residual refinement network (Residual Refine-Net)

to reduce quantization error and enhance the quality. The

details are presented in Section 3.5.

Step 5. Frame reconstruction. After refining the resid-

ual, the reconstructed frame x̂t can be obtained by adding r̂t
to the predicted frame x̄t. x̂t is then cached in the decoded

frame buffer for next frames coding.

3.2. Multi­scale Aligned MV Prediction Network

To address large and complex motion between frames,

we propose a Multi-scale Aligned MV Prediction Network

(MAMVP-Net), shown in Fig. 2. We use the previous three

reconstructed MV fields, i.e. v̂t−3, v̂t−2, and v̂t−1, to obtain

the MV prediction v̄t. More or less MV fields may be used

depending on the size of the Decoded MV Buffer.

As shown in Fig. 2 (a), we first generate a multi-level

feature pyramid for each previous reconstructed MV field,

using a multi-scale feature extraction network (four levels

are used for example),

{f l
v̂t−i

|l = 0, 1, 2, 3} = Hmf (v̂t−i), i = 1, 2, 3 (1)

where f l
v̂t−i

represents the features of v̂t−i at the l-th level.

Second, considering the previous reconstructed MV fields

contain compression error, we choose to warp the feature

pyramids of v̂t−3 and v̂t−2, instead of the MV fields them-

selves, towards v̂t−1 via:

f
l,w
v̂t−3

= Warp(f l
v̂t−3

, v̂lt−1 +Warp(v̂lt−2, v̂
l
t−1))

f
l,w
v̂t−2

= Warp(f l
v̂t−2

, v̂lt−1), l = 0, 1, 2, 3
(2)

where f
l,w
v̂t−3

and f
l,w
v̂t−2

are the warped features of v̂t−3 and

v̂t−2 at the l-th level. v̂lt−1 and v̂lt−2 are the down-sampled

C
o
n
v

(3
,1

6
,1

)

C
o
n
v

(3
,1

6
,1

)ො𝑣𝑡−𝑖

C
o
n
v
(3

,2
4
,2

)

C
o
n
v

(3
,2

4
,1

)𝑓ො𝑣𝑡−𝑖0

C
o
n
v

(3
,2

4
,2

)

C
o
n
v

(3
,2

4
,1

)𝑓ො𝑣𝑡−𝑖1

C
o
n
v

(3
,2

4
,2

)

C
o
n
v
(3

,2
4
,1

)𝑓ො𝑣𝑡−𝑖2 𝑓ො𝑣𝑡−𝑖3

(a)

𝑓ො𝑣𝑡−2𝑙,𝑤𝑓ො𝑣𝑡−3𝑙,𝑤
𝑓ො𝑣𝑡−1𝑙 ҧ𝑣𝑡𝑙

𝑓ത𝑣𝑡𝑙
ҧ𝑣𝑡𝑙+1,𝑢𝑓ത𝑣𝑡𝑙+1,𝑢

C
o

n
c
a
te

n
a
te

C
o
n
v

(3
,3

2
,1

)

C
o
n
v

(3
,2

,1
)

C
o
n
v

(3
,3

2
,1

)

C
o
n
v

(3
,3

2
,1

)

C
o
n
v

(3
,3

2
,1

)

C
o
n
v

(3
,3

2
,1

)

(b)

Figure 2. The multi-scale aligned MV prediction network.

Conv(3,16,1) denotes the hyper-parameters of a convolutional

layer: kernel size is 3×3, output channel number is 16, and stride

is 1. Each convolutional layer is equipped with a leaky ReLU ex-

cept the one indicated by green. (a) Multi-scale feature extraction

part. 2× down-sampling is performed by a convolutional layer

with a stride of 2, and i is 0, 1, 2. (b) MV prediction part at the

l-th level. l is 0, 1, 2, 3, and the network at the 3-th level does not

condition on the previous level.

versions of v̂t−1 and v̂t−2 at the l-th level. Warp stands for

bilinear interpolation-based warping. Note that feature do-

main warping has been adopted in previous work because

of its effectiveness, such as in [16] for video frame inter-

polation and in [22] for optical flow generation. Third, we

use a pyramid network to predict the current MV field from

coarse to fine based on the feature pyramid of v̂t−1 and the

warped feature pyramids of v̂t−2 and v̂t−3. As shown in

Fig. 2 (b), the predicted MV field v̄lt and the predicted fea-

tures f l
v̄t

at the l-th level can be obtained via:

v̄lt, f
l
v̄t

= Hmvp(v̄
l+1,u
t , f

l+1,u
v̄t , f l

v̂t−1
, f

l,w
v̂t−2

, f
l,w
v̂t−3

) (3)

where v̄
l+1,u
t and f

l+1,u
v̄t

are the 2× up-sampled MV field

and features from those at the previous (l+1)-th level using

bilinear. This process is repeated until the desired 0-th level,

resulting in the final predicted MV field v̄t.

3.3. MV Refinement Network

After MVD compression, we can reconstruct the MV

field v̂′t by adding the decoded MVD d̂t to the predicted

MV v̄t. But v̂′t contains compression error caused by quan-

tization, especially at low bit rates. For example, we found

there are many zeros in d̂t, as zero MVD requires less bits to

encode. A similar result is also reported in DVC [14] when

compressing the MV field. But such zero MVD incurs inac-

curate motion compensation. Therefore, we propose to use

a MV refinement network (MV Refine-Net) to reduce com-

pression error and improve the accuracy of reconstructed

3549

C
o
n
c
a
te

n
a
te𝑓ො𝑥𝑡−2𝑤

𝑓ොx𝑡−4𝑤𝑓ො𝑥𝑡−3𝑤
C

o
n
v

(3
,6

4
,1

)

R
e
si

d
u

a
l

B
lo

c
k

C
o
n
v

(3
,6

4
,1

)

C
o
n
v

(3
,6

4
,2

)

ො𝑥𝑡−1𝑤𝑓ො𝑥𝑡−1𝑤

C
o
n
v

(3
,6

4
,2

)

B
il

in
e
a
r,

2

R
e
si

d
u

a
l

B
lo

c
k

R
e
si

d
u

a
l

B
lo

c
k

x3 x1

R
e
si

d
u

a
l

B
lo

c
k

R
e
si

d
u

a
l

B
lo

c
k

C
o

n
v
(3

,3
,1

)

R
e
si

d
u

a
l

B
lo

c
k

B
il

in
e
a
r,

2

x3 x3 x1 x1

ҧ𝑥𝑡
Figure 3. The motion compensation network. Each convolutional

layer outside residual blocks is equipped with a leaky ReLU except

the last layer (indicated by green). Each residual block consists of

two convolutional layers, which are configured as follows: kernel

size is 3×3, output channel number is 64, the first layer has ReLU.

MV. As shown in Fig. 1 (b), we use the previous three re-

constructed MV fields, i.e. v̂t−3, v̂t−2, and v̂t−1, and the

reference frame x̂t−1 to refine v̂′t. Using the previous multi-

ple reconstructed MV fields can more accurately predict the

current MV, and then help on refinement. The reason for us-

ing x̂t−1 is that the following motion compensation module

will depend on the refined v̂t and x̂t−1 to obtain the pre-

dicted frame, so x̂t−1 can be a guidance to help refine v̂′t.

According to our experimental results (Section 4.3), feed-

ing x̂t−1 into the MV refinement network does improve the

compression efficiency. More details of the MV Refine-Net

can been found in the supplementary.

3.4. Motion Compensation Network with Multiple
Reference Frames

In traditional video coding schemes, the motion com-

pensation using multiple reference frames is adopted in

H.264/AVC [29], and inherited by the following standards.

For example, some coding blocks may use a weighted aver-

age of two different motion-compensated predictions from

different reference frames, which greatly improves the com-

pression efficiency. Besides, in recent work for video super-

resolution, multiple frames methods are also observed much

better than those based on a single frame [9, 13, 27]. There-

fore, we propose to use multiple reference frames for mo-

tion compensation in our scheme.

The network architecture is shown in Fig. 3. In this mod-

ule, we use the previous four reference frames, i.e. x̂t−4,

x̂t−3, x̂t−2 and x̂t−1 to obtain the predicted frame x̄t. More

or less reference frames can be used depending on the size

of the Decoded Frame Buffer. First, we use a two-layer

CNN to extract the features of each reference frame. Then,

the extracted features and x̂t−1 are warped towards the cur-

rent frame via:

v̂wt−k = Warp(v̂t−k, v̂t +

k−1∑

l=1

v̂wt−l), k = 1, 2, 3

x̂w
t−1 = Warp(x̂t−1, v̂t)

fw
x̂t−i

= Warp(fx̂t−i
, v̂t +

i−1∑

k=1

v̂wt−k), i = 1, 2, 3, 4

(4)

where v̂wt−k is the warped version of v̂t−k towards v̂t, and

fw
x̂t−i

is the warped feature of x̂t−i. Finally, as Fig. 3 shows,

the warped features and frames are fed into a CNN to obtain

the predicted frame,

x̄t = Hmc(f
w
x̂t−4

, fw
x̂t−3

, fw
x̂t−2

, fw
x̂t−1

, x̂w
t−1) + x̂w

t−1 (5)

where the network is based on the U-Net structure [19] and

integrates multiple residual blocks.

3.5. Residual Refinement Network

After residual compression, the reconstructed residual r̂′t
contains compression error, especially at low bit rates. Sim-

ilar to the case of MV Refine-Net, we propose a residual

refinement network (Residual Refine-Net) to reduce com-

pression error and improve quality. As shown in Fig. 1 (b),

this module utilizes the previous four reference frames, i.e.

x̂t−4, x̂t−3, x̂t−2 and x̂t−1, and the predicted frame x̄t to

refine r̂′t. More details of this network are provided in the

supplementary.

3.6. Training Strategy

Loss Function. Our scheme aims to jointly optimize

the number of encoding bits and the distortion between the

original frame xt and the reconstructed frame x̂t. We use

the following loss function for training,

J = D + λR = d(xt, x̂t) + λ(Rmvd +Rres) (6)

where d(xt, x̂t) is the distortion between xt and x̂t. We use

the mean squared error (MSE) as distortion measure in our

experiments. Rmvd and Rres represent the bit rates used for

encoding the MVD dt and the residual rt, respectively. Dur-

ing training, we do not perform real encoding but instead

estimate the bit rates from the entropy of the correspond-

ing latent representations m̂t and ŷt. We use the CNNs

in [2] and [3] to estimate the probability distributions of m̂t

and ŷt, respectively, and then obtain the corresponding en-

tropy. Since m̂t and ŷt are the quantized representations and

the quantization operation is not differentiable, we use the

method proposed in [2], where the quantization operation is

replaced by adding uniform noise during training.

Progressive Training. We had tried to train the entire

network from scratch, i.e. with all the modules except the

ME-Net randomly initialized (ME-Net is readily initialized

with FlowNet2.0). The results are not satisfactory, as the

resulting bitrates are not balanced: too less rate for MVD

3550

0.0 0.1 0.2 0.3 0.4
Bpp

34

35

36

37

38

39
PS

N
R

(d
B)

UVG dataset

Wu_ECCV2018
H.264
H.265
DVC
Proposed

(a)

0.1 0.2 0.3 0.4 0.5 0.6
Bpp

31

32

33

34

35

36

PS
N

R
(d

B)

HEVC Class B dataset

H.264
H.265
DVC
Proposed

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bpp

28

29

30

31

32

33

34

35

36

PS
N

R
(d

B)

HEVC Class D dataset

H.264
H.265
DVC
Proposed

(c)

0.0 0.1 0.2 0.3 0.4
Bpp

0.945

0.950

0.955

0.960

0.965

0.970

0.975

0.980

M
S-

SS
IM

UVG dataset

Wu_ECCV2018
H.264
H.265
DVC
Proposed

(d)

0.1 0.2 0.3 0.4 0.5 0.6
Bpp

0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

0.980
M

S-
SS

IM
HEVC Class B dataset

H.264
H.265
DVC
Proposed

(e)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bpp

0.95

0.96

0.97

0.98

0.99

M
S-

SS
IM

HEVC Class D dataset

H.264
H.265
DVC
Proposed

(f)

Figure 4. Overall performance. The compression results on the three datasets using H.264 [29], H.265 [21], DVC [14], Wu’s method [30]

and the proposed method. We directly use the results reported in [14] and [30]. The results of H.264 and H.265 are cited from [14].

Wu [30] did not report on HEVC Class B and Class D. Top row: PSNR. Bottom row: MS-SSIM.

and too much rate for residual, and thus the compression re-

sults are inefficient (see the experimental results in Section

4.3). To address this problem, we use a step-by-step training

strategy. First, we train the network including only the ME-

Net and MMC-Net, while the ME-Net is the pre-trained

model in [10] and remains unchanged. Then, the MVD and

residual encoder-decoder networks are added for training,

while the parameters of ME-Net and MMC-Net are fixed.

After that, all of the above four modules are jointly fine-

tuned. Next, we add the MAMVP-Net, MV Refine-Net

and Residual Refine-Net one by one to the training system.

Each time when adding a new module, we fix the previously

trained modules and learn the new module specifically, and

then jointly fine-tune all of them. It is worth noting that

many previous studies that use step-by-step training usually

adopt a different loss function for each step (e.g. [17, 32]),

while the loss function remains the same rate-distortion cost

in our method.

4. Experiments

4.1. Experimental Setup

Training Data. We use the Vimeo-90k dataset [31], and

crop the large and long video sequences into 192×192, 16-

frame video clips.

Implementation Details. In our experiments, the coding

structure is IPPP. . . and all the P-frames are compressed by

the same network. We do not implement a single image

compression network but use H.265 to compress the only I-

frame. For the first three P-frames, whose reference frames

are less than four, we duplicate the furthest reference frame

to achieve the required four frames. We train four models

with different λ values (16, 24, 40, 64) for multiple coding

rates. The Adam optimizer [12] with the momentum of 0.9
is used. The initial learning rate is 5e−5 for training newly

added modules, and 1e−5 in the fine-tuning stages. The

learning rate is reduced by a factor of 2 five times during

training. Batch size is 8 (i.e. 8 cropped clips). The entire

scheme is implemented by TensorFlow and trained/tested

on a single Titan Xp GPU.

Testing Sequences. The HEVC common test sequences,

including 16 videos of different resolutions known as

Classes B, C, D, E [5], are used for evaluation. We also use

the seven sequences at 1080p from the UVG dataset [1].

Evaluation Metrics. Both PSNR and MS-SSIM [28]

are used to measure the quality of the reconstructed frames

in comparison to the original frames. Bits per pixel (bpp) is

used to measure the number of bits for encoding the repre-

sentations including MVD and residual.

4.2. Experimental Results

To demonstrate the advantage of our proposed scheme,

we compare with existing video codecs, in particular H.264

[29] and H.265 [21]. For easy comparison with DVC, we

3551

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Bpp

29

30

31

32

33

PS
N

R
(d

B)
HEVC Class D dataset

DVC
2_Ref_Frames
3_Ref_Frames
Proposed

Figure 5. The compression results of using two or three reference

frames in our trained models on the HEVC Class D dataset. The

proposed model uses four by default and DVC [14] uses only one.

directly cite the compression results of H.264 and H.265

reported in [14]. The results of H.264 and H.265 default

settings can be found in the supplementary.

In addition, we compare with several state-of-the-

art learned video compression methods, including

Wu ECCV2018 [30] and DVC [14]. To the best of our

knowledge, DVC [14] reports the best compression per-

formance in PSNR among the learning-based methods for

low-latency mode.

Fig. 4 presents the compression results on the UVG

dataset and the HEVC Class B and Class D datasets. It can

be observed that our method outperforms the learned video

compression methods DVC [14] and Wu ECCV2018 [30]

by a large margin. On the HEVC Class B dataset, our

method achieves about 1.2dB coding gain than DVC at the

same bpp of 0.226. When compared with the traditional

codec H.265, our method has achieved better compression

performance in both PSNR and MS-SSIM. The gain in MS-

SSIM seems more significant. It is worth noting that our

model is trained with the MSE loss, but results show that

it also works for MS-SSIM. More experimental results, in-

cluding HEVC Class C and Class E, comparisons to other

methods [7, 18], are given in the supplementary.

4.3. Ablation Study

On the Number of Reference Frames. The number

of reference frames is an important hyper-parameter in our

scheme. Our used default value is four reference frames and

their associated MV fields, which is also the default value in

the H.265 reference software. To evaluate the effectiveness

of using less reference frames, we conduct a comparison

experiment by using two or three reference frames in our

trained models. Fig. 5 presents the compression results on

the HEVC Class D dataset. As observed, the marginal gain

of increasing reference frame is less and less.

Multi-scale Aligned MV Prediction Network. To

evaluate its effectiveness, we perform a comparison exper-

0.10 0.15 0.20 0.25 0.30
Bpp

32.0

32.5

33.0

33.5

34.0

34.5

35.0

35.5

PS
N

R
(d

B)

HEVC Class B dataset

Our Baseline
Add MAMVP-Net
Add MVRefine-Net-0
Add MVRefine-Net
Add MMC-Net
Proposed
Scratch

Figure 6. Ablation study. The compression results of the follow-

ing settings on the HEVC Class B dataset. (1) Our Baseline:

The network contains ME-Net, MC-Net with only one reference

frame, and the MV and residual encoder-decoder networks. (2)

Add MAMVP-Net: The MAMVP-Net is added to (1). (3) Add

MVRefine-Net: The MV Refine-Net is added to (2). (4) Add

MVRefine-Net-0: fx̂t−1
is removed from the MV Refine-Net

in (3). (5) Add MMC-Net: The MC-Net with one reference frame

in (3) is replaced by the MMC-Net with multiple reference frames.

(6) Proposed: The Residual Refine-Net is added to (5). (7)

Scratch: Training (6) from scratch.

iment. The anchor is the network containing the ME-Net,

the MC-Net with only one reference frame, and the MV

and residual encoder-decoder networks. Here, the MC-

Net with only one reference frame is almost identical to

the MMC-Net shown in Fig. 3, except for removing fw
x̂t−4

,

fw
x̂t−3

, fw
x̂t−2

from the inputs. This anchor is denoted by

Our Baseline (the green curve in Fig. 6). The tested

network is constructed by adding the MAMVP-Net to Our

Baseline, and is denoted by Add MAMVP-Net (the red

curve in Fig. 6). It can be observed that the MAMVP-Net

improves the compression efficiency significantly, achiev-

ing about 0.5 ∼ 0.7 dB gain at the same bpp. In Fig. 7,

we visualize the intermediate results when compressing the

Kimono sequence using Add MAMVP-Net model. Fig. 8

shows the corresponding probability distributions of MV

magnitudes for v6 and d6. It is observed that the mag-

nitude of MV to be encoded is greatly reduced by using

our MAMVP-Net. Quantitatively, it needs 0.042bpp for en-

coding the original MV v6 using Our Baseline model,

while it needs 0.027bpp for encoding the MVD d6 using

Add MAMVP-Net model. Therefore, our MAMVP-Net

can largely reduce the bits for encoding MV and thus im-

prove the compression efficiency. More ablation study re-

sults can be found in the supplementary.

MV Refinement Network. To evaluate the effec-

tiveness, we perform another experiment by adding the

MV Refine-Net to Add MAMVP-Net, leading to Add

MVRefine-Net (the cyan curve in Fig. 6). Compared

with the compression results of Add MAMVP-Net, at the

3552

(a) (b) (c) (d) (e)

Figure 7. Visualized results of compressing the Kimono sequence using Add MAMVP-Net model with λ = 16. (a) The reference frame

x̂5. (b) The original frame x6. (c) The original MV v6. (d) The predicted MV v̄6. (e) The MVD d6.

Table 1. Average running time per frame of using our different models for a 320×256 sequence.

Model Our Baseline Add MAMVP-Net Add MVRefine-Net Add MMC-Net Proposed

Encoding Time 0.25s 0.31s 0.34s 0.35s 0.37s

Decoding Time 0.05s 0.11s 0.14s 0.15s 0.17s

0 5 10 15 20
MV Magnitude

0.00

0.05

0.10

0.15

Pr
ob

ab
ilit

y

(a)

0 5 10 15 20
MV Magnitude

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

(b)

Figure 8. The distribution of MV magnitude. (a) The MV of Fig.

7 (c). (b) The MVD of Fig. 7 (e).

same bpp, the MV Refine-Net achieves a compression gain

of about 0.15dB at high bit rates and about 0.4dB at low

bit rates. This is understandable as the compression er-

ror is more severe when the bit rate is lower. In addition,

to evaluate the effectiveness of introducing x̂t−1 into the

MV Refine-Net, we perform an experiment by removing

fx̂t−1
from the inputs of the MV Refine-Net (denoted by

Add MVRefine-Net-0, the black curve in Fig. 6). We

can observe that feeding x̂t−1 into the MV Refine-Net pro-

vides about 0.1dB gain consistently. Visual results of the

MV Refine-Net can be found in the supplementary.

Motion Compensation Network with Multiple Ref-

erence Frames. To verify the effectiveness, we perform

an experiment by replacing the MC-Net (with only one

reference frame) in Add MVRefine-Net with the pro-

posed MMC-Net using multiple reference frames (denoted

by Add MMC-Net, the magenta curve in Fig. 6). We can

observe that using multiple reference frames in MMC-Net

provides about 0.1 ∼ 0.25dB gain. Visual results of the

MMC-Net can be found in the supplementary.

Residual Refinement Network. We conduct an-

other experiment to evaluate its effectiveness by adding

the Residual Refine-Net to Add MMC-Net (denoted by

Proposed, the blue curve in Fig. 6). We observe that

the Residual Refine-Net provides about 0.3dB gain at low

bit rates and about 0.2dB gain at high bit rates. Similar to

MV Refine-Net, the gain of Residual Refine-Net is higher

at lower bit rates because of more compression error. Vi-

sual results of the Residual Refine-Net can be found in the

supplementary.

Step-by-step Training Strategy. To verify the effective-

ness, we perform an experiment by training the Proposed

model from scratch except the ME-Net initialized by the

pre-trained model in [10] (denoted by Scratch, the yel-

low curve in Fig. 6). We can observe that the compres-

sion results are very bad. Quantitatively, when compressing

the Kimono sequence using Scratch model with λ = 16,

the bitrates are very unbalanced: 0.0002bpp for MVD and

0.2431bpp for residual. Our step-by-step training strategy

can overcome this.

Encoding and Decoding Time. We use a single Titan

Xp GPU to test the inference speed of our different models.

The running time is presented in Table 1. We can observe

that the MAMVP-Net increases more encoding/decoding

time than the other newly added modules. For a 352×256

sequence, the overall encoding (resp. decoding) speed of

our Proposed model is 2.7fps (resp. 5.9fps). It requires

our future work to optimize the network structure for com-

putational efficiency to achieve real-time decoding.

5. Conclusion

In this paper, we have proposed an end-to-end learned

video compression scheme for low-latency scenarios. Our

scheme can effectively remove temporal redundancy by uti-

lizing multiple reference frames for both motion compen-

sation and motion vector prediction. We also introduce

the MV and residual refinement modules to compensate

for the compression error and to enhance the reconstruc-

tion quality. All the modules in our scheme are jointly op-

timized by using a single rate-distortion loss function, to-

gether with a step-by-step training strategy. Experimen-

tal results show that our method outperforms the existing

learned video compression methods for low-latency mode.

In the future, we anticipate that advanced entropy coding

model can further boost the compression efficiency.

3553

References

[1] Ultra video group test sequences. http://ultravideo.cs.tut.fi.

accessed: 2018-10-30.

[2] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli.

End-to-end optimized image compression. arXiv preprint

arXiv:1611.01704, 2016.

[3] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin

Hwang, and Nick Johnston. Variational image compression

with a scale hyperprior. arXiv preprint arXiv:1802.01436,

2018.

[4] F. Bellard. BPG image format (http://bellard.org/bpg/), ac-

cessed: 2017-01-30.

[5] Frank Bossen. Common test conditions and software refer-

ence configurations. JCTVC-F900, Torino, Italy, July 2011.

[6] VNI Cisco. Cisco visual networking index: Forecast and

trends, 2017–2022. White Paper, 2018.

[7] Abdelaziz Djelouah, Joaquim Campos, Simone Schaub-

Meyer, and Christopher Schroers. Neural inter-frame com-

pression for video coding. In ICCV, pages 6421–6429, Oc-

tober 2019.

[8] Jun Han, Salvator Lombardo, Christopher Schroers, and

Stephan Mandt. Deep probabilistic video compression.

arXiv preprint arXiv:1810.02845, 2018.

[9] Muhammad Haris, Gregory Shakhnarovich, and Norimichi

Ukita. Recurrent back-projection network for video super-

resolution. In CVPR, pages 3897–3906, June 2019.

[10] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-

tion of optical flow estimation with deep networks. In CVPR,

pages 2462–2470, 2017.

[11] Nick Johnston, Damien Vincent, David Minnen, Michele

Covell, Saurabh Singh, Troy Chinen, Sung Jin Hwang, Joel

Shor, and George Toderici. Improved lossy image compres-

sion with priming and spatially adaptive bit rates for recur-

rent networks. In CVPR, pages 4385–4393, 2018.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[13] Sheng Li, Fengxiang He, Bo Du, Lefei Zhang, Yonghao Xu,

and Dacheng Tao. Fast spatio-temporal residual network for

video super-resolution. In CVPR, pages 10522–10531, June

2019.

[14] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chun-

lei Cai, and Zhiyong Gao. DVC: An end-to-end deep video

compression framework. In CVPR, pages 11006–11015,

June 2019.

[15] David Minnen, Johannes Ballé, and George D Toderici.

Joint autoregressive and hierarchical priors for learned image

compression. In Advances in Neural Information Processing

Systems, pages 10771–10780, 2018.

[16] Simon Niklaus and Feng Liu. Context-aware synthesis for

video frame interpolation. In CVPR, pages 1701–1710,

2018.

[17] Fitsum A. Reda, Guilin Liu, Kevin J. Shih, Robert Kirby,

Jon Barker, David Tarjan, Andrew Tao, and Bryan Catan-

zaro. SDC-net: Video prediction using spatially-displaced

convolution. In ECCV, pages 718–733, 2018.

[18] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson,

Alexander G. Anderson, and Lubomir Bourdev. Learned

video compression. In ICCV, pages 3454–3463, October

2019.

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In MICCAI, pages 234–241. Springer, 2015.

[20] Athanassios Skodras, Charilaos Christopoulos, and Touradj

Ebrahimi. The JPEG 2000 still image compression standard.

IEEE Signal Processing Magazine, 18(5):36–58, 2001.

[21] Gary J. Sullivan, Jens Ohm, Woo-Jin Han, and Thomas Wie-

gand. Overview of the high efficiency video coding (HEVC)

standard. IEEE Transactions on Circuits and Systems for

Video Technology, 22(12):1649–1668, 2012.

[22] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

PWC-Net: CNNs for optical flow using pyramid, warping,

and cost volume. In CVPR, pages 8934–8943, 2018.

[23] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc

Huszár. Lossy image compression with compressive autoen-

coders. arXiv preprint arXiv:1703.00395, 2017.

[24] George Toderici, Sean M. O’Malley, Sung Jin Hwang,

Damien Vincent, David Minnen, Shumeet Baluja, Michele

Covell, and Rahul Sukthankar. Variable rate image com-

pression with recurrent neural networks. arXiv preprint

arXiv:1511.06085, 2015.

[25] George Toderici, Damien Vincent, Nick Johnston, Sung

Jin Hwang, David Minnen, Joel Shor, and Michele Covell.

Full resolution image compression with recurrent neural net-

works. In CVPR, pages 5306–5314, 2017.

[26] Gregory K. Wallace. The JPEG still picture compression

standard. IEEE Transactions on Consumer Electronics,

38(1):xviii–xxxiv, 1992.

[27] Xintao Wang, Kelvin Chan, Ke Yu, Chao Dong, and Chen

Change Loy. EDVR: Video restoration with enhanced de-

formable convolutional networks. In CVPR Workshops,

2019.

[28] Zhou Wang, Eero P. Simoncelli, and Alan C. Bovik. Mul-

tiscale structural similarity for image quality assessment. In

The Thrity-Seventh Asilomar Conference on Signals, Systems

& Computers, 2003, volume 2, pages 1398–1402. IEEE,

2003.

[29] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and

Ajay Luthra. Overview of the H.264/AVC video coding stan-

dard. IEEE Transactions on Circuits and Systems for Video

Technology, 13(7):560–576, 2003.

[30] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl.

Video compression through image interpolation. In ECCV,

pages 416–431, 2018.

[31] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and

William T. Freeman. Video enhancement with task-

oriented flow. International Journal of Computer Vision,

127(8):1106–1125, 2019.

[32] Ren Yang, Mai Xu, Zulin Wang, and Tianyi Li. Multi-frame

quality enhancement for compressed video. In CVPR, pages

6664–6673, June 2018.

3554

