
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

M2Det: A Single-Shot Object Detector
Based on Multi-Level Feature Pyramid Network

Qijie Zhao,1 Tao Sheng,1 Yongtao Wang,1∗

Zhi Tang,1 Ying Chen,2 Ling Cai,2 Haibin Ling3

1Institute of Computer Science and Technology, Peking University, Beijing, P.R. China
2AI Labs, DAMO Academy, Alibaba Group

3Computer and Information Sciences Department, Temple University
{zhaoqijie, shengtao, wyt, tangzhi}@pku.edu.cn,

{cailing.cl, chenying.ailab}@alibaba-inc.com, {hbling}@temple.edu

Abstract

Feature pyramids are widely exploited by both the state-of-
the-art one-stage object detectors (e.g., DSSD, RetinaNet,
RefineDet) and the two-stage object detectors (e.g., Mask R-
CNN, DetNet) to alleviate the problem arising from scale
variation across object instances. Although these object de-
tectors with feature pyramids achieve encouraging results,
they have some limitations due to that they only simply con-
struct the feature pyramid according to the inherent multi-
scale, pyramidal architecture of the backbones which are
originally designed for object classification task. Newly, in
this work, we present Multi-Level Feature Pyramid Network
(MLFPN) to construct more effective feature pyramids for
detecting objects of different scales. First, we fuse multi-level
features (i.e. multiple layers) extracted by backbone as the
base feature. Second, we feed the base feature into a block
of alternating joint Thinned U-shape Modules and Feature
Fusion Modules and exploit the decoder layers of each U-
shape module as the features for detecting objects. Finally,
we gather up the decoder layers with equivalent scales (sizes)
to construct a feature pyramid for object detection, in which
every feature map consists of the layers (features) from mul-
tiple levels. To evaluate the effectiveness of the proposed
MLFPN, we design and train a powerful end-to-end one-stage
object detector we call M2Det by integrating it into the ar-
chitecture of SSD, and achieve better detection performance
than state-of-the-art one-stage detectors. Specifically, on MS-
COCO benchmark, M2Det achieves AP of 41.0 at speed of
11.8 FPS with single-scale inference strategy and AP of 44.2
with multi-scale inference strategy, which are the new state-
of-the-art results among one-stage detectors. The code will be
made available on https://github.com/qijiezhao/M2Det.

Introduction

Scale variation across object instances is one of the major
challenges for the object detection task (Lin et al. 2017a;
He et al. 2015; Singh and Davis 2018), and usually there are
two strategies to solve the problem arising from this chal-
lenge. The first one is to detect objects in an image pyramid
(i.e. a series of resized copies of the input image) (Singh and
Davis 2018), which can only be exploited at the testing time.

∗Corresponding author.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) SSD-style feature pyramid

detect

detect

detect

detect

(b) FPN-style feature pyramid

(d) Our multi-level feature pyramid

detect

detect

detect

(c) STDN-style feature pyramid

Scale

transfer …

detect
detect

detect
detect

detect

detect

detect

detect

detect

detect

detect

Figure 1: Illustrations of four kinds of feature pyramids.

Obviously, this solution will greatly increase memory and
computational complexity, thus the efficiency of such object
detectors drop dramatically. The second one is to detect ob-
jects in a feature pyramid extracted from the input image
(Liu et al. 2016; Lin et al. 2017a), which can be exploited
at both training and testing phases. Compared with the first
solution that uses an image pyramid, it has less memory
and computational cost. Moreover, the feature pyramid con-
structing module can be easily integrated into the state-of-
the-art deep neural networks based detectors, yielding an
end-to-end solution.

Although the object detectors with feature pyramids (Liu
et al. 2016; Lin et al. 2017a; 2017b; He et al. 2017) achieve
encouraging results, they still have some limitations due to
that they simply construct the feature pyramid according
to the inherent multi-scale, pyramidal architecture of the
backbones which are actually designed for object classifi-
cation task. For example, as illustrated in Fig. 1, SSD (Liu
et al. 2016) directly and independently uses two layers of
the backbone (i.e. VGG16) and four extra layers obtained
by stride 2 convolution to construct the feature pyramid;
STDN (Zhou et al. 2018) only uses the last dense block
of DenseNet (Huang et al. 2017) to construct feature pyra-
mid by pooling and scale-transfer operations; FPN (Lin et al.
2017a) constructs the feature pyramid by fusing the deep and
shallow layers in a top-down manner. Generally speaking,
the above-mentioned methods have the two following limi-
tations. First, feature maps in the pyramid are not representa-

9259

tive enough for the object detection task, since they are sim-
ply constructed from the layers (features) of the backbone
designed for object classification task. Second, each feature
map in the pyramid (used for detecting objects in a spe-
cific range of size) is mainly or even solely constructed from
single-level layers of the backbone, that is, it mainly or only
contains single-level information. In general, high-level fea-
tures in the deeper layers are more discriminative for clas-
sification subtask while low-level features in the shallower
layers can be helpful for object location regression sub-task.
Moreover, low-level features are more suitable to character-
ize objects with simple appearances while high-level fea-
tures are appropriate for objects with complex appearances.
In practice, the appearances of the object instances with sim-
ilar size can be quite different. For example, a traffic light
and a faraway person may have comparable size, and the ap-
pearance of the person is much more complex. Hence, each
feature map (used for detecting objects in a specific range of
size) in the pyramid mainly or only consists of single-level
features will result in suboptimal detection performance.

The goal of this paper is to construct a more effective fea-
ture pyramid for detecting objects of different scales, while
avoid the limitations of the existing methods as above men-
tioned. As shown in Fig. 2, to achieve this goal, we first fuse
multi-level features (i.e. multiple layers) extracted by back-
bone as base feature, and then feed it into a block of alter-
nating joint Thinned U-shape Modules(TUM) and Feature
Fusion Modules(FFM) to extract more representative, multi-
level multi-scale features. It is worth noting that, decoder
layers in each U-shape Module share a similar depth. Fi-
nally, we gather up the feature maps with equivalent scales to
construct the final feature pyramid for object detection. Ob-
viously, decoder layers that form the final feature pyramid
are much deeper than the layers in the backbone, namely,
they are more representative. Moreover, each feature map in
the final feature pyramid consists of the decoder layers from
multiple levels. Hence, we call our feature pyramid block
Multi-Level Feature Pyramid Network (MLFPN).

To evaluate the effectiveness of the proposed MLFPN, we
design and train a powerful end-to-end one-stage object de-
tector we call M2Det (according to that it is built upon multi-
level and multi-scale features) by integrating MLFPN into
the architecture of SSD (Liu et al. 2016). M2Det achieves
the new state-of-the-art result (i.e. AP of 41.0 at speed of
11.8 FPS with single-scale inference strategy and AP of 44.2
with multi-scale inference strategy), outperforming the one-
stage detectors on MS-COCO (Lin et al. 2014) benchmark.

Related Work
Researchers have put plenty of efforts into improving the
detection accuracy of objects with various scales – no mat-
ter what kind of detector it is, either an one-stage detector
or a two-stage one. To the best of our knowledge, there are
mainly two strategies to tackle this scale-variation problem.

The first one is featurizing image pyramids (i.e. a se-
ries of resized copies of the input image) to produce se-
mantically representative multi-scale features. Features from
images of different scales yield predictions separately and
these predictions work together to give the final prediction.

In terms of recognition accuracy and localization precision,
features from various-sized images do surpass features that
are based merely on single-scale images. Methods such as
(Shrivastava et al. 2016) and SNIP (Singh and Davis 2018)
employed this tactic. Despite the performance gain, such a
strategy could be costly time-wise and memory-wise, which
forbid its application in real-time tasks. Considering this
major drawback, methods such as SNIP (Singh and Davis
2018) can choose to only employ featurized image pyramids
during the test phase as a fallback, whereas other methods
including Fast R-CNN (Girshick 2015) and Faster R-CNN
(Ren et al. 2015) chose not to use this strategy by default.

The second one is detecting objects in the feature pyra-
mid extracted from inherent layers within the network while
merely taking a single-scale image. This strategy demands
significantly less additional memory and computational cost
than the first one, enabling deployment during both the train-
ing and test phases in real-time networks. Moreover, the fea-
ture pyramid constructing module can be easily revised and
fit into state-of-the-art deep neural networks based detectors.
MS-CNN (Cai et al. 2016), SSD (Liu et al. 2016), DSSD (Fu
et al. 2017), FPN (Lin et al. 2017a), YOLOv3 (Redmon and
Farhadi 2018), RetinaNet (Lin et al. 2017b), and RefineDet
(Zhang et al. 2018) adopted this tactic in different ways.

To the best of our knowledge, MS-CNN (Cai et al. 2016)
proposed two sub-networks and first incorporated multi-
scale features into deep convolutional neural networks for
object detection. The proposal sub-net exploited feature
maps of several resolutions to detect multi-scale objects in
an image. SSD (Liu et al. 2016) exploited feature maps from
the later layers of VGG16 base-net and extra feature lay-
ers for predictions at multiple scales. FPN (Lin et al. 2017a)
utilized lateral connections and a top-down pathway to pro-
duce a feature pyramid and achieved more powerful repre-
sentations. DSSD (Fu et al. 2017) implemented deconvolu-
tion layers for aggregating context and enhancing the high-
level semantics for shallow features. RefineDet (Zhang et al.
2018) adopted two-step cascade regression, which achieves
a remarkable progress on accuracy while keeping the effi-
ciency of SSD.

Proposed Method
The overall architecture of M2Det is shown in Fig. 2. M2Det
uses the backbone and the Multi-Level Feature Pyramid Net-
work (MLFPN) to extract features from the input image,
and then similar to SSD, produces dense bounding boxes
and category scores based on the learned features, followed
by the non-maximum suppression (NMS) operation to pro-
duce the final results. MLFPN consists of three modules,
i.e. Feature Fusion Module (FFM), Thinned U-shape Mod-
ule (TUM) and Scale-wise Feature Aggregation Module
(SFAM). FFMv1 enriches semantic information into base
features by fusing feature maps of the backbone. Each TUM
generates a group of multi-scale features, and then the alter-
nating joint TUMs and FFMv2s extract multi-level multi-
scale features. In addition, SFAM aggregates the features
into the multi-level feature pyramid through a scale-wise
feature concatenation operation and an adaptive attention
mechanism. More details about the three core modules and

9260

F
F

M
1

P
re

d
ictio

n
 la

y
e

rs

Backbone network Base feature

Multi-Level

Feature Pyramid

S
FA

M

FFMv2

FFMv2

O
u

tp
u

t: th
e m

ax
 o

n
e

O
u

tp
u

t: th
e m

ax
 o

n
e

. . . .

TUM

. . . .

MLFPN

TUM

TUM

shallow

medium

deep

320×320

40×40 5×5

10×10

20×20

40×40

Figure 2: An overview of the proposed M2Det(320 × 320). M2Det utilizes the backbone and the Multi-level Feature Pyramid
Network (MLFPN) to extract features from the input image, and then produces dense bounding boxes and category scores. In
MLFPN, FFMv1 fuses feature maps of the backbone to generate the base feature. Each TUM generates a group of multi-scale
features, and then the alternating joint TUMs and FFMv2s extract multi-level multi-scale features. Finally, SFAM aggregates
the features into a multi-level feature pyramid. In practice, we use 6 scales and 8 levels.

Feature

pyramid 1

Feature

pyramid 2

Feature

pyramid t

…
.

Same-scale

concatenate

…
.

…
.

40×40×1024

20x20x1024

10×10×1024Shallow level

Medium level

Deep level

1×1×1024 1×1×1024

Reweighting

20×20×1024

Shallow medium deep

Figure 3: Illustration of Scale-wise Feature Aggregation Module. The first stage of SFAM is to concatenate features with
equivalent scales along channel dimension. Then the second stage uses SE attention to aggregate features in an adaptive way.

Conv
512,3x3,1x1,256

Conv
1024,1x1,1x1,512

Upsample

2x2

Concat

(512,40,40)

(1024,20,20)

(768,40,40) Conv

768,1x1,1x1,128
Concat

(768,40,40)

(128,40,40)

(256,40,40)

(a) (b)

Conv
256,3x3,2x2,256

Conv
256,3x3,2x2,256

Conv
256,3x3,2x2,256

Conv
256,3x3,2x2,256

Conv
256,3x3,1x1,256

Conv
256,3x3,1x1,256

Conv
256,3x3,1x1,256

Conv
256,3x3,1x1,256

Conv
256,3x3,2x2,256

Conv
256,3x3,1x1,256

Conv
256,1x1,1x1,128

Conv
256,1x1,1x1,128

Conv
256,1x1,1x1,128

Conv
256,1x1,1x1,128

Conv
256,1x1,1x1,128

(256,40,40)

(c)

Conv
256,1x1,1x1,128

(128,40,40) (128,20,20) (128,10,10) (128,5,5) (128,3,3) (128,1,1)

Conv

256,3x3,1x1,128

Conv+BN+ReLU layers
Input_channel:256;output_channel:128;

Kernel_size:3x3;Stride_size:1x1

Blinear Upsample +

ele-wise sumBrief indication:

Figure 4: Structural details of some modules. (a) FFMv1,
(b) FFMv2, (c) TUM. The inside numbers of each block de-
note: input channels, Conv kernel size, stride size, output
channels.

network configurations in M2Det are introduced in the fol-
lowing.

Multi-level Feature Pyramid Network

As shown in Fig. 2, MLFPN contains three parts. Firstly,
FFMv1 fuses shallow and deep features to produce the base
feature, e.g., conv4 3 and conv5 3 of VGG (Simonyan and
Zisserman 2015), which provide multi-level semantic infor-
mation for MLFPN. Secondly, several TUMs and FFMv2
are stacked alternately. Specifically, each TUM generates

several feature maps with different scales. The FFMv2 fuses
the base feature and the largest output feature map of the
previous TUM. And the fused feature maps are fed to the
next TUM. Note that the first TUM has no prior knowledge
of any other TUMs, so it only learns from Xbase. The output
multi-level multi-scale features are calculated as:

[xl

1
,xl

2
, ...,xl

i] =

{

Tl(Xbase), l = 1
Tl(F(Xbase,x

l−1

i
)), l = 2...L

, (1)

where Xbase denotes the base feature, xl
i

denotes the fea-
ture with the i-th scale in the l-th TUM, L denotes the num-
ber of TUMs, Tl denotes the l-th TUM processing, and F
denotes FFMv1 processing. Thirdly, SFAM aggregates the
multi-level multi-scale features by a scale-wise feature con-
catenation operation and a channel-wise attention mecha-
nism.

FFMs FFMs fuse features from different levels in M2Det,
which are crucial to constructing the final multi-level fea-
ture pyramid. They use 1x1 convolution layers to compress
the channels of the input features and use concatenation op-
eration to aggregate these feature maps. Especially, since
FFMv1 takes two feature maps with different scales in back-
bone as input, it adopts one upsample operation to rescale
the deep features to the same scale before the concatena-
tion operation. Meanwhile, FFMv2 takes the base feature
and the largest output feature map of the previous TUM –
these two are of the same scale – as input, and produces the

9261

fused feature for the next TUM. Structural details of FFMv1
and FFMv2 are shown in Fig. 4 (a) and (b), respectively.

TUMs Different from FPN (Lin et al. 2017a) and Reti-
naNet (Lin et al. 2017b), TUM adopts a thinner U-shape
structure as illustrated in Fig. 4 (c). The encoder is a se-
ries of 3x3 convolution layers with stride 2. And the de-
coder takes the outputs of these layers as its reference set of
feature maps, while the original FPN chooses the output of
the last layer of each stage in ResNet backbone. In addition,
we add 1x1 convolution layers after upsample and element-
wise sum operation at the decoder branch to enhance learn-
ing ability and keep smoothness for the features (Lin, Chen,
and Yan 2014). All of the outputs in the decoder of each
TUM form the multi-scale features of the current level. As
a whole, the outputs of stacked TUMs form the multi-level
multi-scale features, while the front TUM mainly provides
shallow-level features, the middle TUM provides medium-
level features, and the back TUM provides deep-level fea-
tures.

SFAM SFAM aims to aggregate the multi-level multi-
scale features generated by TUMs into a multi-level fea-
ture pyramid as shown in Fig. 3. The first stage of SFAM
is to concatenate features of the equivalent scale together
along the channel dimension. The aggregated feature pyra-
mid can be presented as X = [X1,X2, ...,Xi], where
Xi = Concat(x1

i
,x2

i
, ...,xL

i
) ∈ R

Wi×Hi×C refers to the
features of the i-th largest scale. Here, each scale in the ag-
gregated pyramid contains features from multi-level depths.
However, simple concatenation operations are not adaptive
enough. In the second stage, we introduce a channel-wise
attention module to encourage features to focus on chan-
nels that they benefit most. Following SE block (Hu, Shen,
and Sun 2017), we use global average pooling to generate
channel-wise statistics z ∈ R

C at the squeeze step. And to
fully capture channel-wise dependencies, the following ex-
citation step learns the attention mechanism via two fully
connected layers:

s = Fex(z,W) = σ(W2δ(W1z)), (2)

where σ refers to the ReLU function, δ refers to the sigmoid

function, W1 ∈ R
C
r
×C , W2 ∈ R

C×
C
r , r is the reduction

ratio (r = 16 in our experiments). The final output is ob-
tained by reweighting the input X with activation s:

X̃
c

i = Fscale(X
c

i , sc) = sc ·X
c

i , (3)

where X̃i = [X̃1

i
, X̃2

i
, ..., X̃C

i
], each of the features is en-

hanced or weakened by the rescaling operation.

Network Configurations

We assemble M2Det with two kinds of backbones (Si-
monyan and Zisserman 2015; He et al. 2016). Before train-
ing the whole network, the backbones need to be pre-trained
on the ImageNet 2012 dataset (Russakovsky et al. 2015). All
of the default configurations of MLFPN contain 8 TUMs,
each TUM has 5 striding-Convs and 5 Upsample operations,
so it will output features with 6 scales. To reduce the number
of parameters, we only allocate 256 channels to each scale
of their TUM features, so that the network could be easy

to train on GPUs. As for input size, we follow the original
SSD, RefineDet and RetinaNet, i.e., 320, 512 and 800.

At the detection stage, we add two convolution layers
to each of the 6 pyramidal features to achieve location re-
gression and classification respectively. The detection scale
ranges of the default boxes of the six feature maps follow
the setting of the original SSD. And when input size is
800×800, the scale ranges increase proportionally except
keeping the minimum size of the largest feature map. At
each pixel of the pyramidal features, we set six anchors with
three ratios entirely. Afterward, we use a probability score of
0.05 as threshold to filter out most anchors with low scores.
Then we use soft-NMS (Bodla et al. 2017) with a linear ker-
nel for post-processing, leaving more accurate boxes. De-
creasing the threshold to 0.01 can generate better detection
results, but it will slow down the inference time a lot, we do
not consider it for pursuing better practical values.

Experiments

In this section, we present experimental results on the
bounding box detection task of the challenging MS-COCO
benchmark. Following the protocol in MS-COCO, we use
the trainval35k set for training, which is a union of 80k
images from train split and a random 35 subset of images
from the 40k image val split. To compare with state-of-
the-art methods, we report COCO AP on the test-dev

split, which has no public labels and requires the use of the
evaluation server. And then, we report the results of ablation
studies evaluated on the minival split for convenience.

Our experiment section includes 4 parts: (1) introducing
implement details about the experiments; (2) demonstrating
the comparisons with state-of-the-art approaches; (3) abla-
tion studies about M2Det; (4) comparing different settings
about the internal structure of MLFPN and introducing sev-
eral version of M2Det.

Implementation details

For all experiments based on M2Det, we start training with
warm-up strategy for 5 epochs, initialize the learning rate as
2× 10−3, and then decrease it to 2× 10−4 and 2× 10−5 at
90 epochs and 120 epochs, and stop at 150 epochs. M2Det is
developed with PyTorch v0.4.0 1. When input size is 320 and
512, we conduct experiments on a machine with 4 NVIDIA
Titan X GPUs, CUDA 9.2 and cuDNN 7.1.4, while for input
size of 800, we train the network on NVIDIA Tesla V100 to
get results faster. The batch size is set to 32 (16 each for 2
GPUs, or 8 each for 4 GPUs). On NVIDIA Titan Xp that has
12 GB memory, the training performance is limited if batch
size on a single GPU is less than 5. Notably, for Resnet101,
M2Det with the input size of 512 is not only limited in the
batch size (only 4 is available), but also takes a long time to
train, so we train it on V100.

For training M2Det with the VGG-16 backbone when in-
put size is 320×320 and 512×512 on 4 Titan X devices,
the total training time costs 3 and 6 days respectively, and
with the ResNet-101 backbone when 320×320 costs 5 days.
While for training M2Det with ResNet-101 when input

1https://pytorch.org/

9262

Method Backbone Input size MultiScale FPS
Avg. Precision, IoU: Avg. Precision, Area:

0.5:0.95 0.5 0.75 S M L

two-stage:

Faster R-CNN (Ren et al. 2015) VGG-16 ∼1000×600 False 7.0 21.9 42.7 - - - -

OHEM++ (Shrivastava et al. 2016) VGG-16 ∼1000×600 False 7.0 25.5 45.9 26.1 7.4 27.7 40.3

R-FCN (Dai et al. 2016) ResNet-101 ∼1000×600 False 9 29.9 51.9 - 10.8 32.8 45.0

CoupleNet (Zhu et al. 2017) ResNet-101 ∼1000×600 False 8.2 34.4 54.8 37.2 13.4 38.1 50.8

Faster R-CNN w FPN (Lin et al. 2017a) Res101-FPN ∼1000×600 False 6 36.2 59.1 39.0 18.2 39.0 48.2

Deformable R-FCN (Dai et al. 2017) Inc-Res-v2 ∼1000×600 False - 37.5 58.0 40.8 19.4 40.1 52.5

Mask R-CNN (He et al. 2017) ResNeXt-101 ∼1280×800 False 3.3 39.8 62.3 43.4 22.1 43.2 51.2

Fitness-NMS (Tychsen-Smith and Petersson 2018) ResNet-101 ∼1024×1024 True 5.0 41.8 60.9 44.9 21.5 45.0 57.5

Cascade R-CNN (Cai and Vasconcelos 2018) Res101-FPN ∼1280×800 False 7.1 42.8 62.1 46.3 23.7 45.5 55.2

SNIP (Singh and Davis 2018) DPN-98 - True - 45.7 67.3 51.1 29.3 48.8 57.1

one-stage:

SSD300* (Liu et al. 2016) VGG-16 300×300 False 43 25.1 43.1 25.8 6.6 25.9 41.4

RON384++ (Kong et al. 2017) VGG-16 384×384 False 15 27.4 49.5 27.1 - - -

DSSD321 (Fu et al. 2017) ResNet-101 321×321 False 9.5 28.0 46.1 29.2 7.4 28.1 47.6

RetinaNet400 (Lin et al. 2017b) ResNet-101 ∼640×400 False 12.3 31.9 49.5 34.1 11.6 35.8 48.5

RefineDet320 (Zhang et al. 2018) VGG-16 320×320 False 38.7 29.4 49.2 31.3 10.0 32.0 44.4

RefineDet320 (Zhang et al. 2018) ResNet-101 320×320 True - 38.6 59.9 41.7 21.1 41.7 52.3

M2Det (Ours) VGG-16 320×320 False 33.4 33.5 52.4 35.6 14.4 37.6 47.6

M2Det (Ours) VGG-16 320×320 True - 38.9 59.1 42.4 24.4 41.5 47.6

M2Det (Ours) ResNet-101 320×320 False 21.7 34.3 53.5 36.5 14.8 38.8 47.9

M2Det (Ours) ResNet-101 320×320 True - 39.7 60.0 43.3 25.3 42.5 48.3

YOLOv3 (Redmon and Farhadi 2018) DarkNet-53 608×608 False 19.8 33.0 57.9 34.4 18.3 35.4 41.9

SSD512* (Liu et al. 2016) VGG-16 512×512 False 22 28.8 48.5 30.3 10.9 31.8 43.5

DSSD513 (Fu et al. 2017) ResNet-101 513×513 False 5.5 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet500 (Lin et al. 2017b) ResNet-101 ∼832×500 False 11.1 34.4 53.1 36.8 14.7 38.5 49.1

RefineDet512 (Zhang et al. 2018) VGG-16 512×512 False 22.3 33.0 54.5 35.5 16.3 36.3 44.3

RefineDet512 (Zhang et al. 2018) ResNet-101 512×512 True - 41.8 62.9 45.7 25.6 45.1 54.1

CornerNet (Law and Deng 2018) Hourglass 512×512 False 4.4 40.5 57.8 45.3 20.8 44.8 56.7

CornerNet (Law and Deng 2018) Hourglass 512×512 True - 42.1 57.8 45.3 20.8 44.8 56.7

M2Det (Ours) VGG-16 512×512 False 18.0 37.6 56.6 40.5 18.4 43.4 51.2

M2Det (Ours) VGG-16 512×512 True - 42.9 62.5 47.2 28.0 47.4 52.8

M2Det (Ours) ResNet-101 512×512 False 15.8 38.8 59.4 41.7 20.5 43.9 53.4

M2Det (Ours) ResNet-101 512×512 True - 43.9 64.4 48.0 29.6 49.6 54.3

RetinaNet800 (Lin et al. 2017b) Res101-FPN ∼1280×800 False 5.0 39.1 59.1 42.3 21.8 42.7 50.2

M2Det (Ours) VGG-16 800×800 False 11.8 41.0 59.7 45.0 22.1 46.5 53.8

M2Det (Ours) VGG-16 800×800 True - 44.2 64.6 49.3 29.2 47.9 55.1

Table 1: Detection accuracy comparisons in terms of mAP percentage on MS COCO test-dev set.

size is 512×512 on 2 V100 devices, it costs 11 days. The
most accurate model is M2Det with the VGG backbone and
800×800 input size, it costs 14 days.

Comparison with State-of-the-art

We compare the experimental results of the proposed M2Det
with state-of-the-art detectors in Table 1. For these experi-
ments, we use 8 TUMs and set 256 channels for each TUM.
The main information involved in the comparison includes
the input size of the model, the test method (whether it uses
multi-scale strategy), the speed of the model, and the test
results. Test results of M2Det with 10 different setting ver-
sions are reported in Table 1, which are produced by testing
it on MS-COCO test-dev split, with a single NVIDIA
Titan X PASCAL and the batch size 1. Other statistical re-
sults stem from references. It is noteworthy that, M2Det-320
with VGG backbone achieves AP of 38.9, which has sur-
passed most object detectors with more powerful backbones
and larger input size, e.g., AP of Deformable R-FCN (Dai et
al. 2017) is 37.5, AP of Faster R-CNN with FPN is 36.2. As-

sembled with ResNet-101 can further improve M2Det, the
single-scale version obtains AP of 38.8, which is competi-
tive with state-of-the-art two-stage detectors Mask R-CNN
(He et al. 2017). In addition, based on the optimization of
PyTorch, it can run at 15.8 FPS. RefineDet (Zhang et al.
2018) inherits the merits of one-stage detectors and two-
stage detectors, gets AP of 41.8, CornerNet (Law and Deng
2018) proposes key point regression for detection and bor-
rows the advantages of Hourglass (Newell, Yang, and Deng
2016) and focal loss (Lin et al. 2017b), thus gets AP of 42.1.
In contrast, our proposed M2Det is based on the regression
method of original SSD, with the assistance of Multi-scale
Multi-level features, obtains 44.2 AP, which exceeds all one-
stage detectors. Most approaches do not compare the speed
of multi-scale inference strategy due to different methods or
tools used, so we also only focus on the speed of single-scale
inference methods.

In addition, in order to emphasize that the improvement
of M2Det is not entirely caused by the deepened depth of
the model or the gained parameters, we compare with state-

9263

of-the-art one-stage detectors and two-stage detectors. Cor-
nerNet with Hourglass has 201M parameters, Mask R-CNN
(He et al. 2017) with ResNeXt-101-32x8d-FPN (Xie et al.
2017) has 205M parameters. By contrast, M2Det800-VGG
has only 147M parameters. Besides, consider the compari-
son of depth, it is also not dominant.

Ablation study

Since M2Det is composed of multiple subcomponents, we
need to verify each of its effectiveness to the final perfor-
mance. The baseline is a simple detector based on the orig-
inal SSD, with 320×320 input size and VGG-16 reduced
backbone.

+ 1 s-TUM X

+ 8 s-TUM X

+ 8 TUM X X X X

+ Base feature X X X

+ SFAM X X

VGG16 ⇒ Res101 X

AP 25.8 27.5 30.6 30.8 32.7 33.2 34.1

AP50 44.7 45.2 50.0 50.3 51.9 52.2 53.7

APsmall 7.2 7.7 13.8 13.7 13.9 15.0 15.9

APmedium 27.4 28.0 35.3 35.3 37.9 38.2 39.5

APlarge 41.4 47.0 44.5 44.8 48.8 49.1 49.3

Table 2: Ablation study of M2Det. The detection results are
evaluated on minival set

TUM To demonstrate the effectiveness of TUM, we con-
duct three experiments. First, following DSSD, we extend
the baseline detector with a series of Deconv layers, and the
AP has improved from 25.8 to 27.5 as illustrated in the third
column in Table 2. Then we replace with MLFPN into it. As
for the U-shape module, we firstly stack 8 s-TUMs, which
is modified to decrease the 1×1 Convolution layers shown
in Fig. 4, then the performance has improved 3.1 compared
with the last operation, shown in the forth column in Table
2. Finally, replacing TUM by s-TUM in the fifth column has
reached the best performance, it comes to AP of 30.8.

Base feature Although stacking TUMs can improve de-
tection, but it is limited by input channels of the first TUM.
That is, decreasing the channels will drop the abstraction of
MLFPN, while increasing them will highly increase the pa-
rameters number. Instead of using base feature only once,
We afferent base feature at the input of each TUM to allevi-
ate the problem. For each TUM, the embedded base feature
provides necessary localization information since it contains
shallow features. The AP percentage increases to 32.7, as
shown in the sixth column in Table 2.

SFAM As shown in the seventh column in Table 2, com-
pared with the architecture that without SFAM, all evalua-
tion metrics have been upgraded. Specifically, all boxes in-
cluding small, medium and large become more accurate.

Backbone feature As in many visual tasks, we observe
a noticeable AP gain from 33.2 to 34.1 when we use well-
tested ResNet-101 (He et al. 2016) instead of VGG-16 as the
backbone network. As shown in Table 2, such observation
remains true and consistent with other AP metrics.

TUMs Channels Params(M) AP AP50 AP75

2 256 40.1 30.5 50.5 32.0

2 512 106.5 32.1 51.8 34.0

4 128 34.2 29.8 49.7 31.2

4 256 60.2 31.8 51.4 33.0

4 512 192.2 33.4 52.6 34.2

8 128 47.5 31.8 50.6 33.6

8 256 98.9 33.2 52.2 35.2

8 512 368.8 34.0 52.9 36.4

16 128 73.9 32.5 51.7 34.4

16 256 176.8 33.6 52.6 35.7

Table 3: Different configurations of MLFPN in M2Det. The
backbone is VGG and input image is 320×320.

Variants of MLFPN

The Multi-scale Multi-level Features have been proved to
be effective. But what is the boundary of the improvement
brought by MLFPN? Step forward, how to design TUM and
how many TUMs should be OK? We implement a group of
variants to find the regular patterns. To be more specific, we
fix the backbone as VGG-16 and the input image size as
320x320, and then tune the number of TUMs and the num-
ber of internal channels of each TUM.

As shown in Table 3, M2Det with different configurations
of TUMs is evaluated on COCO minival set. Compar-
ing the number of TUMs when fixing the channels, e.g.,256,
it can be concluded that stacking more TUMs brings more
promotion in terms of detection accuracy. Then fixing the
number of TUMs, no matter how many TUMs are assem-
bled, more channels consistently benefit the results. Further-
more, assuming that we take a version with 2 TUMS and
128 channels as the baseline, using more TUMs could bring
larger improvement compared with increasing the internal
channels, while the increase in parameters remains similar.

Speed

We compare the inference speed of M2Det with state-of-
the-art approaches. Since VGG-16 (Simonyan and Zisser-
man 2015) reduced backbone has removed FC layers, it is
very fast to use it for extracting base feature. We set the
batch size to 1, take the sum of the CNN time and NMS
time of 1000 images, and divide by 1000 to get the inference
time of a single image. Specifically, we assemble VGG16-
reduced to M2Det and propose the fast version M2Det with
the input size 320×320, the standard version M2Det with
512×512 input size and the most accurate version M2Det
with 800×800 input size. Based on the optimization of
PyTorch, M2Det can achieve accurate results with high
speed. As shown in Fig. 5, M2Det benefits the advantage
of one-stage detection and our proposed MLFPN structure,
draws a significantly better speed-accuracy curve compared
with other methods. For fair comparison, we reproduce and
test the speed of SSD321-ResNet101, SSD513-ResNet101
(Fu et al. 2017), RefineDet512-ResNet101, RefineDet320-
ResNet101 (Zhang et al. 2018) and CornerNet (Law and
Deng 2018) on our device. It is clear that M2Det performs
more accurately and efficiently.

9264

B*

Method mAP time

[A] YOLOv3 – 608 33.0 51

[B] SSD – 321 28.0 61

[B*] SSD – 321 28.2 22

[C] DSSD – 321 28.0 85

[D] R-FCN 29.9 85

[E] SSD – 513 31.2 125

[E*] SSD – 513 31.0 37

[F] DSSD – 513 33.2 156

[G] FPN FRCN 36.2 172

[H*] CornerNet 40.5 228

RetinaNet 39.1 198

[*]RefineDet 36.7 110

M2Det 41.0 84.7

(*) Tested on our machine for fair comparison
28

30

32

34

36

38

40
C

O
C

O
 A

P

Inference time (ms)
100 150 20050

A

B C

D

E

F

G

M2Det512-vgg

mAP: 37.6

Time: 55.5ms

M2Det320-vgg

mAP: 33.5

Time: 29.9ms

M2Det800-vgg

mAP: 41.0

Time: 84.7ms

E*

H*

Figure 5: Speed (ms) vs. accuracy (mAP) on COCO test-dev.

level

scale

Shallow->Deep

Traffic sign Car Pedestrian

Figure 6: Example activation values of multi-scale multi-
level features. Best view in color.

Discussion

We think the detection accuracy improvement of M2Det
is mainly brought by the proposed MLFPN. On one hand,
we fuse multi-level features extracted by backbone as the
base feature, and then feed it into a block of alternating
joint Thinned U-shape Modules and Feature Fusion Mod-
ules to extract more representative, multi-level multi-scale
features, i.e. the decoder layers of each TUM. Obviously,
these decoder layers are much deeper than the layers in the
backbone, and thus more representative for object detection.
Contrasted with our method, the existing detectors (Zhang
et al. 2018; Lin et al. 2017a; Fu et al. 2017) just use the lay-
ers of the backbone or extra layers with few depth increase.
Hence, our method can achieve superior detection perfor-
mance. On the other hand, each feature map of the multi-
level feature pyramid generated by the SFAM consists of the
decoder layers from multiple levels. In particular, at each
scale, we use multi-level features to detect objects, which
would be better for handling appearance-complexity vari-
ation across object instances.

To verify that the proposed MLFPN can learn effective
feature for detecting objects with different scales and large
appearance variation, we visualize the activation values of
the summation output of SFAM module along scale and
level dimensions, such an example shown in Fig. 6. The in-
put image contains two persons, two cars and a traffic light.

Moreover, the sizes of the two persons are different, as well
as the two cars. And the traffic light, the smaller person and
the smaller car have similar sizes. We can find that: 1) com-
pared with the smaller person, the larger person has strongest
activation value at the feature map of large scale, so as to the
smaller car and larger car; 2) the traffic light, the smaller per-
son and the smaller car have strongest activation value at the
feature maps of the same scale; 3) the persons, the cars and
the traffic light have strongest activation value at the highest-
level, middle-level, lowest-level feature maps respectively.
This example presents that: 1) our method learns very ef-
fective features to handle scale variation and appearance-
complexity variation across object instances; 2) it is neces-
sary to use multi-level features to detect objects with similar
size.

Conclusion

In this work, a novel method called Multi-Level Feature
Pyramid Network (MLFPN) is proposed to construct ef-
fective feature pyramids for detecting objects of different
scales. MLFPN consists of several novel modules. First,
multi-level features (i.e. multiple layers) extracted by back-
bone are fused by a Feature Fusion Module (FFMv1) as the
base feature. Second, the base feature is fed into a block
of alternating joint Thinned U-shape Modules (TUMs) and
Feature Fusion Modules (FFMv2s) and multi-level multi-
scale features (i.e. the decoder layers of each TUM) are
extracted. Finally, the extracted multi-level multi-scale fea-
tures with the same scale (size) are aggregated to construct a
feature pyramid for object detection by a Scale-wise Feature
Aggregation Module (SFAM). A powerful end-to-end one-
stage object detector called M2Det is designed based on the
proposed MLFPN, which achieves a new state-of-the-art re-
sult (i.e. AP of 41.0 at speed of 11.8 FPS with single-scale
inference strategy and AP of 44.2 with multi-scale infer-
ence strategy) among the one-stage detectors on MS-COCO
benchmark. Additional ablation studies further demonstrate
the effectiveness of the proposed architecture and the novel
modules.

Acknowledgements

This work is supported by National Natural Science Foun-
dation of China under Grant 61673029. This work is also a
research achievement of Key Laboratory of Science, Tech-
nology and Standard in Press Industry (Key Laboratory of
Intelligent Press Media Technology).

References

Bodla, N.; Singh, B.; Chellappa, R.; and Davis, L. S. 2017.
Soft-nms - improving object detection with one line of code.
In ICCV 2017, 5562–5570.

Cai, Z., and Vasconcelos, N. 2018. Cascade r-cnn: Delving
into high quality object detection. In CVPR 2018.

Cai, Z.; Fan, Q.; Feris, R. S.; and Vasconcelos, N. 2016.
A unified multi-scale deep convolutional neural network for
fast object detection. In ECCV 2016, 354–370.

9265

Dai, J.; Li, Y.; He, K.; and Sun, J. 2016. R-FCN: Object
detection via region-based fully convolutional networks. In
NIPS 2016, 379–387.

Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; and
Wei, Y. 2017. Deformable convolutional networks. In ICCV
2017, 764–773.

Fu, C.; Liu, W.; Ranga, A.; Tyagi, A.; and Berg, A. C.
2017. DSSD : Deconvolutional single shot detector. CoRR
abs/1701.06659.

Girshick, R. B. 2015. Fast R-CNN. In ICCV 2015, 1440–
1448.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Spatial
pyramid pooling in deep convolutional networks for visual
recognition. IEEE TPAMI. 37(9):1904–1916.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR 2016, 770–778.

He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017.
Mask R-CNN. In ICCV 2017, 2980–2988. IEEE.

Hu, J.; Shen, L.; and Sun, G. 2017. Squeeze-and-excitation
networks. CoRR abs/1709.01507.

Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger,
K. Q. 2017. Densely connected convolutional networks. In
CVPR 2017, volume 1, 3.

Kong, T.; Sun, F.; Yao, A.; Liu, H.; Lu, M.; and Chen, Y.
2017. RON: reverse connection with objectness prior net-
works for object detection. In CVPR 2017, 5244–5252.

Law, H., and Deng, J. 2018. Cornernet: Detecting objects as
paired keypoints. In ECCV 2018.

Lin, T.; Maire, M.; Belongie, S. J.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
COCO: common objects in context. In ECCV 2014, 740–
755.

Lin, T.; Dollár, P.; Girshick, R. B.; He, K.; Hariharan, B.;
and Belongie, S. J. 2017a. Feature pyramid networks for
object detection. In CVPR 2017, 936–944.

Lin, T.; Goyal, P.; Girshick, R. B.; He, K.; and Dollár, P.
2017b. Focal loss for dense object detection. In ICCV 2017,
2999–3007.

Lin, M.; Chen, Q.; and Yan, S. 2014. Network in network.
In ICLR 2014.

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S. E.;
Fu, C.; and Berg, A. C. 2016. SSD: single shot multibox
detector. In ECCV 2016, 21–37.

Newell, A.; Yang, K.; and Deng, J. 2016. Stacked hourglass
networks for human pose estimation. In ECCV 2016, 483–
499.

Redmon, J., and Farhadi, A. 2018. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.

Ren, S.; He, K.; Girshick, R. B.; and Sun, J. 2015. Faster
R-CNN: towards real-time object detection with region pro-
posal networks. In NIPS 2015, 91–99.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh,
S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein,
M. S.; Berg, A. C.; and Li, F. 2015. Imagenet large scale
visual recognition challenge. IJCV 2015 115(3):211–252.

Shrivastava, A.; Gupta, A.; Girshick, R. B.; and AA. 2016.
Training region-based object detectors with online hard ex-
ample mining. In CVPR 2016, 761–769.

Simonyan, K., and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. In ICLR
2015.

Singh, B., and Davis, L. S. 2018. An analysis of scale invari-
ance in object detection–snip. In CVPR 2018, 3578–3587.

Tychsen-Smith, L., and Petersson, L. 2018. Improving ob-
ject localization with fitness NMS and bounded iou loss. In
CVPR 2018.

Xie, S.; Girshick, R. B.; Dollár, P.; Tu, Z.; and He, K. 2017.
Aggregated residual transformations for deep neural net-
works. In CVPR 2017, 5987–5995.

Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; and Li, S. Z. 2018.
Single-shot refinement neural network for object detection.
In IEEE CVPR.

Zhou, P.; Ni, B.; Geng, C.; Hu, J.; and Xu, Y. 2018. Scale-
transferrable object detection. In CVPR 2018, 528–537.

Zhu, Y.; Zhao, C.; Wang, J.; Zhao, X.; Wu, Y.; and Lu, H.
2017. Couplenet: Coupling global structure with local parts
for object detection. In ICCV 2017, 4146–4154.

9266

