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1. Introduction

Multiple M2-brane theory with a manifest SO(8) R-symmetry was shown [1, 2] to be con-

sistent with a totally antisymmetric 3-algebraic description. The only finite dimensional

Euclidean 3-algebra assuming total antisymmetry was based on the so(4) 3-algebra with a

quantized 4-index structure constant [11, 5]. The corresponding theory can be presented as

a SU(2)k × SU(2)−k Chern-Simons gauge theory [7, 8] coupled to 8 scalars and 8 fermions

in bi-fundamental representations [7]. The theory was shown to arise from two M2-branes

moving in an orbifold of transverse R8 space [9], and reduce to a maximally supersym-

metric multiple D2-brane theory in a large k and large scalar vev limit [6, 9]. One-loop

corrections to the couplings were considered in [41]. Generalizations to include an arbi-

trary higher rank non-abelian gauge symmetry lead to the Lorentzian 3-algebra [10, 20],

but the corresponding theory contains ghost degrees of freedom due to the Lorentzian sig-

nature [10]. A ghost-removing procedure turns the theory into that of a dual description of

the 3d maximally supersymmetric Yang-Mills theory [16 – 19]. Besides, infinite dimensional

3-algebras also exist [40, 21].

An alternative method to include a higher rank gauge symmetry was obtained very

recently by considering the U(N)k × U(N)−k Chern-Simons gauge theory coupled to four

N = 2 superfields in bi-fundamental representations [12]. The Lagrangian of the theory

exhibits a manifest SU(4) R-symmetry [13 – 15], see also [24 – 26, 38], and was proposed

to arise from multiple M2-branes moving in a Zk quotient of the transverse R8 space [12].

The theory was also shown to be consistent with a 3-algebraic description with a less

antisymmetric structure constant [14].
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The present paper is motivated by trying to understand better the properties of this

new N = 6 theory. A nice feature of the previous N = 8 theory is that it admits the Basu-

Harvey equation [4, 42] with a SO(4) symmetry, and as a result, there are fuzzy funnel

configurations describing multiple M2-branes gradually ending on a M5-brane wrapping

a fuzzy 3-sphere. Another nice feature is that the N = 8 theory also admits a mass

deformation keeping a SO(4) × SO(4) global symmetry [34 – 37, 22], which has multiple

M5-brane vacua charaterized by M5-branes wrapping concentric fuzzy 3-spheres in two

possible orthogonal R4 spaces. In this paper, we will study these two aspects in the

context of the N = 6 theory.

The organization of this paper is as follows. In section 2.1, we derive Basu-Harvey

type equations by the method of forming perfect squares combining the kinetic terms with

F-terms or D-terms. Related discussion but with slightly different methods was given

in [24, 25]. In section 2.2, we analyze properties of the fuzzy funnel solutions and derive

the M5-brane tension from the N = 6 theory. In section 2.3, we show a limit that the

above Basu-Harvey equations reduce to Nahm equations describing D2-D4 systems, thus

giving another consistency check. In section 3.1, we derive domain wall equations in the

mass-deformed N = 6 theory keeping a SU(2) × SU(2) × U(1) global symmetry [24]. In

section 3.2, we analyze properties of the domain walls and compute their tensions, which

are consistent with gravity dual descriptions in terms of M5-brane actions. In section 4,

we briefly draw conclusions.

2. Basu-Harvey configurations and M2-M5 system

2.1 Bogomol’nyi completion

We begin by examining the bosonic potential in N = 6 U(N) × U(N) Chern-Simons

theory and expressing it as a sum of several perfect squares. We basically follow the

notation of [13], but use a different normalization condition for U(N) generators tr(T aT b) =

(1/2)δab . In this notation, the potential can be rewritten as

Vscalar = VD + VF

=
4π2

k2
tr (|ZAZ†

AZB − ZBZ†
AZA − W †AWAZB + ZBWAW †A|2

+|W †AWAW †B − W †BWAW †A − ZAZ†
AW †B + W †BZ†

AZA|2)

+
16π2

k2
tr

(

|ǫACǫBDWBZCWD|2 + |ǫACǫBDZBWCZD|2
)

, (2.1)

where ZA,W †A, A = 1, 2 are the lowest components of four N = 2 superfields respectively,

and are all in the (N,N ) representations and have overall U(1) charges +1. The classical

vacuum moduli space can be determined by demanding all the squares to be zero simul-

taneously. In this theory there is an additional residual Zk symmetry which orbifolds the

moduli space.

Next we want to consider Basu-Harvey type BPS equations, which have the depen-

dence of only one of the spatial worldvolume coordinate, say x2 = s. The equations can

– 2 –
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be obtained by combining the kinetic terms and potential terms in the Hamiltonian and

rewriting it as a sum of perfect squares plus some topological terms.

There are two ways to make combinations. If we combine the kinetic terms with F-term

potentials, we obtain

H =

∫

dx1ds tr(|∂sW
†A|2 + |∂sZ

A|2 + Vscalar)

=

∫

dx1ds tr

(

|∂sW
†A − 4π

k
ǫACǫBDZBWCZD|2 + |∂sZ

A − 4π

k
ǫACǫBDW †BZ†

CW †D|2

+
4π2

k2
|ZAZ†

AZB − ZBZ†
AZA − W †AWAZB + ZBWAW †A|2

+
4π2

k2
|W †AWAW †B − W †BWAW †A − ZAZ†

AW †B + W †BZ†
AZA|2

)

+
4π

k
ǫACǫBD

∫

dx1 tr(ZAWBZCWD + W †AZ†
BW †CZ†

D) (2.2)

or, if the kinetic terms are combined with D-term potentials, we get:

H =

∫

dx1dstr

(

|∂sW
†A+

2π

k
(W †BWBW †A−W †AWBW †B−ZBZ†

BW †A+W †AZ†
BZB)|2

+|∂sZ
A +

2π

k
(ZBZ†

BZA − ZAZ†
BZB − W †BWBZA + ZAWBW †B)|2

+
16π2

k2
|ǫACǫBDWBZCWD|2 +

16π2

k2
|ǫACǫBDZBWCZD|2

)

+
π

k

∫

dx1 tr(WAW †AWBW †B − W †AWAW †BWB + 2W †AWAZBZ†
B

−2WAW †AZ†
BZB + Z†

AZAZ†
BZB − ZAZ†

AZBZ†
B). (2.3)

In each case, the last term is topological and doesn’t affect the dynamics in the bulk. So

we get a set of BPS equations, which minimizes the energy in a given topological sector:

∂sW
†A − 4π

k
ǫACǫBDZBWCZD = 0 (2.4)

∂sZ
A − 4π

k
ǫACǫBDW †BZ†

CW †D = 0 (2.5)

ZAZ†
AZB − ZBZ†

AZA − W †AWAZB + ZBWAW †A = 0 (2.6)

W †AWAW †B − W †BWAW †A − ZAZ†
AW †B + W †BZ†

AZA = 0 (2.7)

for the F-term combination, and

∂sW
†A +

2π

k
(W †BWBW †A − W †AWBW †B − ZBZ†

BW †A + W †AZ†
BZB) = 0 (2.8)

∂sZ
A +

2π

k
(ZBZ†

BZA − ZAZ†
BZB − W †BWBZA + ZAWBW †B) = 0 (2.9)

ǫACǫBDWBZCWD = ǫACǫBDZBWCZD = 0 (2.10)

for the D-term combination, respectively. The topological term gives the energy of the

configuration when the BPS equations are satisfied.

– 3 –



J
H
E
P
0
9
(
2
0
0
8
)
0
6
7

2.2 Fuzzy funnel solution and M5-brane tension

The new Basu-Harvey equation proposed in [25, 24] can be obtained by setting two complex

scalars to be zero, and look at the non-trivial equations for the other two complex scalars.

For example, we can set W †A = 0, and ZA 6= 0 in (2.9). The scalar part of the Hamiltonian

is given as a square term plus a topological term:

H =

∫

dx1ds tr

(

|∂sZ
A +

2π

k
(ZBZ†

BZA − ZAZ†
BZB)|2

)

+
π

k

∫

dx1ds ∂str(Z
†
AZAZ†

BZB − ZAZ†
AZBZ†

B). (2.11)

The first line gives a pair of BPS equations

∂sZ
A +

2π

k
(ZBZ†

BZA − ZAZ†
BZB) = 0, (2.12)

where A,B = 1, 2. As opposed to the original Basu-Harvey equation in [4] which has a

manifest SO(4) symmetry, the equation (2.12) has a manifest SU(2)×U(1) symmetry. As

was argued in [25], this equation preserves half of the supersymmetries of the theory. For

a configuration on which this equation is satisfied, the energy of the system is given by

E =
π

k

∫

dx1 tr(Z†
AZAZ†

BZB − ZAZ†
AZBZ†

B) (2.13)

= 2

∫

dsdx1tr(∂sZ
†
A∂sZ

A). (2.14)

We used the BPS equation (2.12) to obtain the second line.

To solve the BPS equation (2.12), we may separate the s-dependent and independent

part:

ZA = f(s)GA, f(s) =

√

k

4πs
, (2.15)

where GAs are N × N matrices satisfying

GA = GBG†
BGA − GAG†

BGB . (2.16)

This equation is solved in [24] (see also [25]). One can diagonalize G†
1 using the U(N) ×

U(N) transformations and find that the other matrix G†
2 must be off-diagonal. The

G†
As have some nice properties: For a N dimensional irreducible solution,

(G†
1)m,n =

√
m − 1δm,n, (G†

2)m,n =
√

N − mδm+1,n, (2.17)

G1G†
1 = diag (0, 1, 2, . . . , N − 1) = G†

1G
1 (2.18)

G2G†
2 = diag (N − 1, N − 2, . . . , 1, 0) (2.19)

G†
2G

2 = diag (0, N − 1, N − 2, . . . , 1) (2.20)

GAG†
A = (N − 1)1N×N , tr(GAG†

A) = N(N − 1). (2.21)

The eigenvalues of the matrices G1G†
1 and G2G†

2 may be interpreted as the squares of the

radial positions of the points on a fuzzy 3-sphere projected onto 2 complex planes, respec-

tively. Since there is a overall Zk residual symmetry, the solution would describe a fuzzy

S3/Zk.
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The energy formula (2.14) is expressed in terms of fields ZA, which is of mass dimension

1/2 and does not have the correct mass dimension −1 as a spatial coordinate. The correct

normalization should reproduce the scalar kinetic term of the form,

Skinetic = −T2

∫

d3xtr(∂µX†
A∂µXA), (2.22)

where T2 is the M2-brane tension and XA is the (complexified) spatial coordinate. This

implies that we should relate XA and ZA by

XA =

√

1

T2

ZA. (2.23)

Using this, we can define the radius averaged over each M2-brane as

R2 =
2tr(X†

AXA)

N
=

2(N − 1)

T2

f2 (2.24)

=
k(N − 1)

2πT2

· 1

s
(2.25)

The factor of two in the numerator comes from our normalization condition tr(T aT b) =

(1/2)δab . The radius vanishes for N = 1, and there are non-trivial fuzzy 3-spheres only for

N ≥ 2.

Combining all the above results, after some algebra, we obtain

E =
T 2

2

2π

N

N − 1

∫

dx1

(

2π2

k

)

R3dR (2.26)

=
T 2

2

2π

N

N − 1

∫

d5x. (2.27)

The factor k in the denominator represents the fact that this M5-brane is divided by the

Zk orbifold action, and 2π2

k
is the volume of an S3/Zk with a unit radius. So the M5-brane

wraps an S3/Zk. The M5-brane tension predicted from the N = 6 theory is

T5 =
T 2

2

2π

N

N − 1
. (2.28)

The relation between M2-brane and M5-brane tension can also be derived in different

ways, by matching the M-theory and type II string theory BPS spectrum [28], or by

applying flux and Dirac quantization rules in eleven dimensions [29]:

T5 =
T 2

2

2π
. (2.29)

We see that for large N including the numerical coefficient, (2.28) exactly agrees with the

known result (2.29). The 1/N deviation is due to the fuzziness of the 3-sphere in the finite

N regime, and will disappear in the continuum limit for the fuzzy 3-sphere.
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2.3 Basu-Harvey equations and reduction to Nahm equations

In this section we take a limit in which M2-brane theory reduces to D2-brane theory [30, 31]

and show that the Basu-Harvey equation (which describes D2-D4 system.

We take a diagonal expectation value in one of the direction, for example, the direction

labelled by 3 and expand the fields around the vacuum:

Z1 = (x10 + ix20)T 0 + X1 + iX2 (2.30)

Z2 = ((v + x30) + ix40)T 0 + X3 + iX4 (2.31)

Here, x’s represent the U(1) part and T 0 = 1√
2N

1 for normalization purpose, tr(T 0T 0) =

1/2. X’s take value on SU(N). We take N and v/k finite and fixed, and suppose v is large,

and then we will neglect o(1/v) terms in the calculation below.

By plugging (2.30) into the BPS equation (2.12), we see that

∂sZ
2 =

2π

k
(Z2Z†

1Z
1 − Z1Z†

1Z
2) (2.32)

=
2πv

k
√

2N
[Z†

1 , Z
1] (2.33)

=
4πv

k
√

2N
i[X1,X2] (2.34)

U(1) part decouples from the equations and we simply set them to zero. SU(N) part implies

∂sX
3 =

4πv

k
√

2N
i[X1,X2], ∂sX

4 = 0 (2.35)

where we compared hermitian and anti-hermitian parts respectively.

In the same way, we can calculate the other component equation

∂sZ
1 =

2π

k
(Z1Z†

2Z
2 − Z2Z†

2Z
1) (2.36)

=
2πv

k
√

2N
[Z1, Z†

2 + Z2] (2.37)

=
4πv

k
√

2N
([X1,X3] + i[X2,X3]) (2.38)

So we get

∂sX
1 =

4πv

k
√

2N
i[X2,X3] (2.39)

∂sX
2 =

4πv

k
√

2N
i[X3,X1] (2.40)

Combining the above results, we get

∂sX
i = i

1

2
gYMǫijk[Xj ,Xk] (2.41)

where i, j, k = 1, 2, 3 and ǫijk is the totally antisymmetric tensor. By using gYM =

4πv/k
√

2N as in the M2 to D2 reduction [30, 31] for the N = 6 theory, we get the Nahm

equation with the exact coefficient, in the large v and large k limit, with N and v/k fixed

and finite. This describes multiple D2-branes ending on a D4-brane wrapping an S2, and

the reduction process makes an S3/Zk reducing to an S2 that the D4-brane wraps.
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3. Domain wall configurations and M2-M5 system

3.1 Domain wall equations

In this section, we turn to the discussion of another aspect of the M5-branes in the N = 6

theory. For the N = 8 M2-brane theory on flat space, we can turn on four fermion mass

terms, which preserve at least N = 2 supersymmetry. The most symmetric mass defor-

mation is the one preserving a SO(4)× SO(4) symmetry [34 – 36] and a SU(2|2) × SU(2|2)
superalgebra. In this case, M5-branes can wrap either of the two geometric S3s in orthog-

onal R4s.

In the case of N = 6 formulation, the most symmetric mass deformation turns out to

preserve a manifest SU(2)×SU(2)×U(1) symmetry [24] (see also related discussion [38, 39])

and we expect to have a SU(2|2)×SU(1|1) superalgebra. While, in this case, M5-branes can

wrap either of two possible geometric (S3/Zk)s, where the Zk action is due to the residual

symmetry, which squash the 3-spheres along their Hopf fiber directions while maintaining

a manifest SU(2) × U(1) symmetry, as in (2.12).

We can turn on a D-term deformation corresponding to adding a FI term as found

in [24]. In our notation, we have the deformed potential

Vscalar = VD + VF

=
4π2

k2
tr

(

| − k

2π
µZB + ZAZ†

AZB − ZBZ†
AZA − W †AWAZB + ZBWAW †A|2

+| − k

2π
µW †B+W †AWAW †B−W †BWAW †A−ZAZ†

AW †B+W †BZ†
AZA|2

)

+
16π2

k2
tr

(

|ǫACǫBDWBZCWD|2 + |ǫACǫBDZBWCZD|2
)

(3.1)

where µ is a canonical mass parameter.

We perform the Bogomol’nyi completion combining the kinetic terms and D-terms

similar to (2.3), and we get

H =

∫

dx1dstr

(

|∂sW
†A − µW †A +

2π

k
(W †BWBW †A − W †AWBW †B

−ZBZ†
BW †A + W †AZ†

BZB)|2

+|∂sZ
A−µZA+

2π

k
(ZBZ†

BZA−ZAZ†
BZB−W †BWBZA+ZAWBW †B)|2

+
16π2

k2
|ǫACǫBDWBZCWD|2+

16π2

k2
|ǫACǫBDZBWCZD|2

)

+
π

k

∫

dx1 tr(WAW †AWBW †B − W †AWAW †BWB + 2W †AWAZBZ†
B

−2WAW †AZ†
BZB + Z†

AZAZ†
BZB − ZAZ†

AZBZ†
B)

+

∫

dx1 tr(µW †AWA + µZAZ†
A) (3.2)

New boundary topological terms are produced at the same time when the BPS equations

are modified.
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The BPS domain wall equations are

∂sW
†A−µW †A+

2π

k
(W †BWBW †A−W †AWBW †B−ZBZ†

BW †A+W †AZ†
BZB) = 0 (3.3)

∂sZ
A − µZA +

2π

k
(ZBZ†

BZA − ZAZ†
BZB − W †BWBZA + ZAWBW †B) = 0 (3.4)

ǫACǫBDWBZCWD = ǫACǫBDZBWCZD = 0. (3.5)

The equations are modified by just adding the linear terms.

3.2 Domain wall solutions and their tensions

In this section we discuss solutions of these domain wall configurations and derive their

tensions. Setting W †A = 0 in equations (3.3)–(3.5), we need to solve

∂sZ
A − µZA +

2π

k
(ZBZ†

BZA − ZAZ†
BZB) = 0 (3.6)

We assume the ansatz

ZA = h(s)GA, GA = GBG†
BGA − GAG†

BGB (3.7)

∂sh − µh +
2π

k
h3 = 0 (3.8)

We then obtain two solutions

h1(s) =

√

kµ

2π (1 − e−2µs)
(3.9)

h2(s) =

√

kµ

2π (1 + e−2µs)
(3.10)

The first solution h1 describes a fuzzy funnel where s ∈ (0,∞), and in the µ → 0 limit

reproduces (2.15). The second solution h2 is a domain wall solution where s ∈ (−∞,∞).

We have

h2(−∞) = 0, h2(+∞) =

√

kµ

2π
(3.11)

so this domain wall solution

ZA =

√

kµ

2π (1 + e−2µs)
GA (3.12)

connects a trivial vacuum with a nontrivial fuzzy sphere vacuum
√

kµ
2π

GA.

The non-vanishing boundary terms when W †A = 0 are

H =

∫

dx1ds∂str(µZAZ†
A) +

π

k

∫

dx1ds∂str(Z
†
AZAZ†

BZB − ZAZ†
AZBZ†

B) (3.13)

=

∫

dx1 tr

(

1

2
µZAZ†

A

)

|s=∞
s=−∞ = 2

∫

dx1ds tr(∂sZ
A∂sZ

†
A) (3.14)
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=

∫

dx1

(

kµ2

4π

)

tr(GAG†
A)|s=∞

s=−∞ (3.15)

=

∫

dx1 k

4π
µ2N(N − 1) (3.16)

where in deriving the second line in (3.14) we have used the equation of motion (3.6) to

simplify
π

k
(ZAZ†

BZBZ†
A − ZBZ†

BZAZ†
A) = −1

2
µZAZ†

A +
1

2
(∂sZ

A)Z†
A (3.17)

and used the fact that 1

2
(∂sZ

A)Z†
A vanishes for both s = −∞ and s = ∞.

Thereby the tension of this domain wall is

τ =
k

4π
µ2N(N − 1) (3.18)

It agrees with other results for slightly different theories as discussed in [1], and the second

ref. in [22].

Since (3.17), (3.14) are the general results for general domain wall solutions, we see that

the expression (3.15) should be a general result for the tension of a domain wall between

two arbitrary vacua labelled by integers {N ′
i |s=−∞, i = 1, . . . , p′}, {Ni|s=∞, i = 1, . . . , p},

in which the integers label the dimensions of irreducible solutions of the p′ and p diagonal-

block matrices in GA|s=−∞ and GA|s=∞ respectively. The tension of the domain wall

between these two arbitrary vacua is therefore

τ =
kµ2

4π

p
∑

i=1

Ni(Ni − 1)|s=∞ − kµ2

4π

p′
∑

i=1

N ′
i(N

′
i − 1)|s=−∞ (3.19)

The dependence of (3.18) on mass and N also agrees with the gravity dual analysis

in [32] based on computing the action of a M5-brane filling a 4-ball bounded by the 3-

sphere on which the M5-brane constructed from M2-branes wraps. The probe M5-brane

is also along the R1,1 part of the M2-brane worldvolume directions. This computation can

also be performed by calculating the action of a M5-brane wrapping a S3 as well as the

x2 line-segment across the fermion band at y = 0 in the gravity geometry in [36, 37]. In

this gravity picture, it is suggestive that if the fermion band is narrow, the M5-brane action

is expected to be small.

4. Conclusions and discussion

In this paper we have studied two problems of M5-branes in the N = 6 theory. We

analyzed the Basu-Harvey type equations and found evidence that the equations describe

multiple M2-branes ending on a M5-brane, which wraps on a fuzzy 3-sphere. We derived

the tension of M5-brane and it exactly agrees with the known result in large N limit. We

also found that the 3-sphere is orbifolded by a Zk action as the volume of the M5-brane is

suppressed by 1/k. This is also consistent with the SU(2)×U(1) symmetry of the equations.

We also derived the Nahm equation describing D2-branes ending on a D4-brane wrapping

– 9 –
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an S2 starting from the above Basu-Harvey type equations and taking a large k limit,

providing further evidence for consistency.

We then turned to another situation where M5-branes wrapping on fuzzy 3-sphere

emerge as the vacua of the mass-deformed N = 6 theory. We find domain wall solutions

and computed their tensions, in agreement with known gravity analysis, thereby adding

another evidence for the existence of the M5-branes in the N = 6 theory.
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