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Abstract: The M/M/1 retrial queue with working vacations and negative
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negative customers are Poisson. Upon the arrival of a positive customer, if
the server is busy the customer would enter an orbit of infinite size and the
orbital customers send their requests for service with a constant retrial rate.
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served depart from the system and no customers are in the orbit. Arriving
negative customers kill a batch of the positive customers waiting in the orbit
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1 Introduction

Vacation queues and retrial queues have been applied to evaluate the performance of
various systems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Recently, the M/M/1 retrial queue with
working vacations was introduced [11] and analyzed. Then onwards, several works [12,
13, 14, 15] have appeared that analyze the single server retrial queue with working
vacations in the discrete time domain and the continuous time domain.

In this paper, we provide a useful further extension. The result is the M/M/1
retrial queue with working vacations, and with negative customer arrivals. The notation
and the concept of negative customers in queueing systems were introduced by
Gelenbe [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. G-queues with negative arrivals in
the GI/GI context were first published in [16]. Note that stability issues in G-network
models were first discussed in [17, 18, 19, 20, 21, 22]. Discrete-time queues were



analyzed in [27, 28, 29]. Queues with negative customers have used extensively to
model breakdowns, packet losses, task terminations in speculative parallelism, faulty
components in manufacturing systems, server breakdowns and a reaction network of
interacting molecules [30, 31, 32, 33, 34, 35], Optical Burst/Packet (OBS) Switching
networks [36], wireless networks [33, 37, 38], failures in manufacturing cells [39]. The
bibliography on G-networks and negative customers can be found in [40].

The M/M/1 retrial queue with working vacations that is conceived in this paper has
negative customer arrivals in addition to positive customers. Positive customers are also
referred as customers. The arrival processes of both these customer types are Poisson.
Upon the arrival of a positive customer, if the server is busy the customer would wait
in an orbit of infinite size. If the server is not occupied, then the customer would obtain
its service started immediately and the server gets occupied. Note that the blocked
positive customer enter the orbit according to FCFS discipline. Customers waiting in
the orbit send request for service from the server with a constant retrial rate. The single
server takes a working vacation at times when requests being served depart from the
system and no customers are in the orbit. Each vacation lasts for a duration that is
exponentially distributed. These vacation periods are working vacations during which
customers are indeed served, but with a rate smaller than the normal service rate. At the
end of each working vacation, the server takes another new vacation if there is neither
a new request nor any retrial request from the orbit. Arriving negative customers kill
positive customers waiting in the orbit in a pre-defined manner to model an impatience
of positive customers in practice. It is worth mentioning that a queue in which server
goes becomes unavailable for a random time after each service period was considered
in [1]. However, this kind of vacations is different from a vacation model studied in
this paper.

The rest of the paper is organized as follows. In Section 2, we conceive and analyze
the M/M/1 retrial queue with working vacations and negative customers. We also derive
and present a closed form expression for the steady state probabilities in Section 3.
Numerical results are presented in Section 4. Finally, the paper is concluded in Section 5.

2 System Descriptions and Modeling

The working of the M/M/1 retrial queue with working vacations and negative customers
is explained as follows. Positive customers and negative customers arrive according
Poisson processes with rates A™ and ™, respectively. Upon the arrival of a customer
(positive customer), if the server is busy, it would join the orbit of infinite size. Each
customer in the orbit retries for service with a retrial rate of « (the time between two
consecutive retrials from a customer is thus exponentially distributed).

The service rate is p;, when the server is not on vacation. The single server takes a
working vacation at times when a request being served departs from the system and no
requests are in the orbit. The duration of a working vacation is exponentially distributed
with parameter 6. During the working vacation periods, arriving customers or requests
are served with a rate u, < up. At the end of each vacation, the server takes another
vacation if there is no any customer in the orbit.

An arriving negative customer kills a number of positive customers waiting in the
orbit, according to a rule that is explained as follows. When a negative customers
arrives, an integer variable m > 1 is selected randomly, with given probability mass
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function p,,. If orbiting customers are greater than the realized m, then m orbiting
customers are killed. If the number of waiting customers in the orbit is less than or equal
to m, then the orbit becomes empty. Let H(z) be the probability generating function of
the batch size of the killings

H(z)= Y "po M
m=1

Let I(t) denote the state of the server and J(¢) be the number of customers in the
orbit, at time t.. The single server can be in one of the following mutually exclusive
and exhaustive states:

(1) the server is on the working vacation and free at time ¢. Let this state be numbered
as, I(t) =0.

(2) the server is on a working vacation and busy, at time ¢. This state is denoted by,
I(t)=1.

(3) the server is not on a working vacation and not occupied at time ¢. This state is,
I(t) = 2.

(4) the server is not on a working vacation and it is busy at time ¢. This state is,
I(t) = 3.

The system can now be modeled by a continuous time Markov process (CTMP) YV =
{I(t),J(t)} on the state space S = {(i,7): 0<i<3, j>O0}
For J(t) = j > 0, the possible events in the system can be enumerated as follows:

(1A) the arrival of a new customer occurs,

(1A.1) if the server is free, then the server changes to the busy state (i.e.: I(t)
changes either from 0 to 1, or from 2 to 3). In this case, the transition either
from state (0, 5) to (1,4) or from (3, ) to (4,5) occurs.

(1A.2) if the server is occupied (I(t) =1 or I(t) = 3), then the customer goes into
the orbit. That is, the transition from state (¢, j) to (¢,j + 1) happens.

(2A) the departure of a customer from the system takes place after the completion of
its service, then the server becomes free. Then, I(t) changes either from 1 to 0
or from 3 to 2 and J(¢) remains unchanged.

(3A) the end of the server vacation occurs, then I(t) changes either from 0 to 2 or from
1 to 3. The system changes its state either from (0, 5) to (2,5) or from (1,7) to

(3,4)-

(4A) the successful service request of a customer from the orbit, then I(¢) changes
either from 0 to 1 or from 2 to 3. The system changes its state either from (0, j)
to (1,7 — 1) or from (2,7) to (3,5 — 1).

(5A) the arrival of a negative customer deletes k positive customers from the orbit, the
system changes its state either from (i, 5) to (i,7 — k) or from (4,75) to (4,0). k
is a random variable here.
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At time ¢, if no customer is in the orbit (J(¢) = 0), the following events are possible
in the system.

(1B) upon the arrival of a new positive customer at time ¢,

(1B.1) if the server is free, then the server changes to the busy state. The system
changes from state (0,0) to (1,0).

(1B.2) if the server is occupied (I(t) = 1 or I(¢) = 3), then the customer goes into
the orbit. The system changes either from state (1,0) to (1,1) or from (3,0)
to (3,1).

(2B) the departure of a request after the completion of its service occurs, then the server
becomes free. This would bring a transition either from state (1,0) to (0,0) or
from (3,0) to (0,0).

(3B) the status change of the server (i.e.: the end of the vacation), then I(¢) changes
from 1 to 3. The system changes from state (1,0) to (3,0).

As a consequence, the following types of possible transitions between the states of
CTMP Y can be identified:

(2) a purely phase transition, from state (¢, j) to state (k,j) (V (i,7) € S and (k,j) €
S), the transition rate is denoted by A, (¢, k);

an one-step upward transition from state (4, j) to state (k,j + i,7) € S an
b d ition fi by k,7+1) (Y (i,7) € S and
(k,j+ 1) € S), the transition rate is represented by B;(i, k) ;

(c) an m—step downward transition from state (¢, j) to state (k,j —m) (¥ (i,5) € S
and (k,j —m) € S) for m > 1, the transition rate is is C; ,, (3, k).

Let A;, B; and Cj,, be matrices of size 4 x 4 with elements A;(i, k), B;(i, k) and
C;m (i, k), respectively.
Therefore, we can write

0 AT00 0AT 6 0
ey 0 06 wy 0 0 6 )
= : . = = >'
Ao 0 000l A=A 000|720
w0 00 00w 0
0000
0xt0 0 | |
Bi=B=1g000 72"
00 0A
A a 00 AT« 0 0
L loxo0o0 . oA 0 0 .
Ca=C=1g ool G1=0=]1 ¢ "0 pr o | 725
00 0\ 0 0 0 pA



Cj,m = Cm

PmA~ 0 0
0 pmA~ O
0 0 pmA~
0 0 0

0

_ipmx 0

m=j

0 Y pmA™ 0 0
=j

0 i P A~ 0
m=j

0

0
0 I >m>1 ;
0 7] )

DA~

0 0

vj > 2.

0 f: DA~
m=j i

One can observe that the following equation holds

j—1

C=0C5; —|—ch

i=1

3 The Steady State Probabilities

2

CTMP Y is on a two-dimensional lattice, finite in the phase I(¢) and infinite in the level
J(t) of the process. Due to the transitions caused by negative customers, the process Y’
is of GI/M/1-type, skip-free to the right ([1, 41]). Therefore, the infinitesimal generator

matrix of Y is

-
Cia
Co2

Q= Cs,3

where A} = Ay — D4 —

By
A7
Cs1
Cs2

Ap
Cia

s

Cs3

0 0 0 0
B 0 0 0
A3 By 0 0
Cs1 Ay By 0 = (3)
B 0 0 0 0 i
A* B 0 0 0
c, A* B 0 0
A* B 0 ) 4)

Cs

Cq

D, At =A;— D% — DB — D j>1, and D? (Z =

Aj, B;,Cj;) is a diagonal matrix whose diagonal element is the sum of all elements
in the corresponding row of Z. It can be observed that A3 = A; — D4 — DB — D¢
does not depend on j, so let A7 = A*.



We denote the steady state probabilities as,
™y = Jim P(I(t) =1,/ (t) = j),
and let the row-vector, v; = [mo j, 71,5, T2 j, 73 ;]. From the explained operation of the
queue, it can be seen that the probability there is no waiting customer in the orbit, no
customer occuping the server and the server is not on a working vacation, is zero. This
means, m2 o = 0 holds.
The balance equations, which equate the probability fluxes from and to the states

of CTMC Y, and the normalization equation pertaining to CTMC Y can be written as
follows:

e for J(t) =0,

V()AB + kack,k =0. %)
k=1
* for row j for j > 1,
Vio1B+ VAT + > Vi = 0. (6)
m=1

The normalization equation is

D vie=1, (7)
j=0

where e is the column vector of size 4 with each element equals to unity.

Theorem 1 The determinant of the characteristic matrix polynomial Q(x) = B+
Az + 37 Crpx™ T associated with equation (6) can be expressed as follows

Det[Q(x)] = (Qoo(x)Qu1(z) — (AT + az)po2®)(Qa2(2)Q33(2) — (AT + az)ya?), (8)

where

Qoo(®) = —(a+ At + 0+ X" )z + N\ zH(x),
Qu(x) =AT = (AT + 0+ pp + A7)z + A\ 2H(x),
Qaa(r) =Mt +a+ ")z + A" 2H(2),

Qs3(z) = AT = (AN + iy + A7)z + A zH (z).

Proof:  Using the expressions of B, A*, C,, and equation (1), we can obtain after some
algebra

Qoo(r) ATz + az? Oz 0
— o Qui(z) 0 Oz
Q) = 0 16 Qoo () Nt + az?
0 0 wr  Qzz(x)

Therefore, Det[Q(z)] = (Qoo(z)Q11(z) — (AT + )y 2?)(Qa2(2)Q33(x) — (AT +
ax)upx?) holds. O



Based on Theorem 1, the roots of Det[Q(x)] can be determined from
Qoo()Qui(z) = (AT +ax)p,a® =0 and  Qa(2)Qs3(x) — (AT + az)ma® = 0.
Based on [42], the necessary and sufficient condition for the ergodicity of CTMC Y is
that the number of eigenvalues of Q(z) inside the unit disk is 4. Let us denote these
eigenvalues as x1, T2, 23 and x4, then |z;| < 1.

Note that Qoo(z)Q11(z) — (AT + ax)u,x? has two roots that are inside the unit
circle: 0 <27 <1 and 2o = 0. Similarly, Q22(2)Q33(z) — (AT + ax)upz? has two
roots that are inside the unit circle: z3 = 0 and 0 < x4 < 1.

Following [42], the steady state probabilities can be expressed as a linear sum of
factors x] U, (where |z;| < 1):

4
vi=> axl¥; (j>0), ©)
=1

where a; (1 =1,...,4) are the coefficients to be determined and ¥;s are the left-hand-
side (LHS) eigenvectors of Q(z) for eigenvalue x;, i = 1,2,3,4.

To compute the coefficients a; (1 =1,...,4) we will proceed as follows. Using
U, Q(x;) =0, i=1,2,3,4, we can obtain the expression for the LHS eigenvectors of

Q(x):

1) Uy =[1,—Qoo(x1)/(po1),y1,9y2] is the LHS eigenvector of Q(z) for
eigenvalue x1, where y; and y, can be determined as the solution of the following
linear equations:

Oz + Qa2(x1)y1 + ppx1y2 = 0,
—Qoo(71)0/ e + (N1 + azd)yr + Qa3(z1)y2 = 0.

Therefore, we get

_ Qo0 (21)01 + 10 Q33(21)021

to (Q22(21)Q33(w1) — Ayt — appa?)’
Qoo(71)Q22(21)0 + AT 023 + pyalbx?
to(Q22(1)Q33(21) — Ayt — appa?)

Y1 =

Y2 =

2) ¥y =11,0,0,0] is the corresponding LHS eigenvector of zero eigenvalue o

of Q(x).

3) U3 =10,0,1,0] is the corresponding LHS eigenvector of zero eigenvalue x3

of Q(x).

4) Oy =[0,0,1,—Qa22(xa)/(tox4)] is the LHS eigenvector of Q(x) for
eigenvalue 4.

Theorem 2 The balance equation (5) can be written in the following form

4 4
* Z a;Tq Z Q; *
=1 i=1



Proof:  Substituting equation (2) into (5), we get

oo k—1
VoA; + Y vi(C =D Cr) =0. (11)
= m=1
Since
) k—1 0o oo 4 [ 0o
ka D Cn= > wiCn=) D e
= m=1 m=1k=m+1 1=1 m=1k=m+1
- Z " Z Cor? =31 fizl Ui(Q(x:) — B — A";) (12)
and

kac ZZalz\IIC’ Z”Z ; (13)

1=1 k=1
equation (11) can be expressed as

4

a;x; a;

A LW,C — U, i) —B—A"z;)=0. 14

vo +; e ;1_%, (Q(w:) i) (14)

Substituting ¥,;Q(x;) =0, i = 1,2,3,4 into equation (14), we yield (10). O
o0

The normalization equation Z vje =1 can be rewritten as

J=0

Zvje*ZZazx\I/e*Zaz Ve =1,. (15)

7=01i=1 Li

The computation of the coefficients can be performed using (10) and (15) which
needs only small computational requirements, and does not involve the computation of
the infinite number of terms. The performance measures can be obtained as follows:

* the average number of customers in the orbit
o] 4

J):Zjvje:Z]Zazx\I/e—Zallix Ve, (16)
j=1

j=1 i=1

+ the probability that the server is on vacation

Ua(. Z 0. + 71_17] 1(1 — C(?;)OE‘T;z)/(uvml)) + as. (17)
7=0
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Figure 1 E(J) vs A\~
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4 Numerical Results

In this section, we present some numerical results concerning the average number of
customers in the orbit and the probability that the server is on vacation. In order to do
so, we implemented the method presented in Section 3. For AT = 2.1, o = 10., § = 1.0,
iy = 0.8, up = 3.0, we plot the average number of customers in the orbit vs A~ and
the probability that the server is on vacation vs A~ in Figures 1 and 2, respectively. It is
observed that the binomial distribution of the batch size of the killings has a more severe
impact on the number of customers waiting in the orbit than the geometric distribution
of the batch size of the killings (note that we keep Y ~_, ppm = 5.0). Therefore, the
probability that the server is on vacation is less with the geometric distribution than the
binomial distribution of the batch size of the killings.

5 Conclusions

We have introduced the new M/M/1 retrial queue with working vacations and negative
customer arrivals. It is remarkable that our solution does not involve the summation of
the infinite number of terms, if we have the closed-form expression for the probability
generating function of the batch size of the killings. Extensions of this work in several
directions (e.g., to model public transportation situation) are possible.
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