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Abstract

One of the main objectives of theoretical research in computational
complexity and feasibility is to explain experimentally observed differ-
ence in complexity. Empirical evidence shows that the more solutions a
system of equations has, the more difficult it is to solve it. Similarly, the
more global maxima a continuous function has, the more difficult it is to
locate them. Until now, these empirical facts have been only partially
formalized: namely, it has been shown that problems with two or more
solutions are more difficult to solve than problems with exactly one so-
lution. In this paper, we extend this result and show that for every
m, problems with exactly m solutions are more difficult to solve than
problems with m − 1 solutions. Rephrasing Orwell’s “Four legs good,
two legs better”, we can describe this result as “m solutions good, m−1
solutions better”.

Mathematics Subject Classification: 68Q17, 68Q15, 90C60, 65G20
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1 Introduction

In many real-life situations, we want to find the best decision, the best con-
trol strategy, etc. The corresponding problems are naturally formalized as
optimization problems: we have a function f(x1, . . . , xn) of several variables,
and we want to find the values (x1, . . . , xn) for which this function attains the
largest (or the smallest) possible value.

Many numerical algorithms have been proposed for solving optimization
problems. Unfortunately, many of these algorithms often end up in a local
maximum instead of the desired global one.

• In some practical situations, e.g., in decision making, the use of local
maximum simply degrades the quality of the decision but is not, by
itself, disastrous.

• However, in some other practical situations, missing a global maximum
or minimum may be disastrous.

Let us give two example:

• In chemical engineering, global minima of the energy function often de-
scribe the stable states of the system. If we miss such a global minimum,
the chemical reactor may go into an unexpected state, with possible se-
rious consequences.

• In bioinformatics, the actual shape of a protein corresponds to the global
minimum of the energy function. If we find a local minimum instead, we
end up with a wrong protein geometry. As a result, if we use this wrong
geometry as a computer simulation for testing recommendations on the
medical use of chemicals, we may end up with medical recommendations
which harm a patient instead of curing him.

For such applications, it is desirable to use rigorous, automatically verified
methods of global optimization, i.e., methods which never discard an actual
global maximum; for a survey of such methods, see, e.g., [12]. These methods
usually start with a large “box” on which a function is defined (and on which
global maxima can be located), and produce a list of small-size boxes with the
property that every global maximum is guaranteed to be contained in one of
these boxes.

Most of such guaranteed methods use (a version of) interval computations.
The main idea of interval computations is as follows: To solve a given numerical
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problem (e.g., an optimization problem), numerical methods typically generate
better and better estimates for different quantities related to the problem –
such as the actual global maximum of the function, the value of its partial
derivatives at different points, etc.

• In traditional numerical techniques, for each approximated numerical
quantity, an approximation is a real number, with no guarantees on the
approximation accuracy.

• In interval methods, at any given moment of time, for each approximated
quantity x, we compute not only the approximate value x̃, but also the
upper bound ∆ on the possible approximation error, i.e., a number ∆ for
which we are guaranteed that |x− x̃| ≤ ∆. In other words, at any step,
we have not only an approximate value x̃ of the approximate quantity,
we also have an interval x = [x̃−∆, x̃+∆] which is guaranteed to contain
the (unknown) actual value of x.

As we have mentioned, rigorous methods of global optimization start with a
large box as a location of the unknown global maxima and gradually replace it
will a small finite collection of small boxes. The decrease in a box size is usually
achieved by dividing one of the boxes into several sub-boxes and eliminating
some of these sub-boxes.

When can we eliminate a sub-box B? At every stage of the optimization
algorithm, we have already computed several values of the optimized function
f(x1, . . . , xn), so we know that the global maximum of the function f cannot
be smaller than the largest M of these already computed values. Thus, if we
can guarantee that the maximum of the function f on a box B is smaller than
M , we can thus exclude this box from the list of possible locations of a global
maximum. To get such a guarantee, we can find an enclosure for the range of
the function on a subbox, e.g., by using methods of interval arithmetic [12],
when we parse the computation of the function f and replace each arithmetic
operation by the corresponding operation with intervals.

In some real-life problems, we are not yet ready for optimization, e.g.,
because the problem has so many constraints that even finding some values
x = (x1, . . . , xn) of the parameters xi which satisfy all these constraints is
an extremely difficult task. For such problems, we arrive at the problem of
satisfying given constraints, e.g., solving a given system of equations. In many
such problems, it is important not to miss a solution.

The complexity of locating global maxima of f is empirically known to
depend on the number of these global maxima: the fewer global maxima, the
easier the problem [8, 9, 10, 11, 12, 28]. It is desirable to formalize and explain
this empirical fact.

Previously, this result have been formalized only partially: namely, it was
shown that global optimization is easier when we have exactly one global max-
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imum than when have several. In this paper, we extend this result and show
that optimization with m global maxima is, in some formal sense, more dif-
ficult than optimization with m − 1 global maxima (and the same is true for
solving systems of equations).

2 Formalization of the Problem and Previously

Known Results

In order to formulate this result, we must recall some basic definitions of
computable (“constructive”) real numbers and computable functions from real
numbers to real numbers (see, e.g., [1, 3, 4, 5, 24]):

Definition 2.1 A real number x is called computable if there exists an algo-
rithm (program) that transforms an arbitrary integer k into a rational number
xk that is 2−k−close to x. It is said that this algorithm computes the real
number x.

When we say that a computable real number is given, we mean that we are
given an algorithm that computes this real number.

Definition 2.2 A function f(x1, . . . , xn) from real numbers to real numbers
is called computable if there exist algorithms Uf and ϕ, where:

• Uf is a rational-to-rational algorithm which provides, for given rational
numbers r1, . . . , rn and an integer k, a rational number Uf (r1, . . . , rn, k)
which is 2−k-close to the real number f(r1, . . . , rn), and

|Uf (r1, . . . , rn, k)− f(r1, . . . , rn)| ≤ 2−k, and

• ϕ is an integer-to-integer algorithm which gives, for every positive integer
k, an integer ϕ(k) for which |x1 − x′1| ≤ 2−ϕ(k), . . . , |xn − x′n| ≤ 2−ϕ(k)

implies that |f(x1, . . . , xn)− f(x′1, . . . , x
′
n)| ≤ 2−k.

When we say that a computable function is given, we mean that we are
given the corresponding algorithms Uf and ϕ.

Theorem 2.1 [13, 14, 15, 18, 20] There exists an algorithm U such that:

• U is applicable to an arbitrary computable function f(x1, . . . , xn) that
attains its maximum on a computable box B = [a1, b1]× . . .× [an, bn] at
exactly one point x = (x1, . . . , xn),

• for every such function f , the algorithm U computes the global maximum
point x.
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Theorem 2.2 [17, 18, 19, 20, 21, 22, 23, 24] No algorithm U is possible
such that:

• U is applicable to an arbitrary computable function f(x1, . . . , xn) that
attains its maximum on a computable box B = [a1, b1]× . . .× [an, bn] at
exactly two points, and

• for every such function f , the algorithm U computes one of the corre-
sponding global maximum points x.

These results partially explain the above intuition because they show that
the problem of locating global maxima is easier if we have a single global
maximum and more difficult if we have several global maxima. These results,
however, do not completely explain this intuition because they do not explain
why, say, a problem with three global maxima is more complex than a problem
with two global maxima.

Similar results hold for roots (solutions) of a system of equations:

Definition 2.3 By a computable system of equations we mean a system
f1(x1, . . . , xn) = 0, . . . , fk(x1, . . . , xn) = 0, where each of the functions fi is a
computable function on a computable box B = [a1, b1]× . . .× [an, bn].

Theorem 2.3 [13, 14, 15, 18, 20] There exists an algorithm U such that:

• U is applicable to an arbitrary computable system of equations which has
exactly one solution, and

• for every such system of equations, the algorithm U computes its solution.

Theorem 2.4 [17, 18, 19, 20, 21, 22, 23, 24] No algorithm U is possible
such that:

• U is applicable to an arbitrary computable system of equations which has
exactly two solutions, and

• for every such system of equations, the algorithm U computes one of its
solutions.

Comment. It is known that the general problem of solving a system of polyno-
mial equations with rational coefficients is NP-hard [24] (it is even NP-hard for
quadratic equations). The problem of finding the unique solution to a system
of equations (or the unique point where the maximum is attained) is as compli-
cated as the problem of finding the unique satisfying vector for a given propo-
sitional formula [24]. The latter problem (it is usually denoted by USAT, from
unique satisafiability) is known to be “almost” NP-hard in the sense that every
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other problem from the class NP can be probabilistically reduced to USAT; so
if we were able to solve all the instances of USAT in polynomial time, we would
have a probabilistic polynomial-time algorithm that solves almost all instances
of all problems from the class NP. (Exact definition are somewhat complicated
so, due to the lack of space, we refer the interested reader to [7] and [27]. Note
that in [2], arguments are given that this problem may not be NP-hard.)

3 New Results

The following modification of the above results provides the desired complete
explanation: For two global maxima, we cannot pinpoint one of them, but, as
we will show, we can compute the next best thing: namely, we can compute
two locations with a guarantee that one of them contains a global maximum.
For functions with three global maxima, we cannot find neither one nor two
such locations, but we can find three locations one of which contains the global
maximum, etc. Thus, we have formalized the intuitive idea that the fewer
global maxima, the easier the global optimization problem.

Definition 3.1 We say that a box B = [a1, b1]× . . .× [an, bn] is of size ≤ ε
if each of its sides is of size ≤ ε, i.e., if bi − ai ≤ ε for all i = 1, . . . , n.

Theorem 3.1 Let m > 1 be an integer. Then:

• There exists an algorithm U such that:

• U is applicable to an arbitrary computable function f(x1, . . . , xn)
on a computable box B = [a1, b1] × . . . × [an, bn] that attains its
maximum on B at exactly m points, and

• for every computable real number ε > 0, the algorithm U returns
m boxes of size ε with a guarantee that each global maximum is
contained in one of these boxes.

• No algorithm U is possible such that:

• U is applicable to an arbitrary computable function f(x1, . . . , xn)
on a computable box B = [a1, b1] × . . . × [an, bn] that attains its
maximum on B at exactly m points, and

• for every computable real number ε > 0, the algorithm U returns
m−1 boxes of size ε with a guarantee that one of these boxes contains
a global maximum.

Theorem 3.2 Let m > 1 be an integer. Then:
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• There exists an algorithm U such that:

• U is applicable to an arbitrary computable system of equations which
has exactly m solutions, and

• for every computable real number ε > 0, the algorithm U returns m
boxes of size ε with a guarantee that each solution is contained in
one of these boxes.

• No algorithm U is possible such that:

• U is applicable to an arbitrary computable system of equations which
has exactly m solutions, and

• for every computable real number ε > 0, the algorithm U returns
m−1 boxes of size ε with a guarantee that one of these boxes contains
a solution.

The problem becomes even more complicated if we do not know the actual
number n(f, B) of points where the maximum of a function f on the box B
is attained – only the upper bound m on this number. In this case, n(f,B)
can take any value from the set {1, . . . , m}. It turns out that not only we
cannot predict n(f,B) for a given f , we cannot even limit the m-element list
of possible cardinalities to a smaller sublist:

Theorem 3.3 Let m > 1 be an integer. Then, no algorithm is possible
which, given a computable function f on a computable box B which attains
its maximum at n(f,B) ≤ m points, returns a set S(f,B) ⊂ {1, . . . , m} with
#S(f, B) < m elements which contains the value n(f, B).

A similar result holds for solutions:

Theorem 3.4 Let m > 1 be an integer. Then, no algorithm is possible
which, given a computable system of equations s which has n(s) ≤ m solutions,
returns a set S(s) ⊂ {0, 1, . . . , m} with #S(s) < m+1 elements which contains
the value n(s).

4 Proofs

4.1 Proof of Theorem 3.1

1. It is known that there exists an algorithm which, given a computable
function on a computable box, and a given δ > 0 returns a rational number
M which is δ-close to max f [1, 3, 4, 5, 24]. Let us reproduce the main idea of
this proof.
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1.1. First, we prove that there exists an integer m for which the 2−m-approximation
δm to δ exceeds 3 · 2−m.

Indeed, since δ > 0, we have δ > 2−k for some k. Therefore, for the
2−(k+2)-approximation δk+2 to δ, we get |δk+2 − δ| ≤ 2−(k+2) hence

δk+2 ≥ δ − 2−(k+2) > 2−k − 2−(k+2) = 3 · 2−(k+2).

So, the existence is proven for m = k + 2.
This m can be algorithmically computed as follows: we sequentially try

m = 0, 1, 2, . . . and check whether δm > 3 · 2−m; when we get the desired
inequality, we stop.

1.2. Let us now show that for the integer m computed according to Part 1.1
of this proof, we have δ > 2 · 2−m.

Indeed, since δm > 3 · 2−m and |δ − δm| ≤ 2−m, we can conclude that

δ ≥ δm − 2−m > 3 · 2−m − 2−m = 2 · 2−m.

So, if we can find a rational number M which is 2 · 2−m-close to max f , this
rational number will thus be also δ-close to max f .

1.3. Let us now use this m to compute the desired δ-approximation to max f .

1.3.1. By using the second algorithm ϕ in the definition of a computable
function, we can find a value ϕ(m) such that if |xi − x′i| ≤ ϕ(m) for all i =
1, . . . , n, then

|f(x1, . . . , xn)− f(x′1, . . . , x
′
n)| ≤ 2−m.

For each dimension [ai, bi] of the box B, we can then take finitely many values

r
(1)
i , r

(2)
i = r

(1)
i + ϕ(m), r

(3)
i = r

(2)
i + ϕ(m), . . . , r

(Ni)
i = r

(Ni−1)
i + ϕ(m)

(separated by ϕ(m)) which cover the corresponding interval. Then, each value

xi ∈ [ai, bi] will be different by one of these values r
(ki)
i by ≤ ϕ(m).

1.3.2. Combining the values corresponding to different dimensions, we get a
finite list of rational-valued vectors

(
r
(k1)
1 , . . . , r(kn)

n

)
with the property that

every vector (x1, . . . , xn) ∈ B is ϕ(m)-close to one of these vectors.
Due to the definition of ϕ(m), this means that each value f(x1, . . . , xn) is

2−m-close to one of the values f
(
r
(k1)
1 , . . . , r(kn)

n

)
. Therefore, the desired max f

is 2−m-close to the maximum of all the values f
(
r
(k1)
1 , . . . , r(kn)

n

)
.

By using the algorithm Uf , we can compute each of these values with
the accuracy 2−m. Thus, the maximum M of thus computed rational val-
ues Uf

(
r
(k1)
1 , . . . , r(kn)

n ,m
)
. is 2−m-close to the maximum of all the values

f
(
r
(k1)
1 , . . . , r(kn)

n

)
, and hence, 2 · 2−m-close to max f . Thus, M is indeed δ-

close to max f . The first part is proven.
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2. Let us now prove that the existence of the desired algorithm U .

2.1. First, we prove that for every function f with exactly m global maxima
x(1), . . . , x(m) in which

f
(
x(1)

)
= . . . = f

(
x(N)

)
= M

def
= max

B
f(x),

there exists a real number δ > 0 such that for every x ∈ B, if f(x) is δ-close
to the maximum M , then x is (ε/2)-close to one of the global maxima x(i)

(1 ≤ i ≤ m).

Indeed, if such a δ does not exist, then, for every δ = 2−k, there exists a point
p(k) for which f

(
p(k)

)
≥ M − 2−k and ρ

(
p(k), x(i)

)
> ε/2 for all i = 1, . . . , m

(where ρ denotes the distance). Since the box B is closed and bounded, it is
a compact, so the sequence p(k) has a convergent subsequence p(ki) → p ∈ B.
In the limit ki →∞, we get:

• f(p) ≥ M = max f(x), hence p is the global maximum point, and

• at the same time, ρ
(
p, x(i)

)
≥ ε/2 > 0, so p is different from all known

m global maxima.

The contradiction shows that such a δ > 0 must exist.

2.2. From 2.1, we can conclude that is more than (ε/2) away from one of the
local maxima, then f(x) < M − δ.

2.3. Now, we can present the desired algorithm.

To get the desired boxes, for every N = 1, 2, . . ., we do the following:

• We divide the original box into N×N× . . .×N subboxes B
(N)
1 , B

(N)
2 , . . ..

• We compute the maximum M
(N)
1 ,M

(N)
2 , . . . of f on each of these subboxes

with an accuracy 2−N . The maximum M (N) of these values is the 2−n-
approximation to the actual (unknown) maximum M of the function
f .

• We dismiss all the subboxes B
(N)
i for which M

(N)
i < M (N) − 2 · 2−N ,

because for these subbboxes, the actual maximum is guaranteed to be
snaller than M and hence, these subboxes cannot contain any global
maxima.

• Finally, we check whether all these subboxes can be subdivided into m
groups of size ε.

If they can be thus grouped, we get the desired m subboxes. If not, we increase
N by one, and repeat the same procedure.
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The fact that this algorithm stops for some N follows from the Part 2.1 of
this proof: if N becomes so large that 2−N < δ/2 and 2−N < ε/4, then for

every box B
(N)
i which is more than (ε/2) away from one of the global maxima,

its actual maximum is < M − δ. Hence, its 2−N -approximate value M
(N)
i is

< M (N)−2·2−N , so this box will be dismissed. As a result, all remaining boxes
will indeed be ε-close to the actual global maxima. The existence is proven.

3. Let us now prove the impossibility of an algorithm which would return
m − 1 boxes such that one of these boxes contains a global maximum of a
given function f .

We will prove this impossibility by reduction to a contradiction. Let us assume
that such an algorithm exists.

3.1. First, let us prove that we will then have an algorithm I which, given an
arbitrary everywhere defined computable sequence a : IN → IN from natural
numbers to natural numbers, returns an integer I(a) ∈ {1, . . . ,m} with the
following property: if ∃n (a(n) 6= 0), then I(a) is different from the first non-
zero value of a(n).

3.1.1. First, for every such sequence a, we construct a computable function
fa : [0, 2m− 1] → [0, 1].

This function fa(x) is constructed as the sum of the constructively converging
functions

fa(x) = f (0)
a (x) + f (1)

a (x) + . . . (1)

for appropriately defined functions f (i)
a (x). In the following, we describe an

algorithm which, given i and x, computes the value f (i)
a (x) of i-th component

function. The values of i-th function is from the interval [0, 2−i] and therefore,
it is easy to prove that their sum is indeed a computable function in the sense
of the above definitions (for exact proofs, see, e.g., [1, 3, 4, 5]).

For constructing the component functions f (i)
a , we will use an auxiliary

“trapezoid” function t : [0, 1] → [0, 0.5] which is defined as follows:

• t(x) = 0 for x ≤ 0;

• t(x) = x for 0 ≤ x ≤ 0.25;

• t(x) = 0.25 for 0.25 ≤ x ≤ 0.75;

• t(x) = 1− x for 0.75 ≤ 5 ≤ 1;

• t(x) = 0 for 1 ≤ x.

This trapezoid is of height 0.25 = 0.5 · (1− 2−1) with an upper horizontal part
of length 0.5 = 2−1.

As long as we have
a(0) = . . . = a(i) = 0, (2)
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we take, as f (i)
a (x), a function

Fi(x)
def
= ti(x) + ti(x− 2) + . . . + ti(x− 2 · (m− 1)), (3)

where
ti(x)

def
= 2−i · t

(
2i · (x− 0.5) + 0.5

)
.

In particular:

• For i = 0, we get t0(x) = t(x), hence

f (0)
a (x) = t(x) + t(x− 2) + . . . + t(x− 2 · (m− 1)),

i.e., f (0)
a (x) is the sum of m identical trapezoids concentrated on the

intervals [0, 1], [2, 3], . . . , [2 · (m− 1), 2 · (m− 1) + 1 = 2m− 1].

• For i = 1, adding f (1)
a (x) to f (0)

a (x) means that we add a small trapezoid
on top of each of the previous m trapezoids. The parameters of both
trapezoids are selected in such a way that their sides perfectly align, so
for each of m intervals [0, 1], . . . , [2m− 2, 2m− 1], the graph of the sum
f (0)

a (x)+f (1)
a (x) is also a trapezoid, of height 0.5 ·(1−2−2) with an upper

horizontal part of length 2−2.

• Similarly, for every i > 0, if a(0) = . . . = a(i) = 0, then on each of m
intervals, the sum f (0)

a (x) + . . . + f (i)
a (x) is also a trapezoid, of height

0.5 · (1− 2−(i+1)) with an upper horizontal part of length 2−(i+1).

When i → ∞, the height tends to 0.5, and the width of the upper horizontal
part tends to 0.

We have defined f (i)
a (x) for the case when the condition (2) is satisfied.

Let j be the first value for which this condition is not satisfied. Then, as we
have mentioned, on each of m intervals [0, 1],, . . . , [2m − 2, 2m − 1], the sum
f (0)

a (x) + . . . + f (j−1)
a (x) is a trapezoid, of height 0.5 · (1− 2−j) with an upper

horizontal part of length 2−j:

• For the first interval [0, 1], the horizontal part is centered around the
midpoint 0.5, i.e., it corresponds to the values [0.5−0.5·2−j, 0.5+0.5·2−j].

• For k-th interval [2k−2, 2k−1], the horizontal part is similarly centered
around the midpoint 2k − 1.5, i.e., it corresponds to the values [(2k −
1.5)− 0.5 · 2−j, (2k − 1.5) + 0.5 · 2−j].

For the further construction, we compute k0 = min(a(j), m); thus defined
k0 is an integer whose possible values range from 1 to m. We will halt the
construction of our “pyramids” on all intervals except the interval # k0, and
on this particular interval, we will build m small identical “pyramids” on top
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of the horizontal part [x−, x+] of the corresponding trapezoid, where x− def
=

(2k0 − 1.5)− 0.5 · 2−(j−1) and x+ def
= (2k0 − 1.5) + 0.5 · 2−(j−1).

Specifically, for every i ≥ j, we define

f (i)
a (x) =

x+ − x−

2m− 1
· Fi−j

(
2m− 1

x+ − x−
· (x− x−)

)
,

where Fi(x) is defined by the formula (3).

3.1.2. Let us now show that, for every computable everywhere defined sequence
a(n), the corresponding computable function fa(x) has exactly m global max-
ima, and describe the location of these global maxima.

When a(0) = . . . = a(i) = . . . = 0 for all i, the graph of the limit function
(1) is the sum of m triangular functions each of which is located on the the
corresponding interval [0, 1], . . . , [2m − 2, 2m − 1], and each of which attains
the maximum 0.5 at the midpoint of the corresponding interval. Thus, for
a(n) ≡ 0, the function fa(x) has exactly m global maxima: 0.5, 2.5, . . . ,
2(m−1)+0.5, each of which is located within the corresponding interval [0, 1],
. . . , [2m− 2, 2m− 1].

When a(n) 6≡ 0, the function fa(x) depends on the first non-zero value a(j):
Namely, on j and on k0 = min(a(j), m). Similarly to the case a(n) ≡ 0, the
graph of the sum f (i)

a (x) + f (i+1)
a (x) + . . . is a sum of m triangular functions.

Hence, for a(n) 6≡ 0, the sum (1) attains maximum at exactly m points all of
which are located within the k0−th interval [2k0 − 2, 2k0 − 1].

3.1.3. Let us now describe the desired I(a).

The hypothetic algorithm U returns m− 1 boxes, one of which is guaranteed
to contain a global maximum. When ε is small enough (e.g., ≤ 0.5), each box
can only contain points from one of the m intervals [0, 1], . . . , [2m−2, 2m−1].
Thus, when a(n) 6≡ 0, the m−1 boxes resulting from applying U to fa intersect
with at most m − 1 of these intervals. Thus, at least one of these intervals
[2i − 2, 2i − 1] does not intersect with any of the m − 1 boxes. As I(a), we
then take the ordinal number of one of these non-intersecting intervals.

3.1.4. To complete the proof, let us show that if a(n) 6≡ 0, then I(a) is different
from the first non-zero value a(j) of the sequence a(n).

Indeed, if a(n) 6≡ 0, then one of the m − 1 intervals must contain a global
maximum. Since all global maxima are located in the interval [2k0−2, 2k0−1]
(where k0 = min(a(j),m)), one of the intervals from U(f1) must intersect with
this interval [2k0 − 2, 2k0 − 1]. Since I(a) is the ordinal number of an interval
which does not intersect, and the interval # k0 does intersect, we conclude
that I(a) 6= k0.

By definition, I(a) ≤ m. So:

• if a(j) > m, then I(a) 6= a(j);
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• if a(j) ≤ m, then k0 = a(j) hence also I(a) 6= a(j).

In both cases, I(a) 6= a(j). The statement is proven.

4. To complete the proof of the theorem, let us prove that the algorithm I(a)
described in Part 3 of this proof is impossible.

We will prove this impossibility in a way which is similar to the standard proof
of the undecidability of the halting problem. Let fn by a (partial) recursive
function # n (or Turing machine # n, etc.), and let d be an integer. For each
t, we can define a(t) as follows:

• a(t) = 0 if the computation of f on d has not stopped by time t (i.e., in
t steps), and

• a(t) = f(d) is the computation of f on d stopped by time t.

By applying the algorithm I to this sequence a, we get a value I(a) with the
property that if f is applicable to d (!fn(d)), then I(a) 6= a(j) = f(d). Let us
denote this value I(a) by v(n, d). Thus, we have an algorithm, which, given
two integers n and d, always returns a value v(n, d) such that if !fn(d) then
v(n, d) 6= fn(d). In particular, the diagonal function v(n, n) is also computable
and everywhere defined. Thus, it has a number in the ordering of all recursive
functions, i.e., there exists a number c for which v(n, n) = fc(n) for all n.
Then, we get the desired contradiction:

• On one hand, from v(n, n) = fc(n), for n = c, we get v(c, c) = fc(c).

• On the other hand, here !fc(c), hence from the above property of v, we
conclude that v(c, c) 6= fc(c).

The theorem is proven.

4.2 Proof of Theorem 3.2

Theorem 2 follows from Theorem 3.1 if we take into consideration that the
problems of solving a system of equation and of locating global maxima can
be naturally (and computably) reduced to each other in such a way that the
solutions to the system of equations become global maxima and vice versa
(and thus, the number of solutions becomes the number of global maxima and
vice versa):

• If we know how to solve systems of equations, then the problem of locat-
ing global maxima of a function f(x1, . . . , xn) can be reformulated as a
problem of finding all solutions to an equation f1(x1, . . . , xn) = 0, where

f1(x1, . . . , xn)
def
= max f − f(x1, . . . , xn).
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• Vice versa, if we know how to locate global maxima, then the problem
of solving a system of equations f1(x1, . . . , xn) = 0, . . . , fk(x1, . . . , xn) =
0 can be reformulated as a problem of finding all global maxima of a
function

f(x1, . . . , xn)
def
= −(|f1(x1, . . . , xn)|+ . . . + |fk(x1, . . . , xn)|).

4.3 Proof of Theorem 3.3

This proof uses the following result about bounded queries ([25], see also [6]):
Let #A

n (p1, . . . , pn) denote the number of elements in the intersection A ∩
{p1, . . . , pn}, and let F ∈ EN(m) mean that there is an algorithm that will,
given x, enumerate ≤ m possibilities for F (z) one of which is correct. It is
know that if A is not recursive, then #A

n 6∈ EN(n). In other words, we cannot
always eliminate one possibility for #A

n .
Assume that for some m, there is an algorithm which returns the set S(f,B)

with #S(f,B) < m. Let us then show that for the halting set A, we get
#A

m−1 ∈ E(m − 1) – in contradiction with the above result. To show this,
we will follow the construction from [26], in which we construct, for every
program p, a non-negative computable real number x such that x > 0 if and
only if p halts. (This construction follows the spirit of Turing – who introduced
the notion of a Turing machine in an attempt to formalize the notion of a
computable real number.) Specifically, for every program p, we define x as
follows: xk = 2−k if p did not halt by time k, and xk = 2−t if p halted at some
moment t ≤ k.

For every m− 1 Turing machines (or programs) p1, . . . , pm−1, we can then
define the corresponding real numbers a1, . . . , am−1 and a computable function

f(x)
def
= t(x) + (1− a1) · t(x− 1) + . . . + (1− am−1) · t(x− (m− 1)),

where t(x) = x for x ∈ [0, 0.5], t(x) = 1−x for x ∈ [0.5, 1], and t(x) = 0 for all
other x. This function consists of m triangular-shaped pieces of heights 1 (for
x = 0.5), 1−a1 (for x = 1.5), . . . , 1−am−1 (for x = m−0.5). Since ai ≥ 0, the
maximum of this function is 1, and the number of points where this maximum
is attained is equal to the number of values a1, . . . , am−1 which are equal to 0.
Since ai = 0 if and only if the program pi halts, any limitation of the number
of points where f attains maximum would thus lead to a limitation on #A

m−1.
The theorem is proven.

4.4 Proof of Theorem 3.4

This proof is similar to the proof of Theorem 3.3, with the only difference that
instead of the function f(x), we consider the computable system consisting of
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a single equation f1(x) = 0 on the interval [1,m], where

f1(x)
def
= (1− a1) · t(x− 1) + . . . + (1− am) · t(x−m)− 1,

and t(x) is defined as in the proof of Theorem 3. The only possible solutions
to this equation are the values i + 0.5 where ai = 0 (i.e., where the Turing
machine pi halts), so the existence of S(s) with #S(s) < m + 1 would lead to
#A

m ∈ EN(m) and hence, to a contradiction. Q.E.D.
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