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N6-methyladenosine (m6A) is the most abundant post-transcriptional modification in

mRNA, and regulates critical biological functions via m6A reader proteins that bind

to m6A-containing transcripts. There exist multiple m6A reader proteins in the human

genome, but their respective binding specificity and functional relevance under different

biological contexts are not yet fully understood due to the limitation of experimental

approaches. An in silico study was devised to unveil the target specificity and regulatory

functions of different m6A readers. We established a support vector machine-based

computational framework to predict the epitranscriptome-wide targets of six m6A reader

proteins (YTHDF1-3, YTHDC1-2, and EIF3A) based on 58 genomic features as well

as the conventional sequence-derived features. Our model achieved an average AUC

of 0.981 and 0.893 under the full-transcript and mature mRNA model, respectively,

marking a substantial improvement in accuracy compared to the sequence encoding

schemes tested. Additionally, the distinct biological characteristics of each individual

m6A reader were explored via the distribution, conservation, Gene Ontology enrichment,

cellular components and molecular functions of their target m6A sites. A web server was

constructed for predicting the putative binding readers of m6A sites to serve the research

community, and is freely accessible at: http://m6areader.rnamd.com.

Keywords: N6-methyladenosine, m6A reader, machine learning (ML), YTH domain, eIF3a

INTRODUCTION

In the exploration of RNA epigenetics, more than 150 types of RNA modification have been
identified (Boccaletto et al., 2018). The methylation of adenosine at the N6 position (m6A) is
the most prevalent post-transcriptional modification in the mRNA (Meyer and Jaffrey, 2017),
which was discovered in a wide range of eukaryotic RNAs (Adams and Cory, 1975) as well
as viral RNAs (Gokhale et al., 2016). m6A was considered as a potential mRNA processing
regulator in 1970s (Desrosiers et al., 1974), and subsequent studies noticed intensive functions
of it (Patil et al., 2018), including cardiac gene expression (Kmietczyk et al., 2019), cell growth,
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neuronal development (Chen J. et al., 2019), stress response
(Engel et al., 2018), translation initiation, and stabilizing
junctional RNA (Liu B. et al., 2018).

Similar to other epigeneticmodifications, m6A is thought to be
dynamic and reversible (Song et al., 2019). It can be installed by
methyltransferase (writers) or removed by demethylase (erasers).
This internal modification also attracts specific binding proteins,
namely readers, which bind selectively to m6A-containing
transcripts (Liao et al., 2018). Additionally, m6A performs many
functions through interacting with “reader” proteins (Hazra et al.,
2019). The most widely studied readers are YT521-B homology
(YTH) family of proteins, which possess the evolutionarily
conserved YTH domain that recognizes m6A mark. The YTH
domain consists of 100–150 residues and adopts alpha/beta fold,
with 4–5 alpha helices surrounding a curved six-stranded beta
sheet (Zhang et al., 2010). In human, five m6A readers were
reported to have the YTH domain, namely YTHDF1,2,3 and
YTHDC1,2. However, the YTH domain is not indispensable for
m6A readers, a subunit of translation initiation complex factor
EIF3 complex, called EIF3A, was reported as an m6A reader
lacking YTH domain (Meyer et al., 2015).

The m6A reader YTHDC1 is predominantly found in the
nucleus, while YTHDC2 and YTHDF1,2,3 are cytoplasmic (Patil
et al., 2016). YTHDC1 and YTHDC2 are unrelated to other
members of the YTH family based on amino acid sequence,
size or overall YTH domain organization (Patil et al., 2018). By
contrast, YTHDF family comprises three paralogs, YTHDF1-3,
that share high sequence identity with about 85% of sequence
similarity (Hazra et al., 2019). YTHDC1 and three YTHDF
proteins contain a single C-terminal YTH domain that binds
to m6A marker by a segment rich of proline, glutamate and
aspartate. Compared to other YTH domain-containing proteins,
whose YTH domains are embedded in low complexity regions,
YTHDC2 has a unique multidomain structure (Hazra et al.,
2019). N-terminal R3H domain, central DEAH-box helicase
domain and helicase associated 2 domain are also found in
YTHDC2 apart from the C-terminal YTH domain. Different
from the structures of five YTH domain-containing proteins,
EIF3 is a large multiprotein complex comprising 13 subunits
(Meyer et al., 2015). The EIF3 binding sites are predominantly
mapped at the 5′ untranslated region (5′ UTR) (Lee et al., 2015),
whereas the binding sites of YTHdomain-containing proteins are
usually located near the stop codon.

In addition to different cellular locations and structures, m6A
readers appear to function through various post-transcriptional
control mechanisms to regulate RNAs dynamically. Human
YTHDC1 has been demonstrated to participate in RNA splicing
by interacting with serine/arginine splicing factor SRSF3, which
is involved in exon inclusion and exclusion splicing (Ye et al.,
2017). As a putative RNA helicase, YTHDC2 enhances the
translation of target RNAs and reduces the abundance of target
RNAs (Hsu et al., 2017). YTHDF2 is verified to decrease the
stability and control the lifetime of its targeted methylated
mRNA transcripts (Du et al., 2016), while YTHDF1 ensures
efficient protein expression from their shared regions (Wang
et al., 2015). YTHDF3, the third member of YTHDF family,
has been proposed to share common targets (about 60%)

with both YTHDF1 and YTHDF2 (Shi et al., 2017). This
suggests potential coordination in regulating gene expression by
YTHDF family proteins. YTHDF3 can promote the function
of YTHDF1 by interacting with some ribosomal proteins to
facilitate mRNA translation. When associating with YTHDF2,
YTHDF3 could participate in mRNA decay. In addition to the
five members of YTH family, EIF3A plays an important role
in biological processes as well. It can act as both repressor
and activator of cap-dependent transcript-specific translation
through directly binding to m6A marked mRNA sequence
(Lee et al., 2015).

Since the five YTH family proteins (YTHDC1-2 and
YTHDF1-3) and EIF3A present distinctive structures and
properties, it is worth studying the preferential binding sites in
the m6A marked transcripts for each m6A reader.

Single base resolution techniques such as miCLIP (Linder
et al., 2015) are developed and are fairly effective on screening
m6A sites, and it is usually based on the iCLIP or Par-CLIP
approach (Meyer et al., 2015) to identify the binding sites
of each m6A reader. As these wet-lab experiments are costly
and laborious, computational methods may provide a viable
avenue. To date, a large number of RNA methylation sites
have been reported, providing sufficient information for effective
computational prediction. A huge amount of data extracted
from experiments encouraged the establishment of a number
of effective m6A site predictors, including WHISTLE (Chen
K. et al., 2019), SRAMP (Zhou et al., 2016), BERMP (Huang
et al., 2018), and Gene2vec (Zou et al., 2019). However, to
our knowledge, the prediction dedicated to the target specificity
of the readers is absent. In this project, we constructed a
predictor, m6A reader, to distinguish the substrate of each m6A
reader. A comprehensive analysis of these readers was then
performed, including the analysis of distribution, conservation,
GO enrichment, cellular components and molecular functions of
their respective epitranscriptome target sites.

MATERIALS AND METHODS

Collection of m6A Sites and the Target
Sites of m6A Readers
The transcriptome-wide m6A sites were collected from
17 different conditions generated from 6 different
epitranscriptome profiling approaches of base-resolution or
high resolution (Table 1).

In this study, we consider the binding sites of six m6A readers
identified by Par-CLIP or iCLIP approaches. Specifically, a total
of 16,664 m6A sites located on 4,722 different genes reported by
four experiments were considered as the target sites of YTHDC1,
and 1,234 sites on 275 genes identified by two experiments
were considered as the target sites for YTHDC2. For the three
proteins from YTHDF family, three experiments for each reader
proposed 25,597, 28,970, and 7,253 target sites located on 6,714,
6,677, and 3,495 genes for YTHDF1, YTHDF2, and YTHDF3,
respectively. Two CLIP experiments conducted on HEK2937T
cell line discovered 756 sites located in 470 genes onmarked RNA
transcripts, which are targeted by EIF3A. The testing datasets
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TABLE 1 | Base-resolution or high resolution datasets of m6A sites.

Dataset Technique Cell line GEO References

S1 miCLIP MOLM13 GSE98623 Vu et al., 2017

S2 HEK293 GSE63753 Linder et al., 2015

S3 HepG2 GSE73405 Meyer et al., 2015

S4 HEK293T GSE122948 Boulias et al., 2019

S5 HepG2 GSE121942 Huang et al., 2019

S6 HCT116 GSE128699 van Tran et al., 2019

S7 m6A-CLIP HeLa GSE86336 Ke et al., 2017

S8 CD8T GSE71154 Ke et al., 2015

S9 A549

S10 MAZTER-seq HEK293T GSE122961 Garcia-Campos

et al., 2019S11 ESC

S12 m6A-REF-seq HEK293 GSE125240 Zhang et al., 2019c

S13 Brain

S14 Kidney

S15 Liver

S16 PA-m6A-seq HeLa GSE54921 Chen K. et al.,

2015a

S17 m6A-seq

(improved

protocol)

A549 GSE54365 Schwartz et al.,

2014

and training datasets are strictly segregated under all conditions.
Detailed information of the target sites of m6A readers analyzed
in this study was summarized in Table 2.

Feature Encoding Scheme and Selection
We considered both the conventional sequence-derived features
and the genome-derived features.

The sequence-derived features were summarized in the iLearn
(Chen Z. et al., 2019; Chen et al., 2020) and BioSeq-Analysis
(Liu, 2019; Liu et al., 2019), which can be divided into six different
classes. Based on their classification, we chose one method from

each class including nucleic acid composition (Lee et al., 2011),
binary encoding method (Wu et al., 2015), position-specific
tendencies of trinucleotide (He et al., 2018), electron-ion
interaction pseudopotentials (He et al., 2019), Autocorrelation
and pseudo k-tupler composition (Liu et al., 2015). Also, the
chemical property combined with nucleic frequency, which is a
popular encoding method in recent years (Bari et al., 2013; Chen
et al., 2016a,b, 2017a; Li et al., 2018), was also used in performance
testing for m6A reader target prediction.

The genomic features shown in previous projects (Chen
K. et al., 2019; Song et al., 2019) are effective in RNA
modification prediction. In order to improve the performance
of the predictor, 58 mammalian genome features belonging to 9
classes were applied. All the features used were generated by the
“GenomicFeatures R/Bioconducter” package using the transcript
annotations hg19 TxDb package (Lawrence et al., 2013). The first
class involves dummy variables indicating whether the adenosine
site overlaps the topological region within the RNA transcript.
The second class specifies the relative position of the adenosine
site on the region, while the third class tells the length of
the target mRNA transcript. Features belonging to the fourth
class measure the nucleotide distances to the splicing junction
and the nearest neighboring site. The fifth and sixth classes
are based on clustering information of modification sites and
scores related to conservation (Siepel et al., 2005; Gulko et al.,
2015), respectively. The last three feature groups describe RNA
secondary structures (Lorenz et al., 2011), genomic properties
and attributes of the genes or transcripts, respectively. More
details of the genomic features considered in our analysis were
presented in Supplementary Table S1.

Feature Selection Technique
With multiple features, the dimension of dataset increases,
leading to overfitting, information redundancy or increased
computational time. To solve this problem, feature selection

TABLE 2 | Target sites of m6A readers identified by Par-CLIP or iCLIP.

Dataset Reader Source Site # Total # Gene # Cell line

D1 YTHDC1 GSE74397 (Roundtree et al., 2017) 482 16,664 4,722 HeLa

D2 GSE58352 (Xu et al., 2014) 2,633

D3 GSE71096 (Xiao et al., 2016) 2,430

D4 GSE78030 (Patil et al., 2016) 12,309 HEK293T

D5 YTHDC2 GSE98085 (Hsu et al., 2017) 1,183 1,234 275 HeLa

D6 GSE78030 (Patil et al., 2016) 131 HEK293T

D7 YTHDF1 GSE63591 (Wang et al., 2015) 4,541 25,597 6,714 HeLa

D8 GSE83438 (Gokhale et al., 2016) 2,527 Huh7

D9 GSE78030 (Patil et al., 2016) 20,694 HEK293T

D10 YTHDF2 GSE49339 (Wang et al., 2014) 22,688 28,970 6,677 HeLa

D11 GSE83438 (Gokhale et al., 2016) 5,147 Huh7

D12 GSE78030 (Patil et al., 2016) 6,280 HEK293T

D13 YTHDF3 GSE86214 (Shi et al., 2017) 2,608 7,253 3,495 HeLa

D14 GSE83438 (Gokhale et al., 2016) 177 Huh7

D15 GSE78030 (Patil et al., 2016) 5,082 HEK293T

D16 EIF3A GSE65004 (Lee et al., 2015) 45 756 470 HEK293T

D17 GSE73405 (Meyer et al., 2015) 731
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is effective in optimizing relevant modeling variables and
improving the accuracy of the constructed models. In this
study, we performed feature selection using F-score technique
(Lin et al., 2014; Dao et al., 2019). Technically, F-score is a
wrapper-type feature selection algorithm, used to measure the
degree of difference between two real-number data sets. For a
given training sample xd, there are n+ positive samples and
n− negative samples. The F-score for the i-th feature can be
calculated as:

Fi =
(x̄

(+)
i − x̄i)

2 + (x̄
(−)
i − x̄i)

2

1
n+−1

∑n+
k=1(x̄

(+)
d, i

− x̄
(+)
i )2 + 1

n−−1

∑n+
d=1(x̄

(−)
d, i

− x̄
(−)
i )2

where x̄
(+)
i , x̄

(−)
i and x̄i denote the average frequency of the

i-th feature in the positive, negative and the whole samples,

respectively; x̄
(+)
d, i

and x̄
(−)
d, i

represent the value of the i-th feature

of the d-th sequence in the positive and negative samples,
respectively. A larger F-score value means better predictive ability
of a feature. To demonstrate this relative distinguishing ability
of every genomic feature, the computed F-score values were
rescaled between 0 and 1, and ranked in the descending order.
Referring to this ranking, we used incremental feature selection
(IFS) and SVM method to complete the selection process (Chen
and Lin, 2006; Lin et al., 2014). Specifically, the feature subset
begins with the feature with the highest F-score, and the next
feature subset contains the last feature subset and one next
feature. AUC values of 5-fold cross-validation were obtained for
each feature subset.

Machine Learning Approach and
Performance Evaluation
To reduce the bias in the experiment, especially when selecting
the polyA RNAs during library preparation, we built separate
prediction models using full transcript data and mature mRNA
data, respectively. In the mature mRNA predictor, only m6A sites
located in exon regions are considered.

Since the positive-to-negative ratio of our datasets was highly
unbalanced (1:10), we randomly split the negative data into ten
parts and combined with the positive dataset with 1:1 positive-
to-negative ratio to avoid the unfavorable choice of machine
learning classifiers. Subsequently, 10 models were trained and
the average outcome score was reported as the performance of
the classifier. For each m6A reader, the target sites identified in
different experiments were mixed, and then the predictor was
trained with 80% of the total sites before being evaluated by
the remaining 20% of sites for independent testing. Specifically,
the mature mRNA datasets for YTHDF1-3, YTHDC1-2, EIF3a
have 39577, 44025, 11065, 24312, 1245, and 1200 training data,
and 9895, 11007, 2767, 6078, 311, and 300 testing data. The full
transcript datasets for those m6A readers have 40955, 46352,
11605, 26662, 1970, and 1210 training data, and 10239, 11588,
2901, 6666, 492, and 302 testing data.

Machine learning algorithms have been widely applied in
many fields of biological research such as predicting structural
and functional properties of biological sequences. We applied
Support Vector Machine (SVM) (Chang and Lin, 2011) to

compare encoding schemes and approaches. To identify a
better algorithm for model construction, we compared multiple
machine learning algorithms including SVM, Logistic Regression
(LR), Random Forest (RF), and XGBoost.

To validate the model performance, besides 5-fold cross-
validation, we also applied the cross-sample test, in which the
sites reported from one sample (or condition) were reserved for
testing purpose and the sites reported in all other samples (or
conditions) were used for training. This testing mode directly
evaluates the capability of the prediction approach to detect
reader-specific target sites under a single biological condition not
profiled previously. Besides, four commonly used performance
metrics are used for performance evaluation, including Area
under the ROC Curve (AUC) (Bradley, 1997), Precision-Recall
Curve (PR AUC) (Keilwagen et al., 2014), accuracy (Acc) (Jin and
Ling, 2005) andMathew’s correlation coefficient (MCC) (Powers,
2008). The formula of Acc and MCC are as follows:

Acc =
TP + TN

TP + FN + TN + FP

MCC =
TP × TN − FP × FN

√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

where TP is the number of true positives, TN the number of true
negatives, FP the number of false positives and FN the number of
false negatives.

Model construction and performance evaluation were
conducted in R (Version 3.6.3). Machine learning algorithms
were supported by caret package (Kuhn, 2020).

RESULTS AND DISCUSSION

Feature Selection
Due to the high reliability and effectiveness in reflecting intrinsic
relation to the targets, sequence-derived features have been
widely used and achieved high accuracy in extensive researches
focusing on the m6A site prediction. However, genome-derived
features have been discovering and currently showing a new
perspective in feature extraction (Zhou et al., 2016; Chen
et al., 2017a). Here, we extracted genome features from 41 bp
sequence data. We employed WHISTLE approach to combine
both sequence-derived features and genome-derived features
to predict the target specificity of m6A readers. To increase
robustness and reduce overfitting of the predicter, feature
selection was performed, where those most relevant features to
the targets were identified.

Initially, all the genomic features were normalized to ensure
the equal contribution of each feature. Then the F-score method
was applied to allow all features to be ranked accordingly.
Combining IFS and SVM, AUC value of 5-fold cross-validation
were obtained for each feature subset. By examining AUC
scores, the best performance was achieved by the optimal
feature subset. The detailed feature selection results were
summarized in Supplementary Figures S1–S6 for YTHDF1-3,
YTHDC1-2 and EIF3A under both the full transcript and
mature mRNA transcript, respectively. For example, it can
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TABLE 3 | Target prediction performance under cross-condition test.

Mode Method YTHDC1 YTHDC2 YTHDF1 YTHDF2 YTHDF3 EIF3A Average

Full transcript model m6A reader 0.974 0.920 0.983 0.983 0.992 1.000 0.975

Composition 0.769 0.713 0.773 0.778 0.782 0.893 0.785

MethyRNA 0.763 0.611 0.795 0.794 0.787 0.849 0.767

EIIP 0.770 0.713 0.768 0.778 0.782 0.894 0.784

PseKNC 0.733 0.643 0.743 0.755 0.753 0.852 0.747

AutoCo 0.651 0.586 0.673 0.684 0.737 0.835 0.694

PSNP 0.777 0.654 0.816 0.816 0.894 0.869 0.804

onehot 0.750 0.603 0.796 0.795 0.791 0.858 0.766

Mature mRNA model m6A reader 0.815 0.730 0.983 0.839 0.883 0.987 0.873

Composition 0.660 0.503 0.773 0.667 0.707 0.872 0.697

MethyRNA 0.659 0.631 0.795 0.695 0.733 0.833 0.724

EIIP 0.670 0.504 0.768 0.667 0.727 0.871 0.701

PseKNC 0.635 0.593 0.743 0.630 0.706 0.837 0.691

AutoCo 0.527 0.556 0.673 0.559 0.688 0.820 0.637

PSNP 0.703 0.675 0.816 0.754 0.858 0.870 0.779

onehot 0.662 0.622 0.796 0.696 0.757 0.836 0.728

In this test, the sites generated from each sample were used for independent testing, while all other samples were used for training, so the training sites and the test sites

were not reported from the same condition. This is often the real scenario of interest where models are constructed to predict target sites under a new biological context.

See Supplementary Tables S2–S6 for more detailed results.

be observed in Supplementary Figure S6A that, the best
performance of EIF3A target prediction was achieved with
the top 44 features for the mature mRNA model. Therefore,
only the top 44 features were used ultimately to build the
mature mRNA prediction models for EIF3A target prediction.
Likewise, feature selection in target prediction was conducted for
every other reader, and the predictors were constructed in the
same way.

Performance Based on Different
Features
With the nucleotide encoding methods based on chemical
properties, extensive studies have achieved high accuracy in the
m6A site prediction. However, for the first time, we explored and
compared different sequence encoding schemes for predicting
the target specificity of m6A-binding proteins.

For each m6A reader, the target sites identified in different
experiments were mixed, and then the predictor was trained with
80% of the total sites before being evaluated by the remaining
20% of sites for independent testing. As a comparison, the
performance of 5-fold cross-validation on the training data was
also reported. As shown in Supplementary Table S7, m6A reader
achieved AUC scores of 0.981 and 0.893 in independent testing
under the full transcript and mature mRNAmodels, respectively.
This performance is substantially better than other approaches
that did not take advantage of genome-derived features.

Subsequently, we evaluated the capability of the proposed
method in identifying the reader-specific target m6A sites under
different biological contexts. In this test, the sites generated
from each sample were used for independent testing, while
all other samples were used for training, so the training
sites and the test sites were not reported from the same
condition. This is often the real scenario of interest where

models are constructed to predict target sites in a new biological
context. Besides this cross-condition test, the results of 5-
fold cross-validation on the training data were also presented.
The detailed evaluation results on every individual sample
for every reader are shown in Supplementary Tables S2–

S6, with a summary of the cross-condition tests presented
in Table 3. It can be seen that our approach achieved a
high accuracy with AUC scores of 0.975 and 0.873 under full
transcript and mature mRNA models in the cross-condition
test. The performance is again substantially better than the
competing methods.

Detect Potential Substrate of m6A
Readers
In order to further confirm the reliability and efficiency of our
predictors, we used our predictors to detect m6A reader binding
sites on the unidentified regions. As expected, all m6A readers

FIGURE 1 | Potential substrate of m6A readers.
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bind to more than 20% m6A sites, while they bind to less than
10% unmethylated motifs as shown in Figure 1. The binding
preference is significant and reasonable, which demonstrated
the high discrimination ability of our predictors. Moreover,
we compared the previous binding sites of YTHDF family
(Figure 2A) and the prediction result of them on unidentified
regions (Figure 2B). The wet-lab and prediction result shows
that readers in YTHDF family have both common and distinct
binding sites, suggesting that the binding sites of YTHDF
proteins are not exactly identical. This is not consistent with the
conclusion in the previous study that YTHDF proteins bind to
identical sites on all m6A mRNAs (Zaccara and Jaffrey, 2020).
Our result suggests that YTHDF family proteins have similar
functions of mediating degradation of m6A mRNAs, and they
also have different functions inmRNA regulation simultaneously.
This result is consistent with our GO enrichment analysis, and

also partially supports that m6A readers’ effect on downstream
processes are much more heterogeneous and context-dependent
across transcripts (Zhang et al., 2020). The predicted probabilities
for the targeting of each m6A reader are provided on the
download page of the website1.

Model Comparison
To discover a bettermachine learning algorithm for our proposed
models, we compared the performance of SVM, LR, RF, and
XGBoost on mature mRNA and full transcript data for the
prediction of target specificity of six m6A readers. In general,
the performances of different machine learning algorithms are
all very high (>0.8 for mature mRNA models and >0.9 for
full transcript models) and have little difference among them as

1http://m6Areader.rnamd.com

FIGURE 2 | Substrate overlap between YTHDF family.

FIGURE 3 | Distribution of m6A readers binding sites on mRNAs. (A) Distribution of the binding sites of YTHDC1, YTHDC2, YTHDF1, YTHDF2, and YTHDF3 on

mRNAs. (B) Distribution of the binding sites of EIF3A on mRNAs. The figures were plotted using the Guitar R/Bioconductor package (Cui et al., 2016).
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shown in Supplementary Table S8. Therefore, we decided to use
SVM classifier for the predictors.

Characterizing the Target Specificity of
m6A Readers
Our result suggests that the substrates of m6A readers can be
classified, reflecting the distinct biological characteristics of each
m6A reader.We thus explored the distribution, conservation, and
functional relevance of the substrates of each m6A reader.

Here, we firstly examined the distribution of binding sites
for each reader (Figure 3). High enrichment of YTHDC1 is
observed around stop codons and CDSs. However, it can be
noticed that the binding abundance of YTHDC1 is relatively
lower than members of YTHDF family in stop codons, while it
is highly enriched in CDSs. This is consistent with the fact that
YTHDC1 is not only targeting to m6A sites at its C terminus

but also directly interacting with pre-mRNA splicing factor
SRSF3 or SRSF10, which prefers to reside on the upper stream
of m6A sites (Roundtree et al., 2017). The spatial association
among those proteins implicates the process of recruiting pre-
mRNA splicing factors and inducing mRNA splicing outcomes.
Surprisingly, YTHDC2 targets are more enriched in CDSs near
stop codons than in 3′ UTR, suggesting that YTHDC2 is distinct
from other m6A readers. As YTHDC2 is reported to be the
largest protein (∼160 kDa) among all YTH family members and
with numerous RNA binding domains (e.g., helicase domain and
two Ankyrin repeats, Hsu et al., 2017) apart from YTH domain,
besides its acknowledged functions of accelerating translation
and degradation of mRNAs as an m6A reader, it is possible
that there are potential underlying functions independent from
m6A-binding remained to be discovered. For instance, the recent
study indicated that YTHDC2 as an RNA induced ATPase moves
along the RNA from 3′ to 5′ with helicase activity, and interacts

FIGURE 4 | Conservation analysis of the m6A sites targeted by different readers. (A) Average phastCons; (B) High conservation ratio; (C) Frequency of miRNA

binding site among the targets of six m6A readers; (D) Frequency of RBP binding site among the targets of six m6A readers.
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with 5′ to 3′ exoribonuclease XRN1 mediated by two Ankyrin
repeats (ANK) on YTHDC2 (Wojtas et al., 2017). Remarkably,
YTHDF family shows a similar binding distribution in CDSs
and 3′ UTRs with peaks at around stop codons of mRNAs.
A similar pattern of results was obtained in previous studies
suggesting that YTHDFs directly interplay among one another to
collaboratively regulate translation and decay of targeted mRNAs
in the cytoplasm (Shi et al., 2017). The binding sites of EIF3A are

uniquely enriched at 5′UTRs. This is directly in line with previous
findings that the HLH motif of EIF3A interacts predominantly
with the m6A residues on the 5′UTR, and EIF3A specifically

functions to promote cap-independent translation under diverse
cellular stresses.

We then compared the conservation of all m6A readers by
phastCons score and high conservation ratio (>0.5). As seen in
Figures 4A,B, the m6A sites (targeted or not targeted by the
studied six readers) are more conservative than unmethylated
m6Amotifs (DRACH). This suggests that m6A sites and the m6A
reader binding sites are more evolutionarily conserved at the
gene level, and the occurrence of m6A should be considered of
functional importance and maintained under selection pressure.
Moreover, the YTH family is more conserved compared with
other regulation components, which is similar to the finding that
YT521-B homology (YTH) RNA-binding domain in eukaryotes
is known to be highly conserved with essential Lys-364, Trp-380,
and Arg-478 (Zhang et al., 2010). Additionally, as shown in

FIGURE 5 | Gene ontology (GO) enrichment analysis for each reader’s substrates. The top 10 GO functions related to each m6A readers are presented.
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Figure 4C, compared with EIF3a binding sites and unmethylated
sites which are mostly not in 3′ UTR, targets of other m6A readers
and other untargeted m6A sites are more correlated with the
miRNA binding sites. This result agrees well with existing studies
investigated that miRNA targets are more enriched in 3′ UTR
and m6A peaks prior to the present of miRNA binding for a
majority of the time, suggesting that m6Amodification functions
to enhance initiation of miRNA biogenesis (Meyer et al., 2012;
Alarcón et al., 2015). And the relative low overlapping rate
between YTHDC2 binding sites and miRNA binding sites could
be explained by multiple RNA-binding domains of YTHDC2.
Furthermore, the proportions of overlapping of RNA-binding
proteins (RBPs) and eachm6A reader’s binding site are calculated.
Figure 4D shows that RBPs binding regions overlap with m6A
reader binding sites in mRNA more than the other m6A
sites, while there are even fewer overlapping regions with
unmethylated sites. This is consistent with our knowledge that
some RBPs are essential in post-transcriptional control of RNAs
including splicing, stabilization, localization and translation of
mRNA. In the process of regulating transcription and translation,
m6A readers may recruit large numbers of regulators or factors
to their targeted RNAs so as to functionally regulate biological
processes (Shi et al., 2017).

To explore the association among m6A modification, readers
and biological functions, the gene ontology (GO) enrichment
analysis was conducted to measure the biological functions of
substrates of each reader using DAVID websites (Huang da et al.,
2009). The resulting top 10 GO functions related to each m6A
readers were illustrated in Figure 5. Interestingly, YTHDC1 is
involved in mRNA splicing, mRNA processing and nuclear-
transcribed mRNA catabolic process, which is consistent with
our understanding of its role of mediating nuclear to cytoplasmic
export of nascent m6A-containing mRNAs (Roundtree et al.,
2017). The targeting of YTHDC2, shown to accelerate the
degradation of mRNA and enhance translation efficiency
(Hsu et al., 2017), are more related to nonsense-mediated decay,
protein stabilization and translational initiation. YTHDF1 targets
are enriched under the GO terms of nuclear-transcribed mRNA
catabolic process and translation initiation (Wang et al., 2015),
suggesting its function in selectively recruiting of ribosomes
and facilitating translation. YTHDF2 and YTHDF3 targets are
both associated with proteasome-mediated ubiquitin-dependent
protein catabolic process, which corresponds to our knowledge
of their regulation in the metabolism of cytosolic m6A-modified
mRNAs (Wang et al., 2014; Shi et al., 2017). EIF3A, reported to
serve as a driver of specialized translation (Lee et al., 2015), is
enriched with gene expression, translation and SRP-dependent
co-translational protein targeting to the membrane. Moreover,
as summarized in Supplementary Figure S7, six m6A readers
show high enrichment in cytosol, cytoplasm, and membrane.
Five of them (YTHDC1, YTHDF1-3, and EIF3a) are enriched
in nucleus and nucleoplasm. While YTHDC2 is more enriched
in extracellular exosome, extracellular matrix and myelin sheath
instead of nucleus or nucleoplasm. All six proteins are enriched in
the function of protein binding and poly(A) RNA binding, while
they each have other specialized functions. This is consistent
with analysis above on the enrichment of biological process and

previous relevant literature. All gene ontology enrichment results
were shown in Supplementary Table S9.

Additionally, we further confirmed the biological meanings
of the substrates of all m6A readers. Based on the results of
previous GO enrichment analysis (Chen K. et al., 2018), the most
significant p-values of top 10 terms treated with the negative
logarithm were firstly added up, and then those computed results
of identified targets were compared with those of randomly
selected substrates. With the bootstrap sampling approach,
substrates were randomly selected and analyzed for 100 times
before the results were summarized as proportions and displayed
in pie charts. Conceivably, if our results achieved on real data
are more biologically meaningful than random permutation, it
is possible that our analysis reliably unveiled the true biological
functions. Specifically, there are 88, 100, 73, 68, 80, and 100%
chances for each reader to be more enriched in biological
functions than random permutation as illustrated in Figure 6,
suggesting high possibility that our functional prediction for each
individual reader is statistically meaningful.

Web Sever for m6A Reader
A web server with a friendly graphical user interface (Figure 7)
was constructed to properly share the predictive models we
constructed for predicting target specificity of the m6A readers.
Users may upload the genome ranges in BED format to the
website, and a notification email will be sent to the given email
address once the job is finished.

FIGURE 6 | Comparing detection of m6A readers’ targets based on biological

significance. The most significant p-values of top 10 GO terms treated with

negative logarithm were added up, and those results of identified targets were

compared with those of randomly selected substrates. With the bootstrap

sampling approach, substrates were randomly selected and analyzed for 100

times before the results were summarized as proportions and displayed in pie

charts.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 August 2020 | Volume 8 | Article 741

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Zhen et al. Epitranscriptome Target Prediction and Functional Characterization

FIGURE 7 | m6A reader web server. The web server takes genome ranges in BED format as the input, and supports prediction for the target sites of six m6A readers

(YTHDC1, YTHDC2, YTHDF1, YTHDF2 and YTHDF3 and EIF3A). All the materials used in the project, including the training data and codes, are also available on the

website.

CONCLUSION

With the great breakthroughs made in RNA modification-
mediated regulation of gene expression, studies of emerging
transcriptome modifications have driven rapid development
of the high-throughput sequencing technologies. With the aid
of the invention of m6A-seq (Dominissini et al., 2012) and
MeRIP-seq (Meyer et al., 2012), transcriptome-wide profiling of
m6A is now possible. Based on comprehensive high-throughput
sequencing data,MeT-DB (LiuH. et al., 2018) and RMBase (Xuan
et al., 2018) were established, providing the site information
of RNA modifications. Subsequently, single-based technologies
such as m6A-CLIP (Ke et al., 2015) and miCLIP (Linder
et al., 2015) were also developed to precisely identify the
positions of m6A. Complementary to experimental methods,
well-established computational models facilitate the analysis
of sequencing data and address the challenges presented in
the bioinformatics community by predicting potential RNA
methylation sites. The exomePeak R/Bioconductor package
(Meng et al., 2013, 2014), MACS algorithm (Zhang et al.,
2008) and DRME software (Liu et al., 2016) were introduced
to analyze epitranscriptome profiling data, which improved
our understanding of RNA methylation. Sequence-based site
prediction models such as iRNA(m6A)-PseDNC (Chen W. et al.,
2018) and iRNAMethyl (Chen et al., 2015b) applied statistical
methods, whereas m6Apred (Chen et al., 2015c), RAM-ESVM

(Chen et al., 2017b), and RNAMethPre (Xiang et al., 2016)
integrated machine learning approaches, predicting m6A sites
in different species’ transcriptome. Furthermore, potential RNA
methylation-disease associations have been revealed by m6Avar
(Zheng et al., 2018) and m6ASNP (Jiang et al., 2018). With
a similar purpose, heterogeneous networks have been used in
DRUM (Tang et al., 2019), FunDMDeep-m6A (Zhang et al.,
2019b) and Deepm6A (Zhang et al., 2019a), showing a new
perspective in studying disease-associated RNA methylation.

In this study, we constructed SVM-based models for the
prediction of target specificity of m6A readers (YTHDC1,
YTHDC2, YTHDF1, YTHDF2, YTHDF3, and EIF3A). The
proposed models rely on 58 genomic features integrated with the
sequence features related to chemical properties. After feature
selection using the F-score method, those models achieved
high prediction performance in 5-fold cross-validation and
independent testing. Additionally, we compared the performance
of different sequence encoding schemes on each reader’s substrate
prediction. As existing m6A base-resolution data suffer from
the bias of polyA selection, mature mRNA model was also
considered besides the full transcript model. Moreover, we
compared different machine learning algorithms and showed
that four algorithms all demonstrate high performance with
little difference in the prediction of target specificity of m6A
readers. We eventually decided to use SVM classifier for
our predictors.
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It is also worth mentioning that our comprehensive analysis
of m6A readers revealed potential regulatory patterns and
biological relationships. We showed that m6A reader binding
sites on mRNAs were concentrated in CDSs and 3′ UTR near
stop codons, which is in line with m6A localization. Although
distribution analysis of m6A readers has been conducted in
previous studies and suggested similar binding patterns (Xu
et al., 2014; Wang et al., 2015; Hsu et al., 2017), the results we
presented were substantially enhanced with the incorporation
of multiple datasets. Our result shed lights on the post-
transcriptional and translational functions of m6A readers on
m6A-containing mRNAs with more reliable evidence. Moreover,
computed phastCons score and conservation ratio revealed a
high conservation of the target sites of m6A readers, suggesting
that they are possibly playing necessary or essential roles in
regulating m6A-containing mRNAs. This is remarkable since
we focused on the conservation of binding sites of m6A
readers on mRNAs, rather than the conservation of m6A motifs
itself as widely studied currently (Meyer et al., 2012), thus
the biologically meaningful relationship between m6A readers
and m6A modifications was confirmed. Besides, different from
enrichment analysis alone in previous studies (Hsu et al.,
2017), we not only unveiled functional relevance through the
enrichment of the targets of m6A readers in biological process,
cellular components and molecular functions by GO analysis,
but also confirmed that reader-regulated sites are more likely
to be biologically significant than randomly selected sites. The
combination of statistical analysis and GO analysis ensures
the robust detection and critical evaluation of the biological
functions with a higher degree of confidence. Furthermore,
our GO enrichment analysis result is also consistent with the
wet-lab experiment and our prediction on unidentified regions
that YTHDF proteins have both similar functions and different
functions in the m6A mRNA regulation. This supports the
conclusion made in previous study that m6A readers’ effect
on downstream processes are much more heterogeneous and
context-dependent across transcripts (Zhang et al., 2020).

However, this study has a number of limitations that could
be improved in the future. Firstly, it has been argued that
4SU PAR-CLIP suffers from U-bias in contrast with UV-254
crosslinking or 6SG crosslinking (Ascano et al., 2012), thus
other CLIP techniques are recommended to ensure crosslinking
efficiency. Secondly, although data from different experiments
were combined to build the predictors and 5-fold cross-validation
was used to balance the bias-variance tradeoff, data of YTHDC2
and EIF3A substrates are still limited, whichmaymake overfitting
of the models possible. Thus, the analysis and prediction will
benefit from other data from wet experiments in the future.
Thirdly, as genome-derived features improved the performance

of predictors dramatically, this suggests that genomic features
carry important characteristics of biological data. Considering
only 58 of them were involved in the feature selection procedure,
it is worth exploring more genomic features so as to allow more
effective features to be selected and reduce the bias as much as
possible. In the future, it is expected to see the expanded studies of
the enzyme target specificity and functional associations of other
RNA modifications, such as m1A and Pseudouridine, on other
types of RNAs, such as lncRNA and snRNAs, and in other species,
such as mouse and yeast. Additional studies are clearly needed
to investigate RNA-sequence-dependent m6A readers other than
YTH domain-containing proteins such as FMR1 (Edupuganti
et al., 2017). And it could be quite interesting to explore disease-
associated RNA modification based on cellular binding patterns
of regulatory proteins on modified RNAs.
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