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M-TENSORS AND SOME APPLICATIONS∗

LIPING ZHANG† , LIQUN QI‡ , AND GUANGLU ZHOU§

Abstract. We introduce M -tensors. This concept extends the concept ofM -matrices. We denote
Z-tensors as the tensors with nonpositive off-diagonal entries. We show that M -tensors must be Z-
tensors and the maximal diagonal entry must be nonnegative. The diagonal elements of a symmetric
M -tensor must be nonnegative. A symmetric M -tensor is copositive. Based on the spectral theory
of nonnegative tensors, we show that the minimal value of the real parts of all eigenvalues of an M -
tensor is its smallest H+-eigenvalue and also is its smallest H-eigenvalue. We show that a Z-tensor is
an M -tensor if and only if all its H+-eigenvalues are nonnegative. Some further spectral properties of
M -tensors are given. We also introduce strong M -tensors, and some corresponding conclusions are
given. In particular, we show that all H-eigenvalues of strong M -tensors are positive. We apply this
property to study the positive definiteness of a class of multivariate forms associated with Z-tensors.
We also propose an algorithm for testing the positive definiteness of such a multivariate form.
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1. Introduction. Tensors are increasingly ubiquitous in various areas of ap-
plied, computational, and industrial mathematics and have wide applications in data
analysis and mining, information science, signal/image processing, and computational
biology as well [5, 9, 15, 17]. A tensor can be regarded as a higher-order generalization
of a matrix, which takes the form

A = (Ai1···im) , Ai1···im ∈ R, 1 ≤ i1, . . . , im ≤ n.

Such a multiarray A is said to be an m-order n-dimensional square real tensor with
nm entries Ai1···im . Eigenvalues of tensors were introduced in [17, 22] in 2005. Since
then, much work has been done in spectral theory of tensors. In particular, theory of,
and algorithms for calculating, eigenvalues of nonnegative tensors are well developed
[6, 7, 8, 12, 16, 18, 19, 23, 26, 27, 28].

It is known that an mth degree homogeneous polynomial form of n variables g(x),
where x ∈ Rn, can be denoted as

(1.1) g(x) :=

n∑
i1,i2,...,im=1

Ai1i2...imxi1xi2 · · ·xim .

When m is even, g(x) is called positive definite if

g(x) > 0 ∀x ∈ Rn, x �= 0.
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438 LIPING ZHANG, LIQUN QI, AND GUANGLU ZHOU

Testing positive definiteness of a multivariate form defined as (1.1) is an important
problem in the stability study of nonlinear autonomous systems via Lyapunov’s direct
method in automatic control [20]. Researchers in automatic control have studied the
conditions of such positive definiteness intensively [2, 3, 4, 13]. However, for n ≥ 3
and m ≥ 4, this is a hard problem in mathematics. There are only a few methods for
solving the problem [3, 4, 20]. In practice, when n > 3 and m ≥ 4, these methods are
computationally expensive. Recently, some efficient methods based on eigenvalues
of tensors were proposed to solve the problem [18, 20]. Moreover, the theory of
M -matrices was used to certify avoidance conditions in stability autonomous systems
[24]. Motivated by these observations, we extend the concept ofM -matrices to tensors
and then introduce M -tensors. Our purpose is to propose a new method for testing
positive definiteness of a multivariate form using the spectral properties of M -tensors.

The concept ofM -matrices, which have many applications in various fields such as
computational mathematics, mathematical physics, mathematical economics, graph
theory, and wireless communications [1, 10, 14, 24], was introduced by Ostrowski [21]
in 1937 [1, 10, 14, 25]. M -matrices have the following form [1, 14].

Definition 1.1. Any real matrix A of the form

A = sI −B, where s > 0 and B is a nonnegative matrix,

for which s ≥ ρ(B), the spectral radius of B, is called an M -matrix. If s > ρ(B),
then A is called a nonsingular M -matrix.

In this paper, we extend the concept in Definition 1.1 to tensors. We introduce
M -tensors and strong M -tensors. By using spectral theory of nonnegative tensors
[6, 12, 23, 26], we give some properties of M -tensors. We prove that the smallest
H+-eigenvalue of an M -tensor is nonnegative. We show that an M -tensor has at
least one nonnegative H+-eigenvalue, a weakly irreducible M -tensor has a unique
H++-eigenvalue, and an irreducible M -tensor has a unique H+-eigenvalue. Similar to
Z-matrices, we denote tensors with all nonpositive off-diagonal entries by Z-tensors.
Note that M -tensors belong to the class of Z-tensors. We show that a Z-tensor is an
M -tensor if and only if all its H+-eigenvalues are nonnegative. Moreover, a Z-tensor
is a strong M -tensor if and only if all its H+-eigenvalues are positive. We show that
the class of M -tensors can be viewed as the closure of the class of strong M -tensors.
Some further spectral properties are also established. Finally, we apply some spectral
properties of M -tensors to study the positive definiteness of a class of multivariate
forms associated with Z-tensors. We propose an algorithm for testing the positive
definiteness of such a multivariate form. It should be pointed out that the class of
multivariate forms studied in [18] is a special case of our model. We do not need the
assumption that the diagonal entries are positive.

This paper is organized as follows. In section 2, we recall some preliminary
results. We introduce M -tensors and characterize some basic properties of M -tensors
in section 3. In section 4, we discuss some applications of M -tensors. Finally, we
conclude the paper with some remarks in section 5.

2. Preliminaries. We start this section with some fundamental notions and
properties on tensors. An m-order n-dimensional tensor A = (Ai1···im) is called
nonnegative if each entry is nonnegative. The tensor A is called symmetric if its
entries Ai1···im are invariant under any permutation of their indices {i1 · · · im} [22].
The m-order n-dimensional identity tensor, denoted by I = (Ii1...im), is the tensor
with entries
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Ii1...im =

{
1 if i1 = · · · = im,
0 otherwise.

A tensor A is called reducible [6] if there exists a nonempty proper index subset
I ⊂ {1, 2, . . . , n} such that

Ai1···im = 0 ∀i1 ∈ I ∀i2, . . . , im �∈ I.

Otherwise, we say A is irreducible.
Let A = (Ai1···im) be a nonnegative tensor. We call an n× n nonnegative matrix

R(A) the representation of A if the (i, j)th element of R(A) is defined to be the
summation of Aii2···im with indices {i2 · · · im} � j. We say that the tensor A is weakly
reducible if its representation R(A) is a reducible matrix. If A is not weakly reducible,
then it is called weakly irreducible [12, 16].

The following definitions about eigenvalues of tensors were introduced by Qi [17,
22]. Let C (R) be the complex (real) field. The nonnegative orthant of Rn is denoted
by Rn

+ and the interior of Rn
+ denoted by Rn

++. For a vector x ∈ Cn, we use xi to

denote its components and x[m−1] to denote a vector in Cn such that

x
[m−1]
i = xm−1

i

for all i. Axm−1 denotes a vector in Cn, whose ith component is

n∑
i2,...,im=1

Aii2···imxi2 · · ·xim .

And we write

Axm =

n∑
i1,...,im=1

Ai1···imxi1 · · ·xim .

If a pair (λ, x) ∈ C× (Cn\{0}) satisfies

(2.1) Axm−1 = λx[m−1],

then we call λ an eigenvalue of A and x its corresponding eigenvector. In particular, if
x is real, then λ is also real. In this case, we say that λ is an H-eigenvalue of A and x
its corresponding H-eigenvector. If x ∈ Rn

+(R
n
++), then λ is called an H+-eigenvalue

(H++-eigenvalue) of A. The largest modulus of the eigenvalues of A is called the
spectral radius of A, denoted by ρ(A).

When m is even and A is symmetric, we say that A is positive definite (semidefi-
nite) if Axm > 0 (Axm ≥ 0) for all x ∈ Rn and x �= 0. It is proved in [22, Theorem 5]
that A is positive definite (semidefinite) if and only if all its H-eigenvalues are positive
(nonnegative).

We now recall some existing results on tensors which will be used in the next
section. The following theorem summarizes the Perron–Frobenius theorem for non-
negative tensors; see, e.g., [6, 12, 23, 26].

Theorem 2.1. Let A be a nonnegative tensor. Then the spectral radius ρ(A)
is an H+-eigenvalue of A. If A is weakly irreducible, then ρ(A) is the unique H++-
eigenvalue of A. If A is irreducible, then ρ(A) is the unique H+-eigenvalue of A.

The following lemma was given by Qi [22, Corollary 3].
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440 LIPING ZHANG, LIQUN QI, AND GUANGLU ZHOU

Lemma 2.2. Let A be an m-order n-dimensional tensor. Suppose that B =
a(A+bI), where a and b are two real numbers. Then μ is an eigenvalue (H-eigenvalue)
of B if and only if μ = a(λ + b) and λ is an eigenvalue (H-eigenvalue) of A. In this
case, they have the same eigenvectors (H-eigenvectors).

Let A be an m-order and n-dimensional tensor. Denote its smallest H-eigenvalues
by λmin(A) and define

Rmin(A) = min
1≤i≤n

n∑
i2,...,im=1

Aii2...im .

If all the off-diagonal entries are nonpositive, then A is called a Z-tensor. Note that Z-
tensors directly generalize Z-matrices. Some existing results on symmetric Z-tensors
[23] are summarized in the following lemma.

Lemma 2.3. Let A = (Ai1···im) be a symmetric Z-tensor. Then we have

λmin(A) = min

{
Axm : x ∈ Rn

+,

n∑
i=1

xm
i = 1

}

and

Rmin(A) ≤ λmin(A) ≤ min
i=1,...,n

Ai···i.

Qi [23] introduced copositive tensors and strictly copositive tensors, which extend
the concept of copositive matrices. A real symmetric tensor A = (Ai1···im) is called
a copositive tensor if for any x ∈ Rn

+, we have Axm ≥ 0. We say that A is a
strictly copositive tensor if for any x ∈ Rn

+, x �= 0, we have Axm > 0. The main
characterization theorem for copositive tensors is summarized in the following lemma
[23, Theorem 5].

Lemma 2.4. Let A = (Ai1···im) be a symmetric tensor. Then, A is copositive if
and only if

min

{
Axm : x ∈ Rn

+,

n∑
i=1

xm
i = 1

}
≥ 0.

A is strictly copositive if and only if

min

{
Axm : x ∈ Rn

+,

n∑
i=1

xm
i = 1

}
> 0.

3. M-tensors and strong M-tensors. In this section, we introduceM -tensors
and strong M -tensors, which extend Definition 1.1 from matrices to tensors. Based
on the spectral theory of nonnegative tensors, we give characterization theorems for
M -tensors and strong M -tensors.

Definition 3.1. Let A be an m-order and n-dimensional tensor. A is called an
M -tensor if there exist a nonnegative tensor B and a positive real number η ≥ ρ(B)
such that

A = ηI − B.
If η > ρ(B), then A is called a strong M -tensor.
This concept extends the concept of M -matrices given in Definition 1.1 and [1,

Definition 6.1.2]. Clearly, when m = 2, if A is an M -tensor, then A is an M -matrix;
if A is a strong M -tensor, then A is a nonsingular M -matrix.
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Note that the off-diagonal entries of M -tensors are nonpositive, hence M -tensors
belong to the class of Z-tensors. We begin with a theorem that shows that the class
of M -tensors can be thought of as the closure of the class of strong M -tensors.

Theorem 3.2. A is an M -tensor if and only if A+ εI is a strong M -tensor for
all scalars ε > 0.

Proof. Let A be an M -tensor of the form

A = ηI − B, η > 0, B ≥ 0.

Then, for any ε > 0

(3.1) A+ εI = ηI − B + εI = (η + ε)I − B = η′I − B,

where η′ = η + ε > ρ(B) since η ≥ ρ(B). Thus A+ εI is a strong M -tensor.
Conversely, if A+ εI is a strong M -tensor for all ε > 0, then it follows that A is

an M -tensor by considering (3.1) and letting ε approach zero.
We now analyze the spectral properties of M -tensors. By Theorem 2.1 and

Lemma 2.2, the following theorem shows that an M -tensor has at least one nonnega-
tive H+-eigenvalue, and a strong M -tensor has at least one positive H+-eigenvalue.

Theorem 3.3. Let A be an M -tensor and denote by σ(A) the set of eigenvalues
of A. Let Reλ be the real part of eigenvalue λ ∈ σ(A). Then minλ∈σ(A) Reλ is a
nonnegative H+-eigenvalue. If A is a strong M -tensor, then minλ∈σ(A) Reλ > 0.

Proof. Since A is an M -tensor, by Definition 3.1, there exist a nonnegative tensor
B and a positive number c ≥ ρ(B) such that

A = cI − B.

Denote ι(A) = c−ρ(B); we have ι(A) ≥ 0. By Theorem 2.1, ρ(B) is an H+-eigenvalue
of B. By Lemma 2.2, ι(A) is an eigenvalue of A. Moreover, ι(A) and ρ(B) have the
same eigenvectors. Hence, ι(A) is an H+-eigenvalue of A.

Let λ ∈ σ(A) and Reλ be the real part of λ. Then

(3.2) ι(A) ≥ min
λ∈σ(A)

Reλ.

By Lemma 2.2, c− λ is an eigenvalue of B. Since ρ(B) is the spectral radius of B and
c ≥ ρ(B),

(3.3) ρ(B) ≥ |c− λ| ≥ c− Reλ ≥ ρ(B)− Reλ,

which implies that Reλ ≥ 0, and hence

ρ(B) ≥ max
λ∈σ(A)

{c− Reλ} = c− min
λ∈σ(A)

Reλ,

which, together with (3.2) and ι(A) = c− ρ(B), yields

ι(A) = min
λ∈σ(A)

Reλ.

That is, minλ∈σ(A) Reλ is a nonnegative H+-eigenvalue of A.
If A is a strong M -tensor, then c > ρ(B). It follows from (3.3) that minλ∈σ(A)

Reλ > 0.
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By Theorems 3.3 and 2.1, we immediately have the following conclusions.
Theorem 3.4. Let A = (Ai1···im) be an (strong) M -tensor. Then
(a) minλ∈σ(A) Reλ is the smallest (positive) nonnegative H+-eigenvalue of A;
(b) any of its eigenvalues has a (positive) nonnegative real part;
(c) all its H-eigenvalues are (positive) nonnegative;
(d) if A is weakly irreducible, then A has a unique (positive) nonnegative H++-

eigenvalue;
(e) if A is irreducible, then A has a unique (positive) nonnegative H+-eigenvalue.
By Theorem 3.4, Lemma 2.3, and Lemma 2.4, we have the following further

conclusions for symmetric (strong) M -tensors.
Theorem 3.5. Let A = (Ai1···im) be a symmetric (strong) M -tensor. Then
(a) minλ∈σ(A) Reλ = min{Axm : x ∈ Rn

+,
∑n

i=1 x
m
i = 1};

(b) Rmin(A) ≤ minλ∈σ(A) Reλ ≤ mini=1,...,n Ai···i;
(c) all the diagonal entries are (positive) nonnegative;
(d) A is positive (definite) semidefinite when m is even;
(e) A is (strictly) copositive.
Proof. Clearly, A is a symmetric Z-tensor. By Lemma 2.3 and Theorem 3.4, we

immediately have (a), (b), (c), and (d). By Lemma 2.4, Theorem 3.5(a), and Theorem
3.4(b), (e) is obvious.

For a symmetric M -tensor, it is known that its diagonal entries are nonnega-
tive. But for an asymmetric M -tensor, we show that all largest diagonal entries are
nonnegative.

Theorem 3.6. Let A = (Ai1···im) be an M -tensor. Then we have

max
1≤i≤n

Ai...i ≥ 0.

If A = (Ai1···im) is a strong M -tensor, then

max
1≤i≤n

Ai...i > 0.

Proof. Clearly, A is a Z-tensor. Define a = max1≤i≤n Ai...i and B = aI − A.
Then B ≥ 0 and hence ρ(B) is an H+-eigenvalue of B. So, by Lemma 2.2, a− ρ(B) is
an H+-eigenvalue of A.

Since A is an M -tensor, by Theorem 3.4(c), a − ρ(B) ≥ 0, which implies a ≥
ρ(B) ≥ 0.

If A is a strong M -tensor, by Theorem 3.4(c), a − ρ(B) > 0, i.e., a > ρ(B) ≥ 0.
This completes the proof.

Define ι(A) := minλ∈σ(A) Reλ. The following theorem gives a way to obtain an
M -tensor from a strong M -tensor.

Theorem 3.7. Let A = (Ai1···im) be a strong M -tensor. Then A − ι(A)I is an
M -tensor. In particular, zero is an H+-eigenvalue of A− ι(A)I.

Proof. Since A is a strong M -tensor, there exist a nonnegative tensor B and a
real number c > ρ(B) such that

A = cI − B.
Hence,

A− ι(A)I = cI − B − ι(A)I = (c− ι(A))I − B.
Let η = c − ι(A). By Theorem 3.4 and the proof of Theorem 3.3, ι(A) = c − ρ(B).
Hence, we have
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A− ι(A)I = ηI − B, η = ρ(B),

which shows that A − ι(A)I is an M -tensor and that η − ρ(B) = 0 is its
H+-eigenvalue.

By Lemma 2.2, we have the following theorem that gives the region of all eigen-
values of an M -tensor.

Theorem 3.8. Let A = (Ai1···im) be an M -tensor and denote a = max1≤i≤n Ai...i.
Then the circular region in the complex plane with center at a and radius ρ(aI − A)
contains the entire spectrum of A, i.e.,

|λ− a| ≤ ρ(aI − A) ∀λ ∈ σ(A).

Proof. Clearly, aI −A is a nonnegative tensor. By Lemma 2.2, for any λ ∈ σ(A),
a− λ is also an eigenvalue of aI − A. So, |λ− a| ≤ ρ(aI − A).

We now give some necessary and sufficient conditions for a Z-tensor to be an
M -tensor.

Theorem 3.9. Let A = (Ai1···im) be a Z-tensor. Then,
(a) A is an M -tensor if and only if minλ∈σ(A) Reλ ≥ 0,
(b) A is a strong M -tensor if and only if minλ∈σ(A) Reλ > 0.
Proof. Necessity: Theorem 3.4(a) shows necessity.
Sufficiency: Let a = max1≤i≤n{Ai...i}. Then B = aI − A is nonnegative. By

Lemma 2.2 and Theorem 2.1, a− ρ(B) is an H+-eigenvalue of A. Hence, a− ρ(B) ≥ 0
due to minλ∈σ(A) Reλ ≥ 0. So, A = aI − B is an M -tensor. The proof for strong
M -tensors is similar.

By Theorem 3.3, minλ∈σ(A) Reλ is the smallest H-eigenvalue (H+-eigenvalue) of
A. Hence, by Theorem 3.9, we immediately have the following conclusions.

Corollary 3.10. Let A = (Ai1···im) be a Z-tensor. Then,
(a) A is a (strong) M -tensor if and only if all its H+-eigenvalues are (positive)

nonnegative,
(b) A is a (strong) M -tensor if and only if all its H-eigenvalues are (positive)

nonnegative.
Let A = (Ai1···im) be a Z-tensor. Clearly, we can define a nonnegative tensor by

B = aI − A, a = max
1≤i≤n

{Ai...i}.

Thus we have the following necessary and sufficient condition, which provides us an
easy method for determining whether a Z-tensor A is an M -tensor. We only need to
compute the spectral radius ρ of the tensor aI −A. If a ≥ ρ, then A is an M -tensor.
Otherwise, A is not an M-tensor.

Theorem 3.11. Let A = (Ai1···im) be a Z-tensor. Then,
(a) A is an M -tensor if and only if a ≥ ρ(aI − A),
(b) A is a strong M -tensor if and only if a > ρ(aI − A).
Proof. Clearly, B = aI −A ≥ 0. If a ≥ ρ(B), then A is an M -tensor. Conversely,

by Lemma 2.2 and Theorem 2.1, a − ρ(B) is an H+-eigenvalue of A. Since A is an
M -tensor, by Corollary 3.10, a − ρ(B) ≥ 0, i.e., a ≥ ρ(B). This completes the proof
of (a). Similarly, we can prove (b).

Theorem 3.5(e) shows that symmetric (strong)M -tensors are (strictly) copositive.
We next show that for a symmetric Z-tensor, the converse propositions are also true.
By Lemmas 2.3 and 2.4, Theorem 3.5, and Corollary 3.10, we immediately obtain the
following conclusion.
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Theorem 3.12. Let A = (Ai1···im) be a symmetric Z-tensor. Then,
(a) A is an M -tensor if and only if it is copositive,
(b) A is a strong M -tensor if and only if it is strictly copositive.
It is well known that [10] an M -matrix plus any nonnegative diagonal matrix is

still an M -matrix. By Theorem 3.12, we easily extend the statement from matrices
to symmetric Z-tensors in the following theorem. This theorem gives a way to obtain
new M -tensors from a given M -tensor, namely, by increasing the diagonal entries.

Theorem 3.13. Let D be any nonnegative diagonal tensor. If A is a symmetric
(strong) M -tensor, then A+D is also a symmetric (strong) M -tensor.

Proof. Clearly, A+D is a symmetric Z-tensor. Since A is a symmetric M -tensor,
by Theorem 3.12, A is copositive. Hence, Axm ≥ 0 for all x ∈ Rn

+. Since D is a
nonnegative diagonal tensor, we have

Dxm =

n∑
i=1

Di...ix
m
i ≥ 0 ∀x ∈ Rn

+.

Hence,

(A+D)xm = Axm +Dxm ≥ 0 ∀x ∈ Rn
+.

That is, A+D is copositive. By Theorem 3.12(a), A+D is an M -tensor. The proof
for strong M -tensors is similar.

Finally, we give a sufficient condition for a tensor to be an M -tensor. First, we
introduce the definition of diagonally dominant, which is an extension from matrices
to tensors [10].

Definition 3.14. Let A be an m-order and n-dimensional tensor. A is diago-
nally dominant if for i = 1, . . . , n,

(3.4)
∑

(i,i2,...,im) �=(i,i,...,i)

|Aii2...im | ≤ |Aii...i|.

A is strictly diagonally dominant if the strict inequality holds in (3.4) for all i. A is
irreducibly diagonally dominant if A is irreducible and diagonally dominant and the
strict inequality in (3.4) holds for at least one i.

Theorem 3.15. Let A = (Ai1···im) be a Z-tensor with nonnegative diagonal
entries. If A is diagonally dominant, then A is an M -tensor. If A is strictly or
irreducibly diagonally dominant, then A is a strong M -tensor.

Proof. Let λ be an eigenvalue of A with a nonzero eigenvector x. Let xi be the
entry with largest modulus. Then

(3.5)

n∑
i2,...,im=1

Aii2...imxi2 · · ·xim = λxm−1
i ,

which implies

|λ−Aii...i| ≤
∑

(i,i2,...,im) �=(i,i,...,i)

|Aii2...im |.

Hence, the diagonal dominance of A implies

(3.6) |Reλ−Ai...i| ≤ |λ−Ai...i| ≤ |Ai...i|.
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Since Aj...j ≥ 0 for j = 1, 2, . . . , n, (3.6) yields

(3.7) Reλ−Ai...i ≥ −Ai...i,

which implies Reλ ≥ 0. By Theorem 3.9, A is an M -tensor.

Suppose that A is strictly diagonally dominant. Then the strict inequality holds
in (3.4) for all j, so the strict inequality holds in (3.7). This yields Reλ > 0. By
Theorem 3.9, A is a strong M -tensor.

Suppose now that A is irreducibly diagonally dominant. Define

J =

{
l : |xl| = max

1≤i≤n
|xi|, |xl| > |xi| for some i

}
.

If J = ∅, then (3.5) and the diagonal dominance of A imply that for i = 1, . . . , n,

|λ−Aii...i| ≤
∑

(i,i2,...,im) �=(i,i,...,i)

|Aii2...im | ≤ |Aii...i|.

Let

|Akk...k| >
∑

(k,i2,...,im) �=(k,k,...,k)

|Aki2...im |

for some k. We have

|Reλ−Ak...k| ≤ |λ−Ak...k| < |Ak...k| = Ak...k,

which implies Reλ > 0.

If J �= ∅, then the irreducibility ofA implies that there exist l ∈ J and i2, . . . , im �∈
J such thatAli2...im �= 0. Hence (3.5) yields

|λ−All...l| ≤
∑

(l,i2,...,im) �=(l,l,...,l)

|Ali2...im | |xi2 |
|xl| · · · |xim |

|xl|

<
∑

(l,i2,...,im) �=(l,l,...,l)

|Ali2...im | ≤ |All...l|,

which implies Reλ > 0. By Theorem 3.9, A is a strong M -tensor.

By the above theorem, we may give another necessary and sufficient condition.
Before presenting our theorem, we give the following lemma. Let A be an m-order
and n-dimensional tensor and D = diag(d1, . . . , dn) be a positive diagonal matrix.
Define a new tensor B = (Bi1i2...im):

(3.8) B = A ·D−(m−1) ·
m−1︷ ︸︸ ︷

D · · ·D

with

Bi1i2...im = Ai1i2...imd
−(m−1)
i1

di2 · · · dim .

Then, we have this lemma given in [26].
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Lemma 3.16. If λ is an eigenvalue of A with corresponding eigenvector x, then
λ is also an eigenvalue of B with corresponding eigenvector D−1x; if τ is an eigen-
value of B with corresponding eigenvector y, then τ is also an eigenvalue of A with
corresponding eigenvector Dy;

Based on the above lemma, we establish the following necessary and sufficient
condition.

Theorem 3.17. Let A = (Ai1···im) be a Z-tensor. Suppose that A is weakly
irreducible and has all nonnegative diagonal elements. Then,

(a) A is an M -tensor if and only if there exists a positive diagonal matrix D such
that B defined as (3.8) is diagonally dominant,

(b) A is a strong M -tensor if and only if there exists a positive diagonal matrix
D such that B defined as (3.8) is strictly diagonally dominant.

Proof. (a) Sufficiency: Since Ai...i ≥ 0 for each i, so is Bi...i. Since B is diagonally
dominant and it is an essentially nonpositive tensor, by Theorem 3.15, B is an M -
tensor. Hence, by Theorem 3.9(a), we have minλ∈σ(B) Reλ ≥ 0. By Lemma 3.16,
minλ∈σ(A) Reλ ≥ 0. Thus, by Theorem 3.9(a), A is an M -tensor.

Necessity: By Theorem 3.4(e), A has the unique nonnegative H++-eigenvalue λ
with corresponding eigenvector x ∈ Rn

++. That is, for i = 1, . . . , n,

n∑
i2,...,im=1

Aii2...imxi2 · · ·xim = λxm−1
i ,

which yields

Ai...i − λ = −
∑

(i,i2,...,im) �=(i,i,...,i)

Aii2...imx
−(m−1)
i xi2 · · ·xim .

Since λ ≥ 0, we have

(3.9)
∑

(i,i2,...,im) �=(i,i,...,i)

|Aii2...im |x−(m−1)
i xi2 · · ·xim ≤ Ai...i.

Define D = diag(x1, . . . , xn). Then, (3.9) yields∑
(i,i2,...,im) �=(i,i,...,i)

|Bii2...im | ≤ Bi...i, i = 1, . . . , n.

This shows that B is diagonally dominant.
Similarly, we can prove (b).

4. Applications of M-tensors. In this section, we give some applications of
M -tensors based on the spectral properties given in the above section. Testing positive
definiteness of a multivariate form is an important problem in the stability study of
nonlinear autonomous systems [3, 4, 20]. We use the theory of strong M -tensors to
test the positive definiteness of a multivariate form.

We now consider the following class of multivariate forms:

f(x) =

n∑
i1,i2,...,im=1

Ai1i2...imxi1xi2 · · ·xim ,

where A = (Ai1i2...im) is a symmetric Z-tensor. Qi [22, Theorem 5] proved that f(x)
is positive definite if and only if all its H-eigenvalues are positive. Theorem 3.9 shows
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that a Z-tensor A is a strong M -tensor if and only if the smallest H-eigenvalue of
A is positive. Hence, we have the following criterion to test the positive definiteness
of f(x).

Theorem 4.1. Let A = (Ai1...im) be a symmetric Z-tensor and m be even. Then
f(x) = Axm is positive definite if and only if A is a strong M -tensor.

Based on Theorem 4.1, we next propose an algorithm for testing the positive
definiteness of f(x). The following lemma will be used.

Lemma 4.2. Let A be an m-order and n-dimensional tensor. Define

(4.1) LA = min
1≤i≤n

{Aii...i − Ci}, UA = max
1≤i≤n

{Aii...i + Ci},

where

Ci =
∑

(i,i2,...,im) �=(i,i,...,i)

|Aii2...im |, i = 1, 2, . . . , n.

Then LA and UA are the lower and upper bounds of H-eigenvalues of A, respectively.
Proof. Let λ be an H-eigenvalue of A with an H-eigenvector x �= 0. That is, for

i = 1, 2, . . . , n,

(4.2)

n∑
i2,...,im=1

Aii2...imxi2 · · ·xim = λxm−1
i .

Let xk be the entry of x with largest modulus. Then (4.2) implies that

|λ−Akk...k|
≤

∑
(k,i2,...,im) �=(k,k,...,k)

|Aki2...im | |xi2 |
|xk| · · ·

|xim |
|xk|

≤ Ck,

which yields Akk...k − Ck ≤ λ ≤ Akk...k + Ck. This shows LA ≤ λ ≤ UA.
For a Z-tensor A, we define a tensor C as

(4.3) C = UAI − A,

where UA is defined in (4.1). Clearly, C ≥ 0 and UA−ρ(C) is the smallest H-eigenvalue
of A. By Theorem 4.1, UA − ρ(C) > 0 if and only if the corresponding multivariate
form f(x) is positive definite. Based on this observation, we next propose an itera-
tive method for testing the the positive definiteness of f(x) with a Z-tensor. For this
purpose, we first design an algorithm for computing the spectral radius of the nonneg-
ative tensor C. This algorithm is a modified version of [18]. The substantial difference
is that the modified version is always convergent for any nonnegative tensor, but the
algorithm in [18] may be not convergent for some reducible nonnegative tensors. Our
contribution is to add a perturbation term on C. That is, we apply the algorithm in
[18] to compute the large eigenvalue of the tensor

B = C + γI + E ,
where γ > 0 is a parameter and E is a positive tensor with every entry being ε (ε > 0
is a sufficiently small number).

For convenience, we present the modified algorithm as follows.
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Algorithm 4.1.

Step 0. Choose x(1) ∈ Rn
++ and γ > 0. Let ε > 0 be a sufficiently small number

and E be a positive tensor whose every entry is ε. Let B = C + γI + E,
and set k := 1.

Step 1. Compute

y(k) = B(x(k)
)m−1

,

λk = min
x
(k)
i >0

(
y(k)

)
i(

x
(k)
i

)m−1 ,

λ̄k = max
x
(k)
i >0

(
y(k)

)
i(

x
(k)
i

)m−1 .

Step 2. If λ̄k = λk, then let λ = λ̄k and stop. Otherwise, compute

x(k+1) =

(
y(k)

)[ 1
m−1 ]∥∥∥∥(y(k))[ 1
m−1 ]

∥∥∥∥
,

replace k by k + 1, and go to Step 1.
Step 3. Output λ− γ, which is the largest eigenvalue of C.
To establish the convergence of Algorithm 4.1, we need the following lemma [26,

Theorem 2.3].

Lemma 4.3. Let A be a nonnegative tensor of order m and dimension n, and let
ε > 0 be a sufficiently small number. If Aε = A+ E where E denotes the tensor with
every entry being ε, then

lim
ε→0

ρ(Aε) = ρ(A).

Note that for any nonnegative tensor C, B = C+ γI + E is an irreducible nonneg-
ative tensor. Then by Lemma 4.3 and [18, Theorem 2.5], we immediately show that
Algorithm 4.1 is convergent for any nonnegative tensors.

Theorem 4.4. Let C be a nonnegative tensor. Let B = C + γI + E with γ > 0.
Then, Algorithm 4.1 produces a value of ρ(B) in a finite number of steps or gen-
erates two sequences {λk} and {λ̄k} which converge to ρ(B). Furthermore, ρ(C)=
limε→0 ρ(B)− γ.

For symmetric nonnegative tensors, we have the following error bound between
the largest eigenvalues of C + E and C.

Theorem 4.5. Let C be a symmetric nonnegative m-order n-dimensional tensor
and Cε = C + E. Then, we have

0 ≤ ρ(Cε)− ρ(C) ≤ εnm−1.
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Proof. By Theorem 3.6 in [29], we have

ρ(Cε) = max

{
(C + E)xm : x ∈ Rn

+,
n∑

i=1

xm
i = 1

}

= max

{
Cxm + Exm : x ∈ Rn

+,

n∑
i=1

xm
i = 1

}

≤ max

{
Cxm : x ∈ Rn

+,
n∑

i=1

xm
i = 1

}

+max

{
Exm : x ∈ Rn

+,

n∑
i=1

xm
i = 1

}

= ρ(C) + εmax

{( n∑
i=1

xi

)m

: x ∈ Rn
+,

n∑
i=1

xm
i = 1

}
.

By simple computation, we obtain

max

{( n∑
i=1

xi

)m

: x ∈ Rn
+,

n∑
i=1

xm
i = 1

}
= nm−1.

Hence,

ρ(Cε) ≤ ρ(C) + εnm−1.

So, we complete the proof.
The above theorem shows that Algorithm 4.1 is convergent for any nonnega-

tive tensor. We consider a three-order three-dimensional tensor M given by m111 =
m333 = 1,m222 = 2, and zero elsewhere.

Clearly, tensor M is reducible and its largest eigenvalue is 2. We choose x(1) =
[10, 10, 10]T . By the algorithm in [18], we cannot obtain the largest eigenvalue for
this tensor within 1000 iterations. Let every entry of E be 10−8. By Algorithm 4.1,
we can get the largest eigenvalue of M within 47 iterations. This clearly shows that
we can use Algorithm 4.1 to compute the largest eigenvalue for reducible nonnegative
tensors but the algorithm in [18] may not work for reducible nonnegative tensors.

Algorithm 4.1 can be used to compute the largest eigenvalue of the tensor C in
(4.3). We propose the following algorithm for testing the positive definiteness of the
multivariate form f(x) = Axm with a Z-tensor A and even m.

Algorithm 4.2.

Step 0. Compute the upper bound UA by the formula (4.1) and let C = UAI −A
be defined as in (4.3).

Step 1. By using Algorithm 4.1, compute the spectral radius ρ(C) of C.
Step 2. Let μ = UA − ρ(C). If μ > 0, then f(x) = Axm is positive definite. Oth-

erwise, it is not positive definite.
We now use Algorithm 4.2 to test the positive definiteness of f(x) = Axm with

a Z-tensor A. The Z-tensors in numerical examples are randomly generated by the
following procedure.

Procedure 1.
(i) Give (m,n,Ad), where n and m are the dimension and the order of the

randomly generated tensor, respectively, and Ad > 0.
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Table 1

Output of Algorithm 4.2 for testing positive definiteness of the multivariate form Axm.

m n Ad Yes No CPU(s)

4 10 5 0 100 0.0592
4 10 10 0 100 0.0603
4 10 100 100 0 0.0615
4 10 1000 100 0 0.0628
4 20 5 0 100 0.2945
4 20 10 0 100 0.3097
4 20 100 100 0 0.3195
4 20 1000 100 0 0.3116
4 30 5 0 100 1.3233
4 30 10 0 100 1.3125
4 30 100 0 100 1.3170
4 30 1000 100 0 1.3475
4 40 5 0 100 6.5375
4 40 10 0 100 6.5358
4 40 100 0 100 6.4925
4 40 1000 0 100 6.5520
4 50 5 0 100 15.2086
4 50 10 0 100 15.1844
4 50 100 0 100 15.2102
4 50 1000 0 100 15.2039

(ii) Randomly generate an m-order n-dimensional tensor D such that all elements
of D are in the interval (0, 1).

(iii) Let A = (Ai1···im), where Ai···i = Ad + Di···i, i = 1, 2, . . . , n; otherwise,
Ai1···im = −Di1···im , 1 ≤ i1, . . . , im ≤ n.

In Algorithm 4.1, all entries of E are taken to be 10−8. Since all entries of E
are very small, we may think the eigenvalue obtained by Algorithm 4.1 is the largest
eigenvalue of the tensor C in (4.3). Our numerical results are reported in Table 1.
In this table, n and m specify the dimension and the order of the randomly gener-
ated tensor, respectively. Ad is a parameter in Procedure 1. Given (m,n,Ad), we
generate 100 tensors and determine whether they are strong M -tensors by Algorithm
4.2. In the Yes column we show the number of multivariate forms which are positive
definite. In the No column, we give the number of multivariate forms which are not
positive definite. CPU(s) denotes the average computer time in seconds used for Algo-
rithm 4.2. The results reported in Table 1 show that Algorithm 4.2 can test whether
the multivariate forms with the randomly generated Z-tensors are positive definite.

5. Conclusion. We have introduced M -tensors and strongM -tensors. The sim-
ple definition is a natural generalization of the definition of M -matrices and nonsingu-
lar M -matrices. We have established some basic properties for M -tensors and strong
M -tensors. We have proposed some sufficient and necessary conditions for Z-tensors
to be M -tensors or strong M -tensors. We also have presented a sufficient condition
for M -tensors and strong M -tensors. In particular, we have shown that a Z-tensor
is a strong M -tensor if and only if its smallest H-eigenvalue is positive. Based on
the necessary and sufficient condition, we use strong M -tensors to test the positive
definiteness of a class of multivariate forms. We have proposed an algorithm for test-
ing the positive definiteness of the class of multivariate forms. Numerical results are
reported.

There are some questions which are still under study. For example, can we show
whether the conditions “there exists x ∈ Rn

+ such that Axm−1 > 0” and “the
determinants of its principal subtensors are all positive” are necessary and sufficient
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conditions for a Z-tensor A to be a strong M -tensor? We know that [11, Theorem 3]
gives a positive answer for the first condition. The second question is still open.
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