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We consider an M/M/1 retrial queue with working vacations, vacation interruption, Bernoulli feedback, and N-policy
simultaneously. During the working vacation period, customers can be served at a lower rate. Using the matrix-analytic method,
we get the necessary and sufficient condition for the system to be stable. Furthermore, the stationary probability distribution and
some performance measures are also derived. Moreover, we prove the conditional stochastic decomposition for the queue length
in the orbit. Finally, we present some numerical examples and use the parabolic method to search the optimum value of service
rate in working vacation period.

1. Introduction

In the queueing theory, vacation queues and retrial queues
have been intensive research topics; we can find general
models in Tian and Zhang [1] and Artalejo and Gómez-
Corral [2]. In 2002, Servi and Finn [3] first introduced
working vacation policy and studied an M/M/1/WV queue.
Their work is motivated and illustrated by the analysis of
a WDM optical access network using multiple wavelengths
which can be reconfigured. The study of queueing system
with working vacations can also provide the theory and
analysis method to design the optimal lower speed period.
Wu and Takagi [4] extended the M/M/1/WV queue to an
M/G/1/WV queue. Using the matrix-analytic method, Baba
[5] considered a GI/M/1 queue with working vacations.
Krishnamoorthy and Sreenivasan [6, 7] analyzed an M/M/2
queue with working vacations.

Furthermore, during theworking vacation period, if there
are customers at a service completion instant, the server can
stop the vacation and come back to the normal working level.
This policy is called vacation interruption. In some practical

situations, the server can take service in the vacation period
and must come back to work at times. For example, when
the number of customers exceeds the special value and if the
server continues to take the vacation, the costs of waiting
customers and providing service in the vacation period will
be large. In 2007, Li and Tian [8] first introduced vacation
interruption policy and studied an M/M/1 queue. Next, Li
et al. [9] analyzed the GI/M/1 queue. Using the method of a
supplementary variable, Zhang and Hou [10] considered an
M/G/1 queue with working vacations and vacation interrup-
tion. Sreenivasan et al. [11] studied an MAP/PH/1 queue with
working vacations, vacation interruption, and N-policy.

Retrial queueing systems are described by the feature
that the arriving customers who find the server busy join
the retrial orbit to try their requests again. Retrial queues
are widely and successfully used as mathematical models of
several computer systems and telecommunication networks.
For example, peripherals in computer systems may make
retrials to receive service from a central processor. Choi et al.
[12] analyzed an M/M/1 retrial queue with general retrial
times. Martin and Gómez-Corral [13] considered an M/G/1
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retrial queue with liner control policy. Lillo [14] investigated
a G/M/1 retrial queue. Sherman and Kharoufeh [15] studied
an M/M/1 retrial queue with unreliable server.

One additional feature which has been widely discussed
in retrial queueing systems is the Bernoulli feedback of
customers. The phenomena of feedback in retrial queueing
systems occurred in many practical situations. For example,
the retrial queue with feedback can be used to model the
Automative Repeat Request protocol in a high frequency
communication network. Falin [16] studied an M/M/1 retrial
queue with feedback. Kumar et al. [17] investigated an M/G/1
retrial queue with feedback and starting failures. Ke and
Chang [18] considered a modified vacation policy for the
M/G/1 retrial queue with balking and feedback. Kumar et al.
[19] discussed an M/M/1 retrial queue with feedback and
collisions. Kumar et al. [20] analyzed an M/G/1 retrial queue
with feedback and negative customers.

Do [21] first studied anM/M/1 retrial queue with working
vacations. Zhang and Xu [22] considered an M/M/1/WV
queue with N-policy. On the basis of the model in [21, 22],
we study an M/M/1 retrial queue with working vacations,
vacation interruption, Bernoulli feedback, and N-policy
simultaneously. Compared with the model in [23], we will
see that the infinitesimal generator ̃𝑄 is different, and in our
model, 𝜋𝑘0 = 0, 𝑘 ≥ 𝑁 + 1.

This paper is organized as follows. In Section 2, we
introduce themodel and obtain the infinitesimal generator. In
Section 3, we derive the stability condition and the stationary
probability distribution. Some important and interesting per-
formance measures are also given. In Section 4, we prove the
conditional stochastic decomposition for the queue length
given that the server is busy and there are at least 𝑁
customers in the orbit. Some numerical results are presented
in Section 5.Using the parabolicmethod, a costminimization
problem is also analyzed. Finally, Section 6 concludes this
paper.

2. Quasi Birth and Death (QBD)
Process Model

In this paper, we consider an M/M/1 retrial queue with
working vacation interruption and feedback under N-policy.
The detailed description of this model is given as follows.

(1)The interarrival times of customers are exponentially
distributed with parameter 𝜆. Upon the arrival of customers,
if the server is busy, customers are forced towait in the orbit of
infinite size. If the server is not occupied, arriving customers
get service immediately.

(2) Request retrials from the orbit follow a Poisson
process with rate 𝛼. Upon the arrival of requests, if the
server is busy, the retrial customers come back to the orbit.
If the server is free, on the other hand, requests get service
immediately.

(3)The service time 𝑆𝑏 in regular busy period is governed
by an exponential distribution with parameter 𝜇. The service
time 𝑆V in working vacation period follows an exponential
distribution with parameter 𝜂.

(4)The server begins a working vacation each time when
the system becomes empty, and the vacation time follows an
exponential distribution with parameter 𝜃. When a vacation
ends, if there are at least𝑁 customers in the orbit, the server
switches to the normal working level. Otherwise, the server
begins another vacation.

(5) In the working vacation period, if there are at least
𝑁 customers in the orbit at a service completion instant,
the server will stop the vacation and come back to the
normal busy period, which means that vacation interruption
happens. If the number of customers in the orbit is less than
𝑁, the server will continue the vacation.

(6)When a customer completes his/her service, s/he may
leave the system with probability 𝑝 (0 < 𝑝 ≤ 1) or join the
retrial group for another service with probability 𝑝 (𝑝 = 1 −
𝑝).

We assume that interarrival times, interretrial times,
service times, and vacation times are mutually independent.
Let𝑄(𝑡) be the number of customers in the orbit at time 𝑡, and
let 𝐽(𝑡) be the state of server at time 𝑡. There are four possible
states of the server as follows:

𝐽 (𝑡) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

0,

the server is in a working vacation period
at time 𝑡 and the server is free,

1,

the server is in a working vacation period
at time 𝑡 and the server is busy,

2,

the server is during a normal service
period at time 𝑡 and the server is free,

3,

the server is during a normal service
period at time 𝑡 and the server is busy.

(1)

Clearly, {𝑄(𝑡), 𝐽(𝑡)} is a Markov process with state space

Ω = {(𝑘, 𝑗) , 𝑘 ≥ 0, 𝑗 = 0, 1, 2, 3} . (2)

Using the lexicographical sequence for the states, the
infinitesimal generator can be written as

̃

𝑄 =

0

1

...
𝑁 − 1

𝑁

𝑁 + 1

...

(

(

(

(

(

(

(

(

(

𝐴0 𝐶1

𝐵 𝐴1 𝐶1

d d d

𝐵 𝐴1 𝐶1

𝐵 𝐴 𝐶

𝐵 𝐴 𝐶

d d d

)

)

)

)

)

)

)

)

)

, (3)

where

𝐴0 =(

−𝜆 𝜆 0 0

𝑝𝜂 −𝜆 − 𝜂 0 0

0 0 0 0

𝑝𝜇 0 0 −𝜆 − 𝜇

);
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𝐶1 = (

0 0 0 0

𝑝𝜂 𝜆 0 0

0 0 0 0

0 0 𝑝𝜇 𝜆

) ;

𝐵 = (

0 𝛼 0 0

0 0 0 0

0 0 0 𝛼

0 0 0 0

) ;

𝐴1 = (

−𝜆 − 𝛼 𝜆 0 0

𝑝𝜂 −𝜆 − 𝜂 0 0

0 0 −𝜆 − 𝛼 𝜆

0 0 𝑝𝜇 −𝜆 − 𝜇

) ;

𝐴 = (

−𝜆 − 𝛼 − 𝜃 𝜆 𝜃 0

0 −𝜆 − 𝜂 − 𝜃 𝑝𝜂 𝜃

0 0 −𝜆 − 𝛼 𝜆

0 0 𝑝𝜇 −𝜆 − 𝜇

) ;

𝐶 = (

0 0 0 0

0 𝜆 𝑝𝜂 0

0 0 0 0

0 0 𝑝𝜇 𝜆

) .

(4)

Due to the block structure of matrix ̃𝑄, {𝑄(𝑡), 𝐽(𝑡)} is called a
QBD process.

3. Stability Condition and
Stationary Distribution

Theorem 1. The QBD process {𝑄(𝑡), 𝐽(𝑡)} is positive recurrent
if and only if (𝑝𝜇 − 𝜆)𝛼 > 𝜆(𝑝𝜇 + 𝜆).

Proof. The proof of this theorem is similar to the proof of
Theorem 3.1 in [23]; we omit it here.

Theorem 2. If (𝑝𝜇 − 𝜆)𝛼 > 𝜆(𝑝𝜇 + 𝜆), the matrix equation
𝑅

2
𝐵 + 𝑅𝐴 + 𝐶 = 0 has the minimal nonnegative solution

𝑅 = (

0 0 0 0

0 𝑟1 𝑟2 𝑟3

0 0 0 0

0 0 𝑟4 𝑟5

), (5)

where

𝑟1 =

𝜆

𝜆 + 𝜂 + 𝜃

, 𝑟2 =

𝜆 + 𝑝𝜂

𝛼

,

𝑟3 =

𝜆 (𝜆 + 𝛼 + 𝜂 + 𝜃) (𝜆 + 𝑝𝜂) + 𝜆𝛼𝜃

𝑝𝜇𝛼 (𝜆 + 𝜂 + 𝜃)

,

𝑟4 =

𝜆 + 𝑝𝜇

𝛼

, 𝑟5 =

𝜆 (𝜆 + 𝛼 + 𝑝𝜇)

𝑝𝜇𝛼

.

(6)

Proof. The proof of this theorem is similar to the proof of
Theorem 3.3 in [23]; we omit it here.

Under the stability condition, let (𝑄, 𝐽) be the stationary
limit of the process {𝑄(𝑡), 𝐽(𝑡)} and denote

𝜋𝑘 = (𝜋𝑘0, 𝜋𝑘1, 𝜋𝑘2, 𝜋𝑘3) , 𝑘 ≥ 0;

𝜋𝑘𝑗 = 𝑃 {𝑄 = 𝑘, 𝐽 = 𝑗}

= lim
𝑡→∞

𝑃 {𝑄 (𝑡) = 𝑘, 𝐽 (𝑡) = 𝑗} , (𝑘, 𝑗) ∈ Ω.

(7)

Note that if there is no customer in the orbit, the
probability that the server is free in the normal service period
is zero. Thus, 𝜋02 = 0.

Theorem3. If (𝑝𝜇−𝜆)𝛼 > 𝜆(𝑝𝜇+𝜆), the stationary probability
distribution of (𝑄, 𝐽) is given by

𝜋𝑘0 = 0,

𝜋𝑘1 = 𝜋𝑁1𝑟
𝑘−𝑁

1
,

𝜋𝑘2 = 𝜋𝑁1 (𝑟2𝑟
𝑘−𝑁−1

1
+

𝑟3𝑟4

𝑟5 − 𝑟1

(𝑟

𝑘−𝑁−1

5
− 𝑟

𝑘−𝑁−1

1
))

+ 𝜋𝑁3𝑟4𝑟
𝑘−𝑁−1

5
,

𝜋𝑘3 = 𝜋𝑁1

𝑟3

𝑟5 − 𝑟1

(𝑟

𝑘−𝑁

5
− 𝑟

𝑘−𝑁

1
) + 𝜋𝑁3𝑟

𝑘−𝑁

5
,

(8)

for 𝑘 ≥ 𝑁 + 1, and

𝜋𝑘0 =

𝜂

𝜆 + 𝛼

𝜋01 +

𝑝𝜂

𝜆 + 𝛼

(𝜋11 − 𝜋01)

1 − 𝑞

𝑘

1

1 − 𝑞1

+

𝑝𝜂

𝜆 + 𝛼

(𝜋11 − 𝜋01)

1 − 𝑞

𝑘−1

1

1 − 𝑞1

, 1 ≤ 𝑘 ≤ 𝑁 − 1,

(9)

𝜋𝑘1 = 𝜋01 + (𝜋11 − 𝜋01)

1 − 𝑞

𝑘

1

1 − 𝑞1

, 0 ≤ 𝑘 ≤ 𝑁 − 1,
(10)

𝜋𝑘2 =

𝜇

𝜆 + 𝛼

𝜋03 +

𝑝𝜇

𝜆 + 𝛼

(𝜋13 − 𝜋03)

1 − 𝑞

𝑘

2

1 − 𝑞2

+

𝑝𝜇

𝜆 + 𝛼

(𝜋13 − 𝜋03)

1 − 𝑞

𝑘−1

2

1 − 𝑞2

, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝜋𝑘3 = 𝜋03 + (𝜋13 − 𝜋03)

1 − 𝑞

𝑘

2

1 − 𝑞2

, 0 ≤ 𝑘 ≤ 𝑁 − 1,

𝜋𝑁0 =

𝑝𝜂

𝜆 + 𝛼 + 𝜃

𝜋𝑁−1,1,

𝜋𝑁1 =

𝜆

𝜆 + 𝜂 + 𝜃

𝜋𝑁0 +

𝜆

𝜆 + 𝜂 + 𝜃

𝜋𝑁−1,1,

𝜋𝑁2 =

(𝜆 + 𝑝𝜇) 𝜋𝑁−1,3 + 𝜃𝜋𝑁0 + (𝜆 + 𝜂 + 𝜃) 𝜋𝑁1

𝛼

,

𝜋𝑁3 =

𝜆𝜋𝑁−1,3 + (𝜆 + 𝑝𝜂 + 𝜃) 𝜋𝑁1 + 𝜆𝜋𝑁2

𝑝𝜇

,

(11)
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where

𝑞1 =

(𝜆 + 𝛼) (𝜆 + 𝑝𝜂) − 𝑝𝜂𝛼

𝑝𝜂𝛼

,

𝑞2 =

(𝜆 + 𝛼) (𝜆 + 𝑝𝜇) − 𝑝𝜇𝛼

𝑝𝜇𝛼

,

(12)

𝜋11 = − 𝐾

−1
[

𝑝𝜂𝛼

𝜆 + 𝛼 + 𝜃

−

𝜂𝛼

𝜆 + 𝛼

− 𝐾]𝜋01,
(13)

𝜋00 =

(𝜆 + 𝛼) (𝜆 + 𝜂) − 𝑝𝜂𝛼

𝜆 (𝜆 + 𝛼)

𝜋01 −

𝑝𝜂𝛼

𝜆 (𝜆 + 𝛼)

𝜋11,

𝜋03 =

𝜆

𝑝𝜇

𝜋00 −

𝜂

𝜇

𝜋01,

𝜋13 =

(𝜆 + 𝛼) (𝜆 + 𝜇) − 𝑝𝜇𝛼

𝑝𝜇𝛼

𝜋03,

(14)

where𝐾 = (𝜆+(𝑝𝜂𝜆/(𝜆+𝛼)))((1−𝑞

𝑁−2

1
)/(1−𝑞1))+((𝑝𝜂𝛼/(𝜆+

𝛼 + 𝜃)) − 𝜆 − 𝜂 + (𝑝𝜂𝜆/(𝜆 + 𝛼)))((1 − 𝑞

𝑁−1

1
)/(1 − 𝑞1)). Finally,

𝜋01 can be obtained by the normalization condition.

Proof. Using the matrix-geometric solution method (see
[24]), we have

𝜋𝑘 = (𝜋𝑘0, 𝜋𝑘1, 𝜋𝑘2, 𝜋𝑘3) = 𝜋𝑁𝑅
𝑘−𝑁

= (𝜋𝑁0, 𝜋𝑁1, 𝜋𝑁2, 𝜋𝑁3) 𝑅
𝑘−𝑁

, 𝑘 ≥ 𝑁 + 1.

(15)

For 𝑘 ≥ 𝑁 + 1,

𝑅

𝑘−𝑁
= (

0 0 0 0

0 𝑟

𝑘−𝑁

1
𝑟2𝑟
𝑘−𝑁−1

1
+

𝑟3𝑟4

𝑟5 − 𝑟1

(𝑟

𝑘−𝑁−1

5
− 𝑟

𝑘−𝑁−1

1
)

𝑟3

𝑟5 − 𝑟1

(𝑟

𝑘−𝑁

5
− 𝑟

𝑘−𝑁

1
)

0 0 0 0

0 0 𝑟4𝑟
𝑘−𝑁−1

5
𝑟

𝑘−𝑁

5

). (16)

Subsisting 𝑅𝑘−𝑁 into the above equation, we get (8). On
the other hand, 𝜋0, 𝜋1, . . . , 𝜋𝑁 satisfies the equation

(𝜋0, 𝜋1, . . . , 𝜋𝑁) 𝐵 [𝑅] = 0, (17)

where

𝐵 [𝑅] =

0

1

...
𝑁 − 1

𝑁

(

𝐴0 𝐶1

𝐵 𝐴1 𝐶1

d d d
𝐵 𝐴1 𝐶1

𝐵 𝑅𝐵 + 𝐴

). (18)

Thus, we obtain

−𝜆𝜋00 + 𝑝𝜂𝜋01 + 𝑝𝜇𝜋03 = 0, (19)

𝑝𝜂𝜋𝑘−1,1 − (𝜆 + 𝛼) 𝜋𝑘0 + 𝑝𝜂𝜋𝑘1 = 0, 1 ≤ 𝑘 ≤ 𝑁 − 1, (20)

𝑝𝜂𝜋𝑁−1,1 − (𝜆 + 𝛼 + 𝜃) 𝜋𝑁0 = 0, (21)

𝜆𝜋00 − (𝜆 + 𝜂) 𝜋01 + 𝛼𝜋10 = 0, (22)

𝜆𝜋𝑘−1,1 + 𝜆𝜋𝑘0 − (𝜆 + 𝜂) 𝜋𝑘1 + 𝛼𝜋𝑘+1,0 = 0,

1 ≤ 𝑘 ≤ 𝑁 − 1,

(23)

𝜆𝜋𝑁−1,1 + 𝜆𝜋𝑁0 − (𝜆 + 𝜂 + 𝜃) 𝜋𝑁1 = 0, (24)

𝑝𝜇𝜋𝑘−1,3 − (𝜆 + 𝛼) 𝜋𝑘2 + 𝑝𝜇𝜋𝑘3 = 0, 1 ≤ 𝑘 ≤ 𝑁 − 1, (25)

𝑝𝜇𝜋𝑁−1,3 + 𝜃𝜋𝑁0 + 𝑝𝜂𝜋𝑁1 − (𝜆 + 𝛼) 𝜋𝑁2 + 𝑝𝜇𝜋𝑁3 = 0,

(26)

− (𝜆 + 𝜇) 𝜋03 + 𝛼𝜋12 = 0, (27)

𝜆𝜋𝑘−1,3 + 𝜆𝜋𝑘2 − (𝜆 + 𝜇) 𝜋𝑘3 + 𝛼𝜋𝑘+1,2 = 0,

1 ≤ 𝑘 ≤ 𝑁 − 1,

(28)

𝜆𝜋𝑁−1,3 + (𝑟2𝛼 + 𝜃) 𝜋𝑁1 + 𝜆𝜋𝑁2 + (𝑟4𝛼 − 𝜆 − 𝜇) 𝜋𝑁3 = 0.

(29)

From (20) and (23), we get (10) by some computation. Taking
(10) into (20), we get (9). In a similar way, (11) can be obtained
from (25) and (28). Taking 𝑟2 and 𝑟4 into (29), together with
(21), (24), and (26), we can derive 𝜋𝑁0, 𝜋𝑁1, 𝜋𝑁2, and 𝜋𝑁3.
Then, 𝜋00, 𝜋03, and 𝜋13 can be obtained from (19), (22), and
(27). Let 𝑘 take𝑁− 1 in (23); using the expressions of 𝜋𝑁−2,1,
𝜋𝑁−1,0, 𝜋𝑁−1,1, and 𝜋𝑁0, (13) can be derived. Finally, from the
normalization condition ∑3

𝑗=0
∑

∞

𝑘=0
𝜋𝑘𝑗 = 1, we can obtain

𝜋01.

Remark 4. From Theorem 3, we can see that, in our model,
𝜋𝑘0 = 0, (𝑘 ≥ 𝑁+1), which is different from the result in [23].
However, if we use the same technique to analyze the M/M/1
retrial queue with working vacations and feedback under N-
policy but without vacation interruption, 𝜋𝑘0 (𝑘 ≥ 𝑁 + 1)

cannot be 0.

FromTheorem 3, the probability that the server is busy is
given by

𝑃𝑏 =

∞

∑

𝑘=0

𝜋𝑘1 +

∞

∑

𝑘=0

𝜋𝑘3 = 𝑁(

𝜋11

1 − 𝑞1

−

𝑞1𝜋01

1 − 𝑞1

)
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−

𝜋11 − 𝜋01

(1 − 𝑞1)
2
(1 − 𝑞

𝑁

1
)

+ 𝑁(

𝜋13

1 − 𝑞2

−

𝑞2𝜋03

1 − 𝑞2

) −

𝜋13 − 𝜋03

(1 − 𝑞2)
2
(1 − 𝑞

𝑁

2
)

+

1 − 𝑟5 + 𝑟3

(1 − 𝑟1) (1 − 𝑟5)

𝜋𝑁1 +

1

1 − 𝑟5

𝜋𝑁3.

(30)

The probability that the server is free is

𝑃𝑓 =

𝑁

∑

𝑘=0

𝜋𝑘0 +

∞

∑

𝑘=1

𝜋𝑘2 = 1 − 𝑃𝑏. (31)

The mean number of customers in the orbit is

𝐸 [𝐿]

=

𝑁

∑

𝑘=1

𝑘𝜋𝑘0 +

∞

∑

𝑘=1

𝑘 (𝜋𝑘1 + 𝜋𝑘2 + 𝜋𝑘3)

=

𝑁

∑

𝑘=1

𝑘 (𝜋𝑘0 + 𝜋𝑘2) +

𝑁−1

∑

𝑘=1

𝑘 (𝜋𝑘1 + 𝜋𝑘3)

+ 𝑁𝜋𝑁1

(1 + 𝑟2) (1 − 𝑟5) + 𝑟3 (1 + 𝑟4)

(1 − 𝑟1) (1 − 𝑟5)

+ 𝑁𝜋𝑁3

1 + 𝑟4

1 − 𝑟5

+ 𝜋𝑁1

×

(𝑟1 + 𝑟2) (1 − 𝑟5)
2
+ 𝑟3𝑟4 (2 − 𝑟1 − 𝑟5) + 𝑟3 (1 − 𝑟1𝑟5)

(1 − 𝑟1)
2
(1 − 𝑟5)

2

+ 𝜋𝑁3

𝑟4 + 𝑟5

(1 − 𝑟5)
2
.

(32)

The mean number of customers in the system is given by

𝐸 [

̃

𝐿] =

𝑁

∑

𝑘=1

𝑘𝜋𝑘0 +

∞

∑

𝑘=1

𝑘𝜋𝑘2 +

∞

∑

𝑘=0

(𝑘 + 1) (𝜋𝑘1 + 𝜋𝑘3)

= 𝐸 [𝐿] + 𝑃𝑏.

(33)

Let𝑊 be thewaiting time of a customer in the orbit, using
Little’s formula, 𝐸[𝑊] = 𝐸[𝐿]/𝜆. The expected sojourn time
of a customer in the system is 𝐸[̃𝑊] = 𝐸[̃𝐿]/𝜆.

The system busy period 𝑇 is defined as the period that
starts at an epoch when an arriving customer finds an empty
system and ends at the departure epoch at which the system
is empty. Using the theory of regenerative process,

𝜋00 =

𝐸 [𝑇00]

1/𝜆 + 𝐸 [𝑇]

,
(34)

where 𝐸[𝑇00] is the amount of time in the state (0, 0) during
a regenerative cycle. Obviously, 𝐸[𝑇00] = 1/𝜆. Thus, 𝐸[𝑇] =
𝜆

−1
(𝜋

−1

00
− 1).

4. Conditional Stochastic Decomposition

Lemma 5. If (𝑝𝜇 − 𝜆)𝛼 > 𝜆(𝑝𝜇 + 𝜆), let 𝑄0 be the condi-
tional queue length of an𝑀/𝑀/1 retrial queue with feedback
in the orbit given that the server is busy; then𝑄0 has probability
generating function

𝐺𝑄0
(𝑧) =

1 − 𝑟5

1 − 𝑟5𝑧

. (35)

Proof. Consider an M/M/1 retrial queue with feedback; let
𝑄

∗
(𝑡) be the number of customers in the orbit at time 𝑡, and

𝐽

∗
(𝑡) = {

0, the server is free at time 𝑡,
1, the server is busy at time 𝑡;

(36)

then {𝑄

∗
(𝑡), 𝐽

∗
(𝑡)} is a Markov process with state space

{(𝑘, 𝑗), 𝑘 ≥ 0, 𝑗 = 0, 1}. And the infinitesimal generator is
given by

̃

𝑄

∗
= (

𝐴0 𝐶

𝐵 𝐴 𝐶

𝐵 𝐴 𝐶

d d d

), (37)

where

𝐴0 = (

−𝜆 𝜆

𝑝𝜇 −𝜆 − 𝜇

) ; 𝐵 = (

0 𝛼

0 0

) ;

𝐴 = (

−𝜆 − 𝛼 𝜆

𝑝𝜇 −𝜆 − 𝜇

) ; 𝐶 = (

0 0

𝑝𝜇 𝜆

) .

(38)

Following the steps we used before, the QBD process
{𝑄

∗
(𝑡), 𝐽

∗
(𝑡)} is positive recurrent if and only if (𝑝𝜇 − 𝜆)𝛼 >

𝜆(𝑝𝜇 + 𝜆), and the stationary probability distribution is

�̃�𝑘0 = �̃�01𝑟4𝑟
𝑘−1

5
, 𝑘 ≥ 1,

�̃�𝑘1 = �̃�01𝑟
𝑘

5
, 𝑘 ≥ 0,

(39)

where

�̃�00 = (1 +

1 + 𝑟4

1 − 𝑟5

𝜆

𝑝𝜇

)

−1

, �̃�01 =

𝜆

𝑝𝜇

�̃�00.
(40)

Thus,

𝐺𝑄0
(𝑧) =

∞

∑

𝑘=0

𝑃 {𝑄0 = 𝑘} 𝑧
𝑘
=

∑

∞

𝑘=0
�̃�01𝑟
𝑘

5
𝑧

𝑘

∑

∞

𝑘=0
�̃�01𝑟
𝑘

5

=

1 − 𝑟5

1 − 𝑟5𝑧

.

(41)

For the model considered in this paper, we introduce a
random variable 𝑄𝑁 = {𝑄 − 𝑁 | 𝑄 ≥ 𝑁, 𝐽 = 1 or 3}. And
𝑄

𝑁 is a conditional queue length given that the server is busy
and there are at least𝑁 customers in the orbit. Let 𝑃∗

𝑏
be the
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Figure 1: 𝑃𝑏 and 𝑃𝑓 with the change of 𝑝.

probability that the server is busy and there are at least 𝑁
customers in the orbit. Obviously,

𝑃

∗

𝑏
= 𝑃 {𝑄 ≥ 𝑁, 𝐽 = 1 or 3} =

∞

∑

𝑘=𝑁

𝜋𝑘1 +

∞

∑

𝑘=𝑁

𝜋𝑘3

=

∞

∑

𝑘=𝑁

𝜋𝑁1𝑟
𝑘−𝑁

1
+

∞

∑

𝑘=𝑁

𝜋𝑁1

𝑟3

𝑟5 − 𝑟1

(𝑟

𝑘−𝑁

5
− 𝑟

𝑘−𝑁

1
)

+

∞

∑

𝑘=𝑁

𝜋𝑁3𝑟
𝑘−𝑁

5

=

1 + 𝑟3 − 𝑟5

(1 − 𝑟1) (1 − 𝑟5)

𝜋𝑁1 +

1

1 − 𝑟5

𝜋𝑁3.

(42)

Theorem 6. If (𝑝𝜇 − 𝜆)𝛼 > 𝜆(𝑝𝜇 + 𝜆), the conditional queue
length𝑄𝑁 can be decomposed into the sum of two independent
random variables: 𝑄𝑁 = 𝑄0 + 𝑄𝑐, where 𝑄0 is defined in
Lemma 5 and follows a geometric distribution with parameter
1 − 𝑟5. Additional queue length 𝑄𝑐 has a distribution

𝑃 {𝑄𝑐 = 0} =

1

𝑃

∗

𝑏

𝜋𝑁1 + 𝜋𝑁3

1 − 𝑟5

,

𝑃 {𝑄𝑐 = 𝑘} =

𝜋𝑁1

𝑃

∗

𝑏

𝑟1 + 𝑟3 − 𝑟5

1 − 𝑟5

𝑟

𝑘−1

1
, 𝑘 ≥ 1.

(43)

Proof. The proof of this theorem is similar to the proof of
Theorem 5.2 in [23]; we omit it here.

5. Numerical Results

5.1. Sensitivity Analysis. In Figure 1, with the change of
probability 𝑝, the curves of probability 𝑃𝑏 (the server is busy)
and𝑃𝑓 (the server is free) are provided. Figure 2 illustrates the
expected queue length 𝐸[𝐿] with the change of probability
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Figure 2: 𝐸[𝐿] with the change of 𝑝.
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Figure 3: 𝐸[𝑇] with the change of 𝜂.

𝑝 at different retrial rate 𝛼. In Figure 1, we find that 𝑃𝑓
increases as 𝑝 increases while 𝑃𝑏 decreases as 𝑝 increases.
From Figure 2, we can see that 𝐸[𝐿] decreases evidently
with increasing value of 𝑝. We can easily imagine that 𝐸[𝐿]
will increase dramatically with 𝑝 decreasing, as long as the
stability condition inTheorem 1 holds.

From Figures 3 and 4, it is obvious that expected busy
period 𝐸[𝑇] and expected queue length 𝐸[𝐿] both decrease
evidently with service rate 𝜂 increasing.Thus, compared with
ordinary vacation policy, working vacation policy can utilize
the server and decrease the waiting jobs effectively. And it is
easy to see that, if the other conditions are the same, the larger
𝛼 is, the smaller 𝐸[𝑇] and 𝐸[𝐿] become.

Under the stability condition, we vary the retrial rate 𝛼
from 3 to 5. Figures 5 and 6 illustrate the effect of 𝛼 on 𝐸[𝑇]
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Figure 4: 𝐸[𝐿] with the change of 𝜂.
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Figure 5: 𝐸[𝑇] with the change of 𝛼.

and 𝐸[𝐿], respectively. We can see that 𝐸[𝑇] and 𝐸[𝐿] both
decrease with the rate 𝛼 increasing; this is due to the fact that
the interretrial time becomes shorter. When the probability
𝑝 is small, 𝐸[𝑇] and 𝐸[𝐿] are sensitive to retrial rate 𝛼; this
is because customers may join the retrial group for another
service with probability 1 − 𝑝.

5.2. Cost Analysis. Queueing managers are always interested
in minimizing operating cost of unit time. In this section, we
establish a cost function to search for the optimal service rate
𝜂.

Define the following cost elements:

𝐶𝐿 = cost per unit time for each customer present in
the orbit;
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Figure 6: 𝐸[𝐿] with the change of 𝛼.

𝐶𝜇 = cost per unit time for service during a normal
service period;
𝐶𝜂 = cost per unit time for service in a working
vacation period;
𝐶𝜃 = fixed cost per unit time during a working
vacation period.

We establish an expected operating cost function per unit
time as

min
𝜂
: 𝑓 (𝜂) = 𝐶𝐿𝐸 [𝐿] + 𝐶𝜇𝜇 + 𝐶𝜂𝜂 + 𝐶𝜃𝜃. (44)

Assume that 𝐶𝐿 = 6, 𝐶𝜇 = 15, 𝐶𝜂 = 10, and 𝐶𝜃 = 4;
Figure 7 illustrates the curve of cost function with the change
of 𝜂. We can see that there is an optimal service rate 𝜂 to
make the cost minimize. In order to solve the optimization
problem (44), we can use the parabolic method in [25] to
find the optimum value of 𝜂, say 𝜂∗. As is known to us, the
unique optimum of a quadratic function agreeing with 𝑓(𝑥)
at 3-point pattern {𝑥0, 𝑥1, 𝑥2} occurs at

𝑥

=

1

2

𝑓 (𝑥0) (𝑥
2

1
− 𝑥

2

2
) + 𝑓 (𝑥1) (𝑥

2

2
− 𝑥

2

0
) + 𝑓 (𝑥2) (𝑥

2

0
− 𝑥

2

1
)

𝑓 (𝑥0) (𝑥1 − 𝑥2) + 𝑓 (𝑥1) (𝑥2 − 𝑥0) + 𝑓 (𝑥2) (𝑥0 − 𝑥1)

.

(45)

Assume the stopping tolerance 𝜀 = 10

−4 and with the
information of Figure 7, we select the initial 3-point pattern
𝜂0 = 0.4, 𝜂1 = 0.6, and 𝜂2 = 0.8. After six iterations, Table 1
shows that the minimum expected operating cost per unit
time converges to the solution 𝜂∗ = 0.566601 with a value
of 71.614654.

6. Conclusion

In this paper, we analyze an M/M/1 retrial queue with work-
ing vacation, interruption, and feedback under N-policy.
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Table 1: The parabolic method in searching for the optimum solution.

Number of iterations 𝜂

0
𝜂

1
𝜂

2
𝑓(𝜂

0
) 𝑓(𝜂

1
) 𝑓(𝜂

2
) 𝜂 𝑓(𝜂) Tolerance

0 0.400000 0.600000 0.800000 71.882122 71.623400 71.973607 0.700000 71.741964 0.100000
1 0.400000 0.600000 0.700000 71.882122 71.623400 71.741964 0.578266 71.615748 0.021734
2 0.400000 0.578266 0.600000 71.882122 71.615748 71.623400 0.570064 71.614752 0.008202
3 0.400000 0.570064 0.578266 71.882122 71.614752 71.615748 0.567778 71.614666 0.002287
4 0.400000 0.567778 0.570064 71.882122 71.614666 71.614752 0.566941 71.614655 8.367041 × 10

−4

5 0.400000 0.566941 0.567778 71.882122 71.614655 71.614666 0.566689 71.614654 2.521251 × 10

−4

6 0.400000 0.566689 0.566941 71.882122 71.614654 71.614655 0.566601 71.614654 8.826668 × 10

−5
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Figure 7: Effect of 𝜂 on the expected operating cost per unit time.

Using the matrix-analytic method, the stationary probability
distribution and some performance measures are obtained.
The conditional stochastic decomposition is also given. We
present several numerical examples to study the effect of some
parameters. Finally, a cost optimization problem is studied.
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