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M(r, s)-IDEALS OF COMPACT OPERATORS

Rainis Haller, Marje Johanson, Eve Oja, Tartu
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Abstract. We study the position of compact operators in the space of all continuous linear
operators and its subspaces in terms of ideals. One of our main results states that for Banach
spaces X and Y the subspace of all compact operators K (X, Y ) is anM(r1r2, s1s2)-ideal in
the space of all continuous linear operators L (X, Y ) whenever K (X, X) and K (Y, Y ) are
M(r1, s1)- and M(r2, s2)-ideals in L (X, X) and L (Y, Y ), respectively, with r1 + s1/2 > 1
and r2 + s2/2 > 1. We also prove that the M(r, s)-ideal K (X, Y ) in L (X, Y ) is separably
determined. Among others, our results complete and improve some well-known results on
M -ideals.

Keywords: M(r, s)-ideal and M -ideal of compact operators, property M∗(r, s), compact
approximation property
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1. Introduction

Let X and Y be Banach spaces (over K = R or C). We denote by L (X, Y ) the

Banach space of all continuous linear operators from X to Y and by K (X, Y ) its

subspace of compact operators. Instead of K (X, X) and L (X, X) we write K (X)

and L (X), respectively.

In this paper we study the position of K (X, Y ) inside L (X, Y ) and its subspaces

in terms of ideals. Recall that a closed subspaceK of a Banach spaceL is said to be

an ideal in L if there exists a norm one projection P on L ∗ with kerP = K ⊥, the

annihilator of K . We shall say that P is an ideal projection. If moreover, there are

r, s ∈ (0, 1] so that ‖f‖ > r‖Pf‖+ s‖f −Pf‖ for all f ∈ L ∗, then K is an M(r, s)-

ideal in L . (In [5] and subsequent works such a K was called an ideal satisfying
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the M(r, s)-inequality in L .) Occasionally, following [10], we shall consider M(r, s)-

ideals also for positive numbers r 6 1 and s. It is clear that K = L if and only if

K is an M(r, s)-ideal for some s > 1 (or for all (r, s) ∈ (0, 1]× (0,∞)).

Well-studied M -ideals (see the monograph [11] and, e.g., [14], [20], [26], [33], [35],

for results and references) are precisely M(1, 1)-ideals. Examples of M(r, s)-ideals

which are not M -ideals can be found, e.g., in [3] and [5]. For instance, it is a well-

known result of Hennefeld [13] (see, e.g., [11, p. 305]) that for the Lorentz sequence

space d(v, p), p > 1, the space of compact operators K (d(v, p)) is not an M -ideal in

L (d(v, p)). But K (d(v, p)) is an M(r, s)-ideal in L (d(v, p)) if rp + sp 6 1 (see [5,

Example 4.2]).

The starting point of our investigations was the following result which allowed to

produce, departing from Banach spaces X such that K (X) is an M -ideal in L (X),

new classes of M -ideals of compact operators.

Theorem 1.1 (see [31]). Let X and Y be Banach spaces. IfK (X) andK (Y ) are

M -ideals in L (X) and L (Y ), then K (X, Y ) is an M -ideal in L (X, Y ).

The extension of Theorem 1.1 from M -ideals to M(r, s)-ideals presents difficulties

since the main techniques from the theory of M -ideals involving the 3-ball property

do not work in this more general case (in [11, p. 301], e.g., Theorem 1.1 is proven

using the 3-ball property). In [9], extending and developing methods from [18] and

[31], and relying on results of [35], we extended Theorem 1.1 as follows.

Theorem 1.2 (see [9]). Let X and Y be Banach spaces. Let r1, s1, r2, s2 ∈ (0, 1]

satisfy r1 + s1/2 > 1 and r2 + s2/2 > 1. If K (X) is an M(r1, s1)-ideal in L (X)

and K (Y ) is an M(r2, s2)-ideal in L (Y ), then K (X, Y ) is an M(r2
1r2, s

2
1s2)- and

an M(r1r
2
2 , s1s

2
2)-ideal in L (X, Y ).

The parameters r2
1r2 and s2

1s2, or r1r
2
2 and s1s

2
2 seem to be not optimal. In this

paper, we propose a different approach which improves the parameters to r1r2 and

s1s2 (see Theorem 3.11 for the case when X or Y is separable and Theorem 4.14 for

the general non-separable case).

The key concepts of our approach are “the ideal projection preserving elementary

functionals” (introduced in Section 2) and “property M∗(r, s) for operators” (see

Section 3). Sections 2 and 3 contain necessary auxiliary results on these concepts

which lead, relying on a vector-valued version of Simons’s inequality, to the main

results in the case when one of the spaces X or Y is separable (see Theorems 3.6

and 3.11). Section 3 also provides corollaries of Theorem 3.6 which complete and

improve some well-known results on M -ideals.

In Section 4, we prove that M(r, s)-ideals of compact operators K (X, Y ) are

separably determined for distinct spaces X and Y (see Theorem 4.1; the result seems
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to be new even forM -ideals). This fact together with Theorem 3.6 leads to the main

result of the present paper (Theorem 4.7) asserting thatM∗(r1, s1)-property ofX and

M∗(r2, s2)-property of Y imply that K (X, Y ) is anM(r1r2, s1s2)-ideal in L (X, Y ),

and to Theorem 4.14 improving Theorem 1.2.

One important tool, we are basing on, is the Feder-Saphar description [7] of the

dual space of K (X, Y ) which holds whenever X∗∗ or Y ∗ has the Radon-Nikodým

property. The reader may notice that this hypothesis is often present also implicitly

(as can be seen from Proposition 3.1).

Let us fix some more notation. The identity operator, the closed unit ball, and

the unit sphere of a Banach space X are denoted by IX , BX , and SX , respectively.

For a set A ⊂ X , its norm closure is denoted by A, its linear span by spanA, and its

convex hull by conv A. LetL be a subspace ofL (X, Y ), where X and Y are Banach

spaces, and let x∗∗ ∈ X∗∗ and y∗ ∈ Y ∗. Then the functional x∗∗⊗y∗ ∈ L ∗ is defined

by (x∗∗ ⊗ y∗)(T ) = x∗∗(T ∗y∗), where T ∈ L . Note that ‖x∗∗ ⊗ y∗‖ = ‖x∗∗‖‖y∗‖

whenever L contains the finite-rank operators. By A ⊗ B, where A ⊂ X∗∗ and

B ⊂ Y ∗, we mean the set of all x∗∗ ⊗ y∗ such that x∗∗ ∈ A and y∗ ∈ B. Thus

A ⊗ B ⊂ L (X, Y )∗.

Recall that a net (Kα) ⊂ K (X) is a compact approximation of the identity (CAI )

provided Kα −→ IX strongly (that is, Kαx −→ x for all x ∈ X). If, moreover,

K∗
α −→ IX∗ strongly, then (Kα) is called a shrinking CAI. If X has a CAI such

that the convergence is uniform on compact sets, then X is said to have the compact

approximation property (CAP), and in the case of shrinking CAI, X∗ is said to have

the CAP with conjugate operators. If, moreover, ‖Kα‖ 6 λ for some λ > 1 and for

all α, then (Kα) is called a bounded CAI (BCAI ) and a shrinking BCAI, respectively,

and X , and X∗ are said to have the BCAP and the BCAP with conjugate operators.

In the special case, when λ = 1, (Kα) is called a metric CAI (MCAI ), and X is said

to have the MCAP.

2. Ideal projections preserving elementary functionals

LetK be an ideal in a Banach spaceL with respect to an ideal projection P . It is

well known and straightforward to verify that for every f ∈ L ∗, Pf ∈ L ∗ is a norm-

preserving extension of the restriction f |K ∈ K ∗. Therefore, ranP is canonically

isometric toK ∗ and we shall identify them, whenever convenient, identifying Pf and

f |K for all f ∈ L ∗. More precisely, if one defines Φ: K ∗ −→ ranP by Φg = Pf ,

g ∈ K ∗, where f ∈ L ∗ is any extension of g, then Φ is an isometric isomorphism

such that Φ(f |K ) = Pf , f ∈ L ∗.

Let X and Y be Banach spaces. Let L be a closed subspace of L (X, Y ) con-

taining K := K (X, Y ). Assume that K is an ideal in L with respect to an ideal
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projection P . If P (x∗∗ ⊗ y∗) = x∗∗ ⊗ y∗ for all x∗∗ ∈ X∗∗ and y∗ ∈ Y ∗, then we say

that P preserves elementary functionals.

Suppose that (Kα) is a shrinking MCAI of X (respectively, of Y ). Then, using

a well-known result of Johnson (see [15, proof of Lemma 1]), by passing to a subnet

of (Kα), we may assume that K is an ideal in L with respect to the projection P

on L ∗ defined by

Pf(T ) = lim
α

f(TKα), f ∈ L
∗, T ∈ L

(respectively,

Pf(T ) = lim
α

f(KαT ), f ∈ L
∗, T ∈ L ).

Let us call P the Johnson projection. (This is essentially the same concept as in [26]

and [39].)

Example 2.1. The Johnson projection is an ideal projection preserving elemen-

tary functionals.

By the above, the Johnson projection P is an ideal projection. It preserves el-

ementary functionals. Indeed, consider any x∗∗ ⊗ y∗ ∈ L ∗, and let T ∈ L . If

K∗
αx∗ −→ x∗ for all x∗ ∈ X∗, then

(P (x∗∗ ⊗ y∗))(T ) = lim
α

(x∗∗ ⊗ y∗)(TKα)

= lim
α

x∗∗(K∗

αT ∗y∗) = x∗∗(T ∗y∗)

= (x∗∗ ⊗ y∗)(T ).

If, respectively, K∗
αy∗ −→ y∗ for all y∗ ∈ Y ∗, then

(P (x∗∗ ⊗ y∗))(T ) = lim
α

(x∗∗ ⊗ y∗)(KαT )

= lim
α

x∗∗(T ∗K∗

αy∗) = x∗∗(T ∗y∗)

= (x∗∗ ⊗ y∗)(T ).

In contrast with the Johnson projection, an ideal projection preserving elemen-

tary functionals may also be defined departing from a (generally) unbounded net of

compact operators, as the following example shows.

Example 2.2 (see [23, Theorem 5.1] and [24, proof of Theorem 4.6]). Let X

and Y be Banach spaces such that X∗∗ or Y ∗ has the Radon-Nikodým property. Let

L be a closed subspace of L (X, Y ) containing K := K (X, Y ). If X∗ or Y ∗ has

the CAP with conjugate operators, then K is an ideal in L with respect to an ideal

projection preserving elementary functionals.
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Following [24], we say that a closed subspace K of a Banach space L has the

unique ideal property if there is at most one ideal projection (that is, at most one

norm one projection P on L ∗ with kerP = K ⊥). An obvious example of sub-

spaces having the unique ideal property is presented by subspaces having Phelps’s

property U : K is said to have property U in L , if every g ∈ K ∗ has a unique norm-

preserving extension f ∈ L ∗. Ideals with property U have been studied, e.g., in [13],

[27], [28], [29], [32], [37], [39].

It is well known that M -ideals, and more generally, M(1, s)-ideals (see [2]), have

property U and therefore they also have the unique ideal property. However, e.g., for

r 6= 1,M(r, 1)-ideals of compact operatorsK (X) need not have property U inL (X)

even if X∗ has the Radon-Nikodým property [5, Example 4.5].

In the sequel, we shall need the fact that in many important cases, the subspace of

compact operators enjoys the unique ideal property with respect to ideal projections

preserving elementary functionals.

Proposition 2.3. Let X and Y be Banach spaces. Let L be a closed subspace

of L (X, Y ) containing K := K (X, Y ). If X∗∗ or Y ∗ has the Radon-Nikodým

property, then forK inL there is at most one ideal projection preserving elementary

functionals.

P r o o f. LetQ and P be ideal projections onL ∗ preserving elementary function-

als with kerQ = kerP = K
⊥. Let Φ: K

∗ −→ ranQ and Ψ: K
∗ −→ ranP be the

corresponding isometric isomorphisms such that Pf = Φ(f |K ) and Qf = Ψ(f |K ),

where f ∈ L
∗. Therefore we need to prove that

Φg = Ψg ∀ g ∈ K
∗.

The desired equality is immediate from the fact that

K
∗ = span{(x∗∗ ⊗ y∗)|K : x∗∗ ∈ X∗∗, y∗ ∈ Y ∗, x∗∗ ⊗ y∗ ∈ L

∗}

(implied by [7, Theorem 1] since X∗∗ or Y ∗ has the Radon-Nikodým property) and

the equality

Φ((x∗∗ ⊗ y∗)|K ) = P (x∗∗ ⊗ y∗) = x∗∗ ⊗ y∗ = Q(x∗∗ ⊗ y∗) = Ψ((x∗∗ ⊗ y∗)|K ),

which holds for all x∗∗ ∈ X∗∗ and y∗ ∈ Y ∗. �

Recall that the dual weak operator topology onL (X, Y ) is defined by the function-

als A 7−→ x∗∗(A∗y∗), y∗ ∈ Y ∗, x∗∗ ∈ X∗∗. Clearly, the dual weak operator topology
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is not weaker than the weak operator topology which is defined by the functionals

A 7−→ y∗(Ax), y∗ ∈ Y ∗, x ∈ X .

Proposition 2.4. Let X and Y be Banach spaces, and suppose that X∗∗ or

Y ∗ has the Radon-Nikodým property. Let L be a closed subspace of L (X, Y )

containing K := K (X, Y ), and suppose that K is an ideal in L with respect to

an ideal projection P preserving elementary functionals. If for an operator T ∈ L

there exists a bounded net (Tα) ⊂ L such that Tα −→ T in the dual weak operator

topology, then

(Pf)(Tα) −→
α

(Pf)(T ) ∀ f ∈ L
∗.

P r o o f. As in the previous proof, we shall apply the fact that span{(x∗∗⊗y∗)|K :

x∗∗ ∈ X∗∗, y∗ ∈ Y ∗, x∗∗ ⊗ y∗ ∈ L ∗} is dense in K ∗. Using the associated isomor-

phism Φ: K ∗ −→ ranP satisfying Φ(f |K ) = Pf , f ∈ L ∗, and that P preserves the

elementary functionals, we get that span{x∗∗ ⊗ y∗ : x∗∗ ∈ X∗∗, y∗ ∈ Y ∗} ⊂ ranP is

dense in ranP ⊂ L ∗.

Every A ∈ L can be viewed as an element of (ranP )∗ with the same norm,

defining

〈A, h〉 = h(A), h ∈ ranP.

Since the net (Tα) is bounded and for all x∗∗ ∈ X∗∗, y∗ ∈ Y ∗,

〈Tα, x∗∗ ⊗ y∗〉 = (x∗∗ ⊗ y∗)(Tα)

= x∗∗(T ∗

αy∗) −→
α

x∗∗(T ∗y∗)

= 〈T, x∗∗ ⊗ y∗〉,

we have 〈Tα, h〉 −→
α

〈T, h〉 for all h ∈ ranP . This means that (Pf)(Tα) −→
α

(Pf)(T )

for all f ∈ L ∗. �

Remark 2.5. Proposition 2.4 extends Lemma 1.2 of [39] from the case of the

Johnson projection (involving the shrinking MCAI assumptions) to an arbitrary ideal

projection preserving elementary functionals.

We shall apply Proposition 2.4 to deduce the following criteria for M(r, s)-ideals

of compact operators which will be needed in Sections 3 and 4.

Theorem 2.6. Let X and Y be Banach spaces, and suppose that X∗∗ or Y ∗ has

the Radon-Nikodým property. Let L be a closed subspace of L (X, Y ) containing

K := K (X, Y ), and suppose that K is an ideal in L with respect to an ideal

projection P preserving elementary functionals. Let r 6 1 and s be positive numbers.

If for every operator T ∈ SL there exists a bounded net (Tα) ⊂ K such that
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Tα −→ T in the dual weak operator topology, then the following assertions are

equivalent.

(a) K is an M(r, s)-ideal in L with respect to P .

(b) For every ε > 0, S ∈ BK , T ∈ BL , and every index α (in the corresponding

net (Tα)) there exists

K ∈ conv{Tβ : β > α}

such that

‖rS + s(T − K)‖ 6 1 + ε.

(c) For every S ∈ SK and T ∈ SL there exists a net (Kν) ⊂ K such thatKν −→ T

in the dual weak operator topology and

lim sup
ν

‖rS + s(T − Kν)‖ 6 1.

P r o o f. (a) ⇒ (b). This implication follows from a general M(r, s)-inequality

criterion (see [10, Proposition, (a) ⇒ (b)]. We include a proof for the sake of com-

pleteness. If the conclusion is false, then there are ε > 0, S ∈ BK , T ∈ BL , and α

such that for C := conv{Tβ : β > α}, we have

sC ∩ B(rS + sT, 1 + ε) = ∅,

where B(rS + sT, 1 + ε) is the open ball with center rS + sT and radius 1 + ε. By

the Hahn-Banach theorem, there exists f ∈ SL ∗ such that

Re f(rS + sT ) − (1 + ε) = inf{Re f(U) : U ∈ B(rS + sT, 1 + ε)}

> s Re f(K) = s Re Pf(K) ∀K ∈ C,

because C ⊂ K and f − Pf ∈ kerP = K ⊥. Hence,

1 + ε 6 Re f(rS + sT )− s Re Pf(K)

= r Re Pf(S) + s Re(f − Pf)(T ) + s RePf(T − K)

6 1 + s Re Pf(T − K) ∀K ∈ C.

Since Pf(T ) = lim
α

Pf(Tα) (see Proposition 2.4), this implies that ε 6 0, a contra-

diction.

(b) ⇒ (c). Consider the set of all pairs ν = (ε, α), where ε > 0 and where (Tα) cor-

responds to T , directed in the natural way, and choose Kν ∈ conv{Tβ : β > α} from

condition (b).
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(c) ⇒ (a). Let us fix f ∈ L ∗ and ε > 0. Recalling that ‖Pf‖ = ‖f |K ‖, we choose

S ∈ SK and T ∈ SL so that

r‖Pf‖ + s‖f − Pf‖ − ε 6 rf(S) + s(f − Pf)(T ).

Let (Kν) be given by (c). By passing to a subnet, we may assume that (Kν) is

bounded. By Proposition 2.4, (Pf)(T ) = lim
ν

(Pf)(Kν) = lim
ν

f(Kν), because Kν ∈

K and Pf − f ∈ kerP = K
⊥. It follows that

r‖Pf‖ + s‖f − Pf‖ − ε 6 rf(S) + sf(T )− s lim
ν

f(Kν)

= lim
ν

f(rS + s(T − Kν))

6 ‖f‖ lim sup
ν

‖rS + s(T − Kν)‖ 6 ‖f‖.

�

Remark 2.7. Historically, for M -ideals, conditions similar to (b) and (c) of

Theorem 2.6 were first considered in [25, Proposition 2.8], [40, Theorem 3.1 and

Remark], and [33, proof of Theorem 2].

3. Properties M(r, s) and M∗(r, s) for spaces and operators;

main results involving separability assumptions

Let r, s ∈ (0, 1]. According to [4], we say that a Banach space X has prop-

erty M(r, s) if

lim sup
ν

‖ru + sxν‖ 6 lim sup
ν

‖v + xν‖

whenever u, v ∈ X satisfy ‖u‖ 6 ‖v‖ and (xν) ⊂ X is a bounded net converging

weakly to null in X . We say that X has property M∗(r, s) if

lim sup
ν

‖ru∗ + sx∗

ν‖ 6 lim sup
ν

‖v∗ + x∗

ν‖

whenever u∗, v∗ ∈ X∗ satisfy ‖u∗‖ 6 ‖v∗‖ and (x∗
ν) ⊂ X∗ is a bounded net converging

weak* to null in X∗.

Properties M(1, 1) and M∗(1, 1) clearly coincide with their prototypical proper-

ties (M) and (M∗), introduced by Kalton in [19] (see also [18]) (where the sequential

version was used; see [31] for the general version). A much more general version

of property (M∗), namely property M∗(a, B, c), was introduced and studied in [35]

(see also [34]). It can be easily seen that property M∗(s, {−s}, r) is precisely prop-

erty M∗(r, s).
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Analogously to [19, Proposition 2.3] (see also [31, Proposition 2] or [11, Proposi-

tion VI.4.15] and [35, Proposition 1.3]), one can prove that propertyM∗(r, s) implies

property M(r, s) and, moreover, it implies that X is an M(r, s)-ideal in X∗∗ with

respect to the canonical ideal projection on X∗∗∗. In the latter case, one says (fol-

lowing [2] or [10]) that X satisfies the M(r, s)-inequality.

Proposition 3.1 (see [5, Proposition 2.1] and [35, proof of Corollary 1.7]). Let

r, s ∈ (0, 1]. If a Banach space X satisfies the M(r, s)-inequality (in particular, if

X has property M∗(r, s)) for r + s > 1, then X∗ has the Radon-Nikodým property

and every MCAI of X is shrinking.

In [20, Section 6], an operator version of property (M) was introduced and studied

(see also [14] and [16] for applications of this property). We need to extend its

(M∗) prototype as follows.

Let X and Y be Banach spaces and let r, s ∈ (0, 1]. We say that an operator

T ∈ BL (X,Y ) has property M∗(r, s) if

lim sup
ν

‖rx∗ + sT ∗y∗

ν‖ 6 lim sup
ν

‖y∗ + y∗

ν‖

whenever x∗ ∈ X∗, y∗ ∈ Y ∗ satisfy ‖x∗‖ 6 ‖y∗‖ and (y∗
ν) ⊂ Y ∗ is a bounded net

converging weak* to null in Y ∗.

If Y is separable, then T ∈ BL (X,Y ) has property M∗(r, s) if and only if T has

the sequential version of property M∗(r, s) (i.e., the nets (y∗
ν) being replaced with

the weak* null sequences (y∗
n)). This can be easily checked using the fact that the

bounded subsets of Y ∗ are weak* metrizable.

Clearly, an operator T has property (M∗) if and only if T has M∗(1, 1), and

a Banach space X has property M∗(r, s) if and only if its identity operator

IX has M∗(r, s). A much more general notion, namely an operator having prop-

erty M∗(a, B, c), was introduced and studied in [35] (see also [34]). As in the case

of spaces, property M∗(r, s) for operators is precisely property M∗(s, {−s}, r).

As in the (M∗) case (see [31, Lemma 4]), properties M∗(r, s) for spaces and

operators are related as follows.

Proposition 3.2. Let X and Y be Banach spaces and let r1, s1, r2, s2 ∈ (0, 1]. If

X has property M∗(r1, s1) and Y has property M∗(r2, s2), then every T ∈ BL (X,Y )

has property M∗(r1r2, s1s2).

P r o o f. It is similar to the (M) case (see, e.g., [11, Lemma 4.14]). �

Proposition 3.3. Let X and Y be Banach spaces and let r, s ∈ (0, 1]. Let L be

a closed subspace of L (X, Y ) containing K := K (X, Y ). If an operator T ∈ BL
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has property M∗(r, s) and there is a net (Tα) ⊂ K such that T ∗
α −→ T ∗ strongly,

then

lim sup
α

|f(rS + s(T − Tα))| 6 1

for all S ∈ BK and f ∈ BX∗∗ ⊗ BY ∗

weak*
⊂ L ∗.

P r o o f. Let f = w∗- limx∗∗
ν ⊗ y∗

ν , i.e., x∗∗
ν (A∗y∗

ν) −→ f(A), A ∈ L , with

x∗∗
ν ∈ BX∗∗ , y∗

ν ∈ BY ∗ . By passing to a subnet, we may assume that (y∗
ν) converges

weak* to some y∗ ∈ BY ∗ . From property M∗(r, s), we get that

lim sup
ν

‖rS∗y∗ + sT ∗y∗

ν − sT ∗y∗‖ 6 lim sup
ν

‖y∗

ν‖ 6 1.

Hence, for any fixed α,

|f(rS + s(T − Tα))| = lim
ν

|x∗∗

ν ((rS + s(T − Tα))∗y∗

ν)|

6 lim sup
ν

‖(rS + s(T − Tα))∗y∗

ν‖

6 lim sup
ν

(‖rS∗y∗

ν − rS∗y∗‖

+ ‖rS∗y∗ + sT ∗y∗

ν − sT ∗y∗‖

+ ‖sT ∗y∗ − sT ∗

αy∗‖ + ‖sT ∗

αy∗

ν − sT ∗

αy∗‖)

6 1 + ‖sT ∗y∗ − sT ∗

αy∗‖,

which implies

lim sup
α

|f(rS + s(T − Tα))| 6 1.

�

In the sequential case in Proposition 3.3, one may go further, applying the following

vector-valued version of Simons’s inequality due to [21], to obtain a similar norm

condition: see Lemma 3.5 below.

Lemma 3.4 (see [21, Corollary 4] and its proof). Let X and Y be Banach spaces.

Let L be a closed subspace of L (X, Y ) and let (An) be a bounded sequence in L .

If

lim sup
n

Re f(An) 6 λ

for some λ > 0 and for all f ∈ SX ⊗ SY ∗

weak*
⊂ L

∗, then there exists Bn ∈

conv{An, An+1, . . .} such that

lim sup
n

‖Bn‖ 6 λ.
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Lemma 3.5. Let X and Y be Banach spaces and let r, s ∈ (0, 1]. Let L be

a closed subspace of L (X, Y ) containing K := K (X, Y ). If T ∈ BL has prop-

erty M∗(r, s) and there is a sequence (Tn) ⊂ K such that T ∗
n −→ T ∗ strongly, then

for all S ∈ BK there exists Sn ∈ conv{Tn, Tn+1, . . .} such that

lim sup
n

‖rS + s(T − Sn)‖ 6 1.

The next theorem is one of our main results. As we shall see below, in theM -ideal

case, its Corollary 3.8 complements [20, Theorem 6.3], and its Corollaries 3.9 and

3.10 improve the dual version of [20, Theorem 6.3; see p. 171] and [14, Theorem 2.4].

Theorem 3.6. Let X and Y be Banach spaces. Suppose that X∗∗ or Y ∗ has the

Radon-Nikodým property and that X or Y has a shrinking compact approximating

sequence. Let L be a closed subspace of L (X, Y ) containing K := K (X, Y ) and

let r, s ∈ (0, 1]. If every T ∈ SL has property M∗(r, s), then K is an M(r, s)-ideal

in L with respect to an ideal projection preserving elementary functionals.

Remark 3.7. The assumptions enforce X∗ (and X) or Y ∗ (and Y ) to be sepa-

rable. In the latter case, Y ∗ automatically has the Radon-Nikodým property and, as

was mentioned before, property M∗(r, s) for operators is equivalent to its sequential

version.

P r o o f of Theorem 3.6. By Example 2.2, K is an ideal in L with respect to an

ideal projection P preserving elementary functionals.

For every operator T ∈ SL , let us define Tn = TKn (respectively, Tn = KnT )

if (Kn) is the shrinking compact approximating sequence of X (respectively, of Y ).

Then clearly T ∗
n −→ T ∗ strongly. Let S ∈ SK . By Lemma 3.5, there exists Sn ∈

conv{Tn, Tn+1, . . .} such that

lim sup
n

‖rS + s(T − Sn)‖ 6 1.

Since also S∗
n −→ T ∗ strongly, by Theorem 2.6, (c) ⇒ (a), K is an M(r, s)-ideal

in L with respect to P . �

According to a theorem due to Kalton and Werner [20, Theorem 6.3], if X is Ba-

nach space having an unconditional shrinking compact approximating sequence and

Y is a Banach space such that every T ∈ SL (X,Y ) has property (M), then K (X, Y )

is an M -ideal in L (X, Y ). The following immediate special case of our Theorem 3.6

completes the Kalton-Werner theorem showing that the unconditionality assump-

tion is superfluous if one assumes that Y ∗ has the Radon-Nikodým property and

strengthens property (M) up to (M∗).
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Corollary 3.8. Let X and Y be Banach spaces. Suppose that X∗∗ or Y ∗ has

the Radon-Nikodým property and that X has a shrinking compact approximating

sequence. If every T ∈ SL (X,Y ) has property (M∗) then K (X, Y ) is an M -ideal

in L (X, Y ).

The dual version of the Kalton-Werner theorem states (see [20, p. 171] and [14,

pp. 54–55]): if Y is a Banach space having an unconditional shrinking compact

approximating sequence and X is a Banach space such that every T ∈ SL (X,Y ) has

property (M∗), then K (X, Y ) is an M -ideal in L (X, Y ). The following immediate

special case of Theorem 3.6 improves this theorem showing that the unconditionality

assumption is superfluous.

Corollary 3.9. Let X and Y be Banach spaces. Suppose that Y has a shrinking

compact approximating sequence. If every T ∈ SL (X,Y ) has property (M∗), then

K (X, Y ) is an M -ideal in L (X, Y ).

Recall that a Banach space Y has property (wM∗) (introduced by Lima [22]) if

lim sup
ν

‖y∗

ν‖ = lim sup
ν

‖2y∗ − y∗

ν‖

whenever y∗ ∈ Y ∗ and (y∗
ν) ⊂ Y ∗ is a bounded net converging weak* to y∗ in Y ∗.

Corollary 3.10 below is an improvement of a theorem due to John and Werner [14,

Theorem 2.4]: its assumption that Y has an unconditional shrinking compact ap-

proximating sequence (which easily implies property (wM∗) of Y ) will be weakened

up to the assumption that Y has property (wM∗), showing, e.g., that there is no

need for a separability requirement of Y ∗.

If Y is separable, then again (due to the weak* metrizability of bounded subsets

of Y ∗) the sequential version of (wM∗) is equivalent to property (wM∗), and the

same concerns the property of Y (introduced by John and Werner [14]) described in

the following.

Corollary 3.10. Let 1 < p < ∞ and 1/p + 1/q = 1. Let Y be a Banach space

having property (wM∗) and let

lim sup
ν

(‖y∗‖q + ‖y∗

ν‖
q)1/q 6 lim sup

ν

(‖y∗ + y∗
ν‖

q + ‖y∗ − y∗
ν‖

q

2

)1/q

whenever y∗ ∈ Y ∗ and (y∗
ν) ⊂ Y ∗ is a bounded net converging weak* to null in Y ∗.

Then K (ℓp, Y ) is an M -ideal in L (ℓp, Y ).
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P r o o f. Based on Corollary 3.8, it is sufficient to show that every T ∈ SL (ℓp,Y )

has property (M∗).

Let x∗ ∈ ℓq and y∗ ∈ Y ∗ be such that ‖x∗‖ 6 ‖y∗‖, and let (y∗
ν) ⊂ Y ∗ be a bounded

net such that y∗
ν −→ 0 weak*. Then for every T ∈ SL (ℓp,Y ),

lim sup
ν

‖x∗ + T ∗y∗

ν‖ = lim sup
ν

(‖x∗‖q + ‖T ∗y∗

ν‖
q)1/q

6 lim sup
ν

(‖y∗‖q + ‖y∗

ν‖
q)1/q

6 lim sup
ν

(‖y∗ + y∗
ν‖

q + ‖y∗ − y∗
ν‖

q

2

)1/q

.

Since Y has property (wM∗),

lim sup
ν

‖y∗ + y∗

ν‖ = lim sup
ν

‖y∗ − y∗

ν‖.

Hence,

lim sup
ν

‖x∗ + T ∗y∗

ν‖ 6 lim sup
ν

‖y∗ + y∗

ν‖.

�

If one of the Banach spaces X or Y is separable, then, using Proposition 3.2

and Theorem 3.6, we can already now prove the desired quantitative extension of

Theorem 1.1 from M -ideals to M(r, s)-ideals (see the Introduction).

Theorem 3.11. Let X and Y be Banach spaces such that X or Y is separable.

Let r1, s1, r2, s2 ∈ (0, 1] satisfy r1 + s1/2 > 1 and r2 + s2/2 > 1. If K (X) is an

M(r1, s1)-ideal in L (X) and K (Y ) is anM(r2, s2)-ideal in L (Y ), then K (X, Y ) is

an M(r1r2, s1s2)-ideal in L (X, Y ).

P r o o f. If r + s/2 > 1 and K (X) is an M(r, s)-ideal in L (X), then, by [5,

Lemma 2.3 and Proposition 2.1], X∗ = span(w∗- sexp BX∗) (i.e., the weak* strongly

exposed points of BX∗ span a norm dense subspace of X∗) and X∗ has the Radon-

Nikodým property. Therefore, by [5, Proposition 3.2] and [35, Theorem 4.1, 1◦ ⇒

2◦], X has the MCAP and property M∗(r, s). Hence, in our case, both X and Y

have the MCAP, X has property M∗(r1, s1), and Y has property M∗(r2, s2). From

Proposition 3.2 we get that every T ∈ BL (X,Y ) has property M∗(r1r2, s1s2).

We can now apply Theorem 3.6 to show that K (X, Y ) is an M(r1r2, s1s2)-

ideal in L (X, Y ). Indeed, as we saw above, Y ∗ has the Radon-Nikodým prop-

erty. If, e.g., X is separable, since X has the MCAP, X clearly has a metric

compact approximating sequence (Kn)∞n=1. Then (Kn)∞n=1 is shrinking because

X∗ = span(w∗- sexp BX∗) (this fact is well known and can be easily checked). �
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The proof of Theorem 3.11 clearly shows that if Theorem 3.6 held true also in

the non-separable case (i.e., with the assumption “X or Y has a shrinking compact

approximating sequence” being replaced by “X∗ or Y ∗ has the BCAP with con-

jugate operators”), then in Theorem 3.11 the separability assumption (“X or Y is

separable”) could be dropped. However, we do not know whether the non-separable

case of Theorem 3.6 is true. Nevertheless, in Section 4, we shall establish the general

non-separable case of Theorem 3.11 (see Theorem 4.14) using different methods.

4. Main results: the non-separable case

It is known that M -ideals of compact operators are separably determined [33]:

if a Banach space X has the MCAP and K (E) is an M -ideal in L (E) for all

separable closed subspaces E of X having the MCAP, then K (X) is an M -ideal

in L (X). This theorem and its proof have served as a prototype to obtain similar

results on certain general approximations of the identity [35] (see also [34]) and ideals

of compact operators having Phelps’s uniqueness property U [39]. The next result

shows that M(r, s)-ideals of compact operators are also separably determined. For

its proof, we shall develop ideas from [33] and [35, proofs of Lemmas 3.2 and 4.2] but

(following an idea in [39, proofs of Theorems 2.2 and 2.3]) we do not make precise

ε-nets of certain compact subsets. One inconvenience to be overcome is that in the

M(r, s)-ideal case, unlike the M -ideal and property U cases, the ideal projection

need not be unique.

Theorem 4.1. Let X and Y be Banach spaces. Let positive numbers r 6 1 and

s satisfy r+s > 1, and let ̺, σ ∈ (0, 1] satisfy ̺+σ > 1. Suppose that Y satisfies the

M(̺, σ)-inequality and has the MCAP. If K (E, F ) is an M(r, s)-ideal in L (E, F )

with respect to an ideal projection preserving elementary functionals for all separable

closed subspaces E of X and F of Y such that F has the MCAP, then K (X, Y ) is

an M(r, s)-ideal in L (X, Y ).

P r o o f. We are going to apply Theorem 2.6. Let (Kα) be an MCAI of Y . By

Proposition 3.1, (Kα) is shrinking and Y ∗ has the Radon-Nikodým property. Further,

K (X, Y ) is an ideal in L (X, Y ) with respect to an ideal projection preserving

elementary functionals (see Example 2.1) and KαT −→ T in the dual weak operator

topology.

Assume for contradiction that K (X, Y ) is not anM(r, s)-ideal in L (X, Y ). Then

condition (b) of Theorem 2.6 is not satisfied: there are ε > 0, S ∈ BK (X,Y ), T ∈

BL (X,Y ), and α0 such that

‖rS + s(T − KT )‖ > 1 + 3ε ∀K ∈ conv{Kα : α > α0}.
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We shall define separable closed subspaces E of X and F of Y such that F has the

MCAP, butK (E, F ) cannot be anM(r, s)-ideal inL (E, F ) with respect to any ideal

projection preserving elementary functionals. This will contradict the assumption

and complete the proof.

To begin, let E0 = {0} ⊂ X and F0 = {0} ⊂ Y . Pick x0 ∈ BX such that

‖(rS + s(T − Kα0
T ))x0‖ > ‖rS + s(T − Kα0

T )‖ − ε > 1 + 2ε.

Denote E1 = E0 ∪ {x0} and F1 = F0 ∪ Kα0
(F0) ∪ S(E1) ∪ T (E1). Then choose

α1 > α0 such that

‖Kα1
y − y‖ < 1 ∀ y ∈ F1.

Also choose a finite ε/s-net Λ1 in conv{Kα0
, Kα1

}, and for every L ∈ Λ1 pick xL ∈

BX such that

‖(rS + s(T − LT ))xL‖ > ‖rS + s(T − LT )‖ − ε > 1 + 2ε.

Denote

E2 = E1 ∪ {xL : L ∈ Λ1}

and

F2 = F1 ∪ Kα0
(F1) ∪ Kα1

(F1) ∪ S(E2) ∪ T (E2).

Continuing similarly, we obtain, for all n ∈ N, an index αn, a finite ε/s-net Λn in

conv{Kα0
, . . . , Kαn

}, a finite subset {xL : L ∈ Λn} ⊂ BX such that

‖(rS + s(T − LT ))xL‖ > 1 + 2ε, L ∈ Λn,

and finite subsets En ⊂ X and Fn ⊂ Y such that

En+1 = En ∪ {xL : L ∈ Λn},

Fn+1 = Fn ∪ Kα0
(Fn) ∪ . . . ∪ Kαn

(Fn) ∪ S(En+1) ∪ T (En+1),

and

‖Kαn
y − y‖ <

1

n
∀ y ∈ Fn.

Denote E = span
∞
⋃

n=1
En and F = span

∞
⋃

n=1
Fn. It can be easily seen that S(E) ⊂

F , T (E) ⊂ F , Kαn
(F ) ⊂ F for all n ∈ N, and Kαn

y −→ y for all y ∈ F . Consider

S|E ∈ BK (E,F ), T |E ∈ BL (E,F ), and Kαn
|F ∈ BK (F ).

Since Y satisfies the M(̺, σ)-inequality, also F does (this fact which is similar to

that of the M -embedded spaces (see, e.g., [11, p. 111]) was observed in [2, Proposi-

tion 2.1]). Consequently, as in the beginning of the proof, we are in position to apply
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Theorem 2.6 to K (E, F ) in L (E, F ). According to Theorem 2.6, if K (E, F ) were

an M(r, s)-ideal in L (E, F ) with respect to an ideal projection preserving elemen-

tary functionals, then there would exist K ∈ conv{Kα1
, . . . , Kαn

}, for some n ∈ N,

such that

‖(rS + s(T − KT ))|E‖ 6 1 + ε.

Let L ∈ Λn satisfy ‖K − L‖ < ε/s. Then

1 + 2ε < ‖(rS + s(T − LT ))|E‖ 6 ‖(rS + s(T − KT ))|E‖ + ε 6 1 + 2ε,

a contradiction. �

Remark 4.2. From the proof of Theorem 4.1 it is clear that the assumption

“Y satisfies the M(̺, σ)-inequality with ̺ + σ > 1” can be replaced by any assump-

tion guaranteeing that Y ∗ has the Radon-Nikodým property and every MCAI of

any closed subspace F of , Y is shrinking. This is well known to be true if Y has

property U in its bidual Y ∗∗ (see [36, Corollary 5] and, e.g., [39, Lemma 2.1]).

The following result, which shows that M -ideals of compact operators K (X, Y )

are separably determined not only for X = Y but also for distinct spaces X and Y ,

seems to be new.

Corollary 4.3. Let X and Y be Banach spaces. Suppose that Y has property U

in its bidual and has the MCAP. If K (E, F ) is an M -ideal in L (E, F ) for all

separable closed subspaces E of X and F of Y such that F has the MCAP, then

K (X, Y ) is an M -ideal in L (X, Y ).

P r o o f. This is immediate from Theorem 4.1 and Remark 4.2 becauseM -ideals

enjoy the unique ideal property, and under the assumptions on E and F , K (E, F ) is

an ideal in L (E, F ) with respect to an ideal projection preserving elementary func-

tionals (see Example 2.1 or 2.2). �

Remark 4.4. The prototype of Corollary 4.3 is [39, Theorem 2.3] asserting that

property U of K (X, Y ) in L (X, Y ) is separably determined.

There exist infinite-dimensional Banach spaces X and Y for which K (X, Y ) =

L (X, Y ). This is the case, for instance, when X = ℓp, Y = ℓq with p > q (Pitt’s

theorem); X = ℓp, Y = d(w, q) with p > q and w 6∈ ℓp/(p−q) [30] (other Pitt’s type

theorems for Lorentz and Orlicz sequence spaces can be found in [1]). A conse-

quence of Theorem 4.1 is that the property K (X, Y ) = L (X, Y ) is also separably

determined.

Corollary 4.5. Let X and Y be Banach spaces. Suppose that Y has property U

in its bidual and has the MCAP. IfK (E, F ) = L (E, F ) for all separable closed sub-

spaces E of X and F of Y such that F has the MCAP, then K (X, Y ) = L (X, Y ).
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P r o o f. Apply Remark 4.2 and Theorem 4.1 to any s > 1. �

It is a well-known consequence of the Eberlein-Šmulian theorem that a Banach

space is reflexive whenever all its separable closed subspaces are (for an alternative

easy proof see [10, Corollary 2]). The next corollary shows that for L (X, Y ) to be

reflexive, it suffices that the separable subspaces of the form K (E, F ) are reflexive.

Corollary 4.6. Let X and Y be reflexive Banach spaces. Suppose that Y has

the CAP. If K (E, F ) is reflexive for all separable closed subspaces E of X and F

of Y such that F has the CAP, then L (X, Y ) is reflexive.

P r o o f. It is known (see [6] or [8]) that a reflexive Banach space with the CAP

actually has the MCAP. Since F has the CAP, by [8, Corollary 1.3], K (E, F )∗∗ =

L (E, F ), and by this identification, jK (E,F )(T ) = T , for all T ∈ K (E, F ). Since

K (E, F ) is reflexive, we have K (E, F ) = L (E, F ). By Corollary 4.5, K (X, Y ) =

L (X, Y ). Hence, according to a classical theorem proved independently by Hein-

rich [12] and Kalton [17], L (X, Y ) is reflexive. Alternatively, we have as above,

K (X, Y )∗∗ = L (X, Y ) = K (X, Y ), meaning that K (X, Y ) is reflexive, and also

so is L (X, Y ). �

Let us now turn to the promised main results of the present paper.

Theorem 4.7. Let X and Y be Banach spaces. Assume that Y has the MCAP.

Let r1, s1, r2, s2 ∈ (0, 1] satisfy r1 + s1 > 1 and r2 + s2 > 1. If X has property

M∗(r1, s1) and Y has property M∗(r2, s2), then K (X, Y ) is an M(r1r2, s1s2)-ideal

in L (X, Y ).

P r o o f. Property M∗(r2, s2) of Y implies that Y satisfies the M(r2, s2)-

inequality (see the beginning of Section 3). Let E ⊂ X and F ⊂ Y be separable

closed subspaces, and assume that F has the MCAP. Property M∗(r, s) is inherited

by closed subspaces (see [35, p. 2804]). Hence, E has propertyM∗(r1, s1) and F has

property M∗(r2, s2). From Proposition 3.2 we know that then every T ∈ BL (E,F )

has property M∗(r1r2, s1s2). Since F is separable and has the MCAP, it has a

metric compact approximating sequence which is shrinking, because F satisfies the

M(r2, s2)-inequality (see Proposition 3.1). It follows that F ∗ is separable. Apply-

ing Theorem 3.6 we get that K (E, F ) is an M(r1r2, s1s2)-ideal in L (E, F ) with

respect to an ideal projection preserving elementary functionals. Hence, according

to Theorem 4.1, K (X, Y ) is an M(r1r2, s1s2)-ideal in L (X, Y ). �

A basic theorem of the theory of M -ideals of compact operators asserts that

K (X) is an M -ideal in L (X) if and only if X has property (M∗) and the MCAP.

It was established in [20] for separable X , in [22] for reflexive X , and extended
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to arbitrary (non-separable) X in [33]. A self-contained and “the shortest known

proof” (we quote [26] here) is given in [35], another self-contained proof based on

a new structure theorem for Borel probability measures can be found in a very re-

cent paper [26]. The above theorem together with [31, Theorem 8] immediately

yields a more general result: K (X, Y ) is an M -ideal in L (X, Y ) whenever X and

Y have property (M∗), and Y has the MCAP. A self-contained measure-theoretic

proof of this result is given in [26]. Keeping in mind that property (M∗) is precisely

property M∗(1, 1), Theorem 4.7 contains the latter result as a special case, yield-

ing another self-contained proof of it. It would be interesting to study whether the

measure-theoretic approach by Nygaard and Põldvere [26] could be used to give an

alternative proof of Theorem 4.7.

Recall that a Banach space X is said to have the λ-commuting BCAP (with

λ > 1) if X has a CAI (Kα) such that KαKβ = KβKα for all indices α and β, and

lim sup ‖Kα‖ 6 λ. It follows from [38, Theorem 4.4] that X has the MCAP whenever

X satisfies the M(r, s)-inequality and has the λ-commuting BCAP with λ < r + s.

Therefore we can make the following essential remark.

Remark 4.8. The assumption of the MCAP of Y in Theorems 4.1 and 4.7 can

be replaced by the assumption that Y has the λ-commuting BCAP with λ < ̺ + σ

and λ < r2 + s2, respectively.

Both results described in Remark 4.8 are new even for M -ideals. Since a corollary

of Theorem 4.7 represents a version of the basic theorem of the theory of M -ideals

of compact operators discussed above, let us spell it out as follows.

Corollary 4.9. Let X and Y be Banach spaces having property (M∗). If Y has

the λ-commuting BCAP with λ < 2, then K (X, Y ) is an M -ideal L (X, Y ).

We remark that the special case of Corollary 4.9 when X = Y is proven in [38,

Corollary 4.10].

Let us denote I (X) = span(K (X) ∪ {IX}) where X is a Banach space.

Lemma 4.10 (see [35, Corollary 4.4]). Let X be a Banach space. If r, s ∈ (0, 1]

satisfy r + s/2 > 1, then the following assertions are equivalent.

1◦ K (X) is an M(r, s)-ideal in I (X).

2◦ X has an MCAI and property M∗(r, s).

For the M -ideal prototype of the next result, see [31, Theorem 8].

Corollary 4.11. Let X and Y be Banach spaces. Let r1, s1, r2, s2 ∈ (0, 1] satisfy

r1 + s1 > 1 and r2 + s2/2 > 1. If X has property M∗(r1, s1) and K (Y ) is an

M(r2, s2)-ideal in I (Y ), then K (X, Y ) is an M(r1r2, s1s2)-ideal in L (X, Y ).
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P r o o f. This is immediate from Theorem 4.7 and Lemma 4.10. �

The next theorem, which is one of the main results of the present paper, is also

immediate from Theorem 4.7 and Lemma 4.10.

Theorem 4.12. Let X and Y be Banach spaces. Let r1, s1, r2, s2 ∈ (0, 1] satisfy

r1+s1/2 > 1 and r2+s2/2 > 1. IfK (X) is anM(r1, s1)-ideal in I (X) andK (Y ) is

an M(r2, s2)-ideal in I (Y ), then K (X, Y ) is an M(r1r2, s1s2)-ideal in L (X, Y ).

Using Lemma 4.10 and [5, Theorem 3.1], the following was observed in [9, Corol-

lary 7].

Proposition 4.13. Let r, s ∈ (0, 1] satisfy r + s/2 > 1. If K (X) is an M(r, s)-

ideal in L (X), then K (X) is an M(r, s)-ideal in I (X).

From Theorem 4.12 and Proposition 4.13 we immediately get the desired extension

of Theorem 3.11 to arbitrary (non-separable) spaces. Let us spell it out.

Theorem 4.14. Let X and Y be Banach spaces. Let r1, s1, r2, s2 ∈ (0, 1] satisfy

r1+s1/2 > 1 and r2+s2/2 > 1. IfK (X) is anM(r1, s1)-ideal inL (X) andK (Y ) is

an M(r2, s2)-ideal in L (Y ), then K (X, Y ) is an M(r1r2, s1s2)-ideal in L (X, Y ).

We remark that Theorem 4.14 extends [31, Corollary 9] (which is [11, Corol-

lary 4.18]) from M -ideals to M(r, s)-ideals.

Concerning Proposition 4.13, let us recall Kalton’s theorem [19, Theorem 2.6]

(see [31, Theorem 5] or [11, Theorem 4.17] for its non-separable case): K (X) is an

M -ideal in L (X) if and only if K (X) is an M -ideal in I (X).

This means that the converse of Proposition 4.13 holds for r = s = 1. We do

not know whether it holds for other parameters than r = s = 1. The best we can

do is the following result which is immediate from Theorem 4.12 (and which, in the

special case when r = s = 1, reduces to Kalton’s theorem).

Corollary 4.15. Let X be Banach space and let r, s ∈ (0, 1] satisfy r + s/2 > 1.

If K (X) is an M(r, s)-ideal in I (X), then K (X) is an M(r2, s2)-ideal in L (X).

Corollary 4.15 improves [9, Corollary 13] where the claim is that K (X) is an

M(r3, s3)-ideal in L (X).
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