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Abstract

Background: The epigenetic regulation of immune response has been demonstrated in recent studies.

Nonetheless, potential roles of RNA N6-methyladenosine (m6A) modification in tumor microenvironment (TME) cell

infiltration remain unknown.

Methods: We comprehensively evaluated the m6A modification patterns of 1938 gastric cancer samples based on

21 m6A regulators, and systematically correlated these modification patterns with TME cell-infiltrating characteristics.

The m6Ascore was constructed to quantify m6A modification patterns of individual tumors using principal

component analysis algorithms.

Results: Three distinct m6A modification patterns were determined. The TME cell-infiltrating characteristics under

these three patterns were highly consistent with the three immune phenotypes of tumors including immune-

excluded, immune-inflamed and immune-desert phenotypes. We demonstrated the evaluation of m6A modification

patterns within individual tumors could predict stages of tumor inflammation, subtypes, TME stromal activity,

genetic variation, and patient prognosis. Low m6Ascore, characterized by increased mutation burden and activation

of immunity, indicated an inflamed TME phenotype, with 69.4% 5-year survival. Activation of stroma and lack of

effective immune infiltration were observed in the high m6Ascore subtype, indicating a non-inflamed and immune-

exclusion TME phenotype, with poorer survival. Low m6Ascore was also linked to increased neoantigen load and

enhanced response to anti-PD-1/L1 immunotherapy. Two immunotherapy cohorts confirmed patients with lower

m6Ascore demonstrated significant therapeutic advantages and clinical benefits.

Conclusions: This work revealed the m6A modification played a nonnegligible role in formation of TME diversity

and complexity. Evaluating the m6A modification pattern of individual tumor will contribute to enhancing our

cognition of TME infiltration characterization and guiding more effective immunotherapy strategies.
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Introduction
In all living organisms, as the third layer of epigenetics,

more than 150 RNA modifications including 5-

methylcytosine (m5C), N6-methyladenosine (m6A) and

N1-methyladenosine (m1A) have been identified [1, 2].

Among these modifications, m6A RNA methylation,

which are widely found in the mRNA, lncRNA as well as

miRNA, is recognized as the most prominent and abun-

dant form of internal modifications in eukaryotic cells,

of whose abundance account for 0.1–0.4% total adeno-

sine residues [3–5]. Similar to the modification of DNA

and protein, m6A modification is a kind of dynamic re-

versible process in mammalian cells, which is regulated

by methyltransferases, demethylases and binding pro-

teins, also known as “writers”, “erasers” and “readers”

[6]. The formation process of m6A methylation is cata-

lyzed by methyltransferases consisting of RBM15,

ZC3H13, METTL3, METTL14, WTAP and KIAA1429,

while the removal process is mediated by demethylases in-

cluding FTO and ALKBH5. In addition, a group of specific

RNA-binding proteins composed of YTHDF1/2/3,

YTHDC1/2, HNRNPA2B1, LRPPRC, FMR1 and so on

can recognize m6A motif, thus affecting m6A functions [7,

8]. The in-depth understanding of these regulators would

help reveal the role and mechanism of m6A modification

in post-transcriptional regulation. It has been reported

that the m6A regulators play a crucial role in a variety of

biological functions in vivo [9–11]. Increasing evidence

demonstrated that dysregulated expression and genetic

changes of m6A regulators were correlated with the disor-

ders of multiple biological process including dysregulate

cell death and proliferation, developmental defects, tumor

malignant progression, impaired self-renewal capacity,

and immunomodulatory abnormality [12–14].

Immunotherapy represented by immunological check-

point blockade (ICB, PD-1/L1 and CTLA-4) has demon-

strated astounding clinical efficacy in a small percentage

of patients with durable responses. Unfortunately, the

majority of patients experienced minimal or no clinical

benefit, far from a met clinical need [15]. Traditionally,

the tumor progression has been considered as a multi-

step process that only involves the genetic and epigen-

etic variation in tumor cells. However, numerous studies

have shown that the microenvironment in which tumor

cells depend for growth and survival also play a crucial

role in the tumor progression. The tumor part was com-

posed of a complex tumor microenvironment (TME)

that not only contained cancer cells but also stromal

cells such as resident fibroblasts (cancer associated fibro-

blast; CAF) and macrophages, and distant recruited cells

such as infiltrating immune cells (myeloid cells and lym-

phocytes), bone marrow-derived cells (BMDCs) such as

endothelial progenitor and hematopoietic progenitor

cells, secreted factors such as cytokines, chemokines,

growth factors, and new blood vessels. Of these, five dis-

tinct myeloid populations including tumor-associated

macrophages (TAM), tumor-associated neutrophils

(TANs), dendritic cells, myeloid-derived suppressor cells

(MDSCs) and Tie2-expressing monocytes comprised the

tumor-associated myeloid cells (TAMCs) [16]. Cancers

cells elicited multiple biological behavior changes

through direct and indirect interactions with other TME

components such as inducing proliferation and angio-

genesis, inhibiting apoptosis, avoiding hypoxia as well as

inducing immune tolerance. As the understanding of the

diversity and complexity of tumor microenvironment

has deepened, emerging evidence reveals its critical role

in the tumor progression, immune escape, and its effect

on response to immunotherapy. Predicting the response

to ICB based on the characterization of TME cell infil-

tration is a key procedure on increasing the success of

existing ICBs and exploiting novel immunotherapeutic

strategies [17, 18]. Therefore, by comprehensively pars-

ing the TME landscape heterogeneity and complexity,

different tumor immune phenotypes are likely to be

identified, and the abilities of guiding and predicting im-

munotherapeutic responsiveness would also improve.

Additionally, the promising biomarkers could be re-

vealed, which will prove highly effective in recognizing

patients’ response to immunotherapy and will benefit

the search for new therapeutic targets [19, 20].

Recently, several studies have revealed the special cor-

relation between TME infiltrating immune cells and

m6A modification, which can’t be explained via RNA

degradation mechanism. Dali et al. reported that binding

of YTHDF1 to the transcripts encoding lysosomal prote-

ases modified by m6A methylation improved the transla-

tional efficiency of lysosomal cathepsins in dendritic

cells (DCs), while suppression of cathepsins in DC sig-

nificantly strengthened its ability to cross-present tumor

antigens, which in turn enhanced tumor infiltrating

CD8+ T cell antitumor response. And YTHDF1 inhib-

ition also improved the therapeutic efficacy of anti-PD-

L1 blockade [21]. The study of Huamin et al. revealed

that METTL3-mediated m6A modification promoted the

activation and maturation of DCs. Declining expression

of co-stimulatory molecules CD80 and CD40 resulted by

METTL3 specific depletion reduced the ability of stimu-

lating T cell activation. And down-regulation of Tirap

inhibited the transmission of the TLR4/NF-κB signaling

pathway and decreased the secretion of pro-inflammatory

cytokines [22]. In addition, some studies have focused on

the intrinsic oncogenic pathways induced by dysregulated

expression and genomic variation of m6A regulators. For

example, Qiang et al. found that METTL3 overexpression

promote gastric cancer (GC) malignant progression and

liver metastasis through angiogenesis and glycolysis path-

way [23].
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However, the above studies have necessarily been con-

fined to only one or two m6A regulators and cell types

owing to technical limitations, while the antitumor effect

is characterized by numerous tumor suppressor factors

that interact in a highly coordinated manner. Therefore,

comprehensive recognizing the TME cell infiltration

characterizations mediated by multiple m6A regulators

will contribute to enhancing our understanding of TME

immune regulation. In this study, we integrated the gen-

omic information of 1938 gastric cancer samples to

comprehensively evaluate the m6A modification pat-

terns, and correlated the m6A modification pattern with

the TME cell-infiltrating characteristics. We revealed

three distinct m6A modification patterns, and surpris-

ingly found that the TME characteristics under these

three patterns were highly consistent with the immune-

excluded phenotype, immune-inflamed phenotype and

immune-desert phenotype, respectively, suggesting the

m6A modification played a nonnegligible role in shaping

individual tumor microenvironment characterizations.

For that, we established a set of scoring system to quan-

tify the m6A modification pattern in individual patients.

Methods
Gastric cancer dataset source and preprocessing

The workflow of our study was shown in Figure S1A.

Public gene-expression data and full clinical annotation

were searched in Gene-Expression Omnibus (GEO) and

the Cancer Genome Atlas (TCGA) database. Patients

without survival information were removed from further

evaluation. In total, 7 eligible GC cohorts (GSE15459,

GSE34942, GSE57303, GSE62254/ACRG, GSE84437,

GSE26253 and TCGA-STAD (The Cancer Genome

Atlas-Stomach Adenocarcinoma)) were gathered in this

study for further analysis. For microarray data from

Affymetrix®, we downloaded the raw “CEL” files and

adopted a robust multiarray averaging method with the

affy and simpleaffy packages to perform background ad-

justment and quantile normalization. For microarray

data from other platforms, the normalized matrix files

were directly downloaded. As to datasets in TCGA,

RNA sequencing data (FPKM value) of gene expression

were downloaded from the Genomic Data Commons

(GDC, https://portal.gdc.cancer.gov/) using the R pack-

age TCGAbiolinks [24], which was specifically developed

for integrative analysis with GDC data [24]. Then FPKM

values were transformed into transcripts per kilobase

million (TPM) values. Batch effects from non-biological

technical biases were corrected using the “ComBat” algo-

rithm of sva package. The baseline information of all eli-

gible GC datasets was summarized in Table S1. The

somatic mutation data was acquired from TCGA data-

base. The GSE62717 dataset from ACRG cohort was

downloaded for Copy Number Variation (CNV) analysis.

Data were analyzed with the R (version 3.6.1) and R Bio-

conductor packages.

Unsupervised clustering for 21 m6A regulators

Owing to the few m6A regulators detected by Illumina

HumanRef-8 WG-DASL v3.0 platform, we did not in-

clude GSE26253 cohort for clustering analysis. A total of

21 regulators were extracted from five integrated GEO

datasets for identifying different m6A modification pat-

terns mediated by m6A regulators. These 21 m6A regula-

tors included 8 writers (METTL3, METTL14, RBM15,

RBM15B, WTAP, KIAA1429, CBLL1, ZC3H13), 2

erasers (ALKBH5, FTO) and 11 readers (YTHDC1,

YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1,

HNRNPA2B1, HNRNPC, FMR1, LRPPRC, ELAVL1).

Unsupervised clustering analysis was applied to identify

distinct m6A modification patterns based on the expres-

sion of 21 m6A regulators and classify patients for fur-

ther analysis. The number of clusters and their stability

were determined by the consensus clustering algorithm

[25]. We used the ConsensuClusterPlus package to per-

form the above steps and 1000 times repetitions were

conducted for guaranteeing the stability of classification

[26].

Gene set variation analysis (GSVA) and functional

annotation

To investigate the difference on biological process be-

tween m6A modification patterns, we performed GSVA

enrichment analysis using “GSVA” R packages. GSVA,

in a non-parametric and unsupervised method, is com-

monly employed for estimating the variation in pathway

and biological process activity in the samples of an ex-

pression dataset [27]. The gene sets of “c2.cp.kegg.v6.2.-

symbols” were downloaded from MSigDB database for

running GSVA analysis. Adjusted P with value less than

0.05 was considered as statistically significance. The

clusterProfiler R package was used to perform functional

annotation for m6A-related genes, with the cutoff value

of FDR < 0.05.

Estimation of TME cell infiltration

We used the ssGSEA (single-sample gene-set enrich-

ment analysis) algorithm to quantify the relative abun-

dance of each cell infiltration in the GC TME. The gene

set for marking each TME infiltration immune cell type

was obtained from the study of Charoentong, which

stored various human immune cell subtypes including

activated CD8 T cell, activated dendritic cell, macro-

phage, natural killer T cell, regulatory T cell and so on

(Table S2) [28, 29]. The enrichment scores calculated by

ssGSEA analysis were utilized to represent the relative

abundance of each TME infiltrating cell in each sample.
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Identification of differentially expressed genes (DEGs)

between m6A distinct phenotypes

To identify m6A-related genes, we classified patients into

three distinct m6A modification patterns based on the

expression of 21 m6A regulators. The empirical Bayesian

approach of limma R package was applied to determine

DEGs between different modification patterns [30]. The

significance criteria for determining DEGs was set as

adjusted P value < 0.001.

Generation of m6A gene signature

To quantify the m6A modification patterns of individual

tumor, we constructed a set of scoring system to evalu-

ate the m6A modification pattern of individual patients

with gastric cancer—the m6A gene signature, and we

termed as m6Ascore. The procedures for establishment

of m6A gene signature were as follows:

The DEGs identified from different m6Aclusters were

firstly normalized among all ACRG samples and the

overlap genes were extracted. The patients were classi-

fied into several groups for deeper analysis by adopting

unsupervised clustering method for analyzing overlap

DEGs. The consensus clustering algorithm was utilized

for defining the number of gene clusters as well as their

stability. Then, we performed the prognostic analysis for

each gene in the signature using univariate Cox regres-

sion model. The genes with the significant prognosis

were extracted for further analysis. We then conducted

principal component analysis (PCA) to construct m6A

relevant gene signature. Both principal component 1 and

2 were selected to act as signature scores. This method

had advantage of focusing the score on the set with the

largest block of well correlated (or anticorrelated) genes

in the set, while down-weighting contributions from

genes that do not track with other set members. We

then define the m6Ascore using a method similar to

GGI [31, 32]:

m6Ascore ¼
X

PC1i þ PC2ið Þ

where i is the expression of m6A phenotype-related

genes.

Correlation between m6A gene signature and other

related biological processes

Mariathasan et al. constructed a set of gene sets that

stored genes associated with some biological processes,

including (1) immune-checkpoint; (2) antigen processing

machinery; (3) CD8 T-effector signature; (4) epithelial-

mesenchymal transition (EMT) markers including

EMT1, EMT2 and EMT3; (5) Angiogenesis signature;

(7) pan-fibroblast TGFb response signature (Pan-F-

TBRS); (8) WNT targets; (9) DNA damage repair; (10)

mismatch repair; (11) Nucleotide excision repair; (12)

DNA replication; (13) Antigen processing and presenta-

tion [33–35]. We them performed a correlation analysis

to further reveal the association between m6A gene

signature and some related biological pathways.

Collection of immune-checkpoint blockade genomic and

clinical information

We performed a systematical search for the immune

checkpoint blockade gene expression profiles, which

could be publicly obtained and reported with complete

clinical information. Two immunotherapeutic cohorts

were finally included in our study: advanced urothelial

cancer with intervention of atezolizumab, an anti-PD-L1

antibody (IMvigor210 cohort) [33], and metastatic mel-

anoma treated with pembrolizumab, an anti-PD-1 anti-

body (GSE78220 cohort downloaded from GEO) [36].

For IMvigor210 cohort, based on the Creative Commons

3.0 License, the complete expression data and de-

tailed clinical annotations could be obtained from

http://research-pub.Gene.com/imvigor210corebiologies. The

raw count data were normalized by the DEseq2 R package

and then the count value was transformed into the

TPM value. For GSE78220 cohort, after standardization

using limma package, the FPKM data of gene expression

profiles was also converted to the more comparable TPM

value among samples.

Statistical analysis

Correlations coefficients between the TME infiltrating

immune cells and expression of m6A regulators were

computed by Spearman and distance correlation ana-

lyses. One-way ANOVA and Kruskal-Wallis tests were

used to conduct difference comparisons of three or more

groups [37]. On the basis of the correlation between

m6Ascore and patients’ survival, the cut-off point of

each dataset subgroup was determined using the survmi-

ner R package. The “surv-cutpoint” function, which re-

peatedly tested all potential cut points in order for

finding the maximum rank statistic, was applied to

dichotomize m6Ascore, and then patients were divided

into high and low m6Ascore groups based on the max-

imally selected log-rank statistics to decrease the batch

effect of calculation. The survival curves for the prog-

nostic analysis were generated via the Kaplan-Meier

method and log-rank tests were utilized to identify

significance of differences. We adopted a univariate Cox

regression model to calculate the hazard ratios (HR) for

m6A regulators and m6A phenotype-related genes. The

independent prognostic factors were ascertained through

a multivariable Cox regression model. Patients with

detailed clinical data were eligible for final multivariate

prognostic analysis. The forestplot R package was

employed to visualize the results of multivariate prog-

nostic analysis for m6Ascore in ACRG cohort and
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TCGA-STAD cohort. The specificity and sensitivity of

m6Ascore were assessed through receiver operating

characteristic (ROC) curve, and the area under the curve

(AUC) were quantified using pROC R package. The

waterfall function of maftools package was used to

present the mutation landscape in patients with high

and low m6Ascore subtype in TCGA-STAD cohort. The

R package of RCircos was adopted to plot the copy num-

ber variation landscape of 21 m6A regulators in 23 pairs

of chromosomes [38]. All statistical P value were two-

side, with p < 0.05 as statistically significance. All data

processing was done in R 3.6.1 software.

Results
Landscape of genetic variation of m6A regulators in

gastric cancer

A total of 21 m6A regulators including 8 writers, 2

erasers and 11 readers were finally identified in this

study. Figure 1a summarized the dynamic reversible

process of m6A RNA methylation mediated by regula-

tors as well as their potential biological functions for

RNA. We first summarized the incidence of copy num-

ber variations and somatic mutations of 21 m6A regula-

tors in GC. Among 433 samples, 101 experienced

mutations of m6A regulators, with frequency 23.33%. It

was found that the ZC3H13 exhibited the highest muta-

tion frequency followed by KIAA1429, while both

demethylases (FTO and ALKBH5) as well as METTL3

did not show any mutations in GC samples (Fig. 1b).

Further analyses revealed a significant mutation co-

occurrence relationship between ELAVL1 and

KIAA1429, YTHDF1 and ZC3H13, along with RBM15

and YTHDC1 (Figure S1B). The investigation of CNV

alteration frequency showed a prevalent CNV alteration

in 21 regulators and most were focused on the amplifi-

cation in copy number, while ELAVL1, YTHDF2 and

FMR1 had a widespread frequency of CNV deletion

(Fig. 1c). The location of CNV alteration of m6A regula-

tors on chromosomes was shown in Fig. 1d. Based on

the expression of these 21 m6A regulators, we could

completely distinguished GC samples from normal sam-

ples (Fig. 1e). To ascertain whether the above genetic

variations influenced the expression of m6A regulators

in GC patients, we investigated the mRNA expression

levels of regulators between normal and GC samples,

and found that the alterations of CNV could be the

prominent factors resulting in perturbations on the m6A

regulators expression. Compared to normal gastric

tissues, m6A regulators with amplificated CNV demon-

strated markedly higher expression in GC tissues (e.g.

CBLL1 and FTO), and vice versa (e.g. ELAVL1 and

YTHDF2) (Fig. 1c and f). The above analyses presented

the highly heterogeneity of genetic and expressional al-

teration landscape in m6A regulators between normal

and GC samples, indicating that the expression imbal-

ance of m6A regulators played a crucial role in the GC

occurrence and progression.

m6A methylation modification patterns mediated by 21

regulators

Five GEO datasets with available OS data and clinical

information (GSE15459, GSE34942, GSE57303, GSE62254/

ACRG and GSE84437, Table S1) were enrolled into one

meta-cohort. A univariate Cox regression model revealed

the prognostic values of 21 m6A regulators in patients with

gastric cancer (Figure S1C). The comprehensive landscape

of m6A regulator interactions, regulator connection and

their prognostic significance for GC patients was depicted

with the m6A regulator network (Fig. 2a and Table S3). We

found that not only the m6A regulators in the same

functional category presented a remarkably correlation in

expression, but also a significant correlation was shown

among writers, erasers, and readers. We also demonstrated

that whether tumors with a high writer gene expression ex-

hibits a low eraser gene expression actually depended on

the different writer and eraser genes (Figure S2A-S2H). It

was found that tumors with a high expression of writer

genes (WATP and RBM15) showed a low expression of

eraser gene FTO, while the high expression of WATP and

RBM15 did not affect the expression of another eraser gene

ALKBH5 (Figure S2A-S2B). Tumors with a high expression

of writer gene METTL14, METTL3, KIAA1429 and

ZC3H13 showed a high expression of eraser gene FTO, and

METTL14, METTL3 and ZC3H13 also did not interfere

with ALKBH5 expression, while KIAA1429 shared a com-

mon trend in gene expression with ALKBH5. In addition,

the change of RBM15B expression did not affect the ex-

pression of these two eraser genes (Figure S2C-S2H). Con-

sidering the relatively higher mutation frequency of writer

gene ZC3H13, we analyzed the difference in expression of

eraser genes between ZC3H13-mutant and wild types. Of

these, ALKBH5 was significantly up-regulated in ZC3H13-

mutant tumors compared to wild-type tumors, while FTO

was significantly down-regulated (Figure S2I).

The above results indicated that cross-talk among the

regulators of writers, readers, and erasers may play crit-

ical roles in the formation of different m6A modification

patterns and TME cell-infiltrating characterization

between individual tumors.

The R package of ConsensusClusterPlus was used to

classify patients with qualitatively different m6A modifi-

cation patterns based on the expression of 21 m6A

regulators, and three distinct modification patterns were

eventually identified using unsupervised clustering, in-

cluding 389 cases in pattern A, 348 cases in pattern B

and 322 cases in pattern C. We termed these patterns as

m6Acluster A-C, respectively (Figure S2J and Table S4).

Prognostic analysis for the three main m6A modification
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Fig. 1 (See legend on next page.)
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subtypes revealed the particularly prominent survival ad-

vantage in m6Acluster-B modification pattern (Fig. 2b).

TME cell infiltration characteristics in distinct m6A

modification patterns

To explore the biological behaviors among these distinct

m6A modification patterns, we performed GSVA

enrichment analysis. As shown in Fig. 2c and Table S5,

m6Acluster-A was markedly enriched in stromal and

carcinogenic activation pathways such as ECM receptor

interaction, TGF beta signaling pathway, cell adhesion

and MAPK signaling pathways. m6Acluster-B presented

enrichment pathways associated with immune fully acti-

vation including the activation of chemokine signaling

pathway, cytokine-cytokine receptor interaction, T cell

receptor signaling pathway and Toll like receptor signal-

ing pathways (Fig. 2c). While m6Acluster-C was promin-

ently related to immune suppression biological process

(Fig. 2d). To our surprise, subsequent analyses of TME

cell infiltration indicated m6Acluster-A was remarkably

rich in innate immune cell infiltration including natural

killer cell, macrophage, eosinophil, mast cell, MDSC,

plasmacytoid dendritic cell (Fig. 3a and Table S4). How-

ever, patients with this m6A modification pattern did

not show a matching survival advantage (Fig. 2b). Pre-

vious studies demonstrated that tumors with immune-

excluded phenotype also showed the presence of

abundant immune cells, while these immune cells were

retained in the stroma surrounding tumor cell nests ra-

ther than penetrate their parenchyma. The activation of

stroma in TME were considered T-cell suppressive [39].

The results from GSVA analyses have revealed cluster A

modification pattern was significantly associated with

stromal activation. Therefore, we speculated that stromal

activation in cluster A inhibited the antitumor effect of

immune cells. Subsequent analyses showed that stroma

activity was significantly enhanced in cluster A such as

the activation of epithelial-mesenchymal transition

(EMT), transforming growth factor beta (TGFb) and

angiogenesis pathways, which confirmed our speculation

(Fig. 3b) Based on the above analyses, we were surprised

to find three m6A modification patterns had significantly

distinct TME cell infiltration characterization. Cluster A

was classified as immune-excluded phenotype, charac-

terized by innate immune cell infiltration and stromal

activation; cluster B was classified as immune-inflamed

phenotype, characterized by adaptive immune cell infil-

tration and immune activation; cluster C was classified

as immune-desert phenotype, characterized by the sup-

pression of immunity (Figs. 2c-d and 3a-b). We then

used the CIBERSORT method, a deconvolution algo-

rithm using support vector regression for determining

the immune cell type in tumors, to compare the compo-

nent differences of immune cells among the three m6A

modification patterns. We found that there were no sig-

nificant differences on the compositions of TME cell

types between the three m6A modification patterns,

which suggested that m6A methylation modification

did not change TME infiltrating-cell types of tumors

(Figure S2K).

We then examined the specific correlation between

each TME infiltration cell type and each m6A regulator

using spearman’s correlation analyses (Figure S3A). We

focused on the regulator KIAA1429, a m6A methyltrans-

ferases, and revealed its significantly negative correlation

with numerous TME infiltrating immune cells. We used

ESTIMATE algorithm to quantify the overall infiltration

of immune cells between high and low KIAA1429 ex-

pression patients. The results showed that low expres-

sion of KIAA1429 exhibited high immune scores, which

meant that the TME with low expression of KIAA1429

existed a significantly increased immune cell infiltration,

thus confirming the above findings (Figure S3B). We

then explored the specific difference of 23 TME infiltrat-

ing immune cells between high and low KIAA1429 ex-

pression patients. We found tumors with low expression

of KIAA1429 presented significantly increased infiltra-

tion in 23 TME immune cells compared to patients with

high expression (Figure S3C). Recent studies paid special

attention to the mechanism of m6A modification

(See figure on previous page.)

Fig. 1 Landscape of genetic and expression variation of m6A regulators in gastric cancer. a Summary of the dynamic reversible process of m6A

RNA methylation mediated by regulators (“writers”, “erasers” and “readers”) and their potential biological functions for RNA. b The mutation

frequency of 21 m6A regulators in 433 patients with gastric cancer from TCGA-STAD cohort. Each column represented individual patients. The

upper barplot showed TMB, The number on the right indicated the mutation frequency in each regulator. The right barplot showed the

proportion of each variant type. The stacked barplot below showed fraction of conversions in each sample. c The CNV variation frequency of

m6A regulators in GSE62717 cohort. The height of the column represented the alteration frequency. The deletion frequency, blue dot; The

amplification frequency, red dot. d The location of CNV alteration of m6A regulators on 23 chromosomes using GSE62717 cohort. e Principal

component analysis for the expression profiles of 21 m6A regulators to distinguish tumors from normal samples in GSE2269 cohort. Two

subgroups without intersection were identified, indicating the tumors and normal samples were well distinguished based on the expression

profiles of m6A regulators. Tumors were marked with blue and normal samples marked with yellow. f The expression of 21 m6A regulators

between normal tissues and gastric tissues. Tumor, red; Normal, blue. The upper and lower ends of the boxes represented interquartile range of

values. The lines in the boxes represented median value, and black dots showed outliers. The asterisks represented the statistical p value

(*P < 0.05; **P < 0.01; ***P < 0.001)
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regulating the activation of dendritic cells (DCs). DCs,

which are responsible for antigen presentation and the

activation of naive T cells, are a bridge connecting innate

and adaptive immunity, and their activation depending

on the high expression level of MHC molecules, costi-

mulatory factors and adhesion factors [40]. Our study

indicated that tumors with low expression of KIAA1429

showed significant more enrichment of TME DCs infil-

tration including activated DCs, immature DCs, and

plasmacytoid DCs. We also noted that the decreased ex-

pression of KIAA1429 resulted in the comprehensively

elevated expression of MHC molecules, costimulatory

molecules, and adhesion molecules (Figure S3D). Subse-

quent pathway enrichment analyses, as expected, tumors

with low KIAA1429 expression exhibited an obvious en-

hancement in immune activation pathways including the

pathway of antigen processing and presentation, C-type

lectin receptor, NOD-like receptor, T cell receptor, Toll-

like receptor and NF-κB signaling pathway (Figure S3E).

It was interesting that the immune-related pathway en-

hancements were accompanied by the increased expres-

sion of immunological checkpoint molecules PD1/L1

(Figure S3D-S3E). So we investigated whether the ex-

pression of KIAA1429 regulator affected the therapeutic

efficacy of immune checkpoint blockade. In anti-PD-L1

immunotherapy cohort (IMvigor210), a survival benefit

trend was observed in patients with low expression of

KIAA1429 (Figure S3F). In anti-PD-1 immunotherapy

cohort (GSE78220), we did not observe a significantly

prolonged survival owing to the few samples (Figure

S3G). From above, we could speculate that KIAA1429-

mediated m6A methylation modification may promote

the activation of TME DCs, thus enhancing the intra-

tumoral antitumor immune response.

m6A methylation modification patterns in ACRG cohort

To further explore the characteristics of these m6A

modification phenotypes in the different clinical traits

and biological behaviors, we fixed attention on the

ACRG cohort, which comprised 300 gastric cancer pa-

tients and offered the most comprehensive clinical

annotation. Similar to all GC datasets clustering, un-

supervised clustering also discovered three fully distinct

patterns of m6A modification in ACRG cohort (Figure

S4A-S4D and Fig. 3c-d). There was significant distinc-

tion existed on the m6A transcriptional profile among

three different m6A modification patterns (Fig. 3d).

m6Acluster A was characterized by the increased

expression of FTO and HNRNPA2B1, and presented

variable decreases in other m6A regulators; m6Acluster

B showed high expression of ELAVL1, HNRNPC,

LRPPRC, METTL14, RBM15, RBM15B, YTHDC2 and

YTHDF2; and m6Acluster C exhibited significant in-

creases in the expression of FMR1 IGF2BP1, WTAP,

ZC3H13 and YTHDF1. Patients with EMT molecular

subtypes were characterized by the m6Acluster-A

methylation modification patterns, while MSI subtypes

were characterized by the m6Acluster-B modification

patterns. We also noted that tumors with m6Acluster-A

patterns presented poorer differentiation and were

enriched in the diffuse histological subtype. A better

tumor differentiation was observed in the m6Acluster-B

and m6Acluster-C patterns, which were enriched in the

intestinal histological subtype. In gastric cancer, the

EMT molecular subtype and diffuse histological type

was markedly linked to a poorer survival, while MSI

linked to a better clinical outcome. Therefore, the tu-

mors characterized by m6Acluster-A modification pat-

terns were significantly correlated with stromal

activation, high malignancy and rapid progression

(Fig. 3c). One-way ANOVA test also confirmed the

remarkable differences on m6A regulator expression be-

tween three key m6A modification patterns. Prognostic

analysis also revealed m6Acluster B to be markedly related

to prolonged survival, while m6Acluster A and m6Acluste

C were characterized by poorer survival (Figure S4E-S4F).

Consistent with the above findings, most patients with

EMT subtypes were clustered into m6Acluster A and

almost no EMT subtypes were in m6Acluster B, which

confirmed again that m6Acluster A was significantly

relevant to the stromal activation and m6Aclustre B

relevant to the immune activation (Fig. 3e and Table S6).

(See figure on previous page.)

Fig. 2 Patterns of m6A methylation modification and biological characteristics of each pattern. a The interaction between m6A regulators in

gastric cancer. The circle size represented the effect of each regulator on the prognosis, and the range of values calculated by Log-rank test was

p < 0.001, p < 0.01, p < 0.05 and P < 0.1, respectively. Green dots in the circle, risk factors of prognosis; Black dots in the circle, protective factors of

prognosis. The lines linking regulators showed their interactions, and thickness showed the correlation strength between regulators. Negative

correlation was marked with blue and positive correlation with red. The regulator cluster A-D was marked with blue, red, yellow and brown,

respectively. b Survival analyses for the three m6A modification patterns based on 1051 patients with gastric cancer from five GEO cohorts

(GSE15459, GSE34942, GSE57303, GSE62254/ACRG and GSE84437) including 389 cases in m6Acluster-A, 348 cases in m6Acluster-B, and 322 cases

in m6Acluster-C. Kaplan-Meier curves with Log-rank p value 0.011 showed a significant survival difference among three m6A modification

patterns. The m6Acluster B showed significantly better overall survival than the other two m6Acluster. c-d GSVA enrichment analysis showing the

activation states of biological pathways in distinct m6A modification patterns. The heatmap was used to visualize these biological processes, and

yellow represented activated pathways and blue represented inhibited pathways. The gastric cancer cohorts were used as sample annotations.

c m6Acluster A vs m6Acluster B; d m6Acluster B vs m6Acluster C
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Generation of m6A gene signatures and functional

annotation

To further investigate the potential biological behavior

of each m6A modification pattern, we determined 718

m6A phenotype-related DEGs using limma package (Fig-

ure S4G and Table S7). The clusterProfiler package was

used to perform GO enrichment analysis for the DEGs.

The biological processes with significant enrichment

were summarized in Table S8. Surprisingly, these genes

showed enrichment of biological processes remarkably

related to m6A modification and immunity, which con-

firmed again that m6A modification played a non-

negligible role in the immune regulation in tumor

microenvironment (Fig. 3f). To further validate this

regulation mechanism, we then performed unsupervised

clustering analyses based on the obtained 718 m6A

phenotype-related genes in order to classify patients into

different genomic subtypes. Consistent with the cluster-

ing grouping of m6A modification patterns, the unsuper-

vised clustering algorithm also revealed three distinct

m6A modification genomic phenotypes and we named

these three clusters as m6A gene cluster A-C, respect-

ively (Figure S5A-S5D, Fig. 4a and Table S6). This

demonstrated that three distinct m6A methylation modi-

fication patterns did exist in gastric cancer. We observed

that tumors in m6A gene cluster C patterns also exhib-

ited poorer differentiation and were enriched in the

diffuse histological subtype. The opposite patterns were

observed in m6A gene cluster A and cluster B. Patients

with alive status or MSI subtypes were mainly concen-

trated in the m6A gene cluster A, while patients with

clinical stage IV or EMT molecular subtypes were char-

acterized by the m6A gene cluster C patterns (Fig. 4a).

Analysis also indicated three distinct gene clusters were

characterized by different signature genes (Fig. 4a).

Eighty-eight of three hundred patients with gastric can-

cer were clustered in gene cluster A, which were proved

to be related to better prognosis. While patients in gene

cluster C (105 patients) experienced the outcome of

poorer prognosis. An intermediate prognosis was ob-

served in gene cluster C, with 107 patients clustered

(Fig. 4b). In the three m6A gene clusters, the prominent

differences in the expression of m6A regulators were

observed, which was in accordance with the expected

results of m6A methylation modification patterns

(Fig. 4c).

Characteristics of clinical and transcriptome traits in

m6A-related phenotypes

To reveal the role of m6A-related phenotypes in the

TME immune regulation, we studied the expression of

chemokine and cytokine characterizing three gene clus-

ters. The selected cytokine and chemokine were ex-

tracted from published literature, of which, TGRB1,

SMAD9, TWIST1, CLDN3, TGFBR2, ACTA2, COL4A1,

ZEB1 and VIM were considered to be associated with

the transcripts of transforming growth factor (TGF)b/

EMT pathway. PD-L1, CTLA-4, IDO1, LAG3, HAVCR2,

PD-1, PD-L2, CD80, CD86, TIGIT and TNFRSF9 were

considered to be related to the transcripts of immune

checkpoints. TNF, IFNG, TBX2, GZMB, CD8A, PRF1,

GZMA, CXCL9 and CXCL10 were to be correlated with

the transcripts of immune activation [29, 32]. We found

the mRNAs relevant to TGFb/EMT pathway were sig-

nificantly upregulated in gene cluster C, which demon-

strated that this cluster was deemed as stromal-activated

group. While gene cluster A showed high expression of

mRNAs related to immune activation transcripts. This

suggested that gene cluster A could be classified as the

immune-activation group (Figure S5F-S5H). To better

depict the function of m6A signature genes, we exam-

ined the known signatures in patients with gastric cancer

(Figure S5E). The results also confirmed that gene clus-

ter C was characterized by the status of stromal activa-

tion and cancer promotion, and gene cluster A was

significantly related to immune activation status (Figure

S5E-S5H). Consistent with the above findings, as shown

in Fig. 4d and Table S6, almost all (41 of 45, 91%)

patients with EMT subtype (molecular subtypes in

ACRG cohort) were classified into gene cluster C, which

was relevant to the worse survival outcome.

The above results showed again that m6A methylation

modification played a non-negligible regulation role in

shaping different TME landscapes. However, these

(See figure on previous page.)

Fig. 3 TME cell infiltration characteristics and transcriptome traits in distinct m6A modification patterns. a The abundance of each TME infiltrating

cell in three m6A modification patterns. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes

represented median value, and black dots showed outliers. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). b

Differences in stroma-activated pathways including EMT, TGF beta and angiogenesis pathways among three distinct m6A modification patterns.

The statistical differences among three modification patterns was tested by the one-way ANOVA test. The asterisks represented the statistical p

value (*P < 0.05; **P < 0.01; ***P < 0.001). c Unsupervised clustering of 21 m6A regulators in the ACRG gastric cancer cohort. The m6Acluster, ACRG

molecular subtypes, tumor stage, survival status and age were used as patient annotations. Yellow represented high expression of regulators and

blue represented low expression. d Principal component analysis for the transcriptome profiles of three m6A modification patterns, showing a

remarkable difference on transcriptome between different modification patterns. e The proportion of ACRG molecular subtypes in the three

modification patterns. MSI subtype, red; EMT subtype, blue; MSS/TP53+ subtype, green; MSS/TP53- subtype, yellow. f Functional annotation for

m6A-related genes using GO enrichment analysis. The color depth of the barplots represented the number of genes enriched
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analyses were only based on the patient population and

could not accurately predict the pattern of m6A methy-

lation modification in individual patients. Considering

the individual heterogeneity and complexity of m6A

modification, based on these phenotype-related genes,

we constructed a set of scoring system to quantify the

m6A modification pattern of individual patients with

gastric cancer, we termed as m6Ascore. The alluvial dia-

gram was used to visualize the attribute changes of

individual patients (Fig. 4d). To better illustrate the char-

acteristics of m6A signature, we also tested the correl-

ation between the known signatures and the m6Ascore

(Fig. 4e and Table S9). Kruskal-Wallis test revealed

significant difference on m6Ascore between m6A gene

clusters. Gene cluster A showed the lowest median score

while gene cluster C had the highest median score,

which indicated that low m6Ascore could be closely

linked to immune activation-related signatures, whereas

high m6Ascore could be linked to stromal activation-

related signatures (Fig. 4f). More importantly, m6Aclus-

ter A showed the significantly increased m6Ascore com-

pared to the other clusters and m6Acluster B presented

the lowest median score (Fig. 4g). The analyses for the

activity of stroma-related pathways indicated high scores

were significantly associated with enhanced activation of

stromal pathways (Fig. 4h). In addition, patients with

EMT subtypes also showed the lowest m6Ascore com-

pared to other three ACRG molecular subtypes (Fig. 5a).

The above results strongly suggested that low m6Ascore

was significantly correlated with immune-activation and

high m6Ascore was correlated with stromal-activation.

The m6Ascore could better evaluate the m6A modifi-

cation patterns of individual tumor, and further evaluate

tumors’ TME cell-infiltration characterization, in order

to distinguish the true and false nature of TME immune

infiltration.

Next, we sought to further identify the value of

m6Ascore in predicting patients’ outcome. With the

cutoff value 0.0291 determined by survminer package,

patients were divided into low or high m6Ascore group.

Patients with low m6Ascore demonstrated a prominent

survival benefit (HR 3.0 (2.12–4.21); Fig. 5b), with 5-year

survival rate twice than patients with high m6Ascore

(69.4% vs 33.5%). We tested whether the m6Ascore

could serve as an independent prognostic biomarker for

gastric cancer. Multivariate Cox regression model ana-

lysis, which included the factors of patients’ age, gender,

TNM status, histological type, MSI status, TP53 status

and ACRG molecular subtypes, confirmed m6Ascore as

a robust and independent prognostic biomarker for

evaluating patient outcomes (HR 2.54(1.71–3.8); Figure

S6A). We specifically examined the ability of m6Ascore

signature to predict the efficacy of adjuvant chemotherapy

in patients with gastric cancer. We found that patients

with low m6Ascore showed significant therapeutic advan-

tages among patients who also received adjuvant chemo-

therapy, with 5-year survival rate 77.5% vs 59.2% (Fig. 5c).

Another results obtained indicated that the prediction

power of m6Ascore was not interfered by adjuvant

chemotherapy, and both in patients receiving chemother-

apy or not, low m6Ascore group always showed the

obvious survival advantage (Fig. 5c). In addition, we re-

vealed that younger patients, diffuse histological subtype

and advanced patients were significantly associated with a

higher m6Ascore, which meant that these patients were

characterized by the m6Acluster-A modification patterns

and immune-excluded phenotype, with a poorer clinical

outcome. These results demonstrated m6Ascore could be

also used to evaluate certain clinical characteristics of pa-

tients such as MSI status, molecular subtypes, histological

subtypes as well as clinical stage, etc. (Figure S6B).

Characteristics of m6A modification in TCGA molecular

subtypes and tumor somatic mutation

A comprehensive molecular landscape has been con-

structed for gastric cancer by TCGA project, which

(See figure on previous page.)

Fig. 4 Construction of m6A signatures. a Unsupervised clustering of overlapping m6A phenotype-related genes in ACRG cohorts to classify

patients into different genomic subtypes, termed as m6A gene cluster A-C, respectively. The gene clusters, m6Aclusters, ACRG molecular subtypes,

tumor stage, histology, survival status and age were used as patient annotations. b Kaplan-Meier curves indicated m6A modification genomic

phenotypes were markedly related to overall survival of 300 patients in ACRG cohort, of which 88 cases were in gene cluster A, 107 cases in gene

cluster B and 105 cases in gene cluster C (P < 0.0001, Log-rank test). c The expression of 21 m6A regulators in three gene cluster. The upper and

lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and black dots showed

outliers. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). The one-way ANOVA test was used to test the

statistical differences among three gene clusters. d Alluvial diagram showing the changes of m6Aclusters, ACRG molecular subtypes, gene cluster

and m6Ascore. e Correlations between m6Ascore and the known gene signatures in ACRG cohort using Spearman analysis. Negative correlation

was marked with blue and positive correlation with orange. f Differences in m6Ascore among three gene clusters in ACRG cohort. The Kruskal-

Wallis test was used to compare the statistical difference between three gene clusters (P < 0.001). g Differences in m6Ascore among three m6A

modification patterns in ACRG cohort (P < 0.001, Kruskal-Wallis test). h Differences in stroma-activated pathways between high m6Ascore and low

m6Ascore groups. APM, antigen processing machinery; EMT, epithelial-mesenchymal transition; TGFb, transforming growth factor beta. The upper

and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value. The asterisks represented the

statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001)
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classified gastric cancer into four molecular subtypes in-

cluding genome stable (GS), microsatellite instability

(MSI), EBV infection, and chromosomal instability (CIN).

We evaluated the difference of m6Ascore between these

molecular subtypes. The higher m6Ascore was obviously

concentrated on GS subtype and showed a worse survival

in patients, while the lower m6Ascore was concentrated

on the subtypes of MSI and EBV infection, which was re-

lated to better survival (5-year survival rate, 25.9% vs

43.3%; HR 1.81(1.26–2.62); Fig. 5d-e). The highly micro-

satellite instability subtype, characterized by better prog-

nosis, was significantly correlated with lower m6Ascore,

whereas MSI-Low and MSS had a higher m6Ascore

(Fig. 5f). Multivariate analysis for TCGA-STAD cohort

also confirmed that m6Ascore could act as an independ-

ent prognostic biomarker in gastric cancer (Figure S6C).

Previous studies indicated that patients with EBV-positive

gastric cancer have been shown to respond to anti-PD-1/

L1 antibodies in several studies in spite of the lower MSI

or tumor mutation burden (TMB) [41, 42]. In our study,

EBV infected patients were markedly associated with

lower m6Ascore than CIN and GS subtypes as well as

EBV non-infected patients, which implied m6Ascore sig-

nature could be a more effective biomarker for the predic-

tion of immunotherapeutic efficacy than MSI and TMB in

patients with gastric cancer (Fig. 5e-f). Further research

showed that tumors with MSI subtype were mainly char-

acterized by the m6Acluster-B methylation modification

patterns, while tumors with MSS subtype were character-

ized by the m6Acluster-C modification patterns (Figure

S7A). The m6A regulators ALKBH5, CBLL1, ELAVL1,

FMR1, HNRNPC, KIAA1429, METTL14, RBM15,

RBM15B, WTAP, YTHDC1, YTHDC2, YTHDF2 and

YTHDF3 were significantly up-regulated in MSI subtypes

compared to MSS subtypes, while IGF2BP1, YTHDF1 and

ZC3H13 were markedly down-regulated (Figure S7B). For

EB virus infection, patients with EBV-positive were mainly

characterized by the m6Acluster-A methylation

modification patterns, while EBV-negative patients did

not show a characteristic pattern of m6A methylation

modification. There were no significant difference on m6A

modification patterns between EBV-negative patients

(Figure S7C). In addition, we found the m6A regulators

IGF2BP1, KIAA1429, LRPPRC, YTHDF3 and ZC3H13

were remarkably down-regulated in EBV-negative patients

than EBV positive patients, while FTO was significantly

down-regulated (Figure S7D). The above results suggested

that the potential mechanisms on the change of m6A

modification patterns mediated by EBV and MSI etc. may

be that these factors changed the status of m6A regulators.

These findings could contribute to enhancing our under-

standing of the mechanisms of the formation of m6A

modification pattern differences in tumors.

Then, we analyzed the distribution differences of som-

atic mutation between low and high m6Ascore in

TCGA-STAD cohort using maftools package. As shown

in Fig. 5g-h, low m6Ascore group presented more exten-

sive tumor mutation burden than the high m6Ascore

group, with the rate of the 10th most significant mutated

gene 25% versus 10%. The TMB quantification analyses

confirmed the low m6Ascore tumors was markedly cor-

related with a higher TMB (Figure S7E). The m6Ascore

and TMB also exhibited a significant negative correl-

ation (Figure S7F). Accumulated evidence demonstrated

patients with high TMB status presented a durable

clinical response to anti-PD-1/PD-L1 immunotherapy.

Therefore, the above results indirectly demonstrated that

the difference in tumor m6A modification patterns could

a crucial factor that mediated the clinical response to

anti-PD-1/PD-L1 immunotherapy. And the values of

m6Ascore in predicting immunotherapeutic outcomes

were also indirectly confirmed.

The clinical trials as well as preclinical researches have

revealed patients with higher somatic TMB were corre-

lated with enhanced response, long-term survival and

durable clinical benefit when treated with immune

(See figure on previous page.)

Fig. 5 Characteristics of m6A modification in TCGA molecular subtypes and tumor somatic mutation. a Differences in m6Ascore between

different ACRG molecular subtypes. The Kruskal-Wallis test was used to compare the statistical difference between four ACRG molecular subtypes

(p < 0.0001). b Survival analyses for low (157 cases) and high (143 cases) m6Ascore patient groups in ACRG cohort using Kaplan-Meier curves (HR,

3.0 (2.12–4.21); P < 0.0001, Log-rank test). c Survival analyses for subgroup patients stratified by both m6Ascore and treatment with adjuvant

chemotherapy using Kaplan-Meier curves. H, high; L, Low; ADJC, adjuvant chemotherap (P < 0.0001, Log-rank test). d Survival analyses for low

(157 cases) and high (143 cases) m6Ascore patient groups in the TCGA-STAD cohort using Kaplan-Meier curves (HR, 1.81(1.26–2.62); P = 0.001,

Log-rank test). e Differences in m6Ascore between different TCGA-STAD molecular subtypes. The upper and lower ends of the boxes represented

interquartile range of values. The lines in the boxes represented median value. The Kruskal-Wallis test was used to compare the statistical

difference between four TCGA-STAD molecular subtypes (p < 0.0001). GS, genome stable; MSI, microsatellite instability; EBV, EBV infection; CIN,

chromosomal instability. f Differences in m6Ascore among different of microsatellite subtypes. The upper and lower ends of the boxes

represented interquartile range of values. The lines in the boxes represented median value. The asterisks represented the statistical p value

(*P < 0.05; **P < 0.01; ***P < 0.001). MSS, microsatellite stable; MSI-H, high microsatellite instability; MSI-L, low microsatellite instability. g, h The waterfall

plot of tumor somatic mutation established by those with high m6Ascore (g) and low m6Ascore (h). Each column represented individual patients. The

upper barplot showed TMB, The number on the right indicated the mutation frequency in each gene. The right barplot showed the proportion of

each variant type
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checkpoint blockade therapy. The individual altered

genes could mediate resistance or sensitivity to immuno-

therapy. For specific altered genes in TCGA-TSAD such

as ARID1A and PIK3CA, mutant type had significantly

lower m6Ascore compared to wild type, whereas there

was no significant difference in m6Ascore between wild

and mutant types in TP53 and RHOA (Fig. 5f). These

results would provide novel perspective for exploring the

mechanisms of m6A methylation modification in the

tumor somatic mutations, shaping of TME landing, and

roles in immune checkpoint blockade therapy.

m6A modification patterns in the role of anti-PD-1/L1

immunotherapy

In order to further test the stability of m6Ascore model,

we applied m6Ascore signature established in ACRG co-

hort to other independent gastric cancer cohorts to

verify its prognostic value (GSE84437, HR 1.89(1.44–

2.49); GSE15459, HR 2.05(1.30–3.22); GSE34942, HR

1.52(0.64–3.63); Figure S8A-S8C). The combined set of

all GEO cohorts was validated (HR 1.94(1.62–2.31); Fig-

ure S8D). The ability of m6Ascore to predict relapse-

free survival was also evaluated (GSE26253, HR

1.33(0.98–1.80); GSE62254, HR 2.53(1.75–3.65); Figure

S8E-S8F). Next, we continued to extend the m6Ascore

signature to all digestive system tumors including cholan-

giocarcinoma, colon adenocarcinoma, pancreatic adeno-

carcinoma, esophageal carcinoma and liver hepatocellular

carcinoma (HR 1.4(1.17–1.68); Figure S8G). These data

indicated m6A modification patterns correlated with

better clinical benefit. The predictive advantage evaluated

with ROC curves was especially reflected in elderly patients

(Figure S8H-S8I).

Immunotherapies represented by PD-L1 and PD-1

blockade has undoubtedly emerged a major break-

through in cancer therapy. We investigated whether the

m6A modification signature could predict patients’ re-

sponse to immune checkpoint blockade therapy based

on two immunotherapy cohorts. In both anti-PD-L1 co-

hort (IMvigor210) and anti-PD-1 cohort (GSE78220),

patients with low m6Ascore exhibited significantly clin-

ical benefits and a markedly prolonged survival (Fig. 6a-

g; IMvigor210, HR 1.73(1.20–2.48), Fig. 6a; GSE78220,

HR 4.58(1.23–17.10), Fig. 6d). The significant thera-

peutic advantages and clinical response to anti-PD-1/L1

immunotherapy in patients with low m6Ascore com-

pared to those with high m6Ascore were confirmed

(Fig. 6b-c and e-g). In addition, patients with low

m6Ascore showed a obviously high expression of PD-L1,

which indicated a potential response to anti-PD-1/L1

immunotherapy (Fig. 6h). Further research revealed that

regulatory T-cells and TME stroma were significantly

activated in tumors with high m6Ascore, which medi-

ated immune tolerance of tumors (Fig. 6i). Tumor

neoantigen burden, closely linked to immunotherapeutic

efficacy, was also assessed. We found patients with com-

bination of low m6Ascore and high neoantigen burden

showed a great survival advantage (Fig. 6j). The above

implied that the quantification of m6A modification pat-

terns was a potential and robust biomarker for prognosis

and clinical response assessment of immunotherapy

(Fig. 6k). The immune phenotypes of tumors in the

IMvigor210 cohort has been detected, so we investigated

the difference of m6Ascore among different phenotypes.

We found that higher m6Ascore was remarkably associ-

ated with exclusion and desert immune phenotypes, and

checkpoint inhibitors were difficult to exert antitumor

effect in these phenotype (Fig. 6l). In summary, our work

strongly indicated that m6A methylation modification

patterns was significantly correlated with tumor immune

phenotypes and response to anti-PD-1/L1 immunother-

apy, and the established m6A modification signature

would contribute to predicting the response to anti-PD-

1/L1 immunotherapy.

Discussion
Increasing evidence demonstrated that m6A modifica-

tion took on an indispensable role in inflammation, in-

nate immunity as well as antitumor effect through

interaction with various m6A regulators. As most studies

focus on single TME cell type or single regulator, the

overall TME infiltration characterizations mediated by

integrated roles of multiple m6A regulators are not com-

prehensively recognized. Identifying the role of distinct

m6A modification patterns in the TME cell infiltration

will contribute to enhancing our understanding of TME

antitumor immune response, and guiding more effective

immunotherapy strategies.

Here, based on 21 m6A regulators, we revealed three

distinct m6A methylation modification patterns. These

three patterns had significantly distinct TME cell infil-

tration characterization. Cluster A was characterized by

the activation of innate immunity and stroma, corre-

sponding to immune-excluded phenotype; cluster B was

characterized by the activation of adaptive immunity,

corresponding to immune-inflamed phenotype; cluster C

was characterized by the suppression of immunity, cor-

responding to immune-desert phenotype. The immune-

excluded and immune-desert phenotypes could be

regarded as non-inflamed tumors. The immune-

inflamed phenotype, known as hot tumor, show by a

large number of immune cell infiltration in TME [39,

43, 44]. Although the immune-excluded phenotype also

showed the presence of abundant immune cells, the im-

mune cells were retained in the stroma surrounding

tumor cell nests rather than penetrate their parenchyma.

The stroma could be confined to the tumor envelope or

may penetrate the tumor itself, making the immune cells
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appear to be really inside the tumor [45–47]. The

immune-desert phenotypes were associated with im-

mune tolerance and ignorance, and lack of activated and

priming T-cell [48]. Consistent with the above defini-

tions, we found cluster A exhibited a significant stroma

activation status, including the highly expressed angio-

genesis, EMT and TGF-β pathways, which were consid-

ered T-cell suppressive. Combined with the TME cell-

infiltrating characteristics in each cluster, it confirmed

the reliability of our classification of immune phenotypes

for different m6A modification patterns. Therefore, after

fully exploring the TME cell–infiltrating characterization

induced by distinct m6A modification patterns, it was

not surprising that cluster A had the activated innate

immunity but poorer prognosis.

Further, in this study, the mRNA transcriptome differ-

ences between distinct m6A modification patterns have

been proved to be significantly associated with m6A and

immune related biological pathways. These differentially

expressed genes were considered as m6A-related signa-

ture genes. Similar to the clustering results of the m6A

modification phenotypes, three genomic subtypes were

identified based on m6A signature genes, which were

also significantly correlated with stromal and immune

activation. This demonstrated again that the m6A modi-

fication was of great significance in shaping different

TME landscapes. Therefore, a comprehensive assess-

ment of the m6A modification patterns will enhance our

understanding of TME cell-infiltrating characterization.

Considering the individual heterogeneity of m6A modifi-

cation, it was urgently demanded to quantify the m6A

modification patterns of individual tumor. For that, we

established a set of scoring system to evaluate the m6A

modification pattern of individual patients with gastric

cancer—the m6A gene signature. The m6A modification

pattern characterized by immune-excluded phenotype

exhibited a higher m6Ascore, while the pattern

characterized by immune-inflamed phenotype showed a

lower m6Ascore. In addition, In IMvigor210 cohort with

the determined immune phenotype, these results were

well validated [33]. This suggested m6Ascore was a reli-

able and robust tool for comprehensive assessment of

individual tumor m6A modification patterns, which

could be used to further determine the TME infiltration

patterns, that was, tumor immune phenotypes. Inte-

grated analyses also demonstrated that m6Ascore was an

independent prognostic biomarker in gastric cancer. Pa-

tients with EBV and MSI subtypes, sensitive to checkpoint

immunotherapy [42], was significantly related to lower

m6Ascore. Considering the low mutation burden but high

immune infiltration in EBVþ tumors [41], our m6Ascore

showed a predictive advantage in precision immunother-

apy for gastric cancer.

Our data also revealed a markedly negative correlation

between m6Ascore and tumor mutation burden. Con-

sistent with previous studies, EMT and GS molecular

subtypes demonstrated the lowest m6Ascore, underlin-

ing the core role of stromal activation in resistance to

checkpoint immunotherapy [49, 50]. This indicated that

response to checkpoint immunotherapy was not only as-

sociated with antigen processing, and improved cytolytic

activity, but also related to suppression of angiogenesis,

fibroblast activation, TGF beta pathway components and

the EMT. Previous studies confirmed that the EMT- and

TGFbeta-related pathway activation resulted in de-

creased trafficking of T-cell into tumors as well as their

weakened tumor killing effects [33, 49]. The above sug-

gested that the activated stromal TME in the activated

immune TME could mediate therapeutic resistance to

immune-checkpoint blockade, as well as influence the

individual precise immunotherapy of gastric cancer. In

this work, we showed m6A methylation modification

patterns played a nonnegligible role in shaping different

stromal and immune TME landscape, implying m6A

(See figure on previous page.)

Fig. 6 m6A modification patterns in the role of anti-PD-1/L1 immunotherapy. a Survival analyses for low (89 cases) and high (169 cases)

m6Ascore patient groups in the anti-PD-L1 immunotherapy cohort using Kaplan-Meier curves (IMvigor210 cohort; HR, 1.73(1.20–2.48); P = 0.002,

Log-rank test). b The proportion of patients with response to PD-L1 blockade immunotherapy in low or high m6Ascore groups. SD, stable

disease; PD, progressive disease; CR, complete response; PR, partial response. Responser/Nonresponer: 41%/58% in the low m6Ascore groups and

20%/80% in the high m6Ascore groups. c Distribution of m6Ascore in distinct anti-PD-L1 clinical response groups. d Survival analyses for low and

high m6Ascore patient groups in the anti-PD1 immunotherapy cohort using Kaplan-Meier curves (GSE78220 cohort; HR, 4.58(1.23–17.10); P =

0.013, Log-rank test). e The proportion of patients with response to PD-1 blockade immunotherapy in low or high m6Ascore groups. Responser/

Nonresponer: 71%/29% in the low m6Ascore groups and 25%/75% in the high m6Ascore groups. f The correlation of m6Ascore with clinical

response to anti-PD-1 immunotherapy. Pt, patients. PD, blue; PR, purple; CR, red. g Differences in m6Ascore among distinct anti-PD-1 clinical

response groups. h Differences in PD-L1 expression between low and high m6Ascore groups (p < 0.0001, Wilcoxon test). i Differences in stroma-

activated pathways and abundance of regulatory T cells (considered as immune suppression) between low m6Ascore and high m6Ascore groups

in anti-PD-L1 immunotherpy cohort (*P < 0.05; **P < 0.01; ***P < 0.001). j Survival analyses for patients receiving anti-PD-L1 immunotherapy

stratified by both m6Ascore and neoantigen burden using Kaplan-Meier curves. H, high; L, Low; NEO, neoantigen burden (P < 0.0001, Log-rank

test). k The predictive value of the quantification of m6A modification patterns in patients treated with anti-PD-1/L1 immunotherapy (AUC, 0.768).

l Differences in m6Ascore among distinct tumor immune phenotypes in IMvigor210 cohort. The lines in the boxes represented median value

(p = 0.015, Kruskal-Wallis test)
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modification could affect the therapeutic efficacy of

immune checkpoint blockade. The m6A gene signature

with integrated various biomarkers including mutation

load, neoantigen load, PD-L1 expression, stromal and

immune TME and MSI status, could be the more

effective predictive strategy for immunotherapy. We also

confirmed the predictive value of the m6Ascore in two

cohort with anti-PD-1 and anti-PD-L1 immunotherapy.

A significantly difference on m6Ascores existed between

non-responders and responders.

In short, in clinical practice, the m6Ascore could be

used to comprehensively evaluate the m6A methylation

modification patterns as well as their corresponding TME

cell infiltration characterization within individual patient,

further to determine the immune phenotypes of tumors

and guide the more effective clinical practice. We also

demonstrated the m6Ascore could be utilized for asses-

sing patients’ clinicopathological features including stages

of tumor inflammation, tumor differentiation levels,

clinical stages, histological subtypes, molecular subtypes,

genetic variation, MSI status, EBV infection and tumor

mutation burden etc. The detailed relationships between

m6Ascore and clinicopathological features could be found

in our study. Similarly, m6Ascore could act as an

independent prognostic biomarker for predicting patients’

survival. We could also predict the efficacy of adjuvant

chemotherapy and the patients’ clinical response to anti-

PD-1/PD-L1 immunotherapy through m6Ascore. More

importantly, this study has yielded several novel insights

for cancer immunotherapy that targeting m6A regulators

or m6A phenotype-related genes for changing the m6A

modification patterns, and further reversing the adverse

TME cell infiltration characterization, that was the

transformation of “cold tumors” into “hot tumors”, may

contribute to exploiting the development of novel drug

combination strategies or novel immunotherapeutic

agents in the future. Our findings provided novel ideas for

improving the patients’ clinical response to immuno-

therapy, identifying different tumor immune phenotypes

and promoting personalized cancer immunotherapy in the

future.

Conclusions
In conclusion, this work demonstrated the extensive

regulation mechanisms of m6A methylation modification

on tumor microenvironment. The difference of m6A

modification patterns was a factor that could not be

ignored to cause the heterogeneity and complexity of

individual tumor microenvironment. The comprehensive

evaluation of individual tumor m6A modification pattern

will contribute to enhancing our understanding of tumor

microenvironment cell-infiltrating characterization and

guiding more effective immunotherapy strategies.
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