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1 Introduction

This paper proposes explicit formulas for on-shell n-particle scattering amplitudes in the

tree approximation for three massless field theories, each of which is a maximally supersym-

metric matter theory with 16 unbroken supersymmetries and 16 additional spontaneously

broken supersymmetries. The fermions in these theories are Goldstone particles (or Gold-

stinos) of the type first considered by Volkov and Akulov [1, 2]. These three theories

arise naturally in string theory as the world-volume theories of branes. The first theory

is the world-volume theory of a probe D3-brane (of type IIB superstring theory) in a 10D

Minkowski-space background. The second theory is the world-volume theory of a probe

D5-brane (of type IIB superstring theory) in a 10D Minkowski-space background. The

third theory is the world-volume theory of a probe M5-brane (of M theory) in an 11D

Minkowski-space background. We will refer to these theories as the D3 theory, the D5 the-

ory, and the M5 theory. These three theories are closely related. Specifically, both of the

6D theories (D5 and M5) can be truncated (by a procedure called dimensional reduction) to

give rise to the 4D theory (D3). These relationships, which are predicted by string theory,

will provide powerful checks of the results, as well as a role in their derivation. Another

important feature that all three of these theories have in common is that nonvanishing

on-shell scattering amplitudes require an even number of particles, i.e.,n must be even.

The D3 theory is a 4D Dirac-Born-Infeld (DBI) theory, with N = 4 supersymmetry,

which some authors call sDBI theory. It it a self-interacting theory of a massless abelian

N = 4 vector supermultiplet, which consists of a vector, four spinors, and six scalars. Its R-

symmetry group is SU(4)×U(1). Although the helicity-conservation property of scattering

amplitudes of the D3 theory has also been understood previously [3] using the electric

magnetic duality of D3-brane action [4], the additional U(1) factor in the R-symmetry

group has not been noted previously.1 The action for the D3 theory was derived in [5] by

dimensional reduction of the action for the D9-brane, which was constructed using string-

theoretic techniques. (See [6–9] for related work.) The D3 theory has been examined in

some detail recently in [10]. There has been a recent proposal for the tree amplitudes

of this theory in [11, 12]. Our formulas will take a different form, for reasons that will

be explained.

The action for the D5 theory also can be obtained by dimensional reduction of the D9-

brane action. This theory is a self-interacting theory of a single vector supermultiplet with

(1, 1) supersymmetry in 6D. The vector supermultiplet consists of a vector, four spinors,

and four scalars. The R-symmetry group of the D5 theory is SU(2) × SU(2).

The M5 theory is a self-interacting theory of a single tensor supermultiplet with (2, 0)

supersymmetry in 6D. This multiplet contains a two-form field B with a self-dual field

strength (H = dB = ?H) as well as four spinors and five scalars. There is an analog of

the Born-Infeld action that describes self interactions of the B field, which was constructed

in [13]. This theory has 6D Lorentz invariance, though the action only has manifest 5D

Lorentz invariance. The five additional Lorentz transformations that involve a particular

1We will explain later why the D3 theory has a larger R-symmetry group than N = 4 super Yang-Mills

theory. Of course, there are many other differences. For example, the D3 theory is not conformal.
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(arbitrarily chosen) direction are not obvious symmetries. These transformations of the

Lagrangian give a total derivative. Dimensional reduction of this theory to five dimensions

gives pure Born-Infeld theory. The action for the supersymmetric extension of the 6D

theory that incorporates the complete (2, 0) supermultiplet, i.e.,the M5 theory, was con-

structed in [14]. (See [15–18] for related work.) The R-symmetry group of this theory is

USp(4). Certain lower-point amplitudes for the M5 theory have been discussed previously,

for example in [19–23]. The requirement that they give D3 amplitudes after dimensional

reduction to 4D will play an important role in our analysis.

Another feature that these three theories have in common is that they inherit their

symmetries from those of the parent theories, i.e.,M-theory in flat space and Type IIB

superstring theory in flat space. By positioning the probe branes in the ambient space,

some of the symmetries of the parent theory are spontaneously broken. Broken symmetries

include translations perpendicular to the branes and half of the supersymmetries. These

symmetries are realized nonlinearly in the brane theories. Thus, the scalars and spinors in

these theories are Goldstone particles. As a result, the amplitudes of these theories satisfy

various soft theorems. The vector and tensor gauge symmetries are inherited from the

background NS-NS 2-form of Type IIB and the M-theory 3-form, respectively [24].

One of the challenges in formulating on-shell scattering amplitudes for these theories

is to make their various required symmetries manifest. As has become conventional for

massless particles, we use twistor-like spinor-helicity coordinates to represent momenta and

supercharges. These introduce a little-group symmetry for each of the scattered particles.

As we will explain, this group is SU(2)×SU(2) for the D5 theory, SU(2) for the M5 theory,

and U(1) for the D3 theory. The use of spinor-helicity variables allows us to construct

on-shell amplitudes with manifest Lorentz invariance even for chiral theories, such as the

M5 theory, which has well-known obstructions to constructing a useful Lorentz-invariant

action. In addition to super-Poincaré symmetry, each of these theories has an R-symmetry

group: SU(2)× SU(2) for the D5 theory, USp(4) for the M5 theory, and SU(4) ×U(1) for

the D3 theory.

Our formulas for scattering amplitudes in each of the three theories take forms that are

similar to the twistor-string formulation of 4D N = 4 super Yang-Mills amplitudes in Wit-

ten’s classic twistor-string paper [25]. The twistor-string formulation for 4D N = 4 super

Yang-Mills is often called Witten-RSV formula, which was studied in detail in in [26–28].In

particular, we associate a coordinate σi on the Riemann sphere to the ith particle in an

n-particle scattering amplitude. The formula for the amplitude is required to be invariant

under a simultaneous SL(2,C) transformation of these coordinates. Following Cachazo et

al. [29], in the twistor-string-like formalism that we use, certain rational functions of σi are

associated to the ith particle. These functions are restricted by delta-function constraints

in such a way that the number of bosonic delta functions is equal to the number of bosonic

integrations. Thus, the formulas are actually algebraic, as they should be for tree am-

plitudes. Furthermore, the delta-function constraints imply the scattering equations [30],

which are
∑

j pi · pj/σij = 0, where σij = σi− σj . This approach allows us to formulate all

of the amplitudes for the three theories in a uniform way. It also is convenient for verifying

some of their essential properties.

– 3 –
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Our main results are general formulas for the n-particle on-shell tree amplitudes for

each of the three theories. These formulas make most of the required symmetries manifest,

or at least easy to understand. The exception is the R symmetry, where only a subgroup

is manifest. The supermultiplets are incorporated by associating four Grassmann coor-

dinates, with specified transformation properties, to each external particle. The key to

making the full R-symmetry group manifest is to carry out a Fourier transformation for

half of the Grassmann coordinates — two per particle. The price that one pays for making

R symmetry manifest is that the formulas become somewhat more complicated for the

6D theories.

The paper is organized as follows: we begin in section 2 with a discussion of general

properties, such as symmetries, conserved charges, and on-shell states, for each of the three

theories considered in this paper. We utilize the 4D spinor-helicity formalism for the D3

theory and the 6D one for the M5 theory and the D5 theory. To illustrate the structures and

ideas, section 3 examines the four-particle amplitudes for these theories. Section 4 presents

a general formula for the n-particle amplitudes of the D3 theory. As mentioned previously,

our formulas for scattering amplitudes in each of the three theories take forms that are

similar to the twistor-string formulation of 4D N = 4 super Yang-Mills amplitudes [25].

This formulation of the D3 theory is somewhat different from those in the literature. It is

more suitable for the generalization to 6D, which is required for the M5 and D5 theories.

In section 5 we propose a new formula, given in eq. (5.31), which gives all of the tree

amplitudes of the M5 theory and generalizes the D3 formula in a way that is consistent with

dimensional reduction of N = (2, 0) in 6D to N = 4 in 4D. This is our most novel result,

providing a mathematical formula for the complete tree-level S-matrix for a theory whose

Lagrangian description has well-known issues mentioned earlier. This section also describes

various checks of the formula, including symmetries, soft theorems, and factorization. Using

knowledge of the lower-point amplitudes and factorization, we obtain compact analytic

expressions for certain amplitudes of the self-dual B fields for n = 6 and n = 8. These agree

perfectly with the general integral formula and give explicit consistency checks. Despite

the apparent differences between the M5 and D5 theories, in section 6 we present a similar

integral formula for the D5-brane amplitudes, which reproduces what one obtains from the

D5-brane action. Finally, our conclusions and remarks concerning future directions are

presented in section 7. Further technical details and an analysis of the R symmetries are

presented in the appendix A.

2 Symmetries, conserved charges, and supermultiplets

The three theories that we are considering have three types of conserved charges, which

form a nice superalgebra in each case. These charges, are the momenta pi, supersym-

metry charges qi, and R-symmetry charges Ri, where the index i = 1, 2, . . . , n labels the

n particles participating in an n-particle on-shell scattering amplitude An. By treating

all of the particles symmetrically as ingoing, conservation of these charges is simply the
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statement that
n∑
i=1

pi = 0,

n∑
i=1

qi = 0,

n∑
i=1

Ri = 0. (2.1)

In practice, some of these conservation laws are implemented by including appropriate delta

functions in the formula for An. The other charges are represented by differential operators

and their conservation is achieved by requiring that An is annihilated by the appropriate

sums of these differential operators. Lorentz invariance will be manifest in all formulas.

2.1 M5 theory

The world-volume theory of a probe M5 in an 11D Minkowski space background has (2, 0)

6D supersymmetry. This theory describes a single massless self-interacting tensor su-

permultiplet. This supermultiplet contains a two-form field Bµν , with a three-form field

strength H = dB, which is self-dual in the free-theory limit. Such a field gives rise to three

on-shell degrees of freedom. The tensor supermultiplet also contains four fermions and five

scalars. Altogether, there are eight bosonic and eight fermionic on-shell degrees of freedom.

The three multiplicities (1, 4, 5) correspond to representations of the USp(4) = Spin(5)

R-symmetry group, which is an unbroken global symmetry of the M5 theory. This sym-

metry can be thought of as arising from rotations in the five spatial dimensions that are

orthogonal to a flat M5 in 11D Minkowski spacetime. The little group for massless particles

in d dimensions is Spin(d − 2). Thus, in 6D it is SU(2) × SU(2). However, in the special

case of the tensor multiplet all of the on-shell particles are singlets of one of the two SU(2)

factors. Specifically, the self-dual tensor transforms as (3, 1), the spinors, which are also

chiral, transform as (2, 1) and the scalars transform as (1, 1). Therefore we shall ignore the

trivial SU(2) and refer to the nontrivial SU(2) as the little group of this theory. In the case

of the D5 theory, considered in the next subsection, both SU(2) factors will be required.

It is convenient to introduce four Grassmann coordinates, such that the entire on-shell

supermultiplet can be described by a single scalar expression. There are various ways to do

this. One obvious choice is to introduce four Grassmann coordinates ηI , which transform

as the fundamental four-dimensional representation of the USp(4) R-symmetry group. In

this way, one can make the R symmetry manifest, and we first discuss this formulation.

However, because amplitudes for massless particles are labeled by incoming momenta and

little-group indices, in most formulas we will make use of a second description of the

supermultiplet that makes little group symmetry manifest.

For theories involving massless particles, it is also convenient to introduce eight bosonic

spinor-helicity coordinates λAa , where A = 1, 2, 3, 4 labels a spinor representation of the 6D

Lorentz group Spin(5, 1) and a = ± labels a doublet of the chiral little group discussed

above. These coordinates belong to a real representation of the product group, because

the spinor representation of the Lorentz group and the doublet little-group representation

are both pseudoreal. In terms of these coordinates the momentum of an on-shell massless

particle is written [31],

pAB = εabλAa λ
B
b = λAa λ

Ba = λA+λ
B
− − λA−λB+. (2.2)
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This formula is invariant under the SU(2) little group, and therefore three of the eight λ

coordinates are redundant, leaving five nontrivial degrees of freedom, as appropriate for

the momentum of a massless particle in 6D. Note also that pAB = −pBA is a six-vector of

the Lorentz group. p2, which gives the square of the mass, is proportional to the Pfaffian

of pAB. This vanishes because the 4 × 4 matrix pAB has rank two. When we describe

n-particle scattering amplitudes we attach labels i, j, . . ., which take the values 1, 2, . . . , n,

to the coordinates. Thus, the ith particle is associated to λAi+, λAi−, and ηIi .

The 16 supersymmetry charges of the M5 theory can be represented by2

qAI = λA+η
I − ΩIJλA−

∂

∂ηJ
, (2.3)

where the antisymmetric matrix ΩIJ is the symplectic metric. We will find it convenient

later to choose Ω13 = Ω24 = 1. This formula can be recast as

qAI = εabλAa η
I
b = λAa η

Ia, (2.4)

where ηI− = ηI and ηI+ = ΩIJ∂/∂ηJ . Then

{ηIa, ηJb } = εabΩ
IJ . (2.5)

This makes the little-group invariance of the supercharges manifest. Note that the super-

charges belong to a chiral representation of the Lorentz group, and the opposite chirality

representation does not appear. This is what is meant by saying that the theory has (2, 0)

supersymmetry. As usual, the supercharges anticommute to give the momenta

{qAI , qBJ} = ΩIJpAB. (2.6)

The ten R charges, RIJ = RJI , are represented by

RIJ = εabηIaη
J
b = ηIaη

Ja = ηIΩJK ∂

∂ηK
+ ηJΩIK ∂

∂ηK
. (2.7)

These charges generate USp(4) and they transform the supercharges appropriately

[RIJ , qAK ] = ΩIKqAJ + ΩJKqAI . (2.8)

The on-shell supermultiplet consists of three kinds of particles: a helicity triplet Bab =

Bba, which is an R-symmetry singlet, a helicity doublet ψaI , which an R-symmetry quartet,

and a helicity singlet φIJ = −φJI , ΩIJφIJ = 0, which is an R-symmetry quintet. These

can be combined into a single R-symmetry invariant expression:

Φ(η) = B++ + ηIψ+
I +

1

2
ηIηJφIJ +

1

2
(η · η)B+− + (η · η)ηIψ−I +

1

2
(η · η)2B−−, (2.9)

where we have defined

η · η =
1

2
ΩIJη

IηJ = η1η3 + η2η4. (2.10)

26D N = (2, 0) on-shell superspace was first discussed in [19].
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Note that each + or − superscript correspond to half a unit of H3, the third component

of the little group SU(2) algebra. Each term in Φ, and hence Φ itself, carries a total of

one unit of H3 if we assign a half unit of H3 to each factor of η. This was to be expected

because ηI was introduced as a renaming of ηI− = ηI+.

This description of the supermultiplet has two deficiencies: first, it is not invariant

under the little group; second, little-group multiplets are split up among different terms

in the expansion. As noted already, both of these deficiencies can be overcome by using

a different formulation of the supermultiplet. The price to be paid will be that only an

SU(2) subgroup of the USp(4) R-symmetry group will be manifest.

The SU(2) little group is not a global symmetry of the M5 theory. Rather, it is a

redundancy in the formalism, analogous to a local symmetry, which is not manifest in

the preceding equations. It can be made manifest by Fourier transforming half of the

η coordinates. A Fourier transform replaces a Grassmann coordinate by a Grassmann

derivative and vice versa. As before, we choose Ω13 = −Ω31 = Ω24 = −Ω42 = 1, while all

other components of ΩIJ vanish. Then we replace η3 and η4 by derivatives with respect

to η̃1 and η̃2 and vice versa. Also renaming (ηI , η̃I) as (ηI−, η
I
+). Altogether the four

coordinates ηI are replaced by four coordinates ηIa, which now transform as a doublet of

the little group and as a doublet of an SU(2) subgroup of the R symmetry group. The

formulas for the 16 supercharges become

qAI = λAa η
Ia and q̃AI = λAa

∂

∂ηIa
I = 1, 2. (2.11)

As promised, we have traded manifest USp(4) R symmetry for little group SU(2) symmetry.

This is also the case for the on-shell supermultiplet formula, which is a Grassmann Fourier

transform of the one in eq. (2.9). It now takes the form

Φ̃(η) = φ+ ηIaψ
a
I + εIJη

I
aη
J
b B

ab + ηIaη
JaφIJ + (η3)Iaψ̃

a
I + (η4)φ′, (2.12)

where (η3)Ia = εJKη
I
bη
JbηKa and (η4) = εIJεKLη

I
aη
J
b η

KaηLb. Recall that in Φ(η) the index I

takes four values, whereas in Φ̃(η) it takes two values. (We prefer not to introduce another

symbol.) The five scalars are split 1+3+1 and the four spinors are split 2+2 even though

they form irreducible R-symmetry multiplets. To summarize, the Φ representation has

manifest R symmetry, whereas the Φ̃ representation has manifest little-group symmetry.

The latter representation will turn out to be the easier one to deal with, and our main

formulas for scattering amplitudes will use this superfield description.

2.2 D5 theory

The world-volume theory of a probe D5 in a 10D Minkowski space background has (1, 1)

6D supersymmetry. On-shell superspace with (1, 1) 6D supersymmetry has been used for

studying 6D super Yang-Mills theory, see e.g. [32–34]. This theory, which is nonchiral,

i.e.,parity invariant, describes a single massless self-interacting vector supermultiplet. This

supermultiplet contains a one-form field Aµ, with a two-form field strength F = dA. Such a

field gives rise to four on-shell degrees of freedom. The vector supermultiplet also contains

four fermions and four scalars. Altogether, there are eight bosonic and eight fermionic

– 7 –
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on-shell degrees of freedom. The three multiplicities (1, 4, 4) correspond to representations

of the SU(2)×SU(2) = Spin(4) R-symmetry group, which is an unbroken global symmetry

of the D5 theory. The representations are (1, 1) for the vector, (2, 2) for the scalars and

(1, 2) + (2, 1) for the fermions. This symmetry can be thought of as arising from rotations

in the four spatial dimensions that are orthogonal to a flat D5 in 10D Minkowski spacetime.

As discussed earlier, the little group in 6D is also SU(2)× SU(2). Altogether, in terms

of four SU(2) factors, with the first two referring to the little group and the second two to

the R-symmetry group, the vector supermultiplet contains the following representations:

(2, 2; 1, 1) + (1, 1; 2, 2) + (2, 1; 1, 2) + (1, 2; 2, 1). (2.13)

Note that, unlike the M5 theory, the D5 theory involves nontrivial representations of both

SU(2) factors of the little group. In terms of on-shell fields, these representations correspond

to Aaâ, φIÎ , ψaÎ , and ψâI , in a notation that should be self-explanatory.

As before, we can introduce eight bosonic expressions λAa , where A = 1, 2, 3, 4 labels

a spinor representation of the 6D Lorentz group Spin(5, 1) and a = ± labels a doublet of

the first SU(2) factor in the little group. In terms of these coordinates the momentum of

an on-shell massless particle can be written in the form

pAB = εabλAa λ
B
b = λAa λ

Ba. (2.14)

Three of the eight λ coordinates are redundant, leaving five nontrivial degrees of freedom,

as appropriate for a massless particle in 6D. Unlike, in the M5 theory, this is not sufficient.

The Lorentz group has a second four-dimensional spinor representation, corresponding to

the opposite chirality, and the little group has a second SU(2) factor, both of which are

utilized (on an equal footing with the first ones) in the D5 theory. Therefore, it is natural

to introduce an alternative formula for the momentum utilizing them

p̂ÂB̂ = εâb̂λ̂Ââ λ̂
B̂
b̂

= λ̂Ââ λ̂
B̂â. (2.15)

Since the momentum six-vector pµi is given by 1
2σ

µ
ABp

AB
i = 1

2 σ̂
µ

ÂB̂
p̂ÂB̂i , where σ and

σ̂ are the appropriate Lorentz-invariant tensors, the information encoded in λi and λ̂i,

modulo little-group transformations, is the same. In fact, if one of them is given, the other

is determined up to a little-group transformation. The two four-dimensional representations

of the 6D Lorentz group, labeled by the indices A and Â, are inequivalent. If the group

were SU(4) they would be complex conjugates of another, but for Lorentzian signature

the group is Spin(5, 1) and each of these representations is pseudoreal. Nonetheless, for

either signature it is a fact that the Kronecker product of these two representation gives

the adjoint plus a singlet. Therefore, the Kronecker delta δAÂ is an invariant tensor, and∑
AÂ

δAÂλ
A
a λ̂

Â
â (2.16)

is Lorentz invariant. In fact, this combination must vanish in order that p2 ∼
δAÂδBB̂p

AB p̂ÂB̂ = 0. It will be important later in the analysis of the M5 theory that

– 8 –
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λ determines λ̂ up to a little-group transformation and that the combination eq. (2.16)

vanishes. Henceforth, we distinguish the two spinor representations by the use of upper

and lower indices, i.e., ∑
Â

δAÂλ̂
Â
â = λ̂Aâ. (2.17)

Throughout the paper, we will use the above upper and lower indices, and in this notation

we have the constraint on spinors given as,

λAa λ̂Aâ = 0 . (2.18)

In the notation introduced above, the 16 supercharges are given by qAI and q̂ÎA. Then

the (1, 1) supersymmetry algebra is

{qAI , qBJ} = pABεIJ , {q̂ÎA, q̂ĴB} = p̂ABε
Î Ĵ , {qAI , q̂ĴB} = 0. (2.19)

These are conveniently represented by

qAI = εabλAa η
I
b = λAa η

Ia, q̂ÎA = εâb̂λ̂Aâη̂
Î
b̂

= λ̂Aâη̂
Î â, (2.20)

where the Grassmann coordinates satisfy

{ηIa, ηJb } = εabε
IJ , {η̂Îâ, η̂Ĵb̂ } = εâb̂ε

Î Ĵ , {ηIa, η̂Ĵb̂ } = 0. (2.21)

Now, there are again two alternative representations of the on-shell superfield distin-

guished by whether the R symmetry or the little-group symmetry is manifest. The formula

with manifest R symmetry utilizes the four anticommuting Grassmann coordinates ηI− and

η̂Î−̂, which we simplify to ηI and η̂Î . In terms of these, the expansion is

Φ(η) = A++̂ + ηIψ
+̂I + η̂Îψ

+Î + ηI η̂Îφ
IÎ + η2A−+̂ + η̂2A+−̂ + · · ·+ η2η̂2A−−̂, (2.22)

where η2 = 1
2εIJη

IηJ and similarly for η̂2

The alternative representation with manifest little-group symmetry utilizes the I = 1

components of ηIa, now denoted ηa, and the Î = 1 components of η̂Îâ, now denoted η̂â. The

on-shell superfield in this representation is

Φ̃(η) = φ11̂ + ηaψ
a1̂ + η̂âψ

â1 + ηaη̂âA
aâ + η2φ21̂ + η̂2φ12̂ + · · ·+ η2η̂2φ22̂. (2.23)

As before, the two representations are related by a Grassmann Fourier transform. Since

the little group and the R symmetry are both SU(2) × SU(2) for the D5 theory the two

superfield formulas have the same structure with the role of the R-symmetry and little-

group symmetry interchanged.

– 9 –



J
H
E
P
1
2
(
2
0
1
7
)
0
0
3

2.3 D3 theory

Since the D3 theory can be obtained by dimensional reduction of the M5 theory or the

D5 theory, let us consider what happens when all of the momenta are restricted to a 4D

Minkowski subspace. The Lorentz group then becomes SL(2,C) and the 4 of Spin(5, 1)

decomposes as 2 + 2̄. In fact, this is correct for both of the four-dimensional spinor

representations of the 6D Lorentz group, and it is appropriate and consistent to require

that λAa and λ̂Aâ become identical when restricted to 4D. In standard notation, the spinor

index A→ (α, α̇). In terms of λAa the restriction to 4D is achieved by setting λα− = 0 and

λα̇+ = 0. This then gives pαβ = pα̇β̇ = 0 leaving the familiar 4D formula for an on-shell

massless particle in helicity variables:

pαα̇ = λα+λ
α̇
−. (2.24)

Now p2 is proportional to the determinant of pαα̇, which vanishes because this matrix has

rank one.

Let us now focus on reduction of the M5 theory. The case of the D5 theory is very

similar. The restrictions on the momenta imply that the supercharges in eq. (2.3) reduce to

qαI = λαηI and qα̇I = λ̃α̇
∂

∂ηI
I = 1, 2, 3, 4, (2.25)

where we have set λα+ = λα and λα̇− = λ̃α̇, which is the standard notation. Also, an

unnecessary constant factor has been removed in the formula for qα̇I . Then qαI and qα̇I
form complex-conjugate representations.

The R symmetry can now be extended to SU(4), with generators given by the traceless

expression

RIJ = ηI
∂

∂ηJ
− 1

4
δIJη

K ∂

∂ηK
. (2.26)

The SU(4) symmetry is manifest in the on-shell supermultiplet expression derived from

eq. (2.9)

Φ(η) = A−− + ηIψ−I + ηIηJφIJ +
1

6
εIJKLη

IηJηKψL+ + η1η2η3η4A++. (2.27)

The middle term now describes six scalars, one of which descends from B+−. The

amplitudes of the D3 theory have an additional U(1) symmetry that can be interpreted as

conservation of helicity. Its generator is

H =
1

4
[ηI ,

∂

∂ηI
] =

1

2
ηI

∂

∂ηI
− 1. (2.28)

This is the operator that reads off the helicity of a particle, and therefore its conservation,

HAn = (
∑

iHi)An = 0, implies that the total helicity of the particles participating in a

nonvanishing n-particle scattering amplitude must be zero. Conservation of this charge

implies that the amplitude is homogeneous of degree 2n in these η coordinates. Moreover,

SU(4) R symmetry requires that the total number of η’s must be a multiple of four. To-

gether these statements imply that n must be even for the D3 theory. In fact, we claim
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that n must also be even for the M5 and D5 theories even though this reasoning is not

applicable in those cases.

The U(1) symmetry generated by H does not commute with the supercharges. There-

fore, by definition, it is an additional R symmetry, extending the R-symmetry group to

SU(4) × U(1). Let us now explain how the appearance of this symmetry could have been

anticipated. Since the D3 theory can be obtained by dimensional reduction of the D9-brane

theory, the SU(4) subgroup can be regarded as arising from rotations in the six dimensions

transverse to the D3. So where does the additional U(1) R symmetry come from? Having

posed the question, the answer becomes clear. The D3 theory can also be obtained by

dimensional reduction of the M5 theory, so the U(1) can be interpreted as rotations in the

two extra dimensions of this construction.

In the case of N = 4 super Yang-Mills (SYM) theory the SU(4) R symmetry can also

be understood by dimensional reduction starting from SYM in ten dimensions. In fact,

like the D3 theory, that is how this theory was originally obtained. However, N = 4 SYM

cannot be obtained by dimensional reduction of a perturbative theory in 6D with (2, 0)

supersymmetry. There are nonperturbative (2, 0) theories in 6D that reduce to N = 4

SYM when placed on a torus. In such a reduction, the 4D coupling constant is determined

by the ratio of the radii of two cycles of the torus, and different choices are related by

dualities. This is not the kind of dimensional reduction that would give rise to an extra

U(1) symmetry. Even when Kaluza-Klein excitations are omitted, such a reduction does

not retain the transverse rotational symmetry that is needed to give an additional U(1) R

symmetry. Therefore, in the case of N = 4 SYM, helicity is not conserved and n does not

need to be even.

As in the previous examples, there is an alternative form of the supercharges and

the on-shell superfield that exhibits manifest little-group symmetry. As a consequence

only an SU(2) × SU(2) subgroup of the SU(4) R symmetry remains manifest. As before,

this representation is related to the previous one by Fourier transforming two of the four

Grassmann coordinates. In this new basis the 16 supercharges take the form

qαI = λαηI− and qα̇I = λ̃α̇
∂

∂ηI−
I = 1, 2, (2.29)

q̂α
Î

= λα
∂

∂ηÎ+
and q̂α̇Î = λ̃α̇ηÎ+ Î = 1, 2. (2.30)

The indices I and Î label doublets of distinct SU(2) subgroups of the R symmetry group.

The indices ± keep track of U(1) little-group representations, which corresponds to helicity.

In this formulation the on-shell superfield becomes

Φ̃(η) = φ + ηI−ψ
−
I + ηÎ+ψ

+

Î
+ ηÎ+η

J
−φÎJ + (η+)2A+ + (η−)2A−

+ (η+)2ηI−ψ
+
I + (η−)2ηÎ+ψ

−
Î

+ (η+)2(η−)2φ̄ , (2.31)

where (η+)2 = 1
2εÎ Ĵη

Î
+η

Ĵ
+ and (η−)2 = 1

2εIJη
I
−η

J
−.
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3 Four-particle amplitudes

3.1 M5 theory

Before discussing the general case, let us consider four-particle amplitudes, starting with

the M5 theory. The plan is to first propose a formula for the result that corresponds to

supermultiplets written in the form given in eq. (2.12). This representation has a manifest

SU(2) little-group symmetry for each external particle. Up to normalization, the four-

particle amplitude with four derivatives for an abelian tensor supermultiplet with 6D (2, 0)

supersymmetry is uniquely given by

A4 = δ6

(
4∑
i=1

pABi

)
δ8

(
4∑
i=1

qAIi

)
. (3.1)

As discussed in section 2.1, pABi = λAi+λ
B
i− − λAi−λBi+ and qAIi = λAi+η

I
i− − λAi−ηIi+, where

A,B = 1, 2, 3, 4 and I = 1, 2. The fermionic delta functions are defined for instance in [32].

It will be useful later to write the momentum-conservation condition in matrix notation as

λ+λ
T
− = λ−λ

T
+. (3.2)

In other words, the matrix (λ+λ
T
−)AB is symmetric. This is valid for any number of particles

n. In the special case of n = 4, λ+ and λ− are square matrices. If n = 4 and λ− is invertible,

which is generically the case, this implies that (λ−1− λ+)ij is symmetric. This fact will be

useful later.

The formula for A4 manifestly satisfies several requirements: total symmetry in the four

particles, Lorentz invariance, conservation of momentum and half of the supercharges, and

little-group symmetry. Also, the second factor scales as λ8 or p4, as expected. Conservation

of the other half of the supersymmetries is easy to verify. What one needs to show is that(
4∑
i=1

q̃AiI

)
A4 = 0. (3.3)

This fact is an immediate consequence of {q̃AiI , qBJj } = pABi δijδ
I
J and conservation

of momentum.

In order to appreciate eq. (3.1), let us examine what it implies for the scattering of four

B particles. They are R-symmetry singlets whose on-shell degrees of freedom are described

by a symmetric tensor Bab = Bba of the SU(2) little group. Eq. (3.1) implies that their

four-particle amplitudes are given by

〈Ba1a2Bb1b2Bc1c2Bd1d2〉 = 〈1a12b13c14d1〉〈1a22b23c24d2〉+ P4 , (3.4)

where P4 denotes the symmetrization over little group indices. Here and throughout, we

make use of a Lorentz-invariant bracket:

〈1a2b3c4d〉 := εABCDλ
A
1aλ

B
2bλ

C
3cλ

D
4d. (3.5)
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It is interesting to note that any four B particles have a nonzero amplitude. For example,

〈B++B++B++B++〉 ∝ 〈1+2+3+4+〉2 = (detλ+)2 , (3.6)

Similarly, the amplitude for four B−− particles is given by (det λ−)2. On reduction to the

D3 theory, B++ becomes a positive-helicity photon, and this amplitude vanishes. Indeed,

eq. (3.4) gives all the four-photon amplitudes correctly, with the only nonzero ones involv-

ing two positive-helicity and two negative-helicity photons. It also describes amplitudes

involving additional scalars that arises from reduction of B+− = B−+.

Let us now turn to the more difficult issue: verifying USp(4) R symmetry of an ar-

bitrary four-particle amplitude. We have learned earlier that this symmetry should be

manifest in the representation of the supermultiplet given in eq. (2.9). To get to this rep-

resentation, we rename ηIi− as ηIi and ηIi+ as η̃Ii . Then we Fourier transform the latter

coordinates to conjugate Grassmann coordinates denoted ζiI . Thus, we consider

A4 =

∫
d8η̃Ii e

∑
iI η̃

I
i ζiI δ8

(
4∑
i=1

qAIi

)
. (3.7)

Substituting an integral representation of the delta functions and carrying out the η̃ inte-

grations gives

A4 =

∫
d8θAIδ

8

(
ζiI +

∑
A

θAIλ
A
i−

)
e
∑

AIi θAIλ
A
i+η

I
i . (3.8)

If we now assume that the 4×4 matrix λAi− is nonsingular, which is generically the case, then

δ8
(
ζiI +

∑
A

θAIλ
A
i−

)
= (detλ−)2δ8((ζλ−1− )IA + θAI) (3.9)

and thus

A4 = (detλ−)2 exp(−tr(ζλ−1− λ+η)) (3.10)

More explicitly, the exponent is

− tr(ζλ−1− λ+η) = tr(λ−1− λ+ηζ)) =
∑
ij

(λ−1− λ+)ij(ηζ)ji (3.11)

As was explained earlier, momentum conservation implies that (λ−1− λ+)ij is a symmetric

matrix. Therefore only the symmetric part of (ηζ)ji contributes, which can therefore be

replaced by half of

Eij =

2∑
I=1

(
ηIi ζIj + ηIj ζIi

)
. (3.12)

We now claim that E (and hence A4) can be rewritten in a form that has manifest USp(4)

symmetry

Eij =

4∑
I,J=1

ΩIJη
I
i η
J
j , (3.13)
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where the only nonzero elements above the diagonal of the symplectic metric are Ω13 =

Ω24 = 1. Note that we have renamed ζIi = ηI+2
i . Then ηIi belongs to the fundamental

representation of the USp(4) R-symmetry group. The same idea discussed here applies to

more general n-particle amplitudes as we shown in appendix B.

Note that the amplitude for four B−− particles is given by the first term in the expan-

sion of the exponential, whereas the amplitude for four B++ particles is given by the last

(eighth) term in the series expansion of the exponential. All other four-particle amplitudes

are contained in the intermediate powers. Clearly, this representation (with manifest R

symmetry) is more complicated than the previous one with manifest little group SU(2)

symmetries for each of the scattered particles, that amplitudes are no longer homogenous

polynomials in terms of fermionic variables η’s.

3.2 D5 theory

The four-particle amplitude for this theory is quite similar to the one for the M5 theory.

In the representation with manifest little-group symmetry the four Grassmann coordinates

that are used in the superfield Φ̃(η) are ηa and η̂â. They transform as (2, 1) and (1, 2)

with respect to the SU(2) × SU(2) little group. In terms of these we can define eight

anticommuting supercharges

qA = εabλAa ηb = λAa η
a and q̂A = εâb̂λ̂Aâηb̂ = λ̂Aâη

â. (3.14)

Then the desired amplitude is

A4 = δ6

(
4∑
i=1

pµi

)
δ4

(
4∑
i=1

qAi

)
δ4

(
4∑
i=1

q̂iA

)
. (3.15)

In particular, we can read off the amplitude for scattering four vector particles

〈AaâAbb̂AcĉAdd̂〉 = 〈1a2b3c4d〉〈1â2b̂3ĉ4d̂〉 (3.16)

where

〈1a2b3c4d〉 := εABCDλ
A
1aλ

B
2bλ

C
3cλ

D
4d, 〈1â2b̂3ĉ4d̂〉 := εABCDλ̂1Aâλ̂2Bb̂λ̂3Cĉλ̂4Dd̂. (3.17)

For example,

〈A++̂A++̂A++̂A++̂〉 ∝ detλ+ det λ̂+̂. (3.18)

As in the case of the M5 theory, the R symmetry of the D5 amplitudes can be verified by

carrying out a Grassmann Fourier transform to the representation in which that symmetry

becomes manifest.

3.3 D3 theory

Since the D3 theory can be obtained by dimensional reduction of the M5 theory, its four-

particle amplitude can be deduced from the preceding results. Specifically, eq. (3.1) re-

duces to

A4 = δ4

(
4∑
i=1

pαα̇i

)
δ4

(
4∑
i=1

qαIi

)
δ4

(
4∑
i=1

q̂α̇Îi

)
, (3.19)

– 14 –



J
H
E
P
1
2
(
2
0
1
7
)
0
0
3

where pαα̇i = λαi λ̃
α̇
i , qαIi = λαi η

I
i−, and q̂α̇Îi = λ̃α̇i η

Î
i+. As before, this is easily seen to have all

of the required properties aside from R symmetry. Alternatively, the same result can be

obtained by dimensional reduction of the D5 theory, whose four-particle amplitude is given

in eq. (3.15). In this case, dimensional reduction of qA gives qα1 and qα̇1, while dimensional

reduction of q̂A gives qα2 and qα̇2.

R symmetry can be investigated, as before, by Fourier transforming the ηÎi+ coordi-

nates. (Recall that I = 1, 2 and Î = 1, 2 label doublets of the two SU(2) factors of an

SU(2)× SU(2) subgroup of the SU(4) R symmetry group.) However, the analysis requires

some modification, since the matrix λ−, which was previously assumed to be nonsingular,

is now singular. In fact, two of its four columns are identically zero.

Since η+ only occurs in the last delta-function factor, let us consider its Fourier

transform

I4 =

∫
d8ηÎi+e

∑
iI η

Î
i+ζiÎ δ4

(
4∑
i=1

q̂α̇Îi

)
=

∫
d4θα̇Îδ

8

(
ζiÎ +

∑
α̇

λ̃α̇i θα̇Î

)
. (3.20)

Momentum conservation can be written as the matrix equation (λT λ̃)αα̇ = 0. Therefore

the eight delta functions imply the four relations
∑

i λ
α
i ζiÎ = 0. From this it follows that

I4 = J δ4

(
4∑
i=1

λαi ζiÎ

)
, (3.21)

where J is a Jacobian factor.It is straightforward to see that the Jacobian is

J =

(
[12]

〈34〉

)2

. (3.22)

Here we are using the standard notation of 4D spinor helicity formalism, 〈ij〉 = εαβλ
α
i λ

β
j

and [ij] = εα̇β̇λ̃
α̇
i λ̃

β̇
j . It is important that J should have total symmetry in the four particles.

The proof that [12]/〈34〉 has total antisymmetry, and hence that J has total symmetry, is

straightforward using momentum conservation.

To complete the analysis, we define ζ1̂ = η3 and ζ2̂ = η4, as before. Then, assembling

the results above, the Fourier-transformed scattering amplitude becomes

A4 =

(
[12]

〈34〉

)2

δ4

(
4∑
i=1

pαα̇i

)
δ8

(
4∑
i=1

qαIi

)
, (3.23)

where the index I on qαIi = λαi η
I
i now takes four values. This version of four-particle

superamplitude has appeared before, for instance in [22]. It now has manifest SU(4) R

symmetry, because the Grassmann delta functions contain two factors of εIJKLη
I
i η
J
j η

K
k η

L
l ,

which is SU(4) invariant. The amplitude has an additional U(1) R symmetry, because it

contains 2n = 8 factors of η, as explained earlier.
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4 n-particle amplitudes of the D3 theory

This section briefly reviews the n-particle amplitudes for the tree-level S-matrix of the D3

theory. A nice formula with manifest SU(4) R symmetry appeared recently in [11, 12].

However, for the purpose of generalizing to the M5 theory, it is more convenient to break

the SU(4) R-symmetry SU(4) → SU(2)L × SU(2)R and make the little-group symmetry

manifest. A formula of the required type has appeared previously for 4D N = 4 SYM

and N = 8 supergravity [29]. It contains complex coordinates σi (on the Riemann sphere)

associated to the n particles. The formula is required to be invariant under simultaneous

SL(2,C) transformations of these coordinates. This implies that only n − 3 of them are

integrated, while the other three can be set to arbitrarily chosen distinct values.

The on-shell n-particle amplitude formula takes the form

An =

∫
dnσ dM
Vol(G)

∆B(p, ρ)∆F (q, ρ, χ) I , (4.1)

where ∆B is a product of bosonic delta functions

∆B(p, ρ) =

n∏
i=1

δ4
(
pαα̇i −

ρα(σi)ρ̃
α̇(σi)

Pi(σ)

)
, (4.2)

and ∆F is a product of fermionic (or Grassmann) delta functions

∆F (q, ρ, χ) =

n∏
i=1

δ4
(
qαIi −

ρα(σi)χ
I
−(σi)

Pi(σ)

)
δ4

(
q̂α̇Îi −

ρ̃α̇(σi)χ
Î
+(σi)

Pi(σ)

)
. (4.3)

Here ρα(σ) and χÎ+(σ) are degree-d polynomials, while ρ̃α̇(σ) and χI−(σ) are degree-d̃ poly-

nomials, with

d+ d̃ = n− 2. (4.4)

Thus, ρα(σ) (bosonic) and χI−(σ) (fermionic) take the form

ρα(σ) =
d∑

m=0

ραmσ
m , χI−(σ) =

d̃∑
m=0

χIm,−σ
m , (4.5)

and

ρ̃α̇(σ) =

d̃∑
m=0

ρ̃α̇mσ
m , χÎ+(σ) =

d∑
m=0

χÎm,+σ
m . (4.6)

Also,

Pi(σ) =
∏
j 6=i

σji i, j = 1, 2, . . . , n , (4.7)
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where σij = σi − σj . Note that Pi(σ) depends on all n of the σ coordinates, but σi has a

distinguished role. The integral is taken over the space of punctures and polynomials, the

measure for which contains the following 2n bosonic and 2n fermionic integrations:

dM =
d∏

m=0

d̃∏
m̃=0

d2ραmd
2ρ̃α̇m̃d

2χIm̃,−d
2χÎm,+ . (4.8)

The integral has a gauge redundancy from the modular and little-group symmetries,

so we must divide by the volume of

G = SL(2,C)×GL(1,C), (4.9)

where the modular group SL(2,C) acts on the σi’s and GL(1,C), the complexified little

group, acts on the ρ’s and ρ̃’s.

Eq. (4.1) describes maximally supersymmetric theories with the on-shell states orga-

nized according to eq. (2.31). It gives the usual scattering amplitude supplemented by

additional delta functions, namely

An =

(
n∏
i=1

δ(p2i )δ
2(〈λi qIi 〉)δ2([λ̃i q̂Îi ])

)
An , (4.10)

where An is the usual scattering amplitude including the four momentum-conservation

delta functions and eight supercharge-conservation delta functions. (When the momentum-

conservation delta function is also omitted, the amplitude is denoted Tn). The bracket

notation is the same as described following eq. (3.22). The extra delta functions in eq. (4.10)

impose the conditions that allow us to introduce the usual on-shell relations of the schematic

form p = λλ̃ and q = λη. So, in practice, to extract the scattering amplitudes An from

eq. (4.1), one should use these relations and remove the extra delta functions. Appendix A

contains the proof that the 4n bosonic delta functions ∆B account for the n mass-shell

conditions, four momentum conservation equations, and the n − 3 scattering equations.

These are precisely the 2n+ 1 delta functions that survive after carrying out the (2n− 1)-

dimensional ρ integration.

The choice of the factor I in the integrand depends on the theory. For example, the

color-ordered N = 4 SYM amplitudes, discussed in [29], are given by the Parke-Taylor-

like factor

IYM =
1

σ12σ23 · · ·σn−1nσn1
. (4.11)

In the case of YM and SYM theories in 4D, the solutions of the scattering equations can

be separated into n− 3 sectors characterized by the total helicity (or “helicity violation”)

of the n particles participating in the reaction. The sectors, labeled by d = 1, 2, . . . , n− 3,

have d̃− d = n− 2(d+ 1) units of helicity violation. In particular, the d = 1 sector, which

has n − 4 units of helicity violation, is usually referred to as having “maximal helicity

violation” (MHV). If n is even, the sector with d = d̃ = n
2 −1 is helicity conserving. As was

first conjectured in [35] and later proven in [29], the number of solutions of the scattering

equations that contribute to the (d, d̃) sector, denoted Nd,d̃, is given by an Eulerian number.
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These numbers satisfy Nd,d̃ = Nd̃,d and Nd,1 = 1. They are fully determined by these

relations and the recursion relation [29]

Nd,d̃ = d̃Nd−1,d̃ + dNd,d̃−1. (4.12)

Furthermore,

n−3∑
d=1

Nd,d̃ = (n− 3)! (4.13)

which accounts for all the solutions of the scattering equations.

Due to the recent progress in understanding CHY representations of scattering ampli-

tudes [36–38], it is known that one can pass from YM theories to DBI theories by simply

replacing IYM by

IDBI = det′Sn , (4.14)

where Sn is an n× n anti-symmetric matrix with

(Sn)ij =
sij
σij

, i, j = 1, 2, . . . , n, (4.15)

where sij = (pi + pj)
2 = 2pi · pj are the familiar Mandelstam invariants. Also,

Pf ′Sn =
(−1)i+j

σij
PfSi,ji,j , det′Sn = (Pf ′Sn)2 . (4.16)

Here Si,ji,j means that the i-th and j-th rows and columns of the matrix Sn are removed

before computing the Pfaffian or determinant. This is required because Sn has rank n− 2

if n is even. Then det′Sn is independent of the choice of i and j and transforms with

weight two under SL(2,C) transformations of the σ coordinates. If n is odd, there is no

satisfactory nonzero definition. Therefore all nonzero amplitudes of all DBI-like theories

must have n even. This includes all three brane theories (D3, D5, M5) that are the main

emphasis of this paper.

However, if one examines the actions in the literature for these theories, it is only

obvious that n must be even for the bosonic truncation, in each case, but it is not at all

obvious when fermions are involved. These actions, which were derived using various string

theory considerations, contain vertices involving an odd number of bosons when fermions

are also present. Since we claim that on-shell amplitudes with an odd number of bosons

always vanish, it must be possible to eliminate all terms in the action that have an odd

number of boson fields by field redefinitions. At the leading nontrivial order, the analysis

in section 2.1 of [10] implies that this is the case for the D3 theory. Otherwise, this issue

does not seem to have been explored.

In the case of the D3 theory, the extra U(1) R symmetry, discussed earlier, implies

that only the helicity-conserving sector, with

d = d̃ =
n

2
− 1, (4.17)
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is nonvanishing. The number of solutions of the scattering equations that contribute to

this sector is N1,1 = 1 for n = 4, N2,2 = 4 for n = 6, N3,3 = 66 for n = 8, N4,4 = 2416 for

n = 10 and so forth. These numbers are a significant fraction of (n− 3)!.

As indicated in eq. (4.1), one should mod out the volume of G = SL(2,C)×GL(1,C),

where SL(2,C) acts on the σi’s and GL(1,C) acts on the ρ’s and χ’s. In practice, we may

fix any three σi’s (for instance σ1, σ2, σ3) and one ρ (for instance ρ10) to arbitrary values,

with the compensating Jacobian

JSL(2,C)×GL(1,C) = ρ10 (σ1 − σ2)(σ2 − σ3)(σ3 − σ1) . (4.18)

We note that the integral formula is not a “true integral”, in the sense that the number of

bosonic delta-functions is equal to the number of integration variables (after taking account

of the G symmetry). This is not a surprise, of course, since we know that tree amplitudes

are entirely algebraic.

As mentioned earlier, the counting of bosonic delta functions is as follows: the 4n

bosonic delta-functions in ∆B give rise to n delta functions for mass-shell conditions in

the coefficient of An in eq. (4.10) and four more for momentum conservation, δ4(
∑n

1 p
µ
i ),

which are included in An. The remaining 3n − 4 delta functions determine the (n − 3)

σ’s and (2n − 1) ρ’s that survive after modding out by the volume of G. The Jacobian

that arises from these evaluations is computed explicitly in the appendix A. Also, there

are 8n fermionic delta functions in ∆F and 2n fermionic integrations in dM, leaving an

expression of order 6n in fermionic coordinates. 4n of these appear in the coefficient of

An in eq. (4.10). Therefore the remaining 2n η’s must be in An. In fact, half of them are

η+’s and half are η−’s. This is the number that we argued earlier are required (in this

representation) by the U(1) factor in the R symmetry group of this theory.

The powers of momenta that appear in An can also be checked. In theories of Born-

Infeld type, such as we are considering, one expects that Tn ∼ pn. In four dimensions this

implies that An ∼ pn−4 and An ∼ p3n−4. The latter, given for the D3 theory in eq. (4.1),

contains pn from the measure, p−4n from ∆B, p4n from ∆F , and p2n−4 from det′ Sn. These

combine to give p3n−4, as desired.

Appendix A describes the Jacobian factor generated by pulling out the “wave func-

tions” and the momentum conservation delta function. Using these results for the Jacobian,

we have checked explicitly that eq. (4.1), with I = det′Sn, reproduces the four-point am-

plitude of the D3 theory given in eq. (3.19) as well as the six-point super amplitudes, which

may be found in [22]. The appendix also contains the proof that the amplitudes have SU(4)

R symmetry (in addition to the U(1) already demonstrated).

5 n-particle amplitudes of the M5 theory

5.1 The proposed formula

This section generalizes the twistor-string-like formula of the D3 theory in eq. (4.1) to the

M5 theory with (2, 0) supersymmetry in 6D. The n-particle tree-level scattering amplitude
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for this theory takes the form

An =

∫
dnσ dM
Vol(G)

∆B(p, ρ) ∆F (q, ρ, χ) det′Sn U(ρ, σ), (5.1)

where

∆B(p, ρ) =

n∏
i=1

δ6
(
pABi − ρAa (σi)ρ

Ba(σi)

Pi(σ)

)
(5.2)

and

∆F (q, ρ, χ) =

n∏
i=1

δ8
(
qAIi −

ρAa (σi)χ
Ia(σi)

Pi(σ)

)
. (5.3)

These delta functions are the natural (2, 0) generalization of the corresponding D3 formulas.

The factor det′Sn is unchanged from the D3 case, since it is a sensible function of the

invariants sij for any space-time dimension. A crucial requirement for the M5 theory

amplitudes is that they reproduce the D3 amplitudes under dimensional reduction. The

additional factor U(ρ, σ) will be determined by this requirement and 6D Lorentz invariance

later in this section.

The M5 analog of the D3 formula in eq. (4.10) is

An =

(
n∏
i=1

δ(p2i )δ
4
(
λ̂iAâq

AI
i

))
An . (5.4)

The bosonic delta functions ∆B imply that the n particles are massless and allow us to

introduce spinors λAa and λ̂Aâ for all the momenta, each of which is unique up to little-group

transformations, as explained in section 3.2. The fermionic delta functions ∆F imply that

λ̂Aâq
AI should vanish, which accounts for the delta functions given above. The vanishing

of λ̂Aâq
AI also implies that qAI can be expressed as qAI = λAa η

Ia due to eq. (2.18). On

reduction to 4D these fermionic delta functions account for the fermionic delta functions

that appear in eq. (4.10).

Also by analogy with the D3 theory, ρAa (σ) and χIa(σ) are bosonic and fermionic poly-

nomials of degree d

ρAa (σ) =

d∑
m=0

ρAm,aσ
m , χIa(σ) =

d∑
m=0

χIm,aσ
m , (5.5)

and the measure dM for the M5 case is given by

dM =

d∏
m=0

d8ρAm,a d
4χIm,b , (5.6)

where d = n
2 − 1, just as in the D3 theory. The symmetry that needs to be gauge fixed

is now

G = SL(2,C)× SL(2,C). (5.7)
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The first SL(2,C) factor, which concerns the usual modular symmetry transformations of

the σ coordinates, removes the integration over three σi’s. This symmetry will be verified

later. The second SL(2,C) factor, which is the complexification of the SU(2) little group

of the M5 theory, removes three ρ integrations.

The bosonic delta functions completely fix the integration variables, as in the 4D case,

leaving a sum over the solutions of the scattering equations. Specifically, the 6n bosonic

delta functions give rise to n on-shell conditions p2i = 0 and 6D momentum conservation

leaving (5n − 6) bosonic delta functions. Since the σi’s and ρAm,a’s are constrained by

G = SL(2, C)× SL(2, C), there are (n− 3) σi’s and (4n− 3) ρAm,a’s to be integrated, which

is the right number to be fixed by the remaining (5n − 6) delta functions. The proof of

momentum conservation and the scattering equations is essentially the same as described

for the D3 theory in appendix A.1.

The gauge-fixing Jacobian for the first SL(2,C) factor is (σ1−σ2)(σ2−σ3)(σ3−σ1) as

usual. The one for the second SL(2,C) factor will be discussed later. These symmetries, as

well as other properties, will be verified after we have made a specific proposal for U(ρ, σ).

It will be determined by considering dimensional reduction to 4D, with the final result

shown in eq. (5.31) or equivalently eq. (5.34).

In contrast to the 4D case, the polynomials ρAa(σ) and χIa(σ) are required to have

degree d = n
2 − 1 due to the SU(2) little-group symmetry. Thus, the solutions of the

scattering equations, which are implied by ∆B(p, ρ) = 0, cannot be subdivided into sectors.

There is only one sector, which we find interestingly already contains all (n−3)! solutions of

the scattering equations. (This assertion has been checked explicitly for n = 4, 6, 8.) When

reduced to 4D massless kinematics and for the D3 theory, only a subset of the (n − 3)!

solutions contributes, namely those Nd,d helicity-conserving solutions.

We have checked explicitly that eq. (5.31) correctly reproduces the amplitudes with

lower multiplicities, such as the four-particle amplitude that was discussed previously. As

we discussed, to extract the amplitudes, one should take out the “wave functions” from

∆B and ∆F defined in eq. (5.2) and eq. (5.3)

A4 =

(
4∏
i=1

δ(p2i )δ
4
(
λ̂iAâq

AI
i

))
A4 , (5.8)

and one can further extract the momentum and (half of the) supercharge conservation

delta functions, namely,

A4 = δ6

(
4∑
i=1

pABi

)
δ8

(
4∑
i=1

qAIi

)
× J4,BJ4,F × I4 . (5.9)

The factors J4,B and J4,F are Jacobians, generated in this process, which can be found in

appendix A. Finally, I4 is an integral over the remaining delta functions,

I4 =

∫
d4σ dM4

Vol(G)

2∏
i=1

δ5
(
pABi − ρAa (σi)ρ

Ba(σi)

Pi(σ)

)
δ4
(
pAB4 − ρAa (σ4)ρ

Ba(σ4)

P4(σ)

)
(5.10)

×
2∏
i=1

δ2
(
q1Ii −

ρ1a(σi)χ
Ia(σi)

Pi(σ)

)
δ2
(
q3Ii −

ρ3a(σi)χ
Ia(σi)

Pi(σ)

)
det′S4 U(ρ, σ)
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with {A,B} 6= {3, 4} for the five-dimensional delta-functions, and the four-dimensional one

has {A,B} 6= {3, 4}, {1, 3}. The result is of course independent of the choice of {A,B}
which are singled out to be special here. Performing the integral,3 and using U(ρ, σ) given

in eq. (5.29) and eq. (5.32) or equivalently eq. (5.35), we find that I4 precisely cancels the

Jacobian factors J4,BJ4,F , leaving

A4 = δ6

(
4∑
i=1

pABi

)
δ8

(
4∑
i=1

qAIi

)
, (5.11)

which is the result that was obtained in the previous section.

Higher-point amplitudes in the M5 theory have not appeared in the literature to our

knowledge. However, amplitudes with scalars are constrained by soft theorems (as we will

describe in a later subsection), and some of them are completely determined by recursion

relations [39]. For instance, pure-scalar amplitudes are fixed in terms of the four-point ones.

We have tested numerically that eq. (5.31) indeed reproduces such amplitudes correctly for

n = 6, 8. Those results, combined with supersymmetry and R symmetry, which we have

explicitly checked for six and eight particles in appendix B.2, imply that eq. (5.31) should

be valid for the entire supermultiplet for n = 6, 8. It seems very likely that they are correct

for all n, as we find evidence supporting this in the following sections.

5.2 Reduction to four dimensions

This subsection will determine the constraint on U(ρ, σ) in eq. (5.31) that arises from

requiring that its reduction to 4D cancels the Jacobian that is generated by the dimensional

reduction of the M5 amplitude to 4D. So the key step is to evaluate the relevant Jacobian.

What dimensional reduction does is to set two components of the six-component momenta

equal to zero. In our conventions this means p12i → 0 and p34i → 0. This can be implemented

by inserting

∫
dp12n dp

34
n

n−1∏
i=1

dp12i dp
34
i δ(p

12
i )δ(p34i ) (5.12)

into the formula for the n-particle amplitude of the M5 theory in eq. (5.31). Note that

δ(p12i )δ(p34i ) is only inserted for n − 1 particles, even though the integration is over all n

particles, because momentum conservation in 6D ensures that p12n = p34n = 0 as well, if p12i =

p34i = 0 for i = 1, 2, . . . , n−1. Since dimensional reduction requires setting λ1i,− = λ2i,− = 0

and λ3i,+ = λ4i,+ = 0, therefore we should integrate out the corresponding ρ1m,−, ρ
2
m,−

and ρ3m,+, ρ
4
m,+. Due to the fact that only the middle sector contributes to the scattering

amplitudes of the D3 theory, we will focus on that sector only in the following computations.

Explicitly, we have that the M5 amplitudes given in eq. (5.31) reduce to 4D amplitudes of

3This means solving for the σ’s and ρ’s using the bosonic delta functions, together with gauge fixing

the symmetry G, and integrating over the eight fermionic variables χI
m,a using the eight fermionic delta

functions.
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the form given in eq. (4.1), where the factor I is given by

IR =

∫ ∏d
m=0 dρ

1
m,−dρ

2
m,−dρ

3
m,+dρ

4
m,+

Vol(SL(2,C))
dp12n dp

34
n

n−1∏
i=1

dp12i dp
34
i δ(p

12
i )δ(p34i )

×
n∏
i=1

δ

(
p12i −

ρ1a(σi)ρ
2a(σi)

Pi(σ)

)
δ

(
p34i −

ρ3a(σi)ρ
4a(σi)

Pi(σ)

)
det′Sn U(ρ, σ) . (5.13)

The goal here is to determine the condition on U(ρ, σ) that will ensure that IR = IDBI =

det′Sn. Here the SL(2,C) group is the one that acts on the little-group indices that will

be reduced to U(1) after the dimensional reduction.

The trivial n− 1 integrations over p12i and p34i give

IR =

∫ ∏d
m=0 dρ

1
m,−dρ

2
m,−dρ

3
m,+dρ

4
m,+

Vol(SL(2,C))
dp12n dp

34
n

n−1∏
i=1

δ

(
ρ1a(σi)ρ

2a(σi)

Pi(σ)

)
δ

(
ρ3a(σi)ρ

4a(σi)

Pi(σ)

)
×δ
(
p12n −

ρ1a(σn)ρ2a(σn)

Pn(σ)

)
δ

(
p34n −

ρ3a(σn)ρ4a(σn)

Pn(σ)

)
det′Sn U(ρ, σ) . (5.14)

The delta functions force ρ1a(σi)ρ
2a(σi) and ρ3a(σi)ρ

4a(σi) to vanish for i = 1, 2, · · · , n−1.

However, ρ1a(σ)ρ2a(σ) and ρ3a(σ)ρ4a(σ) are polynomials of degree 2d = n−2

ρ1a(σ)ρ2a(σ) =
2d∑
m=0

c12m σm , ρ3a(σ)ρ4a(σ) =
2d∑
m=0

c34m σm , (5.15)

where

c12m =

m∑
m′=0

ρ1m′,aρ
2,a
m−m′ , c34m =

m∑
m′=0

ρ3m′,aρ
4,a
m−m′ , m = 0, 1, . . . , 2d. (5.16)

Because the degree of these polynomials is less than the n − 1 required roots, we con-

clude that all of the coefficients c12m and c34m should vanish. Since this also implies that

ρ1a(σn)ρ2a(σn) = 0 and ρ3a(σn)ρ4a(σn) = 0, the integrations over p12n and p34n in eq. (5.14)

are trivial.

The formula for IR now contains 2n− 2 delta functions, but there are 2n integrations,

so we should use SL(2,C) to fix two of them. This leaves a U(1) unfixed, as expected.

Let us now perform the integrations over ρ1m,− and ρ2m,− as well as ρ3m,+ and ρ4m,+ ex-

plicitly. A convenient method is to change the integration variables to the coefficients c12m
defined previously,∏d

m=0 dρ
1
m,−dρ

2
m,−dρ

3
m,+dρ

4
m,+

Vol(SL(2,C))

n−1∏
i=1

{
[Pi(σ)]2 δ

(
n−2∑
m=0

c12mσ
m
i

)
δ

(
n−2∑
m=0

c34mσ
m
i

)}

= V 2(σ)

∏d
m=0 dρ

1
m,−dρ

2
m,−dρ

3
m,+dρ

4
m,+

Vol(SL(2,C))

n−2∏
m=0

δ(c12m )δ(c34m )

= JC JSL(2,C) V
2(σ) dρ2d,−dρ

4
d,+

n−2∏
m=0

dc12mdc
34
m

n−2∏
m=0

δ(c12m )δ(c34m ) , (5.17)
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where

V (σ) =
∏
i>j

σij =
n∏
i=2

i−1∏
j=1

σij (5.18)

is the Vandermonde determinant. It arose from the following combination of factors:

V (σ) =
1

Vn(σ)

n−1∏
i=1

Pi(σ), (5.19)

where

Vn(σ) = detσmi = V (σ)/Pn(σ), (5.20)

and

V 2(σ) =
n∏
i=1

Pi(σ). (5.21)

There are no minus sign issues, since n is even.

The factor JSL(2,C) is due to gauge-fixing the SL(2,C) symmetry of the complexified

little-group symmetry. We have chosen to gauge fix ρ2d,−, ρ
4
d,+ and ρ2d,+, and thus the

Jacobian due to the gauge-fixing of the complexified SU(2) symmetry is given by

JSL(2,C) = ρ4d,−(ρ2d,+ρ
4
d,− − ρ2d,−ρ4d,+) . (5.22)

The factor JC is the Jacobian that arises due to the change of variables from ρ coor-

dinates to c coordinates. It contains a product of two resultants, and it is given by

J−1C = ρ2d,+ρ
4
d,−R(ρ1+, ρ

2
+)R(ρ3−, ρ

4
−) . (5.23)

The resultant has appeared previously in a twistor-string-like formulation of scattering

amplitudes in various theories [29, 40], and include the D3 theory [12]. Its crucial property

is that it vanishes if and only if the two polynomials ρAa (σ) and ρBa (σ) have a root in

common.

A resultant of the form R(ρAa , ρ
B
a ), where ρAa and ρBa are both polynomials of degree

d, is given by the determinant of a Sylvester matrix M
(2d)
a (A,B),

R(ρAa , ρ
B
a ) = detM (2d)

a (A,B). (5.24)

In particular, R(ρ1+, ρ
2
+) = detM

(2d)
+ (1, 2) is the resultant of the pair of degree d = n

2 − 1

polynomials

ρ1+(σ) =
d∑

m=0

ρ1m,+σ
m , ρ2+(σ) =

d∑
m=0

ρ2m,+σ
m . (5.25)
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Explicitly, the Sylvester matrix M
(2d)
a (A,B) is given by

M (2d)
a (A,B) =



ρA0,a ρ
A
1,a ρ

A
2,a · · · · · · ρAd,a 0 · · · 0

0 ρA0,a ρ
A
1,a · · · · · · ρAd−1,a ρAd,a · · · 0

...
... · · · · · ·

...
...

... · · ·
...

0 0 · · · ρA0,a ρA1,a · · · · · · ρAd−1,a ρAd,a
ρB0,a ρ

B
1,a ρ

B
2,a · · · · · · ρBd,a 0 · · · 0

0 ρB0,a ρ
B
1,a · · · · · · ρBd−1,a ρBd,a · · · 0

...
... · · · · · ·

...
...

... · · ·
...

0 0 · · · ρB0,a ρB1,a · · · · · · ρBd−1,a ρBd,a


. (5.26)

For instance, for n = 6 or d = 2, the Sylvester matrices are 4 × 4,

M (4)
a (A,B) =


ρA0,a ρ

A
1,a ρ

A
2,a 0

0 ρA0,a ρ
A
1,a ρ

A
2,a

ρB0,a ρ
B
1,a ρ

B
2,a 0

0 ρB0,a ρ
B
1,a ρ

B
2,a

 . (5.27)

To exhibit the residual U(1) little-group symmetry in 4D, we may set ρ2d,− = ρ4d,+ = 0

using partly the complexified 6D little-group symmetry SL(2,C). Now we see that all the

factors are exactly canceled, except for ρ4d,−, which is precisely the Jacobian for the gauge-

fixing of the left-over U(1) symmetry of the 4D theory. Furthermore, the fermionic delta

functions of (2, 0) supersymmetry also reduce to the 4D ones, without any complications.

Thus, the proposed formula for the M5 amplitude in eq. (5.1) reduces to the D3 amplitude in

eq. (4.10) under dimensional reduction provided that the factor U(ρ, σ) reduces according to

U(ρ, σ)→ V −2(σ)R(ρ1+, ρ
2
+)R(ρ3−, ρ

4
−) (5.28)

in 4D.

5.3 The extra factor U(ρ, σ)

To complete the construction of the M5 amplitudes, we need to determine the extra factor

(relative to the D3 formula) U(ρ, σ). We have just learned what it should give when reduced

to 4D. This goes a long way towards determining it. We claim that the σ and ρ dependence

factorizes already in 6D, so that

U(ρ, σ) = V −2(σ)R(ρ) . (5.29)

Note that V −2 has total symmetry in the n σi’s. As will be verified later, V −2 transforms

under SL(2,C) in the way required to compensate for the additional bosonic coordinates

in the M5 theory. The factor R(ρ) should scale like p2d or ρ4d and on reduction to 4D it

should give the product of resultants R(ρ1+, ρ
2
+)R(ρ3−, ρ

4
−). This expression does not have

6D Lorentz invariance or little-group symmetry, so it must be embellished by additional

pieces that vanish upon dimensional reduction.
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The crucial observation is that the product of resultants R(ρ1+, ρ
2
+)R(ρ3−, ρ

4
−) can be

expressed in terms of Pf ′Sn and the Vandermonde determinant V (σ) [12],

R(ρ1+, ρ
2
+)R(ρ3−, ρ

4
−) = Pf ′Sn V (σ) . (5.30)

The above relation is valid for ρ and σ under the constraints of the helicity-conserving

sector, eq. (4.17), which is the case here. As functions of sij and σi, now both Pf ′Sn and

V (σ) can be lifted to 6D straightforwardly without violating Lorentz invariance.

This leads to our proposal for all tree-level scattering amplitudes of the M5 theory,

An =

∫
dnσ dM
Vol(G)

∆B(p, ρ) ∆F (q, ρ, χ)

(
Pf ′Sn

)3
V (σ)

, (5.31)

which is the main result of the paper. This formula reduces to the D3 amplitude in

eq. (4.10) correctly, and it also has many other correct properties that we will discuss

shortly. Importantly, eq. (5.31) produces known amplitudes as we mentioned.

Alternatively, one can use the definition of the resultant in terms of Sylvester matrix in

eq. (5.26). With that, a different possible uplift to 6D is realized by a natural generalization

of the resultant and Sylvester matrix. They are given by,

R(ρ) = detM (4d), (5.32)

where M (4d) is the following 4d× 4d matrix, a generalization of Sylvester matrix,

M (4d) =

M (2d)
+ (1, 2) M

(2d)
− (1, 2)

M
(2d)
+ (3, 4) M

(2d)
− (3, 4)

 . (5.33)

The subscripts + and − are little-group indices, whereas SU(4) Lorentz indices, A =

1, 2, 3, 4, are shown in parentheses. The four submatrices in M (4d) are 2d × 2d matrices,

which take the form of Sylvester matrices. Upon dimension reduction, the off-diagonal

matrices of M (4d) vanish, and thus R(ρ) also has the required reduction to 4D. So in terms

of R(ρ), the scattering amplitudes of M5 theory then take an alternative form,

An =

∫
dnσ dM
Vol(G)

∆B(p, ρ) ∆F (q, ρ, χ) det′Sn
R(ρ)

V 2(σ)
. (5.34)

In fact, like the case of 4D where the resultant is related to Pf ′Sn and the Vandermonde

determinant V (σ), we find that, under the support of delta function constraint ∆B, R(ρ)

defined in eq. (5.32) is related to Pf ′Sn and V (σ) in the same way, namely,

R(ρ) = Pf ′Sn V (σ) . (5.35)

Plugging this result into eq. (5.34) reproduces eq. (5.31). Therefore these two different

approaches actually lead to the same result.

Although the quantity R(ρ) can be re-expressed in terms of Pf ′Sn and V (σ) on the

support of delta-function constraints, it may still be of interest on its own right. Let us make

a few comments on it here before closing this subsection. It is straightforward to show that
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R(ρ) is invariant under little-group and Lorentz-group transformations, which together

act on R(ρ) as SL(2,C) × SL(4,C). A natural generalization would be invariant under

SL(k,C)× SL(2k,C), and it would relate 2k2 polynomials of degree d, which transform as

bifundamentals. The generalization to k > 2 may be relevant for scattering amplitudes of

the D-brane theories in dimension greater than six. We will leave this for the future study.

The usual resultant, which corresponds to k = 1, vanishes whenever the two polynomials

have a common zero. It would be interesting to know the generalization of this statement

when k > 1. In any case, these remarks suggest introducing the alternative notation

R
(k)
d (ρ) = detM

(k)
d , where the matrix M

(k)
d has 2kd rows and columns. However, we will

not utilize that notation in this manuscript.

5.4 SL(2,C) modular symmetry

Let us examine whether eq. (5.31) has the correct SL(2,C) modular symmetry under the

transformations of the form

σ′i =
a σi + b

c σi + d
with ad− bc = 1 . (5.36)

Let us begin with the rescaling symmetry, σi → a σi, where a is a nonzero complex number

(the square of the preceding a with b = c = 0). To maintain the same delta functions,

∆B(p, ρ) and ∆F (q, ρ, χ) in eqs. (5.2) and (5.3), we rescale

ρAam → a
n−1
2
−mρAam , χIam → a

n−1
2
−mχIam . (5.37)

With this rescaling

V −1(σ) → a−
n2

2
+n

2 V −1(σ), (5.38)

Pf ′Sn → a−
n
2 Pf ′Sn, (5.39)

n∏
i=1

dσi → an
n∏
i=1

dσi, (5.40)

d∏
m=0

d8ρAam d4χIam → a
n2

2

d∏
m=0

d8ρAam d4χIam . (5.41)

Thus all the factors of a cancel out, and scale invariance is verified.

Next let us consider inversion, σi → −1/σi.
4 First we note that

Pi(σ)→
( n∏
j=1

σ−1j

)
σ2−ni Pi(σ). (5.42)

Therefore, we rescale ρAam and χIam to keep the delta functions unchanged by

ρAam → (−1)m

(
n∏
j=1

σ
−1/2
j

)
ρAad−m , χIam → (−1)m

(
n∏
j=1

σ
−1/2
j

)
χIad−m . (5.43)

4The minus sign is unnecessary, because we could set a = −1 in the preceding scaling symmetry, but it

reduces the need to keep track of minus signs.
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Under such rescalings, we have,

V (σ)→

(
n∏
j=1

σ1−nj

)
V (σ) (5.44)

and

Pf ′Sn →

(
n∏
j=1

σj

)
Pf ′Sn , (5.45)

while the measure behaves as

n∏
i=1

dσi

d∏
m=0

d8ρAam d4χIam →

(
n∏
j=1

σ−n−2j

)
n∏
i=1

dσi

d∏
m=0

d8ρAam d4χIam . (5.46)

Combine all the contributions, the invariance under inversion becomes clear.

Finally, let us consider translation, σi → σi + b. This leaves V (σ), Pi(σ), and Pf ′An
invariant. So we let ρ→ ρ′ and χ→ χ′ such that

d∑
m=0

ρAam (σi + b)m =

d∑
m=0

ρ′Aam σmi ,

d∑
m=0

χIam (σi + b)m =

d∑
m=0

χ′Iam σmi . (5.47)

It is easy to see that the integration measures are also invariant under this transformation,

since the Jacobian is the determinant of a triangular matrix with 1’s on the diagonal.

5.5 Factorization

The formula for the amplitude An in eq. (5.31) is an integral over sets of polynomials

ρAa (σ) and χIa(σ) of degree d = n
2 − 1. To study the multi-particle factorization behavior

of the amplitudes, one may take a limit on the moduli space such that the higher-degree

polynomials degenerate into products of lower-degree ones [41–43]. Specifically, there is a

“left” factor containing polynomials of degree dL = nL
2 − 1 and a “right” factor containing

polynomials of degree dR = nR
2 −1, where dL+dR = d or nL+nR = n+ 2. To achieve this

goal, we introduce a parameter s that approaches zero in the desired limit and perform the

following rescaling of the ρm’s5

ρm → tL s
dL−mρL,dL−m , for m = 0, 1, . . . , dL

ρm → tR s
m−dLρR,m−dL , for m = dL, dL + 1, . . . , d, (5.48)

with

t2L = (−1)n−1s−2dR−1
∏
i∈R σi∏
i∈L σi

(5.49)

and

t2R = s−2dR−1, (5.50)

5We thank Ellis Yuan for a discussion about the factorization limit.
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where L or R denotes the set of particles on the left- or right-hand side of a factoriza-

tion channel.

We will show that the left-hand side of the factorization channel has polynomials of

degree dL and the right-hand side has polynomials of degree dR . Accordingly, we rename

the ρ’s as either ρL or ρR. Note ρdL appears on both sides, but we separate it into two

coordinates by setting ρdL = ρL,0 and ρdL = ρR,0, and introducing
∫
dρL,0δ(ρL,0 − ρR,0).

Now for the σi’s, we make the replacements

σi →
s

σi
, for i ∈ L

σi →
σi
s
, for i ∈ R (5.51)

In the limit s → 0, a degree-d polynomial degenerates into a product of degree dL or dR
polynomials, depending on whether the particle is on the left- or the right-hand side, namely

ρAa (σi) =
d∑

m=0

ρAam σmi → ρAL,a(σi) =

dL∑
m=0

ρAaL,mσ
m
i for i ∈ L ,

ρAa (σi) =

d∑
m=0

ρAam σmi → ρAR,a(σi) =

dR∑
m=0

ρAaR,mσ
m
i for i ∈ R . (5.52)

It is also straightforward to see that the delta functions reduce to the corresponding lower-

point delta functions, namely,

pABi −
ρAa (σi)ρ

Ba(σi)

Pi(σ)
= 0→ pABi −

ρAL,a(σi)ρ
Ba
L (σi)

PL,i(σ)
= 0 , or pABi −

ρAR,a(σi)ρ
Ba
R (σi)

PR,i(σ)
= 0

(5.53)

depending on whether σi is on the left or the right. If i ∈ L, PL,i(σ) = (0− σi)
∏nL
j 6=i(σji),

where “0” is the value of the σ coordinate associated to the internal line in the factorization,

and similarly for i ∈ R.

It is important that the integrand and the integration measure factorize correctly, and

this is straightforward to see for the measure. On the other hand, the building blocks

of the integrand, the Vandermonde determinant V (σ) and Pf ′Sn, have already appeared

in literature in the construction of scattering amplitudes in other theories; they are also

known to factorize correctly. Alternatively for the proposal eq. (5.34), we find the new

mathematical object we constructed, Rn(ρ), also factorizes properly in the s→ 0 limit,

Rn(ρ0, ρ1, . . . , ρd) → t4dLL t4dRR s2(d
2
L+d

2
R)RnL(ρL,0, ρL,1, . . . , ρL,dL) (5.54)

×RnR(ρR,0, ρR,1, . . . , ρR,dR).

Here the subscript of ρm denotes the index m of ρA,am , and we have suppressed Lorentz and

little-group indices A and a

Finally, because P 2
L ∼ s2 in the limit s→ 0 at a factorization pole 1/P 2

L, the amplitude

should go as ds2/s2 [43]. By collecting all of the s factors arising from the integration

measure and the various factors in the integrand, we have verified that this is indeed the

case. Thus, the general formula eq. (5.31) has the required factorization properties for a

tree-level scattering amplitude.
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5.6 Soft theorems

As we discussed previously, the five scalars of the M5 theory are Goldstone bosons arising

from spontaneous breaking of 11D Lorentz symmetry. More specifically, the relevant broken

symmetries are translations in the five spatial directions that are orthogonal to the M5-

brane. Let us now study how the scattering amplitudes of the M5 theory behave in soft

limits, i.e.,in the limit where the momentum pAB of a Goldstone boson vanishes. As shown

in [44], amplitudes involving such scalars have enhanced soft behavior [45], specifically

A(p1, · · · , pn−1, τpn) ∼ O(τ2) , (5.55)

where particle n is a scalar, with momentum τpn, and the soft limit is realized by τ → 0. Of

course, some of the other momenta should also depend on τ , so as to maintain momentum

conservation and masslessness.

We claim that the amplitudes obtained from general formula in eq. (5.31) indeed have

this enhanced soft behavior. In particular, if we rescale λA,an = τ1/2 λA,an , so that the

momentum pn is replaced by τ pn, we find that the various pieces that contribute to the

amplitude scale as follows

(Pf ′S)3 ∼ τ3, JB ∼ τ−1 , JF ∼ τ0 , (5.56)

and the rest, including the Vandermonde determinant V (σ), scales as τ0 in the soft limit.

As discussed in appendix A.2, JB and JF are Jacobians that arise from extracting various

“wave functions” and momentum-conservation delta functions, and from performing inte-

grations over σ’s, ρ’s, and χ’s. JF also depends on the fact that we are considering a scalar

component of the supermultiplet. Altogether, we obtain the expected O(τ2) behavior of

the amplitudes in the M5 theory.

Just for the comparison, in the case of the D3 theory, in the soft limit each piece in

eq. (4.1) behaves as

det′S ∼ τ2, JB ∼ τ0 , JF ∼ τ0 . (5.57)

In total, the amplitudes again scale correctly, namely as O(τ2).

We can also study how the amplitudes behave in the double-soft limit, where we let

two momenta approach zero simultaneously, say, pn+1 → τpn+1 and pn+2 → τpn+2 with

τ → 0. For simplicity, here we only consider the leading soft theorems. The result of the

double-soft limit depends on the species of particles involved as shown here

An+2(φ, φ̄) =

n∑
i=1

(sn+1 i − sn+2 i)
2

(sn+1 i + sn+2 i)
An + . . . , (5.58)

An+2(ψa, ψ̃b) =

n∑
i=1

〈(n+1)a (n+2)b i+ i−〉
(sn+1 i − sn+2 i)

(sn+1 i + sn+2 i)
An + . . . ,

An+2(Ba1b1 , Ba2b2) =

n∑
i=1

〈(n+1)a1 (n+2)a2 i+ i−〉〈(n+1)b1 (n+2)b2 i+ i−〉
(sn+1 i + sn+2 i)

An + . . . .
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The soft particles φ, φ̄ (and ψ, ψ̃) are conjugate to each other to form an R-symmetry singlet.

The ellipsis denotes higher-order terms in the soft limit, and the lower-point amplitude An
is the amplitude with the two soft particles removed. In the case of soft theorems for B

fields, on the right-hand side one should symmetrize the little-group indices a1, b1 and a2, b2.

The double-soft theorems for the scalars and fermions agree with the known result [44]

derived from the Ward identity for scalars that are Goldstone bosons of spontaneously

broken higher-dimensional Lorentz symmetry, while the fermions are Goldstinos of broken

supersymmetries. The double-soft theorems for B fields are new; it would be of interest to

study the corresponding symmetries. If we choose both of the soft B fields to be B+− and

reduce to 4D, we obtain the double-soft result for scalars as in the first line of eq. (5.58).

If, instead, we take the two soft B fields to be B−− and B++, and reduce to 4D, we obtain

the double-soft theorem for photons in Born-Infeld theory, namely

An+2(γ+, γ−) =

n∑
i=1

[n+1 i]2〈n+2 i〉2

(sn+1 i + sn+2 i)
An + . . . , (5.59)

which agrees with what was found in [11]. Similarly, the double-soft theorem for fermions

reproduces that of Volkov-Akulov theory upon reduction to 4D [46]. To obtain these results

we have applied the following identities for the dimensional reduction 6D → 4D, according

to our convention,

〈k+l+i−j−〉 → −〈k l〉[i j] , [k+l+i−j−]→ −〈k l〉[i j] ,
〈i−j−k−l±〉 → 0 , 〈i+j+k+l±〉 → 0 , (5.60)

[i−j−k−l±]→ 0 , [i+j+k+l±]→ 0 .

5.7 Six- and eight-particle amplitudes of the M5 theory

As an application of the n-particle amplitude in eq. (5.31), this section presents analytic

results for some specific amplitudes of the M5 theory, namely six- and eight-particle ampli-

tudes of self-dual B fields. To our knowledge, these amplitudes have not been presented in

the literature before. The use of spinor-helicity variables circumvents the usual difficulties

associated to the lack of a manifestly covariant formulation of the M5-brane action. Still,

it is not easy to directly compute any higher-point amplitudes analytically, especially due

to the fact that the scattering-equation constraints are high-degree polynomial equations

whose solutions are rather complicated. The approach that we have used to obtain analytic

results is to write down an ansatz with unknown coefficients for the amplitude of interest,

and then to fix the coefficients by comparing the ansatz with the result obtained from the

general formula in eq. (5.31).

Let us begin with the six-particle amplitude of B++. Recall that the B particles form

a triplet of the SU(2) helicity group. B++ corresponds to the J3 = 1 component of this

triplet. (The other two components are B+− = B−+ and B−−.) The ansatz clearly should

have correct factorization properties. Specifically, the amplitude should contain poles at
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which the residue factorizes as a product of two four-point amplitudes,

A(B++, B++, B++, B++, B++, B++)

→
∑
a,b

AL(B++, B++, B++, Bab)AR(B̄ab, B++, B++, B++)

P 2
L

. (5.61)

The summation over a, b denotes the fact that the internal Bab can be B++, B−− and B+−,

whereas B̄ab is the conjugate. Here we have used the fact that A(B++, B++, B++, Bab) are

the only non-vanishing four-point amplitudes involving three B++’s allowed by R symmetry.

Recall the known result of A(B++, B++, B++, Bab), given in section 2.1,

A(B++, B++, B++, Bab) = 〈1+ 2+ 3+ 4a〉〈1+ 2+ 3+ 4b〉 . (5.62)

where we have used the bracket notation defined in eq. (3.5). Using the results of eq. (5.61)

and eq. (5.62), it is straightforward to write an ansatz that has the correct factoriza-

tion properties,

A(B++, B++, B++, B++, B++, B++) =
1

s123

(
3∑
i=1

〈1+ 2+ 3+ ia〉〈ia 4+ 5+ 6+〉

)2

+P6 (5.63)

here P6 means summing over all ten factorization channels (nine in addition to the one

that is shown).

The ansatz in eq. (5.63) is the simplest guess that has the correct factorization and

little-group properties, and it ends up being correct. It is instructive to see how one arrives

at this conclusion using Feynman diagrams without recourse to an action. At the poles

we can represent the six-point amplitude in eq. (5.63) as a sum of exchange diagrams that

are the product of four-point amplitudes and an internal propagator. These diagrams are

shown in figure 1.

In evaluating these diagrams, one must sum over all exchange channels as well as all

fields allowed to propagate on the internal lines. As we have explained, only B++, B−−,

or B+− = B−+ can be exchanged. The pure positive and negative helicity states are

conjugates of each other, and as with chiral fermions we use an arrow to distinguish them

from the neutral helicity.

The sum of such diagrams must be invariant under the little group of the internal

particle, and this ends up being the case due to a subtlety in the spinor-helicity formalism.

This “glitch” in the spinor-helicity formalism as discussed for 6d SYM in [33] is that the

spinors cannot distinguish particles and antiparticles, which causes issues for diagrams with

fermions. A new feature of 6d chiral self-dual tensors is that the tensor field itself has this

issue with the B++ and B−− polarizations. The resolution, as outlined in [33], is to add

extra factors of i to the spinor-helicity variables when we flip the sign of the momentum

for either of these fields:

λAa (−p) = iλAa (p) (5.64)

so that the momentum is properly

λAa (−p)λBa(−p) = −pAB . (5.65)
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B++
B++

B++

B++

B++

B++

B++

B−−
B++

B++

B++

B++

B++

B++

B+−
B++

B++

B++

B++

B++

B++

Figure 1. Exchange diagrams contributing to the 6 B++ amplitude. The internal line may be

any of the three states, and we sum over all the factorization channels as well. It is important to

note that these diagrams do not come directly from Feynman rules as there is no covariant action

available for the M5 theory; instead, they represent the factorization of the amplitude at the poles

where sijk → 0.

This introduces additional minus signs for a four-particle amplitude of the form

A(B++(+p1), B++(+p2), B++(+p3), B±±(−p)) = 〈1+ 2+ 3+ iλ±〉〈1+ 2+ 3+ iλ±〉 . (5.66)

Applying this recipe to the exchange diagrams of figure 1, one is led directly to eq. (5.63),

which does not depend on the little-group structure of the internal line, as it should be.

Of course, eq. (5.63) might not be the final result, since it could differ from the correct

answer by terms that have no poles (thought of as a 6-particle contact interaction, depicted

in figure 2). The only local term allowed by power counting and little-group constraints is

〈1+ 2+ 3+ 4+〉〈1+ 2+ 5+ 6+〉〈3+ 4+ 5+ 6+〉+ P6 . (5.67)

It turns out that this local term vanishes identically after summing over the permutations.

Thus, we claim that eq. (5.63) is the complete result for the amplitude of six B++’s. Indeed,

we find perfect agreement by comparing eq. (5.63) numerically with the general integral

formula eq. (5.31).

One can perform a similar analysis for more general amplitudes of self-dual B fields.

In all cases we find that the result takes a form similar to eq. (5.63),

A(Ba1b1 , Ba2b2 , Ba3b3 , Ba4b4 , Ba5b5 , Ba6b6) (5.68)

=
1

s123

(
3∑
i=1

〈1a1 2a2 3a3 ia〉〈ia 4a4 5a5 6a6〉

) 3∑
j=1

〈1b1 2b2 3b3 jb〉〈jb 4b4 5b5 6b6〉

+P6 .

The symbol P6 represents the symmetrization of the little-group indices ai, bi for all i =

1, 2, . . . , 6, and the summation over all other factorization channels.
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B±±

B±±

B±±

B±±

B±±

B±±

Figure 2. Diagrammatic expression of the local term for a six-particle amplitude. In the example

where all external particles are Bab, this local term vanishes, and the exchange diagrams are the

only contribution to the total amplitude.

It is instructive to consider the reduction of these results to the D3 theory.

B++ and B−− reduce to positive- and negative-helicity photons γ+ and γ− in 4D,

while B+− reduces to a scalar. If we restrict to external B++ and B−− only, then

A(B++, B++, B++, B−−, B−−, B−−) is the only amplitude that is non-vanishing after di-

mensional reduction to 4D. This is consistent with the claim that the amplitudes of the D3

theory are helicity conserving. The helicity-conserving amplitude obtained in this way is

A(γ+, γ+, γ+, γ−, γ−, γ−) =
1

s124
[1 2]2〈5 6〉2〈4|1 + 2|3]2 + P6 , (5.69)

where 〈4|1 + 2|3] := 〈4 1〉[1 3] + 〈4 2〉[2 3], and the permutations P6 sum over γ+’s and γ−’s,

respectively. The amplitude in eq. (5.69) obtained by dimensional reduction agrees with

the amplitude for six photons in the D3 theory computed for instance in [47]. We also

find that eq. (5.68) for the case of six B+−’s reduces correctly to the amplitude for six

identical scalars,(
(s212 + s213 + s223)(s

2
45 + s246 + s256)

s123
+ . . .

)
− 1

2

(
s3123 + . . .

)
, (5.70)

where the ellipsis in the parentheses denote summation over all factorization channels, as

well as all other independent sijk’s. It is straightforward to verify that this is the unique

amplitude for identical scalars determined by the soft theorem.

One can also consider amplitudes of other particles. For instance, we find that the

six-particle amplitude of φIJ in the spectrum eq. (2.12) agrees with the result in eq. (5.70).

Also, the amplitude for six fermions can be expressed as

A(ψI+, ψ
I
+, ψ

I
+, ψ̃

I
−, ψ̃

I
−, ψ̃

I
−) = A

(6)
f −

1

12
A(6)
c , (5.71)

where the factorization term A
(6)
f and the local term A

(6)
c are given by

A
(6)
f =

1

s124

( ∑
i=1,2,4

〈1+4+4−ia〉〈ia5−6+6−〉

)( ∑
j=1,2,4

〈2+4−j+j−〉〈3+6−5+5−〉

)
+ P6

A(6)
c = 〈1+2+3+4−〉〈5−6−4+4−〉〈5+5−6+6−〉+ P6 , (5.72)
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where P6 denotes summing over anti-symmetrizations among all ψ and ψ̃ particles sep-

arately. Reduced to 4D, the six-fermion amplitude gives that of Volkov-Akulov theory

computed in [48].

Let us now consider the amplitudes with eight B particles. For simplicity, we only

consider the amplitude with eight B++’s and the amplitude with seven B++’s and one

B−−. As we will see, they take a very similar form. The strategy is the same as in the

case of six-particle amplitudes. We write down an ansatz that includes factorization parts

and local terms, and then compare the ansatz against the general formula to determine

the unknown coefficients. As before, one can arrive at the ansatz for exchange diagrams by

summing diagrams that are products of amplitudes with fewer particles. Unlike the case of

six B particles, we find that in general there are contributions from local terms. Explicitly,

we find

A(B++, B++, B++, B++, B++, B++, B++, Baa) = A
(8)
f − 2A(8)

c , (5.73)

where the little-group index a can be + or − depending on whether Baa is B++ or B−−,

and A
(8)
f , A

(8)
c are the factorization part and the local term, respectively. A

(8)
f and A

(8)
c are

given by

A
(8)
f =

1

s123 s678

 3∑
i=1

8∑
j=6

〈1+ 2+ 3+ ib〉〈ib 4+ 5+ jc〉〈jc 6+ 7+ 8a〉

2

(5.74)

+
1

s123 s567

 3∑
i=1

7∑
j=5

〈1+ 2+ 3+ ib〉〈ib 4+ 8a jc〉〈jc 5+ 6+ 7+〉

2

+ P8 ,

A(8)
c = (〈1+ 2+ 3+ 4+〉〈5+ 6+ 7+ 8a〉)2 + P8 ,

where P8 denotes the summation over independent permutations.

As mentioned previously, the amplitudes involving scalars in the M5 theory should

satisfy soft theorems. Some such amplitudes are completely fixed by the soft theorems.

Therefore they can also be computed in a completely different way via on-shell recursion

relations [39]. We have verified that the results agree perfectly with what is obtained from

the proposed formula, eq. (5.31), for such amplitudes containing up to eight particles.

6 n-particle amplitudes of the D5 theory

This section describes the tree-level S matrix for the theory of a single probe D5-brane

with 6D N = (1, 1) supersymmetry. The general formula we propose for the D5 theory

takes a form similar to that of the M5 theory, which we discussed in the previous section.

In particular, the formula contains the same factors of det′Sn and U(ρ, σ),

An =

∫
dnσ dM
Vol(G)

∆B(p, ρ) ∆F (q, ρ, χ) ∆̂F (q̂, ρ̂, χ̂) det′Sn
R(ρ)

V 2(σ)
, (6.1)

or equivalently

An =

∫
dnσ dM
Vol(G)

∆B(p, ρ) ∆F (q, ρ, χ) ∆̂F (q̂, ρ̂, χ̂)
(Pf ′Sn)3

V (σ)
. (6.2)
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The bosonic delta functions are the same as those in the M5 theory

∆B(p, ρ) =
n∏
i=1

δ6
(
pABi − ρAa (σi)ρ

Ba(σi)

Pi(σ)

)
, (6.3)

but now there are two kinds of fermionic delta functions due to (1, 1) supersymmetry,

∆F (q, ρ, χ) =

n∏
i=1

δ4
(
qAi −

ρAa (σi)χ
a(σi)

Pi(σ)

)
, (6.4)

∆̂F (q̂, ρ̂, χ̂) =

n∏
i=1

δ4
(
q̂iA −

ρ̂Aâ(σi)χ̂
â(σi)

Pi(σ)

)
.

The measure is given by

dM =
d∏

m=0

d8ρAam d2χbmd
2χ̂b̂m . (6.5)

As before, d = n
2 − 1. Note that this integration measure does not include d8ρ̂mAâ, even

though ρ̂mAâ do appear explicitly in the formula. The prescription is that the ρ̂mAâ are

fixed by the constraint of the conjugate of ∆B in eq. (6.3), namely,

p̂iAB −
ρ̂Aâ(σi)ρ̂

â
B(σi)

Pi(σ)
= 0 , for i = 1, 2, . . . , n . (6.6)

This constraint does not appear explicitly in the general formula eq. (6.2), but we impose

it implicitly. To fully fix ρ̂mAâ, we also use the second SU(2) factor of the little-group

symmetry to fix three of the ρ̂mAâ coordinates. Since eq. (6.2) takes a form that is very

similar to eq. (5.31) for the M5 theory, with a simple change to half of the fermionic delta

functions due to the change of chirality for half of the supersymmetry, it is straightforward

to show that eq. (6.2) also has all of the required properties, such as correct factorizations,

soft theorems, and reduction to the D3 theory. Thus, we will not repeat the analysis and

discussion here.

For computing scattering amplitudes from eq. (6.2), as in the case of the D3 theory

and M5 theory, we again should pull out the bosonic and fermionic “wave functions” first.

For the D5 theory, they are given by

An =

(
n∏
i=1

δ(p2i ) δ
2
(
λ̂iAâ q

A
i

)
δ2
(
λBib q̂iB

))
An . (6.7)

We have checked explicitly that An, as defined here, produces the correct fully supersym-

metric four-particle amplitudes, as well as many examples of six- and eight-particle ampli-

tudes in the D5 theory. Here we list the analytical results for some of these amplitudes.

The amplitude for six photons with the same helicity, given by A11̂, is

A(A11̂, A11̂, A11̂, A11̂, A11̂, A11̂) (6.8)

=
1

s123

(
3∑
i=1

〈11 21 31 ia〉〈ia 41 51 61〉

) 3∑
j=1

[11̂ 21̂ 31̂ ĵâ][ĵ
â 41̂ 51̂ 61̂]

+ P6 .
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There are similar expressions for other choices of helicities of Aaâ. We have verified that

these results agree with the amplitudes obtained directly from the Born-Infeld action. One

can also consider the amplitude of eight A11̂’s, which takes the form

A(A11̂, A11̂, A11̂, A11̂, A11̂, A11̂, A11̂, A11̂) = Af − 2Ac . (6.9)

The factorization term Af and the local term Ac are given by

Af =
1

s123 s678

 3∑
i=1

8∑
j=6

〈11 21 31 ia〉〈ia 41 51 jb〉〈jb 61 71 81〉

 (6.10)

×

 3∑
i=1

8∑
j=6

[11̂ 21̂ 31̂ îâ][̂i
â 41̂ 51̂ ĵb̂][ĵ

b̂ 61̂ 71̂ 81̂]

+ P8 ,

Ac = (〈11 21 31 41〉〈51 61 71 81〉)
(
[11̂ 21̂ 31̂ 41̂][51̂ 61̂ 71̂ 81̂]

)
+ P8 . (6.11)

These results for photon amplitudes in the D5 theory take a form that is very similar to the

amplitudes of Bab particles in the M5 theory. They are related to each other by replacing

the anti-chiral λ̂â by the chiral one λa.

The similarity between D5 and M5 amplitudes in the above explicit examples, and

more generally the formulas eq. (6.2) and eq. (5.31), may be surprising, especially given

the fact that the classical action for the M5 theory is more subtle to write down than the

one for the D5 theory. However, one should note that the entire difference between the

four-particle amplitudes, which are completely fixed by the symmetries and power counting

in the D5 theory and the M5 theory, is just a simple modification of the fermionic delta

functions. Since both theories reduce to the same 4D amplitudes, the similarity is really

not so surprising. The complication of writing the classical M5 action caused by the self-

duality of B field is avoided by considering only the on-shell degrees of freedom for the S

matrix using the spinor-helicity formalism.

7 Conclusion

This paper has proposed general formulas for n-particle on-shell tree-level scattering am-

plitudes for three theories: the D3 and D5 theories of type IIB superstring theory and,

especially, the M5 theory of 11D M-theory. The scattering amplitudes of the M5 theory–

even its bosonic truncation — have been studied little in the previous literature. In each of

these theories n is required to be even, and the amplitudes take similar forms, expressed as

integrals over rational constraints, built from degree d = n
2 −1 polynomials. The integrand

contains a new mathematical ingredient, a generalization of resultant (denoted R(ρ) in the

text), which is equal to the product of Pf ′Sn and the Vandermonde determinant V (σ) on

the support of the rational constraints.

The three theories are related to one another in various ways. For instance, dimen-

sional reduction of each of the 6D n-particle amplitudes, which pertain to the D5 and M5

theories, reduces to the same 4D n-particle amplitude, which pertains to the D3 theory.

The function U(ρ, σ) in the 6D integrands cancels the Jacobian factors arising from the
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dimensional reduction. As we explained, one consequence is that the R symmetry of the

D3 theory is SU(4) × U(1). The U(1) factor implies that the D3 amplitudes are helicity

conserving. Interestingly, the formulas for the M5 and D5 amplitudes only differ by a sim-

ple modification of the fermionic delta functions that accounts for the chirality difference

between (2, 0) supersymmetry and (1, 1) supersymmetry.

We have also checked various general properties such as SL(2,C) modular symmetry, R

symmetries, factorization properties, and soft limits. We have further tested the formulas

by explicitly computing amplitudes that are fixed by the soft theorems, up to 8 particles.

Using the general formulas, compact analytic expressions for six- and eight-particle ampli-

tudes of self-dual B particles of the M5 theory for certain choices of the little-group indices

were obtained.

Our formulas for scattering amplitudes are similar to those for the twistor-string for-

mulation of 4D N = 4 super Yang-Mills amplitudes in Witten’s twistor-string paper [25].

Those amplitudes, and their generalizations, see e.g. [49, 50], are understood in terms

of two-dimensional world-sheet twistor-string theories. It would be interesting to explore

whether there exists a similar twistor-string theory for the M5 theory. Such an underlying

theory ought to generate the M5 amplitudes in eq. (5.31) directly. The fact that a twistor-

string-like formulation of the tree-level S-matrix of the M5 theory does exist already points

to some deep structures of the theory.

Finally, we note that the rational constraints in 6D consist of a single sector of solutions

to the scattering equations, which utilizes all (n−3)! solutions of the arbitrary-dimensional

scattering equations. We do not have a general proof of these assertions, but they have been

checked explicitly for the cases n = 4, 6, 8. It would be nice to prove (or disprove) them and

to understand better this general feature of the 6D rational constraints. Upon dimensional

reduction to the D3 theory, many of these solutions vanish leaving only contributions from

those that correspond to the middle (helicity conserving) sector in 4D. It would also be

interesting to study the rational constraints in dimensions greater than six, such as 10D or

11D, and to apply them to the D9-brane theory, as well as the various gauge and gravity

theories in those dimensions.
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A Further technical details

A.1 D3 theory

The goal here is to show that the n-particle amplitude An in eq. (4.1) contains the delta

functions exhibited in the formula

An =

(
n∏
i=1

δ(p2i )δ
2(〈λi qIi 〉)δ2([λ̃i q̂Îi ])

)
An , (A.1)

as well as additional momentum-conservation and supercharge-conservation delta func-

tions, which are included in An. We also wish to compute the Jacobian JB that arises from

extracting the momentum-conservation and mass-shell delta functions from the bosonic

delta functions,

∆B =
n∏
i=1

δ4
(
pαα̇i −

ρα(σi)ρ̃
α̇(σi)

Pi(σ)

)
, (A.2)

appearing in the formula for the D3 n-particle amplitude An.

It is clear that these delta functions imply masslessness, since they constrain pαα̇i to take

a factorized (rank one) form. It is less obvious that they imply momentum conservation.

The delta functions imply that

n∑
i=1

pαα̇i =
n∑
i=1

1

Pi(σ)

d∑
m,m′=0

ραmρ̃
α̇
m′σ

m+m′

i . (A.3)

This will vanish provided that

n∑
i=1

σmi
Pi(σ)

= 0 for m = 0, 1, 2, . . . , n− 2, (A.4)

since 2d = n − 2. To prove that this is the case, let us introduce the Vandermonde

determinant

V (σ) =
∏
i>j

σij . (A.5)

Recalling the definition Pi(σ) =
∏
j 6=i σij , we note that

Vi(σ) =
V (σ)

Pi(σ)
= (−1)i

∏
j>k; j,k 6=i

σjk. (A.6)

Then, momentum conservation is a consequence of the following theorem:

Wm(σ) =

n∑
i=1

σmi Vi(σ) = 0 for m = 0, 1, . . . , n− 2. (A.7)

This is proved by noting that Wm is a symmetric polynomial of the n σ variables whose

degree does not exceed n− 2 in any of them. Therefore, it vanishes if there are n− 1 zeros
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in each of the coordinates. This is achieved if Wm vanishes when any pair of variables are

equal. For example, when σ1 = σ2 only V1 and V2 are nonvanishing. But then Wm(σ) =

σm1 (V1 + V2). This vanishes because V1 + V2 = 0 when σ1 = σ2. This completes the proof

of momentum conservation.

We have seen that n + 4 of the 4n delta functions in ∆B account for the mass-shell

conditions and momentum conservation. The integrations over the ρ and ρ̃ coordinates use

up 2n− 1 more of the delta functions, leaving n− 3 to account for. The important fact is

that the remaining delta functions lead to the scattering equations

Ei =
∑
j 6=i

pi · pj
σij

= 0, i = 1, 2, . . . , n (A.8)

and the n − 3 integrations over the σ coordinates imply that one should sum over the

solutions of these equations. Only n−3 of the scattering equations are linearly independent,

since the mass-shell and momentum-conservation conditions imply that

n∑
i=1

Ei =
n∑
i=1

σiEi =
n∑
i=1

σ2iEi = 0. (A.9)

Thus, there is just the right number of delta functions to account for the scattering equa-

tions. As discussed earlier, the scattering equations have (n − 3)! solutions, but only Ndd

of them give nonzero contributions to the amplitudes. These are the ones that are helicity

conserving, as required by the U(1) R symmetry.

Let us now verify that the delta functions in ∆B actually do imply the scattering

equations. Substituting for pi · pj gives

Ei =
∑
j 6=i

d∑
mnm′n′=0

〈ρmρn〉[ρ̃m′ ρ̃n′ ]σm+m′

i σn+n
′

j

σijPi(σ)Pj(σ)
(A.10)

However, 〈ρmρn〉 = −〈ρnρm〉 and 〈ρ̃m′ ρ̃n′〉 = −〈ρ̃n′ ρ̃m′〉. Therefore we can replace σmi σ
n
j by

1

2
(σmi σ

n
j − σmj σni ) = σijQmn(σi, σj) (A.11)

where Qmn is a polynomial. It then follows that

Ei =
1

Pi(σ)

n∑
j=1

σijQ(σi, σj)

Pj(σ)
(A.12)

where

Q(σi, σj) =
∑

mnm′n′

〈ρmρn〉[ρ̃m′ ρ̃n′ ]Qmn(σi, σj)Qm′n′(σi, σj). (A.13)

Since σijQ(σi, σj) is a polynomial function of σj of degree n− 3, the scattering equations

Ei = 0 follow as a consequence of eq. (A.4).

The structure of the 4n delta functions in ∆B ensures masslessness, momentum con-

servation, and the scattering equations, which is a total of 2n+ 1 conditions. They can be
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expressed as delta functions and used to rewrite ∆B as these 2n+ 1 delta functions times

2n − 1 additional delta functions and a Jacobian factor, which will be described later.

Given this, it is natural to examine next what can be learned from the structure of the 8n

fermionic delta functions

∆F (q, ρ, χ) =
n∏
i=1

δ4
(
qαIi −

ρα(σi)χ
I(σi)

Pi(σ)

)
δ4

(
q̂α̇Îi −

ρ̃α̇(σi)χ̂
Î(σi)

Pi(σ)

)
. (A.14)

First of all, the delta functions in ∆F imply the conservation of eight supercharges:

n∑
i=1

qαIi =

n∑
i=1

q̂α̇Îi = 0. (A.15)

This is proved by exactly the same reasoning that was used to establish momentum conser-

vation earlier in this appendix. Note that these eight supercharges are mutually anticom-

muting, as are the other eight, but there are nonzero anticommutators between the two sets.

The conservation of the second set of eight supercharges needs to be established separately.

Next we wish to account for the factors
∏
i δ

2(〈λi qIi 〉)δ2([λ̃i q̂Îi ]) in eq. (A.1). The

first set should derive from the first set of delta functions in ∆F and the second set from

the second factor (by identical reasoning). It is important that the bosonic analysis has

already been completed, so that masslessness, i.e.,the presence of the factors
∏
i δ(p

2
i ), can

be invoked to justify writing pαα̇i = λαi λ̃
α̇
i . Therefore the fermionic delta functions imply

that 〈λi qIi 〉 = [λ̃i q̂
Î
i ] = 0. These relations are implemented by the 4n fermionic delta

functions exhibited in eq. (A.1). They provide the justification for using the relations

qαIi = λαi η
I
i and q̂α̇Îi = λ̃α̇i η̂

Î
i (A.16)

in the amplitude An.

Having established masslessness and momentum conservation, we can now write

∆B = JB δ
4

( n∑
i=1

pi

) n∏
i=1

δ(p2i )
n−2∏
i=1

δ3
(
pαα̇i −

ρα(σi)ρ̃
α̇(σi)

Pi(σ)

)
δ2
(
pαα̇n −

ρα(σn)ρ̃α̇(σn)

Pn(σ)

)
,

(A.17)

where the three-dimensional delta functions can be chosen, for instance, to be {α α̇} =

{11̇}, {21̇}, {22̇}, and the two-dimensional delta function of particle n can be chosen to be

{α α̇} = {11̇}, {21̇}. For these choices, the Jacobian JB is

JB = λ̃1̇n−1λ̃
1̇
n〈n−1n〉

n−2∏
i=1

p21̇i . (A.18)

By the same kind of reasoning, the first set of fermionic delta functions in ∆F can be recast

in the form

JF δ
4

( n∑
i=1

qαIi

) n∏
i=1

δ2(〈λi qIi 〉)
n−2∏
i=1

δ2
(
λ1i η

I
i −

ρ1(σi)χ
I(σi)

Pi(σ)

)
, (A.19)
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with JF given by

JF =
1

〈n−1n〉2
n−2∏
i=1

(
1

λ1i

)2

, (A.20)

and similarly for the second set of fermionic delta functions.

A.2 M5 theory

Let us now consider the 6D formula for the M5-theory amplitudes. Beginning with the

bosonic delta functions, we can extract the mass-shell and momentum-conservation delta

functions as follows

n∏
i=1

δ6
(
pABi − ρAa (σi)ρ

Ba(σi)

Pn(σi)

)
= δ6

( n∑
i=1

pi

) n∏
i=1

δ(p2i ) (A.21)

×JB
n−2∏
i=1

δ5
(
pABi − ρAa (σi)ρ

Ba(σi)

Pi(σ)

)
δ4
(
pABn − ρAa (σn)ρBa(σn)

Pn(σ)

)
.

If we choose the five-dimensional delta function with {A,B} 6= {3, 4} and the four-

dimensional one with {A,B} 6= {3, 4}, {1, 3}, JB is given by

JB =

n∏
i=1

p12i

(
p24n−1
p12n−1

− p24n
p12n

)
. (A.22)

Next, we proceed similarly for the fermionic delta functions. Extracting the fermionic

“wave functions” and supercharge conservation from the fermionic delta functions gives

n∏
i=1

δ8
(
qAIi −

ρAa (σi)χ
Ia(σi)

Pi(σ)

)
= δ8

( n∑
i=1

qAIi

) n∏
i=1

δ4(λ̂iAâq
AI
i ) (A.23)

× JF
n−2∏
i=1

δ2
(
q1Ii −

ρ1a(σi)χ
Ia(σi)

Pi(σ)

)
δ2
(
q3Ii −

ρ3a(σi)χ
Ia(σi)

Pi(σ)

)
,

with the Jacobian

JF =
1

[λ̂n−1 âλ̂ân λ̂n−1 b̂λ̂
b̂
n]2

n−2∏
i=1

(
1

[λ̂2i λ̂
4
i ]

)2

, (A.24)

where [λ̂2i λ̂
4
i ] = εâb̂λ̂2iâλ̂

4
ib̂

.

B R symmetry

B.1 D3 theory

Let us now verify the SU(4) R symmetry of the D3 theory. (The U(1) factor of the R

symmetry was established in the main text.) As presented in section 4, the formula for

the amplitudes only makes an SU(2) × SU(2) subgroup manifest. However, as we saw in
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the case of the four-particle amplitude, the full SU(4) symmetry can be made manifest by

performing an appropriate Grassmann Fourier transform. For this purpose, it is useful to

first recast the fermionic delta functions as follows
n∏
i=1

δ4
(
qαIi −

ρα(σi)χ
I(σi)

Pi(σ)

)
=

n∏
i=1

{
δ2(〈λi qIi 〉) δ2

(
ηIi −

ρ1(σi)χ
I(σi)

λ1iPi(σ)

)}
(B.1)

and similarly for the q̂ and λ̃ sector.

Now let us consider the Grassmann Fourier transformation

IF =

∫ ( d∏
m=0

d2χImd
2χ̂Îm

)
exp

(
n∑
i=1

η̂Îi ζiÎ

)
n∏
i=1

d2η̂Îi δ
2(ηIi − ti χI(σi))δ2(η̂Îi − t̃i χ̂Î(σi)) ,

(B.2)

where we have Fourier transformed η̂Îi and defined

ti =
ρ1(σi)

λ1iPi(σ)
and t̃i =

ρ̃1̇(σi)

λ̃1̇iPi(σ)
. (B.3)

Since the bosonic delta functions (not displayed in this appendix) imply that

p11̇i =
ρ1(σi)ρ̃

1̇(σi)

Pi(σ)
= λ1i λ̃

1̇
i , (B.4)

we have

tit̃i = 1/Pi(σ). (B.5)

Integration over d2η̂Îi gives

IF =

∫ ( d∏
m=0

d2χImd
2χ̂Îm

)
exp

(
n∑
i=1

t̃i χ̂
Î(σi)ζiÎ

)
n∏
i=1

δ2(ηIi − ti χI(σi)) , (B.6)

and further integration over d2χ̂Îm leads to

IF =
d∏

m=0

δ2

(
n∑
i=1

t̃iζiÎσ
m
i

) ∫ d∏
m=0

d2χIm

n∏
i=1

δ2(ηIi − ti χI(σi)) . (B.7)

The final integration over d2χIm involves n integrals of 2n delta functions, thereby

leaving n delta functions. Using eqs. (A.4) and (B.5), it is∫ d∏
m=0

d2χIm

n∏
i=1

δ2(ηIi − ti χI(σi)) =

(
Vn

n∏
i=1

t̃i

)−1 d∏
m=0

δ2

(
n∑
i=1

t̃i η
I
i σ

m
i

)
, (B.8)

Renaming ζi1̂ = η3i and ζi2̂ = η4i , as before, we now have a complete SU(4) multiplet ηIi
with I = 1, 2, 3, 4, and

IF ∼
d∏

m=0

δ4

(
n∑
i=1

t̃iη
I
i σ

m
i

)
, (B.9)

which is now manifestly SU(4) invariant.
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B.2 M5 theory

Next we wish to verify the USp(4) R symmetry of the M5 theory. As in the case of 4D, it

is useful to begin by decomposing the supercharge-conservation delta functions as follows∫ d∏
m=0

d2χIm+d
2χIm−

n∏
i=1

δ8
(
qAIi −

ρAa (σi)χ
Ia(σi)

Pi(σ)

)

= JF

n∏
i=1

δ4(λ̃iAȧq
AI
i )

∫ d∏
m=0

d2χIm+d
2χIm− (B.10)

×
n∏
i=1

δ2
(
q1Ii −

ρ1a(σi)χ
Ia(σi)

Pi(σ)

)
δ2
(
q3Ii −

ρ3a(σi)χ
Ia(σi)

Pi(σ)

)
where d = n

2 − 1 and the Jacobian is given by

JF =

n∏
i=1

(
1

〈λ̃2i λ̃4i 〉

)2

. (B.11)

Again the choice of singling out Lorentz indices 1, 3 is arbitrary. Ignore all the Jacobi,

which are not relevant to the R symmetry, the integration over χ’s in the second line of

eq. (B.10) reduces to∫ d∏
m=0

d2χIm+d
2χIm−

n∏
i=1

δ2
(
ηIi+ −

〈XI
i λi+〉13
p13i

)
δ2
(
ηIi− −

〈XI
i λi−〉13
p13i

)
, (B.12)

where

〈XI
i λia〉13 = XI3

i λ1ia −XI1
i λ3ia , (B.13)

with

XI1
i =

ρ1a(σi)χ
Ia(σi)

Pi(σ)
(B.14)

and similarly for XI3
i . Fourier transforming over ηIi− now gives∫ d∏

m=0

d2χIm+d
2χIm− exp

(
n∑
i=1

ζiI〈XI
i λi−〉13
p13i

)
n∏
i=1

δ2
(
ηIi+ −

〈XI
i λi+〉13
p13i

)
. (B.15)

The remaining 2n delta functions are exactly enough to integrate out the χI+’s and

χI−’s. Explicitly, the delta functions lead to,

ηIi+ =
d∑

m=0

κi,m,a(λ+)χI am , (B.16)

where the matrix κ is a square n×n matrix (with i running from 1 to n, and m, a together

from 1 to n), and it is given by

κi,m,a(λ+) =
(ρ1a(σi)λ

3
i+ − ρ3a(σi)λ1i+)σmi
p13i Pi(σ)

. (B.17)
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Solve χI am in terms of ηIi+ using eq. (B.16), and plug the result into the exponent (again

ignoring the Jacobian, which is not relevant here), we arrive at

exp

 n∑
i,j=1

ζiIMijη
I
j+

 , (B.18)

with the matrix Mij given by

Mij =

d∑
m=0

κai,m(λ−)κ−1j,m,a(λ+) . (B.19)

If the matrix Mij is symmetric, then (as we showed for the case of n = 4 in section 3.1),

the expression has manifest R symmetry. We have checked explicitly that is indeed the

case for n = 6, 8. We also note that the matrix Mij has following property of converting

λAj+ into λAj−, ∑
j

Mijλ
A
j+ = λAi− . (B.20)

Multiplying λBi+ on both sides of the equation and summing over i gives∑
i,j

λBi+Mijλ
A
j+ =

∑
i

λBi+λ
A
i− . (B.21)

Due to momentum conservation, the right-hand side of this equation is symmetric in ex-

changing A and B, which is consistent with the fact that Mij is symmetric. Curiously,

the complete formula for the amplitude with manifest R symmetry is somewhat more

complicated than the original one, which only makes a subgroup manifest.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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