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Abstract We derive stationary distributions of joint queue

length and inventory processes in explicit product form for

various M/M/1-systems with inventory under continuous re-

view and different inventory management policies, and with

lost sales. Demand is Poisson, service times and lead times

are exponentially distributed. These distributions are used to

calculate performance measures of the respective systems. In

case of infinite waiting room the key result is that the limiting

distributions of the queue length processes are the same as

in the classical M/M/1/∞-system.
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1 Introduction

The importance of inventory management for the quality of

service (QoS) of today’s service systems is generally ac-

cepted and optimization of systems in order to maximize

QoS is therefore an important topic.
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From the point of view of inventory availability there are

many different classical definitions of quality ([22] p. 232),

and on the other side from the point of waiting times or

queueing in service systems QoS characteristics are well es-

tablished. But evaluation of these characteristics usually is

done in models either from inventory theory or from queue-

ing theory.

Over the last decade research on complex integrated

production-inventory systems or service-inventory systems

has found much attention, often in connection with the

research on integrated supply chain management. Interac-

tion of production/service processes with inventory man-

agement for associated inventories is usually described us-

ing queueing networks and multi-echelon inventory mod-

els. Mathematical methods used in the field are usually

aggregation-disaggregation techniques or simulation or hy-

brid techniques. Analytical models are rare up to now.

Only recently investigations in integrated models ap-

peared concerning the problem of how the classical perfor-

mance measures (e.g. queue length, waiting time, etc.) are

influenced by the management of attached inventory—and

vice versa: How inventory management has to react to queue-

ing of demands and customers, which is due to incorporated

service facilities.

An early contribution is [17] where approximation proce-

dures are used to find performance descriptions for models,

in which the interaction of queueing for service and inven-

tory control is integrated. In a sequence of papers Berman

and his coworkers ([2–4, 6]) investigate the behaviour of

service systems with an attached inventory. Their approach

can be characterized as follows. Define a Markovian system

process and then use classical optimization methods to find

the optimal control strategy of the inventory. All these mod-

els assume that the demand, which arrives during the time

the inventory is zero, is backordered. The models vary with
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respect to the lead time distribution, the service time distribu-

tion, waiting room size, order size and reorder policy. Further

a continuous review structure for the inventory is assumed

in all these models. The growing use of computer systems

to control inventories has boosted the interest in continuous-

review inventory models [14].

Our investigation is on continuous-review inventory mod-

els with lost sales of customers that arrive during stockout.

The lost sales situation arises e.g. in many retail establish-

ments [9], where the intense competition allows customers

to choose another brand or to go to another store. This can

be considered as a typical situation for being described by a

pure inventory model.

But there are other areas of applications, where lost sales

models are appropriate as well. E.g. these models apply to

cases such as essential spare parts where one must go to the

outside of the normal ordering system when a stockout oc-

curs ([8] p. 605). The essential spare part problem is central

for many repair procedures, where broken down units arrive

at a repair station, queue for repair, and are repaired by sub-

stituting a failed part by a spare part from the inventory. A

similar problem arises in production processes where rough

material items are needed to let the production process run.

Both of these latter problems are usually modeled using pure

service systems, but these queueing theoretical models ne-

glect the inventory management. Lost sales are in these con-

texts known as losses of customers. There is a huge amount

of literature on loss systems, especially in connection with

teletraffic and communication systems, where losses usually

occur due to limited server capacity or finite buffer space.

But there is another occurrence of losses due to balking or

reneging of impatient customers. However, only in the essen-

tial spare part problem of repair facilities a sort of inventory

at hand is considered.

To summarize these observations: Lost sales in inventory

theory and losses of customers in queueing theory are techni-

cal terms for similar, even often the same, events in real sys-

tems. The difference is set by the appropriate model selection

done by the investigators: Either emphasizing the inventory

management point of view or emphasizing the service sys-

tem’s point of view, both cases mostly neglect the alternative

aspect.

As pointed out above models that incorporate both aspects,

queueing of customers and inventory management, and offer

closed form solutions are rare in the literature. (Even more,

the area of continuous review inventory systems with lost

sales remains largely unexplored, the literature on lost sales

models is reviewed in the article of Mohebbi and Posner

[14].)

The aim of our research is to present explicit performance

measures for service systems with an attached inventory un-

der continuous review and lost sales as well as availability

measures and service grades for the inventory to directly

enable cost optimization in an integrated model. We anal-

yse several single server queueing systems of M/M/1-type

with an attached inventory. Customers arrive according to

a Poisson process with intensity λ and each customer, who

is served, needs exactly one item from the inventory and

has an exponentially distributed service time with parameter

μ. Consequently, the demand rate of the inventory is equal

to λ if there are no customers waiting in queue otherwise

the demand rate is equal to the service rate μ. The variable

replenishment lead time, which is the time span between or-

dering of materials and receipt of the goods, is exponentially

distributed with parameter ν. The entire order is received into

stock at the same time. The type of inventory system is de-

fined to be a continuous review system where the inventory

state is inspected after every single demand event and orders

are placed every time the inventory on hand reaches a reorder

point r . The on-hand stock is the stock that is physically on

the shelf. The systems under investigation differ with respect

to the size of replenishment orders and the reorder policy.

Every system under consideration has the property that no

customers are allowed to join the queue as long as the in-

ventory is empty. This corresponds to the lost sales case of

inventory management. However, if inventory is at hand, cus-

tomers are still admitted to enter the waiting room even if the

number of customers in the system exceeds the inventory on

hand.

The strategy of our investigation in this paper is as

follows:

We start from the observation of Berman and Kim [2] who

proved that in an exponential system with zero lead times an

optimal policy does not place an order unless the inventory

is empty and a certain number of customers are waiting. We

therefore investigate in Section 2 an M/M/1/∞ queue with

inventory, where the set of feasible policies is prescribed by

fixing the reorder point 0 and allowing general randomized

order sizes that are restricted only by the capacity of the in-

ventory. Coming up with an explicit description of the steady

state behaviour for the (queueing/inventory) process we are

able to prove that in this class of feasible policies the vector

process for (queue length/inventory size) is minimized in the

strong stochastic order by using deterministic order size. i.e.,

in this class of policies the optimal policy is of (r = 0, Q)

structure, Q ∈ N+.

This observation is the rationale behind the investigation

of M/M/1/∞ queues with inventory, where the set of fea-

sible policies is prescribed by fixing the reorder point r ≥ 0

and deterministic order sizes Q in Section 3. In Section 4 we

investigate the respective systems under the classical cele-

brated (r, S)-policy. Our explicit results enable us to compare

the behaviour of systems under (r, Q) and (r, S)-policies.

Letting S = Q + s, where s is the safety stock in the (r, Q)-

system, we find that under (r, Q) the stationary mean inven-

tory position is greater or equal to that in the (r, S)-system,
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and all the other performance measures dealt with in both

systems are equal.

In Sections 6.1, 6.2 and 6.3 systems similar to those in Sec-

tions 2, 3 and 4 are investigated that have only finite waiting

rooms. We assume throughout the paper that during the time

a replenishment order is outstanding the service place can be

used as a waiting place by the customers in the system. This

regulation scheme resembles the behaviour of the BLOCKING

BEFORE SERVICE—SERVER OCCUPIED strategy of networks

with blocking.

For each of our systems we compute the steady state prob-

ability distribution and calculate the most important perfor-

mance measures. It turns out that a special feature of the

above models is that the steady state probabilities are of

product form. This means, that the asymptotic and stationary

distribution of the joint (queue length/inventory size) process

factorizes into the stationary queue length and inventory size

distribution. Saying it the other way round: In the long run

and in equilibrium the queue length process and the inven-

tory process behave as if they are independent. This is a

rather strange observation because—as described above—

these processes strongly interact, independently of whether

being in equilibrium or not.

In case of infinite waiting room the limiting distribu-

tions of the queue length processes coincide with that of the

M/M/1/∞-system with arrival rate λ and service rate μ. This

shows an unexpected and very important invariance prop-

erty for the queueing systems with inventory management

and lost sales investigated in this paper: indeed, we can see

that for the effective arrival rate λe f f �= λ holds, and that for

the effective service rate μe f f �= μ holds.

The unexpected conclusion is: the system by itself reg-

ulates the effective service and arrival rates in reaction to

the lead time characteristics and the inventory management

policy in a way that the service system always experiences

a traffic intensity ρ = λ
μ

= λe f f

μe f f
. The only side condition is

ρ = λ
μ

< 1.

In Section 7 we comment on the possibility to perform

cost analysis for the systems using the explicit results on

inventory size and queue lengths obtained in the previous

sections.

Throughout the paper we will assume that unless other-

wise specified an underlying probability space (�,F, P) is

given where all random variables are defined on.

2 Single server system with inventory and lost sales

Definition 2.1 (The general queueing-inventory system). At

a service system with an attached inventory undistinguish-

able customers arrive one by one and require service. There

is a single server with unlimited waiting room under first

come, first served (FCFS) regime and an inventory with

maximal capacity of M (identical) items. Each customer

needs exactly one item from the inventory for service, and

the on-hand inventory decreases by one at the moment of

service completion. If the server is ready to serve a customer

which is at the head of the line and there is no item of

inventory this service starts only at the time instant (and

then immediately) when the next replenishment arrives at

the inventory. Customers arriving during a period when the

server waits for the replenishment order are rejected and lost

to the system (“lost sales”).

A served customer departs from the system at once and

the associated item is removed from the inventory at this time

instant as well. If there is another customer in the line and at

least one further item in the inventory, the next service starts

immediately.

There is a policy specified which determines at each deci-

sion point whether a replenishment order is placed or not, and

how many items are ordered. Admissible decision epochs are

arrival and departure epochs. We assume that there is always

at most one outstanding order.

There are costs connected with operating the system orig-

inating from both, the queueing of the customers and from

holding inventory at the system. We have a fixed holding cost

h per item and time unit in the inventory, a fixed ordering cost

K for each replenishment order, a shortage cost � per unit of

lost sales, a cost ω per customer and time unit in the waiting

room, and a cost σ per customer and time unit in service.

Whenever a customer’s service is completed, a revenue R is

payed to the system.

Let X (t) denote the number of customers present at the

server at time t ≥ 0, either waiting or in service, and let

Y (t) denote the on-hand inventory at time t ≥ 0. We de-

note the joint queue length and inventory process by Z =
((X (t), Y (t)), t ≥ 0). The state space of Z is EZ = {(n, k) :

n ∈ N0, k ∈ {0, ..., M}}, where M is the maximal size of the

inventory, which depends on the order policy, see Definition

2.3. We shall henceforth refer to Z as the queueing-inventory

process.

Definition 2.2 (Assumption on the random behaviour of the

system). For the service system with inventory management

from Definition 2.1 we assume:

Customers are of stochastically identical behaviour. To the

server there is a Poisson-λ-arrival stream, λ > 0. Customers

request an amount of service time which is exponentially

distributed with mean 1. Service is provided with intensity

μ > 0.

Service times and inter-arrival times constitute an inde-

pendent family of random variables.
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Definition 2.3 (Reorder policy). For the service system with

inventory management from Definition 2.1 we consider the

following policy:

If the inventory is depleted after the service of a customer

is completed, a replenishment order is instantaneously trig-

gered. The decision of the order size may be randomized

according to a discrete probability density function p on the

integers {1, 2, . . . , M}, where M is the maximal capacity of

the inventory. So the size of a replenishment order is k with

probability pk , where
∑M

k=1 pk = 1. The corresponding dis-

crete distribution function and its tail distribution function

will be denoted by Fp and F̄p := 1 − Fp, respectively. We

abbreviate the probability that the size of a replenishment

order is at least k units by qk , i.e. qk = F̄p(k−) = ∑M
h=k ph .

The mean order size is p̄ = ∑M
k=1 kpk .

Fixed (deterministic) order quantities are described by us-

ing one-point distributions for the order size distribution.

The replenishment lead time is exponentially distributed

with parameter ν > 0. Order size decisions and lead times

are independent and independent of the arrival and service

times.

The system described above generalizes the lost sales case

of classical inventory management where customer demand

is not backordered but lost in case there is no inventory on

hand (see Tersine [22] p. 207). We postpone a detailed dis-

cussion on the modeling assumptions to the end of this sub-

section.

Definition 2.4 (M/M/1/∞ with inventory). A service sys-

tem with inventory according to Definition 2.1, with the

stochastic assumptions of Definition 2.2, and under some

prescribed policy, is called an M/M/1/∞ system with inven-

tory or with inventory management under that policy.

Theorem 2.5. For the M/M/1/∞ system with inventory ac-
cording to Definition 2.4 the stochastic queueing-inventory
process Z from Definition 2.1 is a homogeneous Markov pro-
cess. Z is ergodic if and only if λ < μ. If Z is ergodic then it
has a unique limiting and stationary distribution of product
form:

π (n, k) = K −1

(
λ

μ

)n

qk with n ∈ N0, 1 ≤ k ≤ M, (1)

π (n, 0) = K −1

(
λ

μ

)n
λ

ν
with n ∈ N0, (2)

and with normalization constant K = μ

μ − λ

(
p̄ + λ

ν

)
.

(3)

Proof: We first check that for finite K π is a stationary

measure which satisfies the global balance equations of Z
for all n ∈ N0:

π (n, M)(λ + μ(1 − δ0n))

= π (n − 1, M)λ(1 − δ0n) + π (n, 0)νpM ,

π (n, k)(λ + μ(1 − δ0n))

= π (n − 1, k)λ(1 − δ0n) + π (n + 1, k + 1)μ

+ π (n, 0)νpk, M > k ≥ 1,

π (n, 0)ν = π (n + 1, 1)μ.

This is done by insertion, using q1 = 1, qM = pM , and

qk = qk+1 + pk for M > k ≥ 1. Evaluating the normaliza-

tion constant K yields the ergodicity criterion. �

We note further that the normalization constant K fac-

torizes in the normalization constant for the marginal queue

length and for the inventory process as

K = K X · KY with K X := μ

μ − λ
and KY := p̄ + λ

ν
.

Remark 2.6. For ν = ∞ the inventory is replenished in-

stantaneously and the inventory position 0 is left imme-

diately. Therefore, the stationary distribution has support

N0 × {1, 2, . . . , M} and is given by (1) with K = μ

μ−λ
p̄.

Corollary 2.7.

(a) The marginal steady state queue length distribution of
X = (X (t), t ≥ 0) is equal to the steady state queue
length distribution in the classical M/M/1/∞-FCFS sys-
tem with the same parameters λ and μ. Therefore the
mean number of customers in system is

L̄0 = λ

μ − λ
.

(b) The steady state on-hand inventory distribution of Y =
(Y (t), t ≥ 0) is

P(Y = k) =

⎧⎪⎨⎪⎩
K −1

Y

λ

ν
, for k = 0

K −1
Y qk, for 1 ≤ k ≤ M.

Here we have denoted by Y a random variable distributed
like the stationary inventory distribution.

Remark 2.8. The result of Corollary 2.7 (a) is remarkable.

λ is in effect not the arrival rate of customers to the system
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defined in Definition 2.1 and μ is not the actual service rate of

customers. However, these rates must have been reduced to

the same degree (in equilibrium) since if X has a steady state

distribution of the form π̃ (n) = ρn(1 − ρ), then ρ = λeff

μeff
is

the quotient of the effective input and service rates. Here

ρ = λeff

μeff
= λ

μ
.

Remark 2.9. We have from Corollary 2.7 (b) that for M ≥
k ≥ 1

P(Y = k|Y > 0) = qk∑M
l=1 ql

= p̄−1
∑M

h=k ph∑M
l=1 p̄−1

∑M
h=l ph

, (4)

i.e. the stationary distribution of the inventory content, condi-

tioned on having on-hand inventory greater than 0, is the con-

ditional asymptotic and stationary residual inter-occurence

time in a discrete time renewal process with life time dis-

tribution (ph : 1 ≤ h ≤ M). This resembles the structure of

the stationary residual service time for symmetric servers

[13][Chapter 3.3] with lattice service time distributions.

A first intuition behind this observation is that (4) de-

scribes the conditional state distribution of an alternating

renewal process, with life time distributions that are alter-

nating according to exp(ν) and a “busy period distribution”

of the inventory that consists of random phases, the number

of these phases is random according to p(·). Nevertheless

even this intuition does not fully meet the real system’s be-

haviour: The aging of the latter life times of this alternating

renewal process is randomly interrupted when an associated

random environment changes its state: this environment is

the queue length process which interrupts aging by entering

state 0.

Discussion of the modeling assumptions: We consider the

system of Definition 2.1 with the further specifications in

Definitions 2.2 and 2.3 to be fundamental. It corresponds

to the popular (r, S)- and (r, Q)-policies with reorder point

r = 0 and random S and Q respectively. The main result is

the explicit steady state distribution in (1) and (2) for the

joint queueing-inventory process. In the spirit of the usual

terms of performance analysis of complex networks the dis-

tribution in (1) and (2) is a PRODUCT FORM STEADY STATE.

This emphasizes that in the long run and in equilibrium the

queue length and the inventory level behave AS IF THEY ARE

INDEPENDENT. In the field of queueing networks such prod-

uct form steady states opened the path to very successful

applications of stochastic network models in various fields.

It is well known that even in the context of network appli-

cations the assumptions which are necessary to obtain these

explicit formulas are often rather unrealistic. Nevertheless,

these models were usually acknowledged as a fundamental

breakthrough in network modeling.

The strong restriction in our present model is that we reg-

ulate reordering and admission of the customers only via

the inventory level. Customers are only rejected (and lost),

when the physical inventory level reaches zero. A more so-

phisticated policy would include into the decision procedure

information on the actual queue length at the feasible deci-

sion instant. The gain of posing our restriction on the reorder

policy is the result of Theorem 2.5.

The selection of the class of policies determined by Def-

inition 2.3 originates from observations made in connection

with various other models in the literature.� It is shown by Berman and Kim [2], that in case of expo-

nential interarrival and service times and zero lead times

a reorder point r > 0 is suboptimal if customer demand is

backordered and inventory holding costs are involved. An

optimal order policy for that system only places an order

when the inventory level drops to zero and the number of

customers in the system exceeds some threshold value.� From stochastic dynamic optimization we know that in

many situations randomized policies must be considered

for optimizing system processes.

⇒ We therefore will first carry out in detail the calcula-

tions for the system with arbitrary random order size out of

{1, 2, . . . , M} and reorder point 0 and show how to define

the important measures of system performance.� An outcome of this investigation is the proof that for fixed

mean order size deterministic order size is optimal.� For the case of backordering customers which arrive during

a stockout and prescribed fixed order size with non-zero

exponential lead times Berman and Kim [3] showed that

the optimal policy is of threshold type such that with given

inventory level the reorder decision depends on the queue

length. The method to prove this is stochastic dynamic

optimization (no steady state analysis seems to be possible

up to now).

⇒ This result suggests that it may be profitable to already

trigger an order if there is still some inventory on stock in

case of stochastic lead times if customer waiting costs are

incurred. We therefore turn to policies with deterministic

order sizes and reorder point r ≥ 0.

Summarized: Our insights into the M/M/1/∞-system with

inventory management, reorder point 0 and random size of

replenishment orders suggest to extend the system to early

replenishments with reorder level r ≥ 0, without admit-

ting for random order sizes. This results in the M/M/1/∞-

system with (r, Q)-policy that will be investigated in Sec-

tion 3. For comparison we also investigate the M/M/1/∞-

system with (r, S)-policy in Section 4.� The concerns about the restrictions on the order policies

and on admitting customers independently of the queue

lengths apply in the subsequent models of Sections 3 and

4 as well, but in any case the gain will be a result in parallel

to Theorem 2.5.
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⇒ We therefore investigate in Section 6 systems under

different inventory policies where arriving customers are

rejected if a prescribed threshold of the queue length is

reached. The results are explicit steady state distributions

of product form as well.

2.1 Measures of system performance

We are interested in stationary characteristics of the

queueing-inventory system. These are long-run characteris-

tics as well. Note that stationarity is always assumed in the

classical inventory theory as well. Having determined the

stationary distribution, we can compute several measures of

operating characteristics for the system explicitly. We intro-

duce the following measures of system performance for the

stationary system: the average inventory position Ī , the ex-

pected reorder rate λR , the expected lost sales per unit time

L S and per cycle L Sc, the safety stock s, α- and β-service

levels and the average waiting time for a customer W̄ .

We say that the system goes through one cycle in the time

between the placing of two successive orders or equivalently

the receipt of two successive procurements with respect to

the mean cycle time, i.e. the mean cycle time is λ−1
R .

It will turn out that all except of one performance measure

only depend on the mean order size p̄ and not on the whole

distribution Fp. Only the stationary mean inventory position

depends on the second moment of Fp and will be shown to

be minimal for fixed order size in Section 2.3.

The stationary average on-hand inventory position is given

by

Ī =
M∑

k=1

k
∞∑

n=0

π (n, k) = K −1
Y

M∑
k=1

kqk . (5)

Note that

M∑
k=1

kqk =
M∑

k=1

k
M∑

h=k

ph =
M∑

k=1

(
k∑

h=1

h

)
pk

= 1

2

M∑
k=1

k(k + 1)pk .

Hence, Ī depends on the first and second moment of the

distribution Fp.

From (67) of Theorem A.1 in Appendix A the expected

number of replenishments per time unit (reorder rate) is

λR = λ

p̄ + λ
ν

. (6)

Formula (6) reveals a striking insensitivity property of the

systems under consideration: The steady state reorder rate

λR in the systems with explicit incorporation of service and

queueing behaviour is the same as the mean number of re-

plenishment orders given by Hadley and Whitin [11] on page

180 in 4–37 and by Hax and Candea [12] in (4.1.38) for the

case of no queueing (i.e. service time = 0). Saying it the other

way round: The expected number of replenishments per unit

time in the stationary system is independent of the service

intensity as long as it is greater than the overall arrival rate λ.

Clearly the same observation holds for the reciprocal value,

the mean time between two replenishment orders p̄
λ

+ 1
ν
.

Therefore we have proven that the condition to stabilize

the system asymptotically can be decoupled from the inven-

tory management problem as long as only the reorder rate is

concerned.

The average number of lost sales incurred per unit of time

is given by

L S = λP(Y = 0) = λ2

p̄ν + λ
.

The expected number of lost sales per cycle is given by

L Sc = L S

λR
= λ/ν.

Inventory can be divided into working stock and safety

stock. Working stock is inventory acquired and held in ad-

vance of requirements so that the expected demand can be

satisfied and ordering can be done on a lot size rather than on

an as needed basis. Lot sizing is done in order to minimize

ordering and holding costs. Safety stock is held in reserve

to protect against the uncertainties of supply and demand

(Tersine [22] p. 205). The safety stock is usually defined as

follows (see Silver/Peterson [18] Chapter 7).

Definition 2.10. The safety stock is the Palm stationary mean

value

s = E (net inventory position just before the arrival of

a replenishment order).

We define the net inventory position as the inventory on hand

Ynet = Y .

The net inventory position is usually defined as the on-hand

inventory minus backorders. In our system customer demand

is not backordered. Therefore, the above definition of net

inventory is natural for the service facility with inventory

and lost sales as defined in Definition 2.1 since the customer

who is in service will not use one piece from inventory until

he leaves the system. Another approach to evaluate the net

inventory position Ynet will be investigated in Section 5. In

the system under consideration the expected net inventory

just before a replenishment order arrives is 0 but we shall

need the general form of the safety stock s later in Sections 3

and 4.
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Service levels are defined for a specified time period which

can be the average replenishment cycle or one unit of time

for example. Service levels based on the replenishment cycle

simplify computations. To the customers, however, the length

of an order cycle is of minor interest, they are interested in

the quality of service in every unit of time. The definition

of the α-service levels is a combination of the definitions

given by [15] and [18]. The definition of the β-service level

is standard and can be found in [15] and [18]. Note that the

underlying probability measures may be casewise different.

Definition 2.11.

α1 = P (net inventory position at the end of a cycle > 0),

α2 = P (net inventory position at the end of a unit of time

> 0),

β = E (demand satisfied per cycle)

E (total demand per cycle)

= E (demand satisfied per unit of time)

E (total demand per unit of time)
.

Here  = is justified for all regenerative processes and there-

fore is here a conclusion of the ergodicity of Z . α-service

levels are event-oriented performance measures. They only

value the occurence but not the magnitude of a shortage. The

definition of an α-service level depends on the chosen time

interval, it represents the fraction of replenishment cycles

or time units without a negative net inventory position. In

the present case the α2-service level is just the time station-

ary probability of a non-negative net inventory position. It is

rarely considered in the literature. The β-service level is a

quantity-oriented service measure describing the proportion

of demands that are met from stock without accounting for

the duration of a stockout. β-service levels are widely used

in practice [21].

According to Definition 2.10 of the net inventory posi-

tion Ynet the α1-service level is just 0 in the system defined

in Definition 2.1 since the net inventory position is always

0 when an order arrives. (Note that if we use the defini-

tion from [15] α1 = P (Ynet at the end of a cycle ≥ 0) then

the α1-service level will be equal to 1 for any M/M/1-system

with inventory management and lost sales since with Def-

inition 2.10 the net inventory position Ynet cannot become

negative.) α2 = P(Y > 0). For the β-service level we com-

pute

β = E (satisfied demand per unit of time)

E (total demand per unit of time)
= λ − L S

λ

= p̄

p̄ + L Sc
= 1 − λ

p̄ν + λ
.

Hence

β = P(Y > 0) = α2 if Ynet = Y,

since the proportion of demand which is lost is just controlled

by Y = 0. Normally, α- and β-service levels are not in a

universally valid proportion to each other. Furthermore, since

P(Y = 0) = λR/ν we find

λR ᾱ1 = ν ᾱ2,

where ᾱi = 1 − αi , i = 1, 2. In the classical inventory man-

agement literature the relation between α1 and α2 is λRᾱ1 =
ᾱ2.

α- and β-service levels do not provide information on the

length of the waiting time that a customer may experience. In

contrast to these quantity related service measures, a second

stream in the literature therefore uses a time criteria to mea-

sure inventory control performance. This approach becomes

even more important in case of non-zero and stochastic ser-

vice times, i.e. customer orders are not filled instantaneously

from on-hand inventory as assumed in most inventory man-

agement systems. For example, Tempelmeier suggests in [20]

and [21] to analyse an inventory model with a service con-

straint on the expected customer waiting time or on the prob-

ability that the customer waiting time is larger than a pre-

specified constant.

From Corollary 2.7 (a) the mean number of customers in

the system, L̄0, is the same as in the classical M/M/1/∞-

system with parameters λ, μ. For evaluating the mean num-

ber of waiting customers, L̄ , we must take into considera-

tion that the waiting time of a customer formally ends at the

moment when he enters the server since there are no more

customers waiting in front of him. Nevertheless it may hap-

pen that his service does not immediately start then because

of a stockout. Taking this into consideration we exclude the

replenishment lead time from the customer waiting time. It

follows that L̄ is the same as in the classical M/M/1/∞-

system with parameters λ, μ. However, the mean total time

in system and the mean waiting time of the customers are dif-

ferent from the mean total time in system and the expected

waiting time in the M/M/1/∞-system since customers are

not arriving with overall intensity λ because of the interrup-

tion of the arrival stream during the stochastic replenishment

lead time. As can be found in Theorem A.1 in Appendix A

the mean number of customers arriving per unit time is

λA = p̄λR = p̄λν

p̄ν + λ
.

Note that for the throughput of the system the following re-

lation holds λA = λP (Y > 0) = λ − L S.
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From Little’s formula the customers’ mean sojourn time

W̄ 0 and mean waiting time W̄ are

W̄ 0 = L̄0

λA
= p̄ν + λ

p̄ν(μ − λ)
= 1

μ − λ
+ λ

p̄ν(μ − λ)
, (7)

W̄ = L̄

λA
= ( p̄ν + λ)λ

p̄νμ(μ − λ)
= λ

μ(μ − λ)
+ λ2

p̄νμ(μ − λ)
.

(8)

W̄ 0 and W̄ are naturally larger than the mean sojourn time

and mean waiting time of the classical M/M/1/∞-system re-

spectively, which are just the first summands of the above

expressions. The second term is λ/( p̄ν) times the first sum-

mand. These characteristics of W̄ 0 and W̄ just result from

the mean interarrival time of customers who are admitted to

the system, λ−1
A = λ−1 + ( p̄ν)−1, which is larger than in the

classical M/M/1/∞-system.

Remark 2.12. Consider extremal cases (see Remark 2.6): If

p̄ → ∞ (and necessarily M → ∞), then asymptotically the

system behaves like the classical M/M/1/∞-system with the

same λA = λ, W̄ 0 and W̄ . The inventory size and the cycle

length are infinite, no demand is lost and β = 1. If ν → ∞
then λA, W̄ 0 and W̄ are the same as in the classical M/M/1/∞-

system, no demand is lost and β = 1 as well. However, in this

case the cycle length is finite: λR = limν→∞ λ( p̄ + λ
ν
)−1 =

λ/ p̄.

Remark 2.13. Note that only W̄ 0 and W̄ depend on the ser-

vice rate μ. Some performance measures are not dependent

on λ and ν individually but only on their proportion λ/ν, e.g.

Ī , L Sc and β. Concerning the influence of Fp we observe

that several performance measures only depend on the first

moment of Fp like λR, L S, β and W̄ or are completely in-

dependent of Fp like L Sc and α1. Ī depends on the first and

second moment of Fp.

Hence, for two systems which have the same parameters λ, ν

and μ but different order size distributions Fp and Fp̃ with

the same mean p̄ only Ī will be different.

2.2 Examples for specific order size distribution

In this section we investigate two examples for the replen-

ishment order size distribution. We consider the fixed order

size Q, which yields an (0, Q)-policy and the system with

uniformly distributed order sizes on {1, ..., Q}. In both cases

holds M = Q. The performance measures for these exam-

ples are summarized in Table 1. (It will turn out that several

of the entries of the table could be obtained directly from the

results of the following sections.)

Deterministic order size. Let us assume that the order size

is fixed and equal to Q ∈ N. Hence, we have pk = δk Q for

all k ∈ {1, . . . , M}. Then qk = 1 for all k ∈ 1, . . . , Q and

qk = 0 otherwise. The mean order size is p̄ = Q and the

normalization constant is K = μ

μ−λ
(Q + λ

ν
). Note that as in

Berman and Sapna’s paper [4] (with backordering) the steady

state probabilities for the on-hand inventory to be k ≥ 1 are

equally distributed according to

P(Y = k) =
(

Q + λ

ν

)−1

, 1 ≤ k ≤ Q.

In contrast to their results the probability that a replenishment

order is outstanding here has a different probability:

P(Y = 0) = λ

ν

(
Q + λ

ν

)−1

.

Uniformly distributed order size. Let the size of a re-

plenishment order be equally distributed on {1, . . . , Q}
(Unif({1, . . . , Q})), hence pk = 1/Q, for all k ∈ {1, . . . , Q}
and pk = 0 otherwise. Here p̄ = Q+1

2
and qk = ∑Q

h=k ph =
Q+1−k

Q . The normalization constant is K = μ

μ−λ
( Q+1

2
+ λ

ν
).

2.3 Ordering result

Consider two single server systems as in Definition 2.1 which

differ only in their probability distribution functions Fp and

Fp̃ for the size of replenishment orders. The mean order sizes

in the two systems are assumed to be the same. Denote by

X, X̃ and Y, Ỹ the random variables distributed like the sta-

tionary queue length and inventory distribution of the two

systems respectively. Then, the following theorem holds (for

Table 1 Performance measures

Fp Deterministic Uniform

Ī
Q

Q + λ
ν

Q + 1

2

(Q + 2)[2λ + (Q + 1)ν]

6λ

λR
λ

Q + λ
ν

2λν

(Q + 1)ν + 2λ

L S
λ2

Qν + λ

2λ2

(Q + 1)ν + 2λ

β
Q

Q + λ
ν

(Q + 1)ν

(Q + 1)ν + 2λ

W̄
(Qν + λ)λ

Qνμ(μ − λ)

[(Q + 1)ν + 2λ]λ

(Q + 1)νμ(μ − λ)
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definition of <cx and <st see e.g. [19] page 6 and 8 respec-

tively):

Theorem 2.14. If Fp <cx Fp̃ then (X, Y ) <st (X̃ , Ỹ ).

Proof: From Condition (iii) ensuing Theorem A in [19] sec-

tion 1.3, p. 11, Fp <cx Fp̃ is equivalent to
∑∞

h=k F̄p(k) ≤∑∞
h=k F̄p̃(k) for all k ∈ N. This is

∑∞
h=k qk ≤ ∑∞

h=k q̃k for

all k ∈ N. Hence, Y <st Ỹ since P(Y > k) ≤ P(Ỹ > k) holds

for all k ∈ N and k = 0. Moreover, because steady state

probabilities are in product form (1) and λ, μ and ν are the

same in both systems, the result follows for k ∈ N0 (P(X =
n, Y > k) ≤ P(X̃ = n, Ỹ > k) for all n ∈ N0 and k ∈ N0).

Thus, (X, Y ) <st (X̃ , Ỹ ). �

Remark 2.15. The convex ordering of two distribution func-

tions Fp and Fp̃, with finite and equal first moments can be

ascertained using the Karlin-Novikoff cut-criterion (see for

example [19] Section 1.3, Theorem E, p. 17). Suppose that

for Fp and Fp̃ we have

Fp(k) ≤ Fp̃(k), for k ≤ ξ,

Fp(k) ≥ Fp̃(k), for k > ξ,

for some ξ ∈ R+ then

Fp <cx Fp̃.

Example 2.16. Let p ∼ δQ , then Fp(k) = 0 for all k < Q
and Fp(k) = 1 for all k ≥ Q and p̄ = Q. Hence, the Karlin-

Novikoff cut criterion can be applied for comparison with all

other distribution functions Fp̃ with mean Q. An example

which has already been studied above is

p ∼ δ(Q+1)/2 <cx p̃ ∼ Unif({1, . . . , Q}).

Corollary 2.17. If the mean replenishment size is pre-
scribed, the stationary mean inventory position Ī is minimal
for the system with fixed order size.

This can be seen as follows: Consider two systems with

different probability functions p and p̃, with p ∼ δQ and

E p̃ = Q. Then p <cx p̃. If we denote by Y and Ỹ the ran-

dom variables distributed like the stationary inventory distri-

bution of the two systems it follows from Theorem 2.14 that

Y <st Ỹ . Hence,

Ī =
∑
k∈N

P(Y ≥ k) ≤
∑
k∈N

P(Ỹ ≥ k) = ¯̃I.

Summarized: We have found out that all performance

measures except the mean inventory position Ī are the same

for two systems that differ only in the order size distribution

function Fp but have the same mean p̄. Ī is minimal for the

fixed order size system from Section 2.2. This is why all

other systems can be excluded from further consideration

when it comes to an optimization of the costs associated to

M/M/1/∞-systems with inventory management and reorder

point 0.

For this reason we will now investigate early replenish-

ment systems with reorder point r ≥ 0 and fixed order size

Q. This yields the well-known (r, Q)-system from inventory

management theory.

3 M/M/1/∞-system with (r, Q)-policy

In this section we consider an M/M/1/∞-system with inven-

tory management policy that corresponds to the lost sales

version of a continuous review, order-point, order-quantity

model, typically called (r, Q) model, where a fixed or-

der quantity Q is ordered each time the on-hand inventory

reaches the reorder point r (see [22] p. 206 and [18] p. 256).

The (r, Q)-policy is applicable if units are demanded one at a

time and if transaction reporting is used. We assume through-

out the paper that r < Q. This avoids degenerate cycles in

which no demand occurs.

Definition 3.1 (M/M/1/∞-system with (r, Q)-policy). We

have a single server with infinite waiting room under FCFS

regime and an attached inventory of capacity M as in Defi-

nition 2.1 with the assumptions on the stochastic behaviour

of the system from Definition 2.2.

If the on-hand inventory reaches a prespecified value r ≥
0, a replenishment order is instantaneously triggered. The

size of the replenishment order is fixed to Q < ∞ units,

Q > r . We fix M = r + Q.

The replenishment lead time is exponentially distributed

with parameter ν, ν > 0. During the time the inventory is

zero, arriving customers are lost.

Let X (t) denote the number of customers present at

the server at time t ≥ 0, either waiting or in service and

let Y (t) denote the on-hand inventory at time t ≥ 0. Then

Z = ((X (t), Y (t)), t ≥ 0) is a continuous-time Markov pro-

cess for the M/M/1/∞-system with (r, Q)-policy. The state

space of Z is EZ = {(n, k) : n ∈ N0, 0 ≤ k ≤ Q + r}.

If ν = ∞, early replenishment of inventory with r > 0

does not make sense with respect to economical aspects,

since r units are never touched by the customers and remain

in stock for ever.
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Theorem 3.2. The continuous-time Markov process Z from
Definition 3.1 is ergodic if and only if λ < μ and ν < ∞.
If Z is ergodic then it has a unique limiting and stationary
distribution of product form given by

π (n, k) = K −1C(k)

(
λ

μ

)n

, for n ∈ N0, 1 ≤ k ≤ Q + r,

(9)

π (n, 0) = K −1 λ

ν

(
λ

μ

)n

, for n ∈ N0, (10)

with

C(k) =
(

λ + ν

λ

)k−1

, k = 1, . . . , r,

C(k) =
(

λ + ν

λ

)r

, k = r + 1, . . . , Q,

C(Q + k) =
(

λ + ν

λ

)r

−
(

λ + ν

λ

)k−1

, k = 1, . . . , r.

The normalization constant is

K = μ

μ − λ

(
Q

(
λ + ν

λ

)r

+ λ

ν

)
. (11)

Proof: The process Z from Definition 3.1 possesses the fol-

lowing global balance equations:

π (n, k)
(
λ + μ(1 − δ0n) + ν1{k≤r}

)
= π (n − 1, k)λ(1 − δ0n) + π (n + 1, k + 1)μ(1 − δQ+r,k)

+ π (n, k − Q)ν1{k≥Q}, 1 ≤ k ≤ Q + r, (12)

π (n, 0)ν = π (n + 1, 1)μ (13)

for all n ∈ N0. We will show that the distribution from (9)

and (10) satisfies Eqs. (12) and (13). Equation (13) is satisfied

since C(1) = 1. In (12) the term π (n, k)μ(1 − δ0n) at the left

cancels against the term π (n − 1, k)λ(1 − δ0n) at the right

side for all n ∈ N0 and 1 ≤ k ≤ Q + r . It remains to prove

that the term on the left side

π (n, k)
(
λ + ν1{k≤r}

) = K −1

(
λ

μ

)n

C(k)
(
λ + ν1{k≤r}

)

equals the remaining terms at the right side

π (n + 1, k + 1)μ(1 − δQ+r,k) + π (n, k − Q)ν1{k≥Q}

= K −1

(
λ

μ

)n

λC(k + 1)(1 − δQ+r,k) + K −1

(
λ

μ

)n

λ1{k=Q}

+K −1

(
λ

μ

)n

νC(k − Q)1{k>Q}

for all n ∈ N0 and 1 ≤ k ≤ Q + r . Hence, we have to show

that for all 1 ≤ k ≤ Q + r

C(k + 1)(1 − δQ+r,k) = C(k)

(
1 + ν

λ
1{k≤r}

)
− 1{k=Q} − ν

λ
C(k − Q)1{k>Q} (14)

holds. The equations which have to be satisfied are

C(k + 1) = C(k)
(

1 + ν

λ

)
, k = 1, . . . , r,

C(k + 1) = C(k), k = r + 1, . . . , Q − 1,

C(Q + 1) = C(Q) − 1,

C(k + 1) = C(k) − ν

λ
C(k − Q),

k = Q + 1, . . . , Q + r − 1,

0 = C(Q + r ) − ν

λ
C(r ).

Inserting the C(k) inductively into these equations finishes

the proof. �

As in Section 2 the normalization constant K factorizes into

K X := μ

μ − λ
and KY :=

(
Q

(
λ + ν

λ

)r

+ λ

ν

)
.

The steady state queue length of X = (X (t), t ≥ 0) is dis-

tributed like the steady state queue length in the classical

M/M/1/∞-FCFS system with the same parameters λ and μ.

Remark 3.3. Buchanan and Love [8] investigate an (r, Q)

inventory system with lost sales and Erlang-distributed lead

times, where customer demands are satisfied without any loss

of time. Their result for the special case of exponentially dis-

tributed lead times coincides with the marginal distribution

of the inventory process of our system.

Theorem 3.4 (Measures of system performance). The mea-
sures of system performance as defined in Section 2.1

of the M/M/1/∞-system with (r, Q)-policy according to
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Definition 3.1 are given by

Ī = Q

Q + λ
ν

(
λ

λ+ν

)r

(
Q + 1

2
+ s

)
, (15)

λR = λ

Q + λ
ν

(
λ

λ+ν

)r , (16)

λA = λQ

Q + λ
ν

(
λ

λ+ν

)r , (17)

L S = λ

ν

(
λ

λ + ν

)r
λ

Q + λ
ν

(
λ

λ+ν

)r , (18)

L Sc = λ

ν

(
λ

λ + ν

)r

, (19)

s = r − λ

ν

(
1 −

(
λ

λ + ν

)r)
, (20)

α1 = 1 −
(

λ

λ + ν

)r

, (21)

α2 = β = Q

Q + λ
ν

(
λ

λ+ν

)r , (22)

W̄ 0 = 1

μ − λ
+ λ

Qν

(
λ

λ + ν

)r 1

μ − λ
, (23)

W̄ = λ

μ(μ − λ)
+ λ

Qν

(
λ

λ + ν

)r
λ

μ(μ − λ)
. (24)

Proof: The proof of Theorem 3.4 is presented in Appendix

B. �

Some remarks may be in order here. Obviously, Ī <
Q+1

2
+ s. The expected number of replenishments per unit

time λR has the same form as in Section 2.1 (mean demand

per unit time/(mean satisfied demand per cycle + mean lost

sales per cycle)) and λA = λR · (mean satisfied demand per

cycle).

The safety stock s is equal to the difference of the reorder

point r and the expected lead time demand which can be

satisfied. s = 0 for r = 0 and s is strictly increasing in the

reorder point r since for all r ≥ 1:

s(r ) − s(r − 1) = 1 − λ

ν

(
λ

λ + ν

)r−1 (
1 − λ

λ + ν

)
= 1 −

(
λ

λ + ν

)r

> 0. (25)

α1 can be interpreted as the proportion of cycles without a

stockout or as the proportion of lead time demand which

can be satisfied from stock. This explains the relation s =
r − λ

ν
α1 once again. α1 is strictly increasing in r .

As before β = P(Y > 0) = α2 = λA/λ. W̄ and W̄ 0 are again

larger than in the classical M/M/1/∞-system, since W̄ =
W̄ 0

λ
μ

= λ
μ(μ−λ)

(1 + L Sc
Q ).

Remark 3.5. Remark 2.12 carries over to the cases Q → ∞
and ν → ∞ in the M/M/1/∞-system with (r, Q)-policy as

defined in Definition 3.1. Furthermore, if ν → ∞ the mean

inventory on hand is (Q + 1)/2 + r and r units remain in

stock for ever.

Remark 3.6. As in Section 2 the only performance measures

that depend on the service rate μ are W̄ 0 and W̄ . The values

for Ī , L Sc, s and β depend on λ and ν only through the ratio

λ/ν. Concerning the influence of Q and r we observe that

all performance measures depend on the reorder point r , but

only λR, λA, L S, β, W̄ 0 and W̄ are also dependent on Q.

4 M/M/1/∞-system with (r, S)-policy

The M/M/1/∞-system with inventory management studied

in this section corresponds to the lost sales version of a con-

tinuous review, order-point, order-up-to-level (r, S)-system.

Each time the on-hand inventory reaches the reorder point

r a variable replenishment quantity is used such that upon

replenishment, the on-hand inventory is restocked to level S
(see [5] and [17] for an equivalent definition of the (r, S)-

policy in the backorder case). In the inventory management

literature another definition of the (r, S)-system has appeared

as well (see [18] p. 256, [11]), where the order size is deter-

mined at the moment the order is placed such that the actual

inventory level x < r plus the variable order size is equal

to S. In our case, where demands are unit-sized, no over-

shoot of the order point r is possible and the (r, Q)- and

(r, S)-systems are identical when the second definition is

used.

Definition 4.1 (M/M/1/∞-system with (r, S)-policy). We

have a single server with infinite waiting room under FCFS

regime and an attached inventory of capacity M as in Defi-

nition 2.1 with the assumptions on the stochastic behaviour

of the system from Definition 2.2.

If the inventory reaches a prespecified value r > 0, a re-

plenishment order is instantaneously triggered. With each

replenishment the inventory level is restocked to exactly

S < ∞ units with r < S no matter how many items are still

present in the inventory. We set M = S.

The replenishment lead time is exponentially distributed

with parameter ν, ν > 0. During the time the inventory is

zero, no customers are admitted to join the queue and are

lost.
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Let X (t) denote the number of customers present at

the server at time t ≥ 0, either waiting or in service and

let Y (t) denote the on-hand inventory at time t ≥ 0. Then

Z = ((X (t), Y (t)), t ≥ 0) is a continuous-time Markov pro-

cess for the M/M/1/∞-system with (r, S)-policy. The state

space of Z is given by EZ = {(n, k) : n ∈ N0, 0 ≤ k ≤ S}.

As in Sections 2 and 3 an increasing order-up-to-level

S → ∞ results in the classical M/M/1/∞-system and an

early replenishment of the inventory with r > 0 does not

make sense if ν = ∞.

Theorem 4.2. The continuous-time Markov process Z from
Definition 4.1 is ergodic if and only if λ < μ and ν < ∞.
If Z is ergodic then it has a unique limiting and stationary
distribution of product form given by

π (n, k) = K −1

(
λ

μ

)n

C(k), for n ∈ N0, 1 ≤ k ≤ S,

(26)

π (n, 0) = K −1

(
λ

μ

)n
λ

ν
, for n ∈ N0, (27)

with

C(k) =
(

λ + ν

λ

)k−1

, k = 1, . . . , r,

C(k) =
(

λ + ν

λ

)r

, k = r + 1, . . . , S

and normalization constant

K = μ

μ − λ

(
S − r + λ

ν

) (
λ + ν

λ

)r

. (28)

Proof: The process Z from Definition 4.1 possesses the

following global balance equations:

π (n, k)
(
λ + μ(1 − δ0n) + ν1{k≤r}

)
= π (n − 1, k)λ(1 − δ0n) + π (n + 1, k + 1)μ(1 − δSk)

+
r∑

h=0

π (n, h)ν1{k=S}, 1 ≤ k ≤ S, (29)

π (n, 0)ν = π (n + 1, 1)μ (30)

for all n ∈ N0. We will show that the distribution from (26)

and (27) satisfies Eqs. (29) and (30). Equation (30) is satisfied

since C(1) = 1. In (29) the term π (n, k)μ(1 − δ0n) at the left

cancels against the term π (n − 1, k)λ(1 − δ0n) at the right

side for all n ∈ N0 and 1 ≤ k ≤ S. Moreover, we will prove

that the term on the left side

π (n, k)
(
λ + ν1{k≤r}

) = K −1

(
λ

μ

)n

C(k)
(
λ + ν1{k≤r}

)
corresponds to the following expression at the right side

π (n + 1, k + 1)μ(1 − δSk) +
r∑

h=0

π (n, h)ν1{k=S}

= K −1

(
λ

μ

)n

λC(k + 1)(1 − δSk) + K −1

(
λ

μ

)n

λ1{k=S}

+ K −1

(
λ

μ

)n

ν

r∑
h=1

C(h)1{k=S}

for all n ∈ N0 and 1 ≤ k ≤ S. We therefore have to show that

for all 1 ≤ k ≤ S

C(k + 1)(1 − δS,k) = C(k)
(

1 + ν

λ
1{k≤r}

)
− 1{k=S}

− ν

λ

r∑
h=1

C(h)1{k=S} (31)

holds. Hence, the equations which have to be satisfied by

C(k), 1 ≤ k ≤ S are

C(k + 1) = C(k)
(

1 + ν

λ

)
, k = 1, . . . , r,

C(k + 1) = C(k), k = r + 1, . . . , S − 1,

0 = C(S) − 1 − ν

λ

r∑
h=1

C(h).

That these equations are solved by the C(k) can be seen by

direct insertion. �

The normalization constant K can be split into two parts

K X := μ

μ − λ
and KY :=

(
S − r + λ

ν

) (
λ + ν

λ

)r

.

As in Sections 2 and 3 the steady state queue length distribu-

tion of X = (X (t), t ≥ 0) is equal to the steady state queue

length distribution in the classical M/M/1/∞-FCFS system

with the same parameters λ and μ.

Theorem 4.3 (Measures of system performance). The mea-
sures of system performance as defined in Section 2.1

of the M/M/1/∞-system with (r, S)-policy according to
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Definition 4.1 are

Ī = 1

S − r + λ
ν

{
λ

ν
s + (S + 1)S − (r + 1)r

2

}
, (32)

λR = λ

S − r + λ
ν

, (33)

λA = λ − λ2

(S − r )ν + λ

(
λ

λ + ν

)r

, (34)

L S = λ2

(S − r )ν + λ

(
λ

λ + ν

)r

, (35)

L Sc = λ

ν

(
λ

λ + ν

)r

, (36)

s = r − λ

ν

(
1 −

(
λ

λ + ν

)r)
, (37)

α1 = 1 −
(

λ

λ + ν

)r

, (38)

α2 = β = 1 − λ

(S − r )ν + λ

(
λ

λ + ν

)r

, (39)

W̄ 0 = 1

μ − λ
+ λ

(S − s)ν

(
λ

λ + ν

)r 1

μ − λ
, (40)

W̄ = λ

μ(μ − λ)
+ λ

(S − s)ν

(
λ

λ + ν

)r
λ

μ(μ − λ)
. (41)

Proof: The proof of Theorem 4.3 is presented in Appendix

B. �

Remark 4.4. The dependences of the performance measures

on the several parameters are the same as in Section 3.

Theorem 4.5 (Comparison of (r, Q)- and (r, S)-policy with

the same r ). Let S = Q + s, where s is the safety stock from

(20). Then, the stationary mean inventory position in the

M/M/1/∞-system with (r, S)-policy is not larger than the

stationary mean inventory position in the M/M/1/∞-system

with (r, Q)-policy. All other performance measures are the

same.

Proof: The proof is given in Appendix B. �

5 Net inventory revisited

In Definition 2.10 of Section 2.1 we defined the net inventory

position as the inventory on hand Ynet = Y . In the context

of service facilities with inventory and lost sales a second

common-sense definition of the net inventory position is

Ynet = max{0, Y − X}. (42)

This definition is reasonable since one can argue that for each

customer in queue who has been admitted to the system one

piece from the inventory is already reserved.

In the following theorems the performance measures de-

pendent on Ynet , the safety stock s and the α1-service level,

will be given for all the inventory models considered above

using the second definition of Ynet from (42).

Theorem 5.1. In the M/M/1/∞-system with inventory man-
agement, reorder point 0 and arbitrary size of replenishment
orders according to Definition 2.1, it follows

s = 0 and α1 = 0,

if the net inventory position is defined by (42).

Proof: See Appendix B. �

Theorem 5.2. In the M/M/1/∞-system with (r, Q)- and
(r, S)-policy according to Definition 3.1 and 4.1 respectively,
it follows

s = r − λ

ν

(
1 −

(
λ

λ + ν

)r)
− λ

μ − λ
α1

and

α1 = 1 − 1

μ − (λ + ν)

(
(μ − λ)

(
λ

λ + ν

)r

− ν

(
λ

μ

)r)
,

if the net inventory position is defined by (42).

Proof: The proof is given in Appendix B. �

We observe that α1 and s now depend on the service rate μ.

α1 can be interpreted as the proportion of cycles where at the

end of the cycle the number of customers is smaller than the

size of the on-hand inventory. λ/(μ − λ) is the mean number

of customers in the system. Hence, s is equal to the reorder

point r minus the lead time demand which can be satisfied

from stock minus α1 times the mean number of customers in

the system.

Corollary 5.3. In the M/M/1/∞-system with (r, Q)- or
(r, S)-policy according to Definition 3.1 and 4.1 respectively,
α1 has the following properties if the net inventory position
is as in (42):
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1. 0 ≤ α1 ≤ 1 − ( λ
μ

)r for some fixed r ∈ N0,
2. α1(·) is strictly increasing in r ∈ N0.

Proof. See Appendix B. �

Corollary 5.4. In the M/M/1/∞-system with (r, Q)- or
(r, S)-policy according to Definition 3.1 and 4.1 respectively,
with net inventory position defined as in (42) the following
inequality holds

s ≤ r − λ

ν

(
1 −

(
λ

λ + ν

)r)
.

Proof: As shown in Corollary 5.3 it holds for all r ∈ N0

that α1 ≥ 0 and α1 is increasing in r . μ > λ follows from

the ergodicity criterion, thus, the second summand of s is

non-positive and decreasing in r . This completes the proof.

�

6 M/M/1/N-1-systems with inventory and lost sales

In this section we consider the systems from Sections 2, 3

and 4 with a limited number of N − 1 waiting places, such

that only N customers are admitted to the system at the same

time. We assume that during the time a replenishment order

is outstanding the service place can be used as a waiting place

by the customers in the system.

Recall the discussion on page 59 on the restriction of the

order policies. The main concern was that a very large queue

length does not imply rejection of further arrivals due to

having some (or even only a few) items still in the inventory.

To a certain extent this drawback of our previous models is

now removed because customers that arrive when all waiting

places are occupied are immediately rejected although there

may be still items in the inventory.

6.1 M/M/1/N-1-system with inventory, reorder point 0, and

random size of replenishment orders

Definition 6.1 (M/M/1/N-1-system with inventory). We

have a single server as described in Definition 2.1 with

a limited number of N − 1 waiting places under FCFS

regime. If at the moment of arrival of a customer the number

of customers present at the system is less than N and the

on-hand inventory is positive, the arriving customer is

admitted to the system, otherwise the arriving customer

is not admitted to the system. She disappears and never

returns.

The assumptions on the stochastic behaviour of the system

are as in Definition 2.2.

The attached inventory has capacity of M items.

The randomized order policy is determined according to

Definition 2.3.

Let X (t) denote the number of customers present

at the server at time t ≥ 0, either waiting or in ser-

vice (queue length) and let Y (t) denote the on-hand in-

ventory at time t ≥ 0. Then Z = ((X (t), Y (t)), t ≥ 0) is

a continuous-time Markov process for the M/M/1/N-1-

system with inventory management, reorder point 0 and

random size of replenishment orders. The state space

of Z is EZ N = {(n, k) : n ∈ {0, 1, . . . , N }, 1 ≤ k ≤ M} ∪
{(n, 0) : n ∈ {0, 1, . . . , N − 1}}, since the inventory can

only be depleted after a customer has been served

who took the last item from inventory and no cus-

tomers join the queue during the replenishment lead

time.

Theorem 6.2. The continuous-time Markov process Z from
Definition 6.1 is ergodic and has a unique limiting and sta-
tionary distribution of product form given by

π (n, k) = K −1

(
λ

μ

)n

qk, with 0 ≤ n ≤ N , M ≥ k ≥ 1,

(43)

π (n, 0) = K −1

(
λ

μ

)n
λ

ν
, with 0 ≤ n ≤ N − 1, (44)

and with normalization constant

K = μN+1
(

p̄ + λ
ν

) − λN+1
(

p̄ + μ

ν

)
μN (μ − λ)

. (45)

Proof: The process Z from Definition 6.1 possesses the

following global balance equations:

π (n, k)(λ(1 − δNn) + μ(1 − δ0n))

= π (n − 1, k)λ(1 − δ0n) + π (n + 1, k + 1)μ(1 − δNn)

× (1 − δk M ) + π (n, 0)νpk(1 − δNn),

0 ≤ n ≤ N , 1 ≤ k ≤ M, (46)

π (n, 0)ν = π (n + 1, 1)μ, 0 ≤ n ≤ N − 1. (47)

We have to show that the distribution from (43) and (44)

satisfies Eqs. (46) and (47). This is done by insertion using

q1 = 1, qM = pM , and qk = qk+1 + pk . The normalization
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constant K is

K =
N∑

n=0

M∑
k=1

(
λ

μ

)n

qk +
N−1∑
n=0

(
λ

μ

)n+1
μ

ν

=
1 − (

λ
μ

)N+1

1 − λ
μ

(
p̄ + μ

ν

)
− μ

ν

= μN+1
(

p̄ + λ
ν

) − λN+1
(

p̄ + μ

ν

)
μN (μ − λ)

,

where p̄ denotes the mean size of a replenishment order.

�

Remark 6.3. The stationary distribution is the conditional

distribution of the open system with infinite waiting room

from Definition 2.1 and Theorem 2.5 conditioned on the to-

tal population size excluding the state (N , 0). Our pair of

systems with finite or infinite waiting room shares this prop-

erty with standard birth and death queues.

We define

K X = μN − λN

μN−1(μ − λ)
,

KY := μN+1
(

p̄ + λ
ν

) − λN+1
(

p̄ + μ

ν

)
μ(μN − λN )

such that K = K X · KY . Note that in case of a finite waiting

room K cannot be splitted up in factors which only depend

on queue length and inventory size respectively.

The marginal steady state queue length probabilities are

for n = 0, . . . , N − 1

P(X = n) =
M∑

k=1

π (n, k) + π (n, 0) = K −1

(
λ

μ

)n(
p̄ + λ

ν

)
,

P(X = N ) =
M∑

k=1

π (N , k) = K −1

(
λ

μ

)N

p̄.

These probabilities do not coincide with the steady state

probabilities of the queue length process in the classical

M/M/1/N-1-FCFS-system. The steady state probability that

the on-hand inventory is M ≥ k ≥ 1 is given by

P(Y = k) =
N∑

n=0

π (n, k) = qk
μN+1 − λN+1

μN (μ − λ)
K −1.

The probability that the server is depleted is given by

P(Y = 0) =
N−1∑
n=0

π (n, 0) = λ

ν

μN − λN

μN−1(μ − λ)
K −1 = λ

ν
K −1

Y .

Remark 6.4. If ν = ∞ the inventory on hand leaves state

0 immediately and the state space is then given by EZ N =
{(n, k) : n ∈ {0, 1, . . . , N }, 1 ≤ k ≤ M}. If in addition the

order size is fixed to some Q ∈ N then the inventory po-

sitions are uniformly distributed as in [4].

Theorem 6.5 (Measures of system performance). The mea-
sures of system performance as defined in Section 2.1 of the
M/M/1/N-1-system with inventory according to Definition 6.1

are

Ī = μN+1 − λN+1

μN+1
(

p̄ + λ
ν

) − λN+1
(

p̄ + μ

ν

) M∑
k=1

kqk

= μN+1 − λN+1

KY μ(μN − λN )

M∑
k=1

kqk, (48)

λR = (μN − λN )λμ

μN+1
(

p̄ + λ
ν

) − λN+1
(

p̄ + μ

ν

) = λ

KY
, (49)

λA = (μN − λN )λμ p̄

μN+1
(

p̄ + λ
ν

) − λN+1
(

p̄ + μ

ν

) = λ p̄

KY
, (50)

L S = λ
λ

ν
K −1

Y + λ

(
λ

μ

)N

p̄K −1, (51)

L Sc = λ

ν
+

(
λ

μ

)N

p̄K −1
X , (52)

s = 0 for Ynet = Y and Ynet = max{0, Y − X}, (53)

α1 = 0 for Ynet = Y and Ynet = max{0, Y − X}, (54)

α2 = (μN+1 − λN+1) p̄

μN+1
(

p̄ + λ
ν

) − λN+1
(

p̄ + μ

ν

)
= p̄

KY

μN+1 − λN+1

μ(μN − λN )
for Ynet = Y, (55)

β = (μN − λN ) p̄μ

μN+1
(

p̄ + λ
ν

) − λN+1
(

p̄ + μ

ν

) = p̄

KY
, (56)

W̄ 0 = 1

μ − λ

(
1 + λ

ν p̄

)
− NλN

μ(μN − λN )

(
1 + μ

ν p̄

)
, (57)

W̄ = λ(μN−1 − λN−1)

(μ − λ)(μN − λN )

(
1 + λ

ν p̄

)

−(N − 1)
λN

μ(μN − λN )

(
1 + μ

ν p̄

)
. (58)

Proof: The proof of Theorem 6.5 is presented in Appendix

B. �
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Note that the mean time between two orders

1

λR
= μN+1

(
p̄ + λ

ν

) − λN+1
(

p̄ + μ

ν

)
(μN − λN )λμ

= μN+1 − λN+1

(μN − λN )λ

p̄

μ
+ 1

ν

is larger than in the M/M/1/∞-system as defined in Defini-

tion 2.1 if μ > λ.

L S and L Sc are now composed of two parts: the first part rep-

resents the lost customers from an empty inventory and the

second part represents the lost customers from a full waiting

room. As before β = λA
λ

but β �= α2 = P(Y > 0). The mean

sojourn time W̄ 0,s and the mean waiting time W̄ s of the clas-

sical M/M/1/N-1-system are given by (see [10] Section 2.4,

p. 97)

W̄ 0,s = 1

μ − λ
− NλN

μ(μN − λN )
and

W̄ s = λ

μ(μ − λ)
− NλN

μ(μN − λN )
.

Hence,

W̄ 0 − W̄ 0,s = 1

μ − λ

λ

ν p̄
− NλN

μ(μN − λN )

μ

ν p̄

= μN − NλN−1μ + (N − 1)λN

(μ − λ)(μN − λN )

λ

ν p̄
> 0.

A similar computation for the mean waiting times yields

W̄ − W̄ s = μN−1 − (N − 1)λN−2μ + (N − 2)λN−1

(μ − λ)(μN − λN )

λ2

ν p̄
> 0.

Remark 6.6. For ν → ∞ the following performance mea-

sures are the same as in the classical M/M/1/N-1-system:

λR = λ
p̄ P(X < N ), λA, L S = λP(X = N ), β = P(X < N ),

W̄ 0 and W̄ .

In case of finite waiting room all performance measures

depend on the service rate μ and the parameters λ and ν.

The influence of Fp is the same as in the case of an infinite

waiting room.

6.2 M/M/1/N-1-system with (r, Q)-policy

We consider the finite version of the M/M/1/∞-system with

(r, Q)-policy from Section 3.

Definition 6.7. An M/M/1/N-1-system with (r, Q)-policy is

a single server under FCFS regime as described in Definition

3.1 but with the number of waiting places limited to N − 1.

The capacity of the inventory is M = r + Q.

Let X (t) denote the number of customers present at

the server at time t ≥ 0, either waiting or in service and

let Y (t) denote the on-hand inventory at time t ≥ 0. Then

Z = ((X (t), Y (t)), t ≥ 0) is a continuous-time Markov pro-

cess for the M/M/1/N-1-system with (r, Q)-policy. The state

space of Z is EZ N = {(n, k) : n ∈ {0, 1, . . . , N }, 1 ≤ k ≤
Q + r} ∪ {(n, 0) : n ∈ {0, 1, . . . , N − 1}}.

Theorem 6.8. If we assume that a replenishment order is
outstanding only if the on-hand inventory is smaller or equal
than r and if there are less than N customers present in the
system, the continuous-time Markov process Z has a station-
ary distribution of product form given by

π (n, k) = K −1

(
λ

μ

)n

C(k), with 0 ≤ n ≤ N , 1 ≤ k ≤ r +Q,

(59)

π (n, 0) = K −1

(
λ

μ

)n
λ

ν
, with 0 ≤ n ≤ N − 1. (60)

C(k), 1 ≤ k ≤ Q + r, are the same as in Theorem 3.2 and
the normalization constant is given by

K = μN+1 − λN+1

μN (μ − λ)

(
Q

(
λ + ν

λ

)r

+ λ

ν

)
− λ

ν

λN

μN
. (61)

Proof: The proof of Theorem 3.2 is modified by replacing ν

by ν(1 − δNn). Furthermore, λ on the left side of (12) and μ

on the right side of (12) and (13) are multiplied by (1 − δNn).

�

6.3 M/M/1/N-1-system with (r, S)-policy

We consider the finite version of the M/M/1/∞-system with

(r, S)-policy from Section 4.

Definition 6.9. An M/M/1/N-1-system with (r, S)-policy is

a single server under FCFS regime as described in Definition

4.1 but now the number of waiting places is limited to N − 1.

The capacity of the inventory is M = S.

Let X (t) denote the number of customers present at

the server at time t ≥ 0, either waiting or in service and

let Y (t) denote the on-hand inventory at time t ≥ 0. Then

Z = ((X (t), Y (t)), t ≥ 0) is a continuous-time Markov pro-

cess for the M/M/1/N-1-system with (r, S)-policy. The state

space of Z is EZ N = {(n, k) : n ∈ {0, 1, . . . , N }, 1 ≤ k ≤
S} ∪ {(n, 0) : n ∈ {0, 1, . . . , N − 1}}.
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Theorem 6.10. If we assume that a replenishment order is
outstanding only if the inventory on hand is smaller or equal
than r and if there are less than N customers present in the
system, the continuous-time Markov process Z has a station-
ary distribution of product form given by

π (n, k) = K −1

(
λ

μ

)n

C(k), with 0 ≤ n ≤ N , 1 ≤ k ≤ S,

(62)

π (n, 0) = K −1

(
λ

μ

)n
λ

ν
, with 0 ≤ n ≤ N − 1. (63)

C(k), 1 ≤ k ≤ S, are the same as in Theorem 4.2 and the
normalization constant is given by

K = μN+1 − λN+1

μN (μ − λ)

(
S − r + λ

ν

) (
λ + ν

λ

)r

− λ

ν

λN

μN
.

(64)

Proof: The proof of Theorem 4.2 is modified by replacing

ν by ν(1 − δNn). Furthermore, λ on the left side of (29)

and μ on the right side of (29) and (30) are multiplied by

(1 − δNn). �

7 Cost analysis

From the explicit results obtained in the preceding sections

it is an easy task to explicitly write down the usual cost

functions and reward functions respectively. Recall the cost-

reward structure from Definition 2.1. The mean costs that

occur in steady state per time unit are:� λR · K , the fixed costs associated to replenishment orders

that occur with reorder rate λR ,� Ī · h, the holding costs for inventory of mean size Ī ,� L S · �, the shortage costs for the mean number of lost sales

L S,� L̄ · ω, the waiting costs for the mean number L̄ of waiting

customers,� V̄ · σ, the costs for the mean number V̄ of customers in

service.

The revenue obtained by the system’s service is per time unit:� λA · R, the amount of money obtained from the served cus-

tomers per time unit, which is proportional to the through-

put.

A first conclusion for minimization of costs is from Theo-

rem 2.14 and Corollary 2.17: In optimization we can restrict

ourselves to deterministic order sizes.

Let us therefore consider the cost structure of the

M/M/1/∞ under (r, Q) policy from Section 3 which is

F = λR · K + Ī · h + L S · � + L̄ · ω + V̄ · σ. (65)

Collecting the results from Theorem 3.4 in Section 3 and

recalling that the steady state queue length distribution in this

system is the same as in the isolated M/M/1/∞ we obtain:

F = λ

Q + λ
ν

(
λ

λ+ν

)r · K + Q

Q + λ
ν

(
λ

λ+ν

)r

(
Q + 1

2
+ s

)
· h

+ λ

ν

(
λ

λ + ν

)r
λ

Q + λ
ν

(
λ

λ+ν

)r · � + λ2

μ(μ − λ)
· vw

+ λ

μ
· vs .

This function is to be minimized under side conditions which

are prescribed by e.g. bounds for the available service capac-

ity or a maximal acceptable loss rate.

Nevertheless having these explicit functions at hand it

is not immediate to prove structural properties of these

functions, e.g. convexity or concavity. Even for the much

simpler case of having no explicit service times and ser-

vice constraints in the system’s behaviour the application

of calculus methods to establish these properties for the

cost functions in an analytical sense turns out to be im-

practical, see [14][p. 268]. But a numerical search pro-

cedure similar to the one described there can get started

by inserting the formula into a cost function type like

(65).

E.g., if in a system with (r, Q)-policy (see Section 3),

where no queueing and service occurs (i.e. L̄ = W̄ = 0), we

arrive at the optimization problem

F = F(r, Q) = min!, s.t. 0 ≤ r < Q,

as discussed in [14][Problem 1, p. 266].

Problem 2 of [14][p. 266 there] imposes side conditions

via stockout risk, i.e. safety stock and service levels. The

necessary quantities are computed successively as well.

A similar approach is opened by the formulas obtained

in the previous sections for the more complex integrated

queueing-inventory systems.

Although it seems hard to perform an analytical sensitiv-

ity analysis for the cost functions we have direct access to

numerical procedures from our results and do not need long

simulations.
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8 Conclusions

We have studied M/M/1 queueing systems with attached in-

ventory, exponentially distributed lead times and lost sales

for infinite and finite waiting rooms. The discussed inven-

tory management policies are the (r, Q)- and (r, S)-policies

and general randomized order policies with reorder point 0.

For each of these systems we have determined the stationary

distribution. Surprisingly enough all these distributions are

of product form. In case of infinite waiting room the limit-

ing distributions of the queue length processes coincide with

that of the classical M/M/1/∞-system. To the best of our

knowledge these are the first closed form solutions to service

facilities with attached inventories and stochastic lead times.

Note that state dependent service rates can be incorporated

into the different models without any difficulty.

Various definitions for performance measures found in the

literature have been quoted and compared in the underlying

models.

Directions for future research are investigations of the

long-run average cost functions with/without service con-

straints and to allow for more general lead time and service

time distributions.

Appendix A: Customer and event stationary measures

and intensities

This section contains results on intensities for the customer

arrival/departure processes and the replenishment order ar-

rival process for the systems from Sections 2, 3, 4 and 6.

Besides these performance measures the Palm probability

associated with the point process of replenishments is com-

puted. These probabilities are needed to calculate the safety

stock and α1-service level as defined in Definitions 2.10 and

2.11.

In addition to these results used in earlier sections

we also point out some results related to the arrival the-

orem for systems with limited and unlimited population size.

We assume that under P Z is a regular, stationary Markov

Process with Q-Matrix Q = {q(i, j)} and invariant measure

π .

Theorem A.1. In the M/M/1/∞-system with inventory man-
agement, reorder point 0 and arbitrary size of replenishment
orders according to Definition 2.1 the intensity of departures
λD and the intensity of arrivals of customers who are admit-
ted to the system λA are

λD = λA = p̄λν

p̄ν + λ
. (66)

The intensity of arrivals of replenishment orders λR is

λR = λν

p̄ν + λ
. (67)

The Palm probability associated with the point process of
replenishments is

P0
NR

(Z0− = (n, 0)) = p̄ν + λ

λ
π (n, 0) for n ∈ N0. (68)

Proof: Let H be a subset of EZ × EZ − diag (EZ × EZ )

and let NH be the point process counting the H -transitions

of Z , i.e.

NH (C) =
∫

C
1H (Zs−, Zs) N (ds), C ∈ B.

Let us consider special sets that describe events of the queue-

ing system under investigation

D = {((n, k), (n − 1, k − 1)) : n ≥ 1, M ≥ k ≥ 1}
departure of customers,

A = {((n, k), (n + 1, k)) : n ≥ 0, M ≥ k ≥ 1}
arrival of customers, who are admitted to the system,

Rk = {((n, 0), (n, k)) : n ≥ 0}
arrival of replenishment orders of size M ≥ k ≥ 1,

R = {((n, 0), (n, k)) : n ≥ 0, M ≥ k ≥ 1}
arrival of replenishment orders.

From formula (1.4.15) on page 38 of [1]

λH = E[NH ((0, 1])] =
∑

((n,k),(m,l))∈H

π (n, k)q((n, k), (m, l))

(69)

and therefore

λD =
∑

((n,k),(n−1,k−1))∈D

π (n, k)q((n, k), (n − 1, k − 1))

= μ
∑
n≥1

M∑
k=1

π (n, k) = μ
λ

μ

p̄

p̄ + λ
ν

= p̄λν

p̄ν + λ
= λ p̄

KY
,

λA =
∑

((n,k),(n+1,k))∈A

π (n, k)q((n, k), (n + 1, k))

= λP(Y > 0) = λD,

λRk =
∑

((n,0),(n,k))∈Rk

π (n, 0)q((n, 0), (n, k)) = νpkP(Y = 0)

= λpk

KY
,
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λR =
M∑

k=1

λRk = λ

KY
.

Since 0 < λH < ∞ we can define the Palm probability P0
NH

associated with NH for all H ∈ {D, A, Rk, R} as in formulas

(1.4.18) and (1.4.19).

P0
ND

(Z0 = (n, k))

=
∑

(m,l)/((m,l),(n,k))∈D π (m, l)q((m, l), (n, k))

λD

= μ( p̄ν + λ)

p̄λν
π (n + 1, k + 1)

= KY

p̄
π (n, k + 1), n, 0 ≤ k ≤ M

P0
ND

(Z0− = (n, k))

=
⎧⎨⎩

μ( p̄ν + λ)

p̄λν
π (n, k) for 0 < n, 0 < k ≤ M,

0 otherwise,

=

⎧⎪⎨⎪⎩
KY

p̄
π (n − 1, k) for 0 < n, 0 < k ≤ M,

0 otherwise,

P0
NA

(Z0 = (n, k))

=
∑

(m,l)/((m,l),(n,k))∈A π (m, l)q((m, l), (n, k))

λA

=
⎧⎨⎩

KY

p̄
π (n − 1, k) for 0 < n, 0 < k ≤ M,

0 otherwise,

P0
NA

(Z0− = (n, k))

= π (n, k)

∑
(m,l)/((n,k),(m,l))∈A q((n, k), (m, l))

λA

=
⎧⎨⎩

KY

p̄
π (n, k) for n ∈ N0, 0 < k ≤ M,

0 otherwise,

P0
NRk

(Z0 = (n, k))

=
∑

(m,l)/((m,l),(n,k))∈Rk
π (m, l)q((m, l), (n, k))

λRk

= KY ν

λ
π (n, 0) for n ∈ N0,

P0
NR

(Z0− = (n, 0))

= π (n, 0)

∑
(m,l)/((n,0),(m,l))∈R q((n, 0), (m, l))

λR

= KY ν

λ
π (n, 0) for n ∈ N0. �

For a large class of networks having product-form equi-

librium distribution it is known (see [16]) that if a customer

belongs to an open subchain the state distribution at arrival

points, departure points, and random points are identical.

In this system the arrival-instant/departure-instant and the

steady-state distributions are not the same. Just before an

arrival a customer observes

P0
NA

(Z0− = (n, k)) = KY

p̄
π (n, k), n ∈ N0, 0 < k ≤ M

whereas just after a departure he leaves

P0
ND

(Z0 = (n, k)) = KY

p̄
π (n, k + 1) n ∈ N0, 0 < k ≤ M.

These probabilities are not equal since π (n, k) �= π (n, k +
1). Note that an arriving customer never sees the state (n, 0)

without counting himself, whereas a departing customer can

leave the state (n, 0) if he gets the last item from inventory.

The following Palm probabilities are equal.

P0
NA

(Z0 = (n, k)) = P0
ND

(Z0− = (n, k)), 0 < n, 0 < k ≤ M.

After an arrival a customer observes the state (n, k) with the

same probability as a customer just before his departure.

If we look at aggregate states n ∈ N0, defined as the queue

length, we obtain

P0
NA

(X0− = n) = KY

p̄

M∑
k=1

π (n, k) = K X

(
λ

μ

)n

= P(X = n)

= KY

p̄

M∑
k=0

π (n, k + 1) = P0
ND

(X0 = n).

This shows that the distributions of the queue length n ∈ N0

just before an arrival and just after a departure instant and

in the time stationary queue are the same. This is the ESTA

(events see time averages) property [7], note that arrivals

to the server do not form a Poisson process. For 0 < n we

compute

P0
NA

(X0 = n) = KY

p̄

M∑
k=1

π (n − 1, k) = P(X = n − 1)

= P0
ND

(X0− = n).

Hence, the distributions of n customers in the system just

after an arrival and just before a departure instant are the

same and they are equal to the time stationary probability

with one less customer in the queue. As for every stochastic
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process on N0 with step size one, the steady state probabilities

in arrival and departure instants are equal if they exist.

Theorem A.2. In the M/M/1/∞-system with (r, Q)-policy
according to Definition 3.1 the intensity of departures λD

and the intensity of arrivals of customers who are admitted
to the system λA are

λD = λA = Qλ

Q + λ
ν

(
λ

λ+ν

)r . (70)

The intensity of arrivals of replenishment orders λR is

λR = λ

Q + λ
ν

(
λ

λ+ν

)r . (71)

The Palm probability associated with the point process of
replenishments is

P0
NR

(Z0− = (n, h)) = ν

λR
π (n, h) for 0 ≤ h ≤ r, n ∈ N0.

(72)

Proof: Define special sets D for departure of customers,

A for arrival of customers, who are admitted to the system,

and R for arrivals of replenishment orders as before. Using

Eq. (69) it is straight forward to prove that in the context

of the M/M/1/∞-system with (r, Q)-policy the intensities

λD, λA and λR are equal to the expressions in (70) and (71).

For 0 ≤ h ≤ r and n ∈ N0

P0
NR

(Z0− = (n, h))

= π (n, h)

∑
(m,l)/((n,h),(m,l))∈R q((n, h), (m, l))

λR

= ν

λR
π (n, h). �

Theorem A.3. In the M/M/1/∞-system with (r, S)-policy
according to Definition 4.1 the intensity of departures λD

and the intensity of arrivals of customers who are admitted
to the system λA are

λD = λA = λ − λ2

(S − r )ν + λ

(
λ

λ + ν

)r

. (73)

The intensity of arrivals of replenishment orders λR is

λR = λ

S − r + λ
ν

. (74)

The Palm probability associated with the point process of
replenishments is

P0
NR

(Z0− = (n, h)) = ν

λR
π (n, h) for 0 ≤ h ≤ r, n ∈ N0.

(75)

Proof: The proof can be done analogously to the proof of

Theorem A.2. �

The observations made above concerning the probabilities

in arrival and departure instants carry over to the M/M/1/∞-

system with (r, Q)-policy or (r, S)-policy.

Theorem A.4. In the M/M/1/N-1-system with inventory
management, reorder point 0 and arbitrary size of replen-
ishment orders according to Definition 6.1 the intensity of
departures λD and the intensity of arrivals of customers who
are admitted to the system λA are

λD = λA = p̄λ

KY
. (76)

The intensity of arrivals of replenishment orders λR is

λR = λ

KY
. (77)

The Palm probability associated with the point process of
replenishments is

P0
NR

(Z0− = (n, 0)) = KY ν

λ
π (n, 0) for 0 ≤ n ≤ N − 1.

(78)

Proof: As before we consider the following special sets that

describe events of the queueing system

D = {((n, k), (n − 1, k − 1)) : 1 ≤ n ≤ N , 1 ≤ k ≤ M}
departure of customers,

A = {((n, k), (n + 1, k)
)

: 0 ≤ n ≤ N − 1, 1 ≤ k ≤ M}
arrival of customers,

Rk = {((n, 0), (n, k)
)

: 0 ≤ n ≤ N − 1}
arrival of a replenishment order of size M ≥ k ≥ 1,

R = {((n, 0), (n, k)
)

: 0 ≤ n ≤ N − 1, 1 ≤ k ≤ M}
arrival of a replenishment order.

Computations similar to those in the proof of Theorem A.1

show that λD, λA and λR have the form given in (76) and (77).

The calculation of P0
NR

(Z0− = (n, 0)) is straightforward.

�

Springer



Queueing Syst (2006) 54:55–78 75

We now study the finite queueing system at the moments

when customers arrive at the server or leave the server. In this

system the arrival-instant/departure-instant and the steady-

state distributions are not the same. We have

P0
NA

(Z0− = (n, k)) �= P0
ND

(Z0 = (n, k)),

0 < k ≤ M, 0 ≤ n ≤ N − 1

since π (n, k) �= π (n, k + 1) and

P0
NA

(Z0 = (n, k)) = P0
ND

(Z0− = (n, k)),

0 < n ≤ N , 0 < k ≤ M.

If we look at aggregate states n for 0 ≤ n ≤ N − 1, we obtain

P0
NA

(X0− = n) = P0
ND

(X0 = n) = KY

p̄

M∑
k=1

π (n, k)

= K −1
ql

(
λ

μ

)n

�= P(X = n).

This shows that the distributions of the queue length n just

before an arrival and just after a departure instant are the

same. The time stationary distribution of the queue length is

different. For 0 < n we compute

P0
NA

(X0 = n) = P0
ND

(X0− = n) = KY

p̄

M∑
k=1

π (n − 1, k)

�= P(X = n − 1). (79)

Hence, the distributions of n customers in the system just

after an arrival or just before a departure instant are not equal

to the time stationary probability with one less customer in

the queue. This is in contrast to the arrival theorem [16] for

networks with limited population size.

Appendix B: In the main text omitted proofs

Proof of Theorem 3.4. The average on-hand inventory po-

sition is

Ī =
Q+r∑
k=1

k
∑
n≥0

π (n, k)

= Q

Q + λ
ν

(
λ

λ+ν

)r

{
Q + 1

2
+ r − λ

ν
+ λ

ν

(
λ

λ + ν

)r}
,

and s from (20) is computed below. This yields (15).

λR and λA follow from Theorem A.2.

L S = λ
∑
n≥0

π (n, 0) = λP(Y = 0) = λ

λ
ν

Q
(

λ+ν
λ

)r + λ
ν

,

L Sc = L S

λR
= λ

ν

(
λ

λ + ν

)r

.

Involving Definition 2.10 and (72) from Theorem A.2 the

safety stock or the expected net inventory position just before

a replenishment order arrives is

s =
∑
k≥1

k P0
NR

(Ynet,− = k) =
r∑

k=1

k
∑
n≥0

P0
NR

(Z0− = (n, k))

= ν

λR

r∑
k=1

k
∑
n≥0

π (n, k) = ν

λR
K −1

Y

r∑
k=1

kC(k)

= ν

λ

(
λ

λ + ν

)r 1 − (r + 1)
(

λ+ν
λ

)r + r
(

λ+ν
λ

)r+1(
1 − λ+ν

λ

)2

= ν

(λ + ν)r

λr+1 − (r + 1)λ(λ + ν)r + r (λ + ν)r+1

ν2

= r − λ

ν

(
1 −

(
λ

λ + ν

)r)
.

Using Definitions 2.10 and 2.11 we have

α1 = P0
NR

(Y0− > 0) = 1 −
∑
n≥0

P0
NR

(Z0− = (n, 0))

= 1 − ν

λR
K −1

Y

λ

ν
= 1 −

(
λ

λ + ν

)r

.

From Definition 2.11 α2 = P(Y > 0) and β = (λ − L S)/λ

hence, the results for α2 and β are obvious.

The mean number of customers in the system L̄0 and the

mean number of waiting customers L̄ are the same as in the

usual M/M/1/∞-system. Using Little’s formula the mean so-

journ time W̄ 0 and the mean waiting time W̄ of the customers

are

W̄ 0 = L̄0

λA
= Q + λ

ν

(
λ

λ+ν

)r

λQ

λ

μ − λ

= 1

μ − λ
+ λ

Qν

(
λ

λ + ν

)r 1

μ − λ
,

W̄ = L̄

λA
= Q + λ

ν

(
λ

λ+ν

)r

λQ

λ2

μ(μ − λ)

= λ

μ(μ − λ)
+ λ

Qν

(
λ

λ + ν

)r
λ

μ(μ − λ)
. �
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Proof of Theorem 4.3. The average on-hand inventory po-

sition is

Ī =
S∑

k=1

k
∑
n≥0

π (n, k)

= 1

S − r + λ
ν

{
λ

ν

(
r − λ

ν
+ λ

ν

(
λ

λ + ν

)r)

+ (S + 1)S − (r + 1)r

2

}
.

Using s from (37) the final form of Ī given in (32) follows.

λR and λA are a result of Theorem A.3. The average number

of lost sales incurred per unit of time and per cycle are

L S = λ
∑
n≥0

π (n, 0) = λP(Y = 0)

= λ2

(S − r )ν + λ

(
λ

λ + ν

)r

,

L Sc = L S

λR
= λ

ν

(
λ

λ + ν

)r

.

Since λR = λ( λ+ν
λ

)r K −1
Y as in the M/M/1/∞-system with

(r, Q)-policy (see Theorems A.2 and A.3) and the constants

C(k) are the same in both systems for 1 ≤ k ≤ r (see Theo-

rems 3.2 and 4.2) the calculation of s in the proof of Theorem

3.4 carries over to the M/M/1/∞-system with (r, S)-policy.

The same reasoning holds for the calculation of α1. The β-

service level is

β = λ − L S

λ
= 1 − λ

(S − r )ν + λ

(
λ

λ + ν

)r

.

As before β = λA/λ = P(Y > 0) = α2.

The mean number of customers in the system L̄0 and the

mean number of waiting customers L̄ are the same as in the

usual M/M/1/∞-system. Using Little’s formula we obtain

the formulas for mean sojourn time W̄ 0 and mean waiting

time W̄ in the form given in Theorem 4.3. �

Proof of Theorem 4.5. Let S = Q + s, where s is the

safety stock in the M/M/1/∞-system with (r, Q)-policy

from (20). Because of (37) s = r − λ
ν
(1 − ( λ

λ+ν
)r ) is also

the safety stock of the order-up-to level (r, S)-system. In the

(r, S)-system λR is

λR = λ

S − s + λ
ν

(
λ

λ+ν

)r .

If S − s = Q this is equal to λR in the (r, Q)-system. Using

(37) and S − s = Q once again we obtain from (34)

λA = λ − λ2

Qν + λ
(

λ
λ+ν

)r

(
λ

λ + ν

)r

= Qλ

Q + λ
ν

(
λ

λ+ν

)r .

This is (17). Since L S = λ − λA and L Sc = L Sλ−1
R the

expected lost sales per unit of time and per cycle are the

same in the (r, Q)- and (r, S)-system. α1 is the same in

both systems if the reorder point r is identical. From the

definition β = λ−L S
λ

coincides in the two systems if L S is

the same. The equality of W̄ 0 and W̄ can be seen from the

formulas (23) and (40) and (24) and (41) respectively if

S − s = Q holds.

We will now show that if S = Q + s the stationary mean

inventory position Ī l in the M/M/1/∞-system with order-

level (r, S)-policy is not larger than the stationary mean

inventory position Ī q in the M/M/1/∞-system with order-

quantity (r, Q)-policy. In the (r, Q)-system we have

Ī q = Q

Q + λ
ν

(
λ

λ+ν

)r

(
Q + 1

2
+ s

)
.

Whereas in the (r, S)-system we have

Ī l =
λ
ν
s + (S+1)S−(r+1)r

2

S − s + λ
ν

(
λ

λ+ν

)r .

Replacing Q by S − s in the first expression we have

Ī l − Ī q = 2 λ
ν
s + (S + 1)S−(r + 1)r−(S − s)(S + s + 1)

2
(
S − s+ λ

ν

(
λ

λ+ν

)r)
= 2 λ

ν
s − (r + 1)r + (s + 1)s

2
(
S − s + λ

ν

(
λ

λ+ν

)r) .

Replacing the safety stock s by r − λ
ν
(1 − ( λ

λ+ν
)r ) (from

(20) or (37)) and introducing a := λ
λ+ν

and b := λ/ν yields

with some algebra

Ī l − Ī q = 2b(r − b(1 − ar )) − (r + 1)r + (r − b(1 − ar ) + 1)(r − b(1 − ar ))

2(S − r + b)

= − b

2(S − r + b)

r∑
k=1

ar−k(1 − ak)2 < 0.
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Hence, Il < Iq and the proof is complete. �

Proof of Theorem 6.5. The average on-hand inventory is

Ī =
M∑

k=1

k
N∑

n=0

π (n, k)

= μN+1 − λN+1

μN+1
(

p̄ + λ
ν

) − λN+1
(

p̄ + μ

ν

) M∑
k=1

kq(k).

λR and λA are given in Theorem A.4. The average number

of lost sales incurred per unit of time and per cycle are given

by

L S = λ

(
N−1∑
n=0

π (n, 0) +
M∑

k=1

π (N , k)

)

= λ
λ

ν
K −1

Y + λ

(
λ

μ

)N

p̄K −1,

L Sc = L S

λR
= λ

ν
+

(
λ

μ

)N

p̄K −1
X .

Just as in the M/M/1/∞-system with inventory, reorder

point 0 and arbitrary size of replenishment orders treated in

Section 2, the safety stock is 0 for both definitions of net

inventory Ynet .

For the service levels we compute for the first definition of

net inventory 2.10

α1 = P0
NR

(Ynet,0− > 0) = P0
NR

(Y0− > 0) = 0

and the second definition of net inventory from (42)

α1 = P0
NR

(Ynet,0− > 0) = P0
NR

(max{0, Y0− − X0−} > 0) = 0.

α2 = P(Y > 0) = 1 − λ

νKY
= (μN+1 − λN+1) p̄

μ(μN − λN )KY
.

β = λ − L S

λ
= p̄

p̄ + L Sc
= p̄

p̄ μN+1−λN+1

μ(μN −λN )
+ λ

ν

= p̄

KY
.

The mean number of customers in the system L̄0 and the

mean number of waiting customers L̄ are not the same as in

the usual M/M/1/N-1-system. They are

L̄0 =
N∑

n=1

M∑
k=1

nπ (n, k) +
N−1∑
n=1

nπ (n, 0)

= λ(μN − λN )

μN−1(μ − λ)2 K

(
p̄ + λ

ν

)
− NλN+1

μN (μ − λ)K

(
p̄ + μ

ν

)
,

(80)

L̄ = L̄0 − P(X > 0) = L̄0 −
(

1 − K −1

(
p̄ + λ

ν

))
= λ2(μN−1 − λN−1)

μN−1(μ − λ)2 K

(
p̄ + λ

ν

)
− (N − 1)λN+1

μN (μ − λ)K

(
p̄ + μ

ν

)
. (81)

Using Little’s formula the mean sojourn time W̄ 0 and the

mean waiting time W̄ of the customers are

W̄ 0 = L̄0

λA

= 1

μ − λ

(
1 + λ

ν p̄

)
− NλN

μ(μN − λN )

(
1 + μ

ν p̄

)
,

W̄ = L̄

λA
= λ(μN−1 − λN−1)

(μ − λ)(μN − λN ) p̄

(
p̄ + λ

ν

)
− (N − 1)λN

μ(μN − λN ) p̄

(
p̄ + μ

ν

)
. �

Proof of Theorem 5.1

s =
M∑

k=1

kP0
NR

(Ynet− = k) = 0,

α1 = P0
NR

(max{0, Y0− − X0−} > 0) = 0. �

Proof of Theorem 5.2. We carry out the proof for the

M/M/1/∞-system with (r, Q)- and (r, S)-policy at the same

time. With the second definition of the net inventory position

(42) we obtain

s =
M∑

k=1

kP0
NR

(Ynet,0− = k)

=
M∑

k=1

kP0
NR

(max{0, Y0− − X0−} = k)

=
∞∑

h=1

h∑
k=1

kP0
NR

(X0− = h − k, Y0− = h)

= ν

λR
K −1

r∑
h=1

h∑
k=1

k

(
λ

μ

)h−k

C(h).

For the (r, Q)- and the (r, S)-system ν
λR

K −1 = ν
λ

(
λ

λ+ν

)r
K −1

X

with K X = μ

μ−λ
. Furthermore from Theorems 3.2 and 4.2 the

Springer



78 Queueing Syst (2006) 54:55–78

constants C(h), 1 ≤ h ≤ r are the same. This yields

s = ν

λ

(
λ

λ + ν

)r

K −1
X

r∑
h=1

C(h)

(
λ

μ

)h−1 h∑
k=1

k
(μ

λ

)k−1

= r − λ

ν

(
1 −

(
λ

λ + ν

)r)
− λ

μ − λ
α1,

where α1 is the α1-service level for the net inventory position

as defined in (42). It is derived next. With the same reasoning

as above the α1-service level of the two systems with the

second definition of Ynet is

α1 = P0
NR

(Y0− − X0− > 0) =
r∑

h=1

P0
NR

(X0− < h, Y0− = h)

= ν

λR
K −1

r∑
h=1

h−1∑
n=0

(
λ

μ

)n

C(h)

= 1 − 1

μ − (λ + ν)

(
(μ − λ)

(
λ

λ + ν

)r

− ν

(
λ

μ

)r)
.

�
Proof of Corollary 5.3. Define a function g as follows

g : N0 → R,

r �→ 1

μ − (λ + ν)

(
(μ − λ)

(
λ

λ + ν

)r

− ν

(
λ

μ

)r)
.

Then, clearly α1(r ) = 1 − g(r ). In order to show the asser-

tion it suffices to proof that ( λ
μ

)r ≤ g(r ) ≤ 1 and that g is

decreasing in r .

The first assertion can be proved by induction.

To show that g is strictly decreasing in r we directly compute

g(r − 1) − g(r )

≥ ν

λ + ν

(
λ

μ

)r−1 (
1 − λ

μ

)
> 0 for all r ∈ N. �
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