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Genome-wide data is used to stratify patients into classes for precision medicine using clustering 
algorithms. A common problem in this area is selection of the number of clusters (K). The Monti 
consensus clustering algorithm is a widely used method which uses stability selection to estimate K. 
However, the method has bias towards higher values of K and yields high numbers of false positives. As 
a solution, we developed Monte Carlo reference-based consensus clustering (M3C), which is based on 
this algorithm. M3C simulates null distributions of stability scores for a range of K values thus enabling 
a comparison with real data to remove bias and statistically test for the presence of structure. M3C 
corrects the inherent bias of consensus clustering as demonstrated on simulated and real expression 
data from The Cancer Genome Atlas (TCGA). For testing M3C, we developed clusterlab, a new method 
for simulating multivariate Gaussian clusters.

Strati�ed medicine is the concept that patients may be clustered into classes to personalise patient therapy. 
Increasingly, patient genome-wide expression data is being used to perform clustering1–6. Cluster analysis of 
genome-wide data (e.g. transcriptomics, epigenomics, proteomics, and DNA copy number) has been shown to 
identify tumour subtypes with distinct clinical outcomes in cancer research1–6, and is starting to be applied on 
other diseases as well7–9. �erefore, there is high demand for methods that deliver robust results. Broadly, the 
clustering problem may be broken down into two steps: select K and separate the data into K groups. �e order of 
these steps varies by clustering algorithm – K must be de�ned upfront in k-means, for instance, while it is de�ned 
a�erwards in hierarchical clustering. In this study, our primary focus was to develop a method for estimating the 
optimal K.

Numerous methods have been proposed for estimating K, such as: Monti et al. consensus clustering10, the 
GAP-statistic11, CLEST12, and progeny clustering13. �e concept behind consensus clustering is that the ideal clus-
ters should be stable despite resampling. �erefore, the degree of cluster stability for each value of K can be meas-
ured to estimate the optimal K. Șenbabaoğlu et al. made a useful contribution by demonstrating that false positive 
structures could be found in K = 1 null data using the Monti consensus clustering algorithm14, this is a common 
problem in cluster analysis. �e authors suggested to generate null datasets with the same gene-gene correlation 
structure as the real data to evaluate cluster strength. However, they did not provide a method for performing 
a formal hypothesis test. �ey developed a new metric that measures cluster stability called the proportion of 
ambiguous clustering (PAC) score, this is better able to estimate K than the original delta K metric10 proposed 
by Monti et al. However, the PAC score does not take into account null reference distributions, has inherant bias 
towards higher values of K, and does not test the null hypothesis K = 1.

Our aim was to solve these problems by enhancing the Monti consensus clustering algorithm to include a 
Monte Carlo reference procedure to eliminate bias towards higher values of K and to test the null hypothesis 
K = 1. �is method we call M3C (https://www.bioconductor.org/packages/3.7/bioc/html/M3C.html). To intro-
duce M3C, it is instructive to de�ne the hypotheses that it tests. M3C calculates null distributions of PAC scores 
for each K (starting with K = 2) by simulating K = 1 null datasets. For each K, this allows us to formally test the 
following null hypothesis:

H0: the PAC score comes from a single Gaussian cluster
�e alternative hypothesis tested for each K is:
HA: the PAC score does not come from a single Gaussian cluster
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If no p-values are signi�cant along the range of K we accept the null hypothesis H0 in every case, this means 
there is no signi�cant evidence for clusters in the data. If a p value is signi�cant, then we can reject the null 
hypothesis H0, thereby accepting HA, this is signi�cant evidence for clusters in the data. M3C presented us with an 
opportunity to test two hypotheses on real data. First, that pre-existing high-pro�le publications contain results 
that declare evidence of structure when in fact there is none. Second, that not considering reference distributions 
when deciding K leads to systematic bias in the Monti consensus clustering method. �e results in this manu-
script imply a more rigorous approach is required.

Results
Systematic bias detected in two widely applied consensus clustering methods. Using clusterlab 
(see Methods for details), we �rst generated a null dataset where no genuine clusters are found (Fig. 1a). Next, we 
tested the Monti consensus clustering algorithm on this data, the cumulative distribution function (CDF) plot 
corresponding to the consensus matrices from K = 2 to K = 10 for the null dataset demonstrates that as K increases 
the consensus matrices inherently become more stable (indicated by a �atter line) (Fig. 1b). �e PAC scores, which 
measure the CDF plot �atness, steadily decreased with increasing K estimating an optimal K of ten (Fig. 1c). A 
similar but reversed e�ect was observed in the cophenetic metric of Nonnegative Matrix Factorisation (NMF) con-
sensus clustering15, which estimates an optimal K of two (Fig. 1d). �erefore, consensus clustering and NMF con-
sensus clustering show bias towards higher and lower values of K, respectively. Both methods also declare evidence 
of structure when it does not exist, due to not comparing against null reference distributions. To demonstrate the 
functionality of clusterlab, we generated a ring of four Gaussian clusters, four clusters with varying variance, and a 
more complex multi-ringed structure consisting of 25 Gaussian clusters (Supplementary Fig. 1).

M3C can find K and evaluate the significance of its decision. We provide an overview of our method 
in Fig. 2a. For our initial investigations, we tested M3C on a negative control, a simulated dataset in which K = 1 
(Fig. 2b). �e Relative Cluster Stability Index (RCSI) could not distinguish real from false structure. In contrast, 
the calculation of Monte Carlo p-valuesp-values by M3C correctly suggested there was no structure in this nega-
tive control dataset (alpha = 0.05), and no bias towards higher values of K was observed. Next, M3C was tested on 
a positive control dataset with four simulated clusters (Fig. 2c). �e PAC score and the RCSI correctly identi�ed 
four as the optimal value of K. A very low Monte Carlo p-value was found by M3C for K = 4 (p = 9.95 × 10-21), 
this correctly implies that this is the optimal K and means we can reject the null hypothesis H0.

Next, we reanalysed a range of high-pro�le strati�ed medicine datasets where structure had been declared 
to test for false positive structures (Table 1 & Supplementary Table 1). Because of the ease of data availability, 
these were predominately, but not exclusively, from TCGA. Table 1 demonstrates the pervasive use of consensus 

Figure 1. Bias in the estimation of K using Monti and NMF consensus clustering. (a) A PCA plot of a simulated 
null dataset where only one cluster should be declared. (b) Monti consensus clustering yields a CDF plot 
implying improved stability with increased K. (c) �e PAC score to measure the stability of K decreases with its 
value, demonstrating a strong preference towards estimating higher optimal values of K. (d) NMF consensus 
clustering yields a cophenetic coe�cient plot which implies lower values of K are preferable using this method.
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Figure 2. Overview of the M3C method and an initial demonstration. (a) A schematic of the M3C method 
and so�ware. A�er exploratory PCA to investigate structure, the M3C function may be run which includes two 
functions; M3C-ref and M3C-real. �e M3C-ref function runs consensus clustering with simulated random 
data sets that maintain the same gene-gene correlation structure of the input data. While, the M3C-real function 
runs the same algorithm for the input data. A�erwards, the relative cluster stability index (RCSI), Monte 
Carlo p-values, and beta p-values are calculated. Structural relationships are then analysed using hierarchical 
clustering of the consensus cluster medoids with SigClust to calculate signi�cance of the dendrogram branch 
points. (b) Results from running M3C on a simulated null dataset, it can be clearly seen that the p-values do not 
reach signi�cance along the range of K, therefore the correct result is suggested, K=1. (c) Results from running 
M3C on a simulated dataset where four clusters are found, the correct decision is made by M3C. (d) Using M3C, 
a systemic lupus erythematosus dataset was detected with no signi�cant evidence of structure. (e) Similarly, a 
breast cancer dataset was identi�ed with no signi�cant evidence of structure.

Publication Year Data type Original algorithm Original K M3C K

Glioblastoma3 2008 Microarray CC 4 4

Ovarian carcinoma4 2011 Microarray NMF 4 5

Lung cancer5 2012 RNA-seq NMF 4 2

Breast cancer16 2012 miRNA-seq NMF 7 1

Di�use glioma1 2016 RNA-seq CC 4 8

Lupus9 2016 Microarray HC 7 1

Pheochromocytoma2 2017 RNA-seq CC 4 6

Table 1. Datasets selected for assessment using M3C and optimal K decisions. HC refers to hierarchical 
clustering and CC to Monti consensus clustering.
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clustering and NMF consensus clustering in the �eld. Using M3C, we identi�ed two datasets in which no signi�-
cant evidence against the null hypothesis could be detected. First, a systemic lupus erythematosus (SLE) microar-
ray dataset was analysed where seven major subtypes were reported using hierarchical clustering and dendrogram 
cutting. However, none of the p-values along the range of K calculated by M3C reached statistical signi�cance 
(the lowest was for K = 3, p = 0.15) (Fig. 2d). Second, a breast cancer miRNA-seq dataset was identi�ed with 
no signi�cant evidence of structure (the lowest p value was for K = 4, p = 0.27), whereas seven subtypes were 
originally reported using NMF (Fig. 2e). �ese �ndings imply that false positive structures exist in the literature 
through not comparing against reference datasets.

Demonstration of the M3C method on TCGA gene expression data. Of those datasets that exhib-
ited signi�cant evidence of structure using M3C, we used this as an opportunity to contrast the clarity of the 
M3C results with those from consensus clustering with the PAC score, the NMF cophenetic coe�cient15, and 
the GAP-statistic11. Our intention in these analyses was not to dispute the original reported K, but instead to test 
whether methods that do not consider reference distributions along the range of K would lead to visible biases. In 
these analyses, it was demonstrated that the GAP-statistic continuously increased, implying improving stability 
regardless of the structure (Supplementary Fig. 2). �ese �ndings imply the GAP-statistic is not well suited to 
analysing complex genome wide expression datasets. Across these datasets, we also demonstrate why M3C �ts 
a beta distribution to the data to estimate extreme tail values, as for K = 2, the beta distribution �ts the reference 
slightly better than a normal distribution (Supplementary Figs. 3 and 4). �is step is important as it removes the 
limitations on p-value derivation imposed by a �nite number of simulations (Supplementary Fig. 5).

�e PAC score displayed the same bias towards higher K values observed earlier on simulated null datasets, 
decreasing steadily regardless of the structure, implying increased stability (Fig. 3a–e). �is e�ect is more of a 
problem in datasets where the clustering is not very clear. For the GBM dataset3, while a PAC elbow can be seen 
at K = 4, the global optimal value is K = 10 (Fig. 3a). �e problem with the PAC score resembles the problem 
encountered by Tibshirani, et al. (2001), when the authors developed the GAP-statistic to overcome the subjective 
decision regarding the location of the elbow. For the GBM case, the Monte Carlo p-values and the RCSI demon-
strate a clear optimal value of K = 4 (p = 0.00059), with additional evidence for structure at K = 5 (p = 0.0071).

For the ovarian dataset4, a global optimal PAC value is observed at K = 2, which is supported by the RCSI 
(Fig. 3b). However, when the Monte Carlo p-values are calculated, it is in fact K = 5 which is the optimal K 
(p = 0.0078). �is happens because some datasets have a skewed null distribution at K = 2, resulting in lower PAC 
scores (Supplementary Fig. 3b). �ese are inherently favoured by the algorithm, a bias that is unaddressed by the 
PAC score or the RCSI. Only by calculating p-values for each value of K can we mitigate against these types of 
systematic biases.

In cases where the clustering is very clear, the PAC score does perform well. In the lung cancer dataset5, a 
global PAC optimal K can be seen at K = 2, which is supported by both the RCSI and the Monte Carlo p-value 
(p = 0.0018) (Fig. 3c). Although this con�icts with the original decision of K = 4, the M3C p-value for K = 4 was 
also signi�cant (p = 0.0032), implying this would be another reasonable choice. However, the bias towards high K 
values of consensus clustering can be observed again on the di�use glioma dataset1 (Fig. 3d). Here the PAC score 
continuously decreases until it reaches a global optimum at K = 10. However, considering the reference distri-
butions, M3C informs us that K = 8 is the most signi�cant option (p = 3.5 × 10-9), which is also supported by the 
RCSI score. For the paraganglioma dataset2, the RCSI estimates K = 6 and the Monte Carlo p-value supports this 
conclusion (p = 1.6 × 10-6), while the PAC score continually decreases, giving no clear choice of K (Fig. 3e). �is 
is another example of why the reference distribution matters, as the RCSI method shows a local maximum for 
K = 2, while the Monte Carlo p-value does not support this. �is is due to the uneven shape of the PG reference 
distribution for K = 2, which has positive kurtosis (Supplementary Fig. 4b). �ese �ndings imply results relying 
just on relative scores or mean comparisons with the reference can be potentially misleading.

In agreement with our �ndings on simulated null data, it was observed that the NMF cophenetic coe�cient 
has a tendency towards calling K = 2 on real data (Fig. 3a–e). Only in the di�use glioma dataset1 did the max-
imum cophenetic coe�cient suggest any other value of K. Although there are numerous variant decision rules 
for NMF in use4,5,16, these do not compare against a null distribution. Instead of taking the most stable consensus 
matrix (highest cophenetic coe�cient) as the optimal K, local maxima are o�en selected4,5. Notably, for the ovar-
ian dataset4 a local maximum in the NMF cophenetic coe�cient was observed at K = 5, which was supported by 
the M3C decision in this instance. Additional support was observed for the lung cancer optimal K, as an NMF 
global maximum cophenetic coe�cient was detected for K = 2, and the M3C p-value also declared this K to be 
optimal (p = 0.0018). However, since a tendency in NMF towards K = 2 on null datasets has been observed in this 
study, it is unclear how con�dent we should be in this decision.

As a �nal step, we performed t-Distributed Stochastic Neighbor Embedding (t-SNE) on each dataset then 
calculated the silhouette width using either the original K or the M3C K to evaluate the relative strength of the 
M3C cluster assignments. t-SNE was performed �rst to reduce dimensionality, because the silhouette width has 
been shown to work poorly alone on high dimensional data in �nding the true K14. �is analysis demonstrated of 
the four datasets with di�ering K decisions to the original, the M3C decisions were better in three (Table 2). �ese 
�ndings support the value of M3C’s reference-based approach to deciding K.

M3C demonstrates good performance in finding K on simulated data. Next, we sought to evaluate 
the performance of M3C on simulated data from K = 2 to K = 6 and compare its performance to existing algo-
rithms. In these tests, we varied the clusterlab alpha parameter, which controls the distance between the clusters, 
and used algorithms which were able to detect the true K from further apart cluster conditions (alpha = 2) to 
closer ones (alpha = 1) (Fig. 4a,b). Typically, in genome wide analyses many clusters will be overlapping and 
hard to distinguish from one another. �erefore, sensitivity under these conditions is very valuable. �is analysis 
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found that M3C using the RCSI score performed better than consensus clustering with the PAC score, M3C using 
p-values, the GAP-statistic, CLEST, the original consensus clustering with the delta K score, NMF, and progeny 
clustering. Notably, while M3C with the RCSI score was approximately 10% higher in accuracy than M3C with 
p-values, the GAP-statistic, and consensus clustering with PAC, these three methods performed similarly, within 
4% of one another. CLEST was also a good performer in this analysis. Overall, these simulations reinforce our 
�ndings on real data that M3C performs better than other state-of-the-art methods.

Figure 3. Further evidence of bias existing in widely applied consensus clustering algorithms. (a) Results from 
running M3C on a glioblastoma dataset3 found the optimal K was four. Consensus clustering using the PAC-
score shows an optimal K of ten, and NMF of two. (b) Results from running M3C on an ovarian cancer dataset4 
found the optimal K was �ve. Consensus clustering using the PAC-score shows an optimal K of two, and NMF 
also of two. (c) Results from running M3C on a lung cancer dataset32 found the optimal K was two. Consensus 
clustering using the PAC-score shows an optimal K of two, and NMF also of two. (d) Results from running M3C 
on a di�use glioma dataset1 found the optimal K was eight. Consensus clustering using the PAC-score shows 
an optimal K of ten, and NMF of four. (e) Results from running M3C on a paraganglioma dataset2 found the 
optimal K was six. Consensus clustering using the PAC-score shows an optimal K of ten, and NMF of two. It can 
be observed, consensus clustering using the PAC-score and NMF both tend towards K=10 or K=2, respectively, 
on real data.
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M3C can deal with complex structures using spectral clustering. The performance of M3C is 
dependent on underlying clustering algorithm. Although k-means and PAM perform well on the types of data 
generally encountered in genome-wide studies, they assume the clusters are approximately spherical and equal 
in variance, which may not be true. Spectral clustering is a widely applied technique due to its ability to cope 
with a broad range of structures17. �erefore, to increase the capabilities of the M3C so�ware package, it includes 
self-tuning spectral clustering18. We tested spectral clustering as M3C’s inner algorithm versus PAM and k-means 
on two synthetic datasets, one where the clusters were anisotropic (Fig. 5a), and a second where one cluster had 
a far smaller variance than its neighbouring cluster (Fig. 5b). Under these conditions, it was observed that M3C 
using PAM and k-means both had problems identifying the true K and classifying the members of each cluster 
correctly. On the other hand, M3C using spectral clustering did not su�er these drawbacks. Using spectral clus-
tering, M3C is also capable of recognising more complex non-Gaussian shapes, such as half-moons and concen-
tric circles (Supplementary Fig. 6). �e addition of spectral clustering to the M3C so�ware package allows greater 
�exibility in the range of structures that may be examined.

M3C can quantify structural relationships between consensus clusters. An important question 
when the optimal K has been decided is, how do the discovered clusters relate to one another? Inherently, consen-
sus clustering does not distinguish between �at versus hierarchical structure. To solve this, M3C performs hier-
archical clustering on the medoids of each consensus cluster. To make the analysis statistically principled, M3C 
iteratively performs the SigClust method19 on each pair of consensus clusters, then displays the pairwise p-values 
for each split of the dendrogram. Testing M3C on the PG dataset revealed a hierarchical relationship between the 
six clusters (Fig. 6a), with, for example, consensus clusters one and two grouping together (p = 1.2 × 10-80). In 
contrast, testing M3C on a null dataset without clusters demonstrated insigni�cant SigClust p-values and a �at 
dendrogram (Fig. 6b). �e addition of a hierarchical clustering stage a�er choosing the optimal K should prove 
helpful in identifying structural relationships.

Sensitivity and complexity analysis of M3C. As a �nal step, we decided to evaluate M3C’s internal 
parameters using the PAM algorithm, compare its runtimes with other methods, and calculate its complexity. 
A sensitivity analysis of the number of inner replications and outer simulations found M3C generally yielded 
stable results across six TCGA datasets with 100 inner replications and 100 outer simulations (Supplementary 
Figs. 7 and 8). We executed M3C on �ve datasets on a high-powered desktop computer using a single thread of 
an Intel i7-5960X CPU @ 3.00 GHz with 32GB of RAM. Runtimes ranged between 2–25 minutes, depending on 
dimensionality (Fig. 7a). We compared the runtime of M3C with other well performing methods from our earlier 
analysis on the same computer with a single thread (Fig. 7b,c). M3C, CLEST, and the GAP-statistic which all use 
Monte Carlo simulations as a reference were set to 25 reference iterations for comparative purposes. �is analysis 
demonstrated that consensus clustering with the PAC score was the fastest method, followed by the GAP-statistic. 
CLEST and M3C were slower and similar in runtime for lower N (number of samples), but for N greater than 500, 
M3C performed more slowly than CLEST (Fig. 7b).

�e complexity of the M3C algorithm is O BHA C( / ), where B is the number of Monte Carlo simulations, H is 
the number of consensus clustering resamples, and A is the complexity of the underlying clustering algorithm (see 
pseudo-code for M3C in Supplementary Note 1). C denotes number of available processors, as M3C can be par-
allelized due to its independent simulations and subsampling subroutines. We empirically evaluated M3C’s time 
complexity as a function of sample size N using the PAM algorithm, which has a complexity of O N( )2 . Calculating 
the slope of the log-log plot yielded an empirical complexity of .O N( )2 4 . �is demonstrates that M3C is approxi-
mately quadratic in N.

Discussion
We report the advancement of the Monti consensus clustering algorithm to include a Monte Carlo simulation 
driven reference system for estimating the optimal K and testing the null hypothesis K = 1, we call the method 
M3C. Our investigation into this consensus clustering algorithm demonstrated it has inherent bias towards 
higher values of K. �ese occur due to not considering the reference distribution along the range of K when 
deciding on its value. Although considering these distributions is a relatively straightforward procedure, as we 
have demonstrated, it has important implications. To date, testing of the null hypothesis by TCGA has been 
conducted by SigClust a�er deciding on the value of K using the standard methods2,6,16. SigClust tests the null 
hypothesis K = 1 for pairs of clusters, but it does not directly estimate K. �e advantage of M3C is that it can both 
�nd K and test the null hypothesis K = 1.

Dataset Original K Sil width M3C K Sil width

Glioblastoma3 4 0.28 4 0.28

Ovarian carcinoma4 4 0.30 5 0.27

Lung cancer5 4 0.26 2 0.27

Di�use glioma1 4 0.041 8 0.18

Pheochromocytoma2 4 0.20 6 0.23

Table 2. Silhouette width of M3C optimal K assignments compared with original K decision assignments. 
Higher values of silhouette width correspond to preferable clustering.

https://doi.org/10.1038/s41598-020-58766-1
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Our reanalysis of high-pro�le strati�ed medicine studies, predominantly from TCGA1–5,9,16, questions the 
value of consensus clustering when used without considering the appropriate reference distributions. �e bias 
towards higher values of K, coupled with subjective decision making as to what constitutes the optimal K, sim-
ilar to the original elbow problem solved by the GAP-statistic11, may provide misleading results. We identi�ed 

Figure 4. M3C demonstrates good performance in �nding K on simulated data. (a) A sensitivity analysis was 
conducted for every algorithm for K=2 to K=6 while varying the alpha parameter of clusterlab (degree of 
Gaussian cluster separation). Accuracy was calculated as the fraction of correct optimal K decisions, and for 
each alpha, with 25 iterations performed at each step. CC(original) refers to the Monti et al. (2003) consensus 
clustering method, GAP-STAT refer to the GAP-statistic, CC(PAC) refers to consensus clustering with the PAC-
score. (b) Performance was calculated across the range of K tested for each algorithm as the mean accuracy.
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two cases in the literature where structure had been declared despite M3C indicating no signi�cant evidence 
against the null hypothesis. In the case of the SLE study, seven subtypes were originally declared in a major tran-
scriptomic analysis9. Within the context of these new �ndings, it is perhaps better to describe these subtypes as 
existing within a noisy spectrum of non-distinct states. �is hints that there may be publication bias for positive 
declaration of structures.

It is necessary to remark on the limitations of the approach. �e M3C method can allow testing of the null 
hypothesis K = 1 and mitigate bias. However, this method does not allow, for example, the formal statistical com-
parison of selecting K = 2 compared with other values of K. �e relative magnitude of the p-values can be used 
to estimate the optimal K by comparing against the null K = 1 scenario like using the RCSI, however, this is not 
formal hypothesis testing. A second limitation is that M3C is computationally expensive, however, extreme tail 
estimation and multi-core ability mitigate this problem. Finally, just because the p-value or RCSI supports a given 
K gives no guarantee the identi�ed clusters or their number will be reproducible in an independent validation 
dataset.

Figure 5. M3C uses spectral clustering to deal with complex structures. (a) Results from running M3C using 
either spectral, PAM, or k-means clustering on anisotropic structures. �e results for K=2 for each inner 
algorithm are shown in all cases, in the corner of the plots are the optimal K decisions using the RCSI. (b) 
Similarly, results from testing di�erent internal algorithms on structures of unequal variance.

Figure 6. M3C can investigate structural relationships between consensus clusters. M3C calculates the medoids 
of each consensus cluster, then hierarchical clustering is performed on these, SigClust is run to detect the 
signi�cance of each branch point. (a) Results from M3C structural analysis of the six clusters obtained from 
the paraganglioma dataset analysis2, all p-values were strongly signi�cant, supporting the M3C decision of 
the declaration of structure. (b) Results from the same analysis run on a simulated null dataset of the same 
dimensions, no p-values were signi�cant.

https://doi.org/10.1038/s41598-020-58766-1
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Other types of consensus clustering methods include In�nite Ensemble Clustering20 (IEC) and Entropy-based 
consensus clustering21 (ECC), which can be used for patient strati�cation. IEC incorporates marginalized denois-
ing auto-encoder with dropout noises to generate the expectation representation for in�nite basic partitions. 
ECC employs an entropy-based utility function to fuse many basic partitions into a single consensus structure. A 
future challenge is to systematically evaluate the performance of a wider range of consensus clustering methods 
on genome wide expression data.

We benchmarked the performance of M3C against a number of alternatives, including: Monti consensus 
clustering, the GAP-statistic, progeny clustering, and CLEST. Several cluster validity indices were not tested, how-
ever, such as: the Silhouette index22, the Calinski Harabasz index23, the Jaccard index24, and the Davies-Bouldin 
index25. It would be interesting to determine if any of these indices perform well in determining the optimal K 
when applied on consensus matrices produced by the consensus clustering algorithm, our study indicates they 
will be subject to bias without a reference procedure. It is also relevant to mention that there are other methods 
that could be applied to investigate the signi�cance of dendrogram splits, such as the inheritance procedure26.

Lastly, it is important to mention the methodological contributions of clusterlab. Clusterlab is a �exible new 
method for generating Gaussian clusters. Unlike prior methods14,27,28, it is able to generate and position Gaussain 

Figure 7. M3C can perform quickly across a range of datasets. (a) M3C runtimes (in minutes) for �ve datasets 
used in the analysis. Performance was measured on an Intel Core i7-5960X CPU running at 3.00 GHz using 
a single thread with 32GB of RAM. M3C was run using 25 outer Monte Carlo simulations and 100 inner 
iterations using the PAM algorithm. (b) M3C and other method runtimes in minutes for a series of simulated 
datasets with the number of samples (N) ranging from 100–1000 for datasets of 1000 features. CLEST and 
the GAP-statistic, which also use a Monte Carlo reference procedure, were set to run with 25 Monte Carlo 
simulations, the same as M3C for comparison. (c) Log-log plot of the same data shown in (b).
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clusters in a highly customisable manner with speci�ed variance, spacing, and size. Clusterlab can generate data 
similar in nature to cancer gene expression datasets, which are typically high-dimensional and Gaussian19. �e 
method should appeal to researchers in a range of disciplines for testing methods for �nding K and clustering 
algorithms.

Methods
M3C. �e method uses a Monte Carlo simulation, which generates random data with each iteration, to repeat 
the Monti et al. consensus clustering algorithm many times over. �en, the real algorithm is run just once to 
compare the real cluster stabilities along the range of K with those expected using random Gaussian data (K = 1). 
Pseudo-code is given in Supplementary Note 1. �is gives a new method for choosing K a�er consensus cluster-
ing that removes bias towards high values of K and allows one to statistically test for the presence of structure. �e 
speci�c details are now given.

Simulation of the reference dataset. �ere are a range of options for the generation of reference datasets in M3C’s 
Monte Carlo simulation. We use an approach �rst proposed by Tibshirani et al., which preserves covariance 
structure via principal component analysis (PCA). With an input matrix, ∈ ∗T S F we can compute the input 
data’s eigenvector matrix ∈ ∗A F S and its principal component score matrix, ∈ ∗Y S S, where F is the number of 
features in the provided matrix, and S is the number of samples. �e steps taken to generate random data are 
repeated = …b B1  times:

 1. Conduct PCA to obtain the orthogonal matrix of eigenvectors, A of the input data T:

= ∗∗ ∗ ∗Y T A (1)S S S F F S

 2. Next, a random PC score matrix is generated, ∈ ∗Y b S S, where the ith column is �lled with random values 
from a normal distribution with mean zero and standard deviation equal to the ith column in Y. Let, Di be 
the standard deviation of ∗Y i and for = …i S1 :

∗ ~Y N D(0, ) (2)i
b

i

 3. Multiplying Y b with the transpose of A yields ∈ ∗Qb S F, a single simulated null dataset with the same 
feature correlation structure as T, but without clusters.

= ∗∗ ∗ ∗Q Y A (3)S F
b

S S
b

S F
b

Steps 1–3 are repeated by M3C for each Monte Carlo reference simulation for = …b B1 , and for the bth 
simulation one random dataset, Qb is passed into the consensus clustering algorithm (described below) to calcu-
late null reference stability scores for = …K maxK2, , . A�er B simulations, the consensus clustering algorithm 
is run just once on the input data for comparison using procedures we will go on to detail. M3C is set to use 
=B 100 and this was the parameter setting used for the simulations in this study.

Consensus clustering. �e Monti et al. consensus clustering algorithm subsamples the input data sample-wise, 
H times, and with each resampling iteration clusters the perturbed dataset using a user de�ned inner clustering 
algorithm (e.g., PAM) for each value of K. It then measures the stability of the sample cluster assignments over all 
resampling iterations to decide K. M3C includes PAM, k-means, and spectral clustering as options, with PAM set 
by default due to its superior speed. Let, …D D D, , , H(1) (2) ( ) be the list of H perturbed datasets, and let 

∈ ∗M {0, 1}h N N( )  be the connectivity matrix resulting from clustering dataset D h( ), the entries of M h( ) are then 
de�ned as:

=





M i j( , )

1 if samples i and j are in the same cluster

0 otherwise (4)
h( )

To keep count of the number of times samples i and j are resampled together in the perturbed dataset D h( ) an 
indicator matrix ∈ ∗I {0, 1}h N N( )  is de�ned:

=





I i j D( , ) 1 if samples i and j are in dataset

0 otherwise (5)

h
h

( )
( )

�e consensus matrix, ∈ ∗M [0, 1]N N , is de�ned as the normalised sum of all the connectivity matrices of all 
H perturbed datasets:

=
∑

∑

=

=

M i j
M i j

I i j
( , )

( , )

( , ) (6)

h
H h

h
H h

1
( )

1
( )

�e entry i j( , ), or consensus index, is the number of times that two samples cluster together divided by the 
total number of times they were sampled together across all the perturbed datasets. A value of 1 would 
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correspond to a perfect score as the two samples are always found in the same cluster across all resampling runs, 
while a value of 0 would correspond to the worst score as the two samples never are found in the same cluster. A 
consensus matrix is generated for every value of K and then the stability of each matrix quanti�ed using an empir-
ical cumulative distribution (CDF) plot. For any given consensus matrix M, the CDF is calculated and is de�ned 
over the range [0, 1] as follows:

=
∑ ≤

−

<
CDF c

M i j c

N N
( )

1{ ( , ) }

( 1)/2 (7)

i j

Where 1 …{ } denotes the indicator function, M i j( , ), denotes entry i j( , ) of the consensus matrix M, N is the num-
ber of rows (and columns) of M, and c is the consensus index value.

Calculation of the PAC score. �e CDF plot has consensus index values on the x axis and CDF values on the y 
axis. A perfectly stable cluster solution will have a �at CDF plot representing a matrix purely of 0 s and 1 s, there-
fore the degree of CDF �atness for each K is a measure of the stability of K. To quantify this, M3C uses the PAC 
score, a metric shown to perform well in simulations14. PAC is de�ned as the fraction of sample pairs with con-
sensus index values falling in the intermediate sub-interval ∈x x( , ) [0, 1]1 2 . For a given value of K, CDF c( ) corre-
sponds to the fraction of sample pairs with consensus index values less than or equal to c and PAC is de�ned as:

= −PAC x x CDF x CDF x( , ) ( ) ( ) (8)K K K1 2 2 1

M3C calculates the PAC score with = .x 0 11  and = .x 0 92 . Although the PAC window is a user de�ned param-
eter, we have found these settings to perform well in our experience.

Calculation of the RCSI. To account for the reference PAC scores from = …b B1 , where B is the total number 
of Monte Carlo simulations, M3C uses the RCSI. Let, Pref

Kb
 be the reference PAC score from the bth Monte Carlo 

simulation for a given K, and, PrealK the real PAC score for that K, then the RCSIK is de�ned as:

∑=











−

=

RCSI
B

Pref Preallog
1

log ( )
(9)

K
b

B

Kb K10
1

10

Calculation of the Monte Carlo p value. To improve the selection of the optimal K, M3C derives Monte Carlo 
p-values by testing the real PAC score for each K against the null PAC distribution, generated using simulated struc-
tureless data. Let oK be the number of observed PAC scores in the reference less than or equal to the real PAC score, 
let B be the total number of Monte Carlo simulations, and the p value for that value of K, PK is then de�ned as:

=
+

+
P

o

B

1

1 (10)K
K

Where 1 is added the numerator and denominator to avoid p-values of zero29.

Interpretation of the p-values. For each K the method will test the null hypothesis H0 that the PAC score, PrealK, 
came from a single Gaussian cluster ( =K 1) versus the alternative hypothesis HA that PrealK did not come from a 
single Gaussian cluster ( ≠K 1). If a p value for a K reaches signi�cance (alpha = 0.05) it should be viewed as 
evidence that the data is not a single Gaussian cluster. If no p-values along the range of K reaches signi�cance 
(alpha = 0.05) it should be viewed as evidence that the data is a single Gaussian cluster. �e relative signi�cance 
of the p-values can be used to suggest the most preferable K, although we caution that the method does not for-
mally test the selection of one value of K versus another.

Calculation of the beta distribution p-value. To estimate p-values beyond the range of the Monte Carlo simula-
tion, M3C �ts a beta distribution. �is distribution is more �exible than the normal alternative, which is espe-
cially helpful when K = 2, which tends to result in null distributions with nonzero skew and kurtosis. Moreover, 
the PAC score is bound on the interval [0, 1], as is the beta distribution, providing the correct range for computa-
tion. �e α and β shape parameters required for the beta distribution are derived using maximum likelihood 
estimates for the mean, µ, and variance, σ2, of the reference PAC scores for any given K:

∑µ =
=N

Pref
1

(11)n

N

Kn
1

∑σ µ=





−





=N

Pref
1

(12)n

N

Kn
2

1

2
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α
µ

σ µ
µ=





−

−





1 1

(13)
2

2

β α
µ

=




−





1
1

(14)

�ese α and β shape parameters are then used by M3C to generate the reference distribution for K. �e real 
PAC score is used as a test statistic for derivation of the estimated p value. Let x denote the reference PAC score. 
�en the beta probability density function (PDF) is de�ned as:

β α β
=

−α β− −

PDF x
x x

( )
(1 )

( , ) (15)

1 1

Simulating NXN dimensional Gaussian clusters in a precise manner. We found that current 
Gaussian cluster simulation methods were inadequate for systematic testing of M3C. MixSim27, generates 
Gaussian clusters, however, it is not possible to precisely control their positioning. �e Python scikit-learn 
machine learning module contains a Gaussian cluster simulator, but it generates clusters randomly and controlled 
positioning is not possible. Another method allows controlled spacing14, but does not generate Gaussian clusters, 
instead the clusters resemble triangular slices and the variance and size cannot be set. �erefore, we developed 
clusterlab (https://cran.r-project.org/web/packages/clusterlab/index.html). Clusterlab is a novel method that 
allows simulation of Gaussian clusters with controlled spacing, size, and variance. It works by generating cluster 
centres or points on the circumference of a circle in 2D space because this is easier to work in mathematically than 
higher dimensional space. �e speci�c details are now given.

Generating evenly spaced points on the perimeter of a circle. To control the spacing, size, and variance of synthetic 
clusters, clusterlab works within a 2D Cartesian coordinate system with an origin at (0, 0). First, the algorithm 
generates a set = ∈ = …S w i X{ , 1, }i

2  of X evenly spaced pairs of coordinates, where =w x y( , )i i i
, on the 

perimeter of a circle. Each of these coordinates later will be the centre of a Gaussian cluster, therefore, X is also the 
number of clusters to be generated. Let, r be the radius of the circle, then, for the ith cluster centre from = …i X1  
we need to set =i 0 for the first cluster centre, so for = … −i X0 1, the coordinate pairs are calculated as 
follows:

π
=

⋅
x

X i
rcos

2
(16)i

π
=

⋅
y

X i
rsin

2
(17)i

�is naturally leaves the r parameter as a means of controlling the spacing of the cluster centres. However, at 
this point, we also introduce an additional parameter for moving the ith cluster centre, αi. αi is a scalar that can 
be used to push each coordinate pair (or vector) away from its starting point, yielding the transformed coordi-
nates ′ ′x y( , )i i . In the case of a cluster being le� stationary, α = 1i . More speci�cally, for all pairs in set S, from 
= …i X1 :

α′ ′ =x y x y( , ) ( , ) (18)i i i i i

We also leave the option to add a �nal coordinate to S at (0, 0), to allow a central cluster within the middle of 
the ring to be generated later.

Generation of more complex multi-ringed structures. As an optional next step to extend the single ring system, 
clusterlab can create multiple rings or concentric circles of 2D coordinates. A�er simulating the qth ring, as 
described above, from = …q Q1 , the qth rings 2D coordinates are pushed away from the origin using vector 
multiplication with a scalar, let this scalar be βq, let the newly transformed coordinates be ″ ″x y( , )i i

, and so for 
= …i X1 :

β″ ″ = ″ ″x y x y( , ) ( , ) (19)i i q i i

Our new total number of samples, T, will be, = ∗T X Q. With each iteration from = …q Q1 , the ith trans-
formed coordinates, = ″ ″d x y( , )i i i

, are added to a new set, = ∈ = …R d i T{ , 1, }i
2 . Optionally, another layer 

of complexity may be added by using vector rotations of the qth rings coordinate pairs from = …i X1 , by setting 
θ ≠ 0q  in the following equation. To calculate each of the rings new coordinates ‴ ‴x y( , )i i  from = …i X1 , the 
following calculation is performed for every pair:

θ θ= ″ − ″‴ ( )x x ycos sin( ) (20)i i q i q
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θ θ= ″ + ″‴y x ysin( ) cos( ) (21)i i q i q

Generation of Gaussian clusters. At this point we will assume that multiple rings have not been generated and we 
are working with, S, a set of ′ ′x y( , )i i  coordinates described by equation 18. However, the method that generates 
the Gaussian cluster multi-ringed system is identical to the single ringed system described below, except we start 
with the multiplied ″ ″x y( , )i i  or multiplied and rotated set of ‴ ‴x y( , )i i  points from the multi ring 2D coordinate 
set, R.

To form X Gaussian clusters of size Mi per cluster, we add Gaussian noise from a normal distribution, N D(0, )i , 
to the ith pair of cluster centre 2D coordinates, = ′ ′k x y( , )i i i , to create the new coordinates, =ti  x y( , )j j

. Performing 

this Mi times for each cluster centre, giving a total of = ∑ =Z Mi
Z

i1  coordinate pairs, yields the final set, 
= ∈ = …J t i Z{ , 1, }i

2 . �e number of samples in each cluster may be set by varying Mi, and the clusters 
variance, by setting Di. The new coordinate pairs, x y( , )j j

, to be added to, J, for all samples are calculated as 
follows:

= ′ + ′ +x y x N D y N D( , ) ( (0, ), (0, )) (22)j j i i i i

Projection of the �nal 2D coordinates into N dimensions. We transform the cluster sample coordinates into N 
dimensions with a previously explained method which uses a reverse PCA14. First, two random vectors are gen-
erated of length V, where V will equal the number of features in the �nal matrix, from a normal distribution 

.N(0, 0 1), let these be v1 and v2. �e SD of 0.1 was chosen empirically a�er examination of the scale of the simu-
lated PC plots compared to those from real expression datasets. �e v1 and v2 vectors are treated as �xed eigenvec-
tors in this method, and each of our previously simulated coordinate pairs are treated as 2D PC scores. �e �nal 
matrix, ∈ ∗F Z V , comprised of Z rows (samples) and V columns (features), is formed by linear combinations of 
the �xed eigenvectors with the pairs of PC scores. Let, xi and y

i
 be the PC scores of the ith sample, from = ...i Z1  

from set J, then the ith row of the output matrix F is given by:

= ∗ + ∗⁎F x v y v (23)i i i1 2

Non-Gaussian structures. For generating structures used in the spectral clustering analysis, the CRAN cluster-
Sim package version 0.47 was used30. For the anisotropic and unequal variance clusters, 90 samples were simu-
lated with two dimensions with the cluster.Gen function using the default settings. For the half-moon clusters, 
the shapes.two.moon function was used with 90 samples, and for the concentric circles the shapes.two.circles 
function was used with 180 samples, both using default settings. �e sample number was increased in the latter 
to prevent gaps forming in the concentric circles.

Real test datasets. All test datasets, apart from the SLE dataset, were already normalised and downloaded 
directly through TCGA publication page (https://tcga-data.nci.nih.gov/docs/publications/) during the period of 
April to June 2017, further details are provided in Supplementary Table 1. We chose RNA-seq or microarray data 
from the TCGA where the data was already normalised. �e di�use glioma (DG) dataset is a RNA-seq matrix 
consisting of 2266 features and 667 samples1 (https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/
LGG-GBM.gene_expression.normalized.txt). �e GBM dataset, is a microarray matrix consisting of 1740 fea-
tures and 206 samples3 (https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/uni�edScaledFiltered.txt), the 
feature list used was taken from a later publication on the same dataset6. �e lung cancer (LC) dataset5 used was 
a RNA-seq matrix consisting of 178 samples and 2257 features (https://tcga-data.nci.nih.gov/docs/publications/
lusc_2012/gaf.gene.rpkm.20111213.csv.zip), the feature list used to �lter this dataset was from an earlier publica-
tion where four subtypes had been identi�ed (http://cancer.unc.edu/nhayes/publications/scc/wilkerson.scc.tgz). 
�e paraganglioma (PG) dataset downloaded was a RNA-seq matrix consisting of 173 samples and 3000 features 
(https://tcga-data.nci.nih.gov/docs/publications/pcpg_2017/PCPG_mRNA_expression_naRM.log2.csv.zip), the 
gene wise �ltering scheme used was the same as described as in the corresponding publication2. �e ovarian 
cancer (OV) dataset4 was a RNA-seq matrix of 489 samples and 800 features (https://tcga-data.nci.nih.gov/docs/
publications/ov_2011/TCGA_489_UE.zip), and the gene list used for subsequent �ltering was obtained from an 
earlier publication that detected four subtypes31. �e SLE dataset9 used was a microarray matrix of 82 samples 
and 48 features, the data was obtained from GEO (GSE65391), normalised, and �ltered in the manner described 
in the associated publication.
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