
Research Article
m6A-Related lncRNA Signature Is Involved in
Immunosuppression and Predicts the Patient Prognosis of the
Age-Associated Ovarian Cancer

Ming Li , Liang Zhang, Miaoxiao Feng, and Xiao Huang

Department I of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China

Correspondence should be addressed to Ming Li; liming840301@126.com

Received 7 April 2022; Revised 12 June 2022; Accepted 23 June 2022; Published 10 August 2022

Academic Editor: Fu Wang

Copyright © 2022 Ming Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Epithelial ovarian cancers are age-associated diseases, usually diagnosed at an advanced stage. lncRNA has been
discovered to interplay with N6-methyladenosine (m6A), working in tandem to promote cancer progression and worsening
patient outcomes. This study is aimed at investigating the roles and mechanism of m6A-related lncRNA signature on ovarian
cancers. Methods. We retrieved TCGA and CGGA sequencing data to identify m6A-related lncRNA signature and constructed
an m6A score (MS) using the LASSO algorithm. A clinical nomogram was then established to predict the overall survival of
patients. Subsequently, GSEA analyses were conducted to obtain pathways involved. Expression of HLA genes, 28 tumor-
infiltrating lymphocyte infiltration, and anticancer cycle were analyzed the immunological differences between high-MS and
low-MS groups. Finally, immune checkpoint gene expressions and IC50 of chemotherapeutic drugs were calculated, and CMap
was run to identify the potential compounds and their corresponding mechanisms. Results. We identified 16 m6A-related
lncRNAs and constructed an MS model. The high-MS group showed a poor prognosis. A clinical nomogram consists of MS,
and age was constructed and predicted the 1-, 3-, and 5-year survival with high accuracy. GSEA analyses presented
downregulated antigen processing and presentation pathways. Immunocyte infiltrating analyses demonstrated that high-MS
was associated with high infiltration of Treg cells, macrophages, and low Th1/Th2 rate. Also, high expression of immune
checkpoint genes NRP1, TNFSF9, and VSIR was observed in the high-MS group. Finally, the high-MS group also predicted low
IC50 of vinorelbine and vorinostat. Conclusion. This study constructed a robust prediction model for prognostic management
and revealed the cross-talk between m6A and immunosuppression. Besides, the m6A lncRNA signature can predict the
chemotherapeutic drug response. These will shed light on the development of novel therapeutic strategies and render survival
benefits for ovarian patients.

1. Introduction

Ovarian cancer is one of the most predominant gynecolog-
ical diseases in the world, containing a highly heteroge-
neous group of malignant tumors in etiology and genetic
features. The largest proportion of ovarian cancer is epithe-
lial, presenting an advanced stage at the time of first diag-
nosis [1] and higher mortality rates in aged patients [2, 3].
Serous carcinomas are the most common epithelial ovarian
cancer; their routine treatments for serous ovarian cancers
are surgical resection and adjuvant therapy. 51% of serous

carcinoma patients are diagnosed at stage III, and 29% are
diagnosed at stage IV, with low 5-year cause-specific sur-
vival of 42% and 26%, respectively [4]. Apart from the
ineffective early screening, the poor prognosis also lies in
the frequent recurrence and resistance to chemotherapy
[5]. However, the disease-specific genetic aberrance has
allowed for the effectiveness of targeted treatment. Also,
individual genetic detection contributed to the prognostic
management of serous ovarian cancer patients [6]. Cancer
prediction models were construed for individualized diag-
nosis or prognosis estimation; previous models comprised
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Figure 1: Continued.
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clinical or anatomical predictors, which presented limited
predictive accuracy, while models incorporating gene
panels presented higher performances [7]. On top of that,
high-quality genetic models are urgently required.

N6-methyladenosine (m6A) has emerged as the most
common modification of RNA; its reversible functions were
mediated by three types of functional components: “writers,”
“readers,” and “erasers.” The “writers” were complexes of
methyltransferases, such as METTL3 and METTL14, adding
m6A on RNAs, while the “erasers,” like the demethylase
FTO, removes the m6A away. Some specific RNA binding
proteins (“readers”) can recognize the m6A and affect the
fate of RNAs, including YTHDC1 and IGF2BPs [8]. Long
noncoding RNA (lncRNA) has been found to interact with
m6A in various malignant cancers [9]. For instance, the
m6A “reader” can be stabilized by lncRNA and promoted
the proliferation of cancers by downstream regulation [10].
m6A modification can also be exerted on lncRNA and affect
the phenotypes of cancers [11, 12]. This interplay between
lncRNA and m6A demonstrated the critical role of lncRNA
in the cancer m6A-induced processes.

m6A-related lncRNA was engaged in multiple biological
processes affecting cancer progress [13]. Recently, it was
found to interplay with immune activities in many cancers;
these participations included its roles in affecting immune
response, tumor microenvironment remodeling, and
response to immune checkpoint inhibitor therapy [14–16].
However, the cross-talk between m6A and immune remains
elusive.

Here, we identified m6A-related lncRNA to construct a
LASSO-based prognostic model called m6A score (MS), for
predicting the survival of ovarian cancer patients. The roles
of MS signature in cancer immune and drug sensitivities
were also explored in multiple levels. This study offers a
robust prediction tool in patient prognostic management
and sheds light on the cross-talk between m6A and
immune-related cancer properties. This will trigger novel

therapeutic strategies targeting the critical m6A-related
lncRNAs and improve the prognosis of ovarian cancer
patients.

2. Material and Method

2.1. Patient Datasets and lncRNA Sets. The clinical features,
RNA expression, copy number variation (CNV), and single
nucleotide polymorphism (SNP) data of The Cancer
Genome Atlas (TCGA) samples with n = 377 were retrieved
via the R package “TCGAbiolinks” from https://www.cancer
.gov/about-nci/organization/ccg/research/structural-
genomics/tcga. The Gene Expression Omnibus (GEO) sam-
ple datasets GSE26193 (n = 107) were obtained using the R
package “GEOquery” from https://www.ncbi.nlm.nih.gov/
geo/. All expression data were transferred to transcripts per
million (TPM) for further analyses. TCGA dataset was
assigned as the training set, and the GEO dataset was used
for independent validation. A total of 4183 lncRNAs were
extracted from TCGA RNA matrix.

2.2. Construction of the m6A Score via the m6A-Related
lncRNA Signature. We first selected the 23 m6A-related reg-
ulators as symbols of m6A modification [17], including
CBLL1, VIRMA, METTL14, METTL3, RBM15, RBM15B,
WTAP, and ZC3H13 as writers; ALKBH5 and FTO as
erasers; and ELAVL1, FMR1, HNRNPA2B1, HNRNPC,
IGF2BP1, IGF2BP2, IGF2BP3, LRPPRC, YTHDC1,
YTHDC2, YTHDF1, YTHDF2, and YTHDF3 as readers.
The lncRNAs were filtered according to their correlations
with the 23 m6A regulators; those lncRNAs with absolute
correlation coefficients less than 0.3 were removed. Subse-
quently, the lncRNAs passing the filtration were input to
the univariate Cox hazard analysis for identifying the
survival-associated lncRNAs, and the least absolute shrink-
age and selection operator (LASSO) algorithm [18] was per-
formed to select the candidate predictors to construct the
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Figure 1: Identification of a 16N6-methyladenosine-associated lncRNAm6A score via LASSO regression. (a) LASSO regression. (b) Coefficient
value of 16-N6-methyladenosine-associated lncRNA. (c) Risk score of TCGA cohort. (d) Risk score of GEO cohort. (e) Heatmap of 16 N6-
methyladenosine-associated lncRNA expression in TCGA dataset. (f) Heatmap of 16 N6-methyladenosine-associated lncRNA expression in
GEO dataset.
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m6A score (MS). The MS was then constructed according to
the formula below:

m6A Score MSð Þ = 〠
n

i

βi ∗ li, ð1Þ

where li refers to the expression level of the lncRNA i and βi
means the calculated coefficients of lncRNA i from the
LASSO algorithm. Their corresponding coefficients were
visualized in a lollipop chart.

2.3. Survival Prediction and the Performance Estimation of
the MS. The training set and validating set were divided into
high-MS and low-MS groups according to the median value
of the m6A score. Kaplan-Meier curves were plotted to ver-
ify whether the MS can separate the overall survival (OS),
progression-free interval (PFI), and disease-specific survival
(DSS) rate of the two groups. Further, receiver operating
characteristic curve (ROC) was performed to estimate the
accuracy of the MS for 1-, 3-, and 5-year OS prediction.

2.4. Correlation between Copy Number Variation, Single
Nucleotide Polymorphism, and MS. The downloaded SNP
and CNV data were organized to compare the differences
between high-MS and low-MS groups. CNV includes ampli-
fications and deletions among the genomic region; the two
CNV events were measured by GSITIC 2.0 [19]. Besides,
we used the R package “matfool” [20] to analyze the driving
mutation gene in the two groups.

2.5. Establishment of a Clinical Nomogram. The MS as well
as the clinical factors (including diagnosis age, tumor stage,

and grade) was analyzed by univariate Cox regression and
multivariate Cox regression successively to obtain the inde-
pendent parameters for establishing a quantitative predic-
tion nomogram [21]. The nomogram was then assessed by
calibration curves to measure the consistency between the
predicted and actual probability of 1-, 3-, and 5-year
OS [22].

2.6. Functional Analyses for the lncRNA Signature. To dis-
cover the biological mechanisms of the lncRNA signature
functions, we seek the pathways on which the lncRNA sig-
nature was enriched. Gene set variation analysis (GSVA)
[23] was performed on the high-MS and low-MS groups.
The GSVA depicted the hallmark pathway enrichment dif-
ferences between the two groups visualized in a heatmap;
the hallmark gene sets (h.all.v7.4.entrez.gmt) were down-
loaded from Molecular Signatures Database (MSigDB,
http://software.broadinstitute.org/gsea/msigdb). We then
conducted GSEA [24] to calculate the enrichment score
of the positively and negatively enriched KEGG pathways
(c2.cp.kegg.v7.4.entrez.gmt) [25] from MSigDB.

2.7. The Stromal and Immune Infiltration in the Tumor
Environment. The tumor microenvironment contains vari-
ous stromal cells and immunocytes. We estimated the stro-
mal infiltrating via calculation of stromal score and tumor
purity by Estimation of STromal and Immune cells in
MAlignant Tumours using Expression data (ESTIMATE)
[26]. Besides, the leukocyte infiltration level differences
between high-MS and low-MS groups were compared using
the 24 HLA markers (HLA-E, HLA-DPB2, HLA-C, HLA-J,
HLA-DQB1, HLA-DQB2, HLA-DQA2, HLA-DQA1, HLA-
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Figure 2: Survival analyses of the MS. (a) Kaplan-Meier survival analysis in TCGA-OS. (b) Kaplan-Meier survival analysis in GEO-OS. (c)
Kaplan-Meier survival analysis in TCGA-PFI. (d) Kaplan-Meier survival analysis in TCGA-DSS. (e) ROC analysis of survival prediction at 1,
3, and 5 years in TCGA-OS. (f) ROC analysis of survival prediction at 1, 3, and 5 years in GEO-OS.
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A, HLA-DMA, HLA-DOB, HLA-DRB1, HLA-H, HLA-B,
HLA-DRB5, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-
DRB6, HLA-L, HLA-F, HLA-G, HLA-DMB, HLA-DPA1).

2.8. Immunocyte Infiltration and Anticancer Cycle Analysis.
To clarify the immune landscape, we explore the immuno-
cyte infiltration via analysis of 28 tumor-infiltrating lympho-
cytes (TILs) [27] on The Cancer Immunome Atlas (https://
tcia.at/). The coefficients of the correlations between the
MS and 28 TILs were calculated, and their correlations were
visualized in the correlation plot. Subsequently, the correla-
tion between MS and the antitumor cell cycle [28] was calcu-
lated; this cycle was defined as 7 steps, including the release
of cancer cell antigens (step 1), antigen presentation (step 2),
priming and activation of immunocytes (step 3), trafficking
of immunocytes to tumors (step 4), infiltrating of immuno-
cytes into tumors (step 5), recognition of cancer cell (step 6),
and killing of cancer cells (step 7). The coefficient calculation
of the correlations between MS and each step of the cycle
manifested the roles of MS in antitumor activity.

2.9. Therapeutic Estimation of Immune Checkpoint and
Chemotherapy Drugs. The immune checkpoint mediates
the suppression of lymphocyte activation and escapes can-
cers from immune supervision. To investigate whether
immune checkpoints play roles in the procancer activities,
we compared the expression level of PD-1, CTLA4, and 14
immune checkpoint genes between high-MS and low-MS
groups. We also estimated the predicted half-maximal
inhibitory concentration (IC50) of commonly applied che-
motherapy drugs for obtaining the drug sensitivities of
ovarian cancer patients, including cisplatin, doxorubicin,
gemcitabine, paclitaxel, vinorelbine, and vorinostat. Finally,
we screened candidate chemical compounds targeting the
m6A features based on the 202 differentially expressed
genes identified between high-MS and low-MS patients;
this analysis was performed by the mechanism of actions
(MoA) among those compounds using CMap tools
(https://clue.io/) [29].

2.10. Statistical Analyses. The statistical analyses were con-
ducted in the R software (version 3.6.3). A two-sided p
value < 0.05 was regarded as statistically significant. Log-
rank test was used for the Kaplan-Meier curves of TCGA
and GEO dataset patient survival analyses. For normally
distributed variables, we used Student’s t-test to conduct
the pairwise comparisons, and for nonnormally distributed
variables, the Wilcoxon test was performed. Euclidean dis-
tance adopted in hierarchical cluster analysis was applied
to the heatmap graphing. Finally, Spearman correlation
analysis was used to compute the significance of correla-
tions between variables; absolute correlation coefficients >
0:3 were considered as correlated. For the symbols, ∗∗∗,
∗∗, ∗, and NS refer to p < 0:001, <0.01, <0.05, and not
significant, respectively [30].

3. Results

3.1. Identification of a 16 N6-Methyladenosine-Associated
lncRNA m6A Score via LASSO Regression. A total of 4183

lncRNAs were adopted to seek the m6A-associated factors
by correlation analysis. Sixty-three lncRNAs with absolute
correlation coefficients of more than 0.3 were screened out
and subsequently applied to the univariate Cox hazard anal-
ysis. The univariate Cox analysis produced 19 lncRNAs
related to survival, and the 19 lncRNAs were input to
LASSO regression analysis for selecting the candidate vari-
ables used for model construction. Finally, 16 lncRNAs were
obtained with their corresponding coefficients presented
(Figures 1(a) and 1(b)). The 16 lncRNAs were used to con-
struct an m6A score (MS) based on their expression levels
and coefficients as described in Material and Method. The
MS was calculated for each patient in training and validating
sets, and the patients were divided into low-MS and high-
MS groups according to the median MS values
(Figures 1(c) and 1(d)). The differentially expressed
lncRNAs ranged by the MS groups were presented in heat-
maps. The high-MS and low-MS groups exhibited different
expression patterns in both training and validating sets
(Figures 1(e) and 1(f)).

3.2. Survival Analyses of the MS. To validate the prognostic
value of the MS, we conducted survival analyses by plotting
Kaplan-Meier curves. As a result, the survival rate can be
separated between the high-MS and low-MS groups, and
the high-MS group showed low survival probabilities both
in training and validating sets (Figures 2(a) and 2(b)). In
addition, the MS can also predict the progress-free interval
(PFI) and disease-specific survival (DSS) in TCGA dataset
with the same trend as OS (Figures 2(c) and 2(d)). ROC
was applied to estimate the predictive accuracy of the MS
for patient survival. The area under curves (AUCs) of 5-
year and 3-year overall survival (OS) prediction were high
in both training (AUC = 0:709 and 0.662 for 5- and 3-year
OS, respectively) and validating sets (AUC = 0:713 and
0.646 for 5- and 3-year OS, respectively). For 1-year OS,
the AUC was high in the training set (0.698), while relatively
lower in validating set (0.596). These results demonstrated
the high prognostic value of MS in ovarian cancer patients.

3.3. The CNV Differences between High-MS and Low-MS
Groups. The constructed MS was capable of distinguishing
the patient risks; we further explored whether patients in
the two groups bore dissimilar CNV and SNP rates. The
CNV consists of two forms: copy number amplifications
and deletions. As exhibited in Figures 3(a) and 3(b), the
high-MS patients obtained higher GISTIC scores in chromo-
somes 8, 10, 11, 14, 20, and 22. The exact locations of the
enriched amplifications were at 8q22.1, 10q22.3, 11q22.2,
14q11.2, 20q11.21, and 22q11.21 (Figures 3(d) and 3(g)),
while for copy number deletions, only 3q13.31 deletion
was enriched in high-MS patients (Figures 3(e) and 3(h)).
SNP rates among the high-MS and low-MS did not show
dissimilarity (Supplementary Figure S1).

3.4. Establishment and Verification of a Clinical Nomogram.
To testify whether the MS, patient age, tumor stage, and
grade can function as independent predictors for establish-
ing a clinical nomogram, we conducted univariate and
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Figure 3: CNV differences between high-MS and low-MS groups. (a) OV high risk copy number GISTIC score. (b) OV low risk copy
number GISTIC score. (c–h) The exact locations of the amplifications.
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Figure 4: Establishment and verification of a clinical nomogram. (a) A forest plot for results of Cox regression analysis of risk score, age,
stage, and grade. (b) Nomogram. (c) Calibration curves for 1 year. (d) Calibration curves for 3 years. (e) Calibration curves for 5 years.
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multivariate Cox regression analyses for these features. The
MS and age were retained to be integrated as predictive fac-
tors (Figure 4(a)). Subsequently, the clinical nomogram was
constructed based on MS and age (Figure 4(b)), and its pre-
dictive calibration for 1-, 3-, and 5-year OS was verified by
calibration curves. The results showed that the nomogram
predicted patient 1-, 3-, and 5-year OS with good calibration
(Figures 4(c)–4(e)).

3.5. Functional Analyses of the m6A-Associated lncRNA
Signature. The GSEA was performed on the 16 m6A-
associated lncRNA signature, and the top 3 positively and
top 4 negatively enriched KEGG pathways were presented.
The positively enriched pathways include calcium, extracel-
lular matrix (ECM) receptor, and focal adhesion signaling
pathway (Figure 5(a)), and the negatively enriched
pathways mainly contained the DNA repair-related path-
ways (Figure 5(b)), suggesting that the poor prognosis of
high-MS patients was attributed to activated malignant
phenotypes and genetic malfunction of cancer cells.
Furthermore, we noticed that antigen processing and pre-
sentation pathway was negatively enriched (Figure 5(d)),
and leukocyte transendothelial migration (Figure 5(e))
was highly enriched; this indicated the variety of immune
activities in the cancer process.

3.6. Environment Infiltration Differences between MS
Groups. The functional analyses have suggested the immune
diversity between high-MS and low-MS groups. On top of
that, we compared the tumor environment infiltrating levels
between the two groups. The calculation of stromal score
and tumor purity showed the high infiltration of stromal
cells in the high-MS group (Figures 6(a) and 6(b)). We also
estimated the immune infiltration levels of the two groups
by comparing the human leukocyte antigen (HLA) expres-
sions; the results manifested the high-MS group harbored

lower HLA levels (Figure 6(c)), implying the immunocyte
recruiting was suppressed in high-MS ovarian cancers.

3.7. MS-Related Immunocyte Infiltration. To explicit the
immunocyte infiltration map, we further performed ssGSEA
analyses on the MS based on 28 tumor-infiltrating lympho-
cytes (28 TILs) retrieved from The Cancer Immunome
Atlas. As presented in Figure 7(a), the MS positively corre-
lated to central memory CD4, CD8 T cells, effector memory
CD4 cells, and memory B cells, implying the enhanced long-
term adaptive antitumor immunity mediated by T cells and
B cells in the high-MS group. Besides, macrophages were
also observed infiltrated in the high-MS group, but their
roles remain unclear. We noticed the Treg cells were also
highly infiltrated in the high-MS group; this suggested an
immunosuppressive role in high-MS cancers. To validate
this speculation, we then conducted ssGSEA on the correla-
tion between the cancer-immunity cycle and MS. As
expected, the MS positively correlated with Th2 cell and
Treg cell recruiting and negatively correlated with Th1
helper cells (Figure 7(b)). The unbalance of Th1/Th2 helper
cells and recruiting of Treg cells in high-MS ovarian cancers
indicated that the anticancer immunity was suppressed.

3.8. Immune Checkpoint and Chemotherapeutic Reaction
Analyses. Since the high-MS group exhibited immunosup-
pressive features, we then analyzed the immune checkpoint
marker levels between the two groups to seek whether
immune checkpoints played roles in their immunosuppres-
sion. We noticed that the NPR1, TNFSF9, and VSIR genes
were significantly highly expressed in the high-MS group
(Figure 8(a)); the heatmap also manifested the high expres-
sion of PD1-receptor in this group (Figure 8(b)), implying
the potential of immune checkpoint therapy against these
markers. Besides, we compared the estimated half-maximal
inhibitory concentration (IC50) of commonly used chemo-
therapy drugs, including cisplatin, vinorelbine, and
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vorinostat. As result, high-MS cancers presented lower esti-
mated IC50 of vinorelbine and vorinostat (Figures 8(c) and
8(d)), suggesting their sensitivity to these two drugs. Finally,
we applied CMap analysis to identify the potential com-
pounds targeting the differentially expressed genes between

MS groups and their corresponding mechanisms. We found
that two carbonic anhydrase inhibitors were identified,
including benzthiazide and brinzolamide (Figure 8(e)).
These results provided promising therapeutic targets for
high-MS ovarian cancers.
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4. Discussion

In this review, we constructed a robust m6A score to pre-
dict the prognosis of ovarian cancer patients using the
m6A lncRNA signature. Among various cancers, m6A
lncRNA prognostic models have presented high accuracy
in predicting the patients’ direct prognosis or therapeutic
response and in revealing the mechanism of tumor malig-
nancy [14–16]. For robustness, our MS outperformed the
current m6A risk scores for ovarian cancer survival pre-
diction [31, 32] according to criteria for genetic model
estimation [33], and our clinical nomogram also achieved
high calibration for short-term or long-term survival pre-
diction. Apart from MS, we noticed that age was also a

risky factor for ovarian cancers, following the finding that
the older age group has been found to harbor higher mor-
tality [3]. This correlation demonstrated ovarian cancer an
age-associated disease with the participation of m6A.

Establishment of the MS identified 12 novel m6A-
related lncRNA with prognostic value, including WAC-
AS1, TRAM2-AS1, SH3RF3-AS1, PCOLCE-AS1, MYC-
NOS, LINC01270, LINC00592, LAMTOR5-AS1, FOXN3-
AS1, DLGAP1-AS2, DICER1-AS1, and ARHGAP26-AS1.
WAC-AS1 was identified as a protective lncRNA in gli-
oma [34], and LAMTOR5-AS1 was positively correlated
with less aggressive prostate cancer [35]; their prognostic
indications matched our discoveries, while there have been
no reports concerning TRAM2-AS1, FOXN3-AS1, and
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ARHGAP26-AS1 in cancer studies. Hence, our study pro-
vided novel biomarkers and therapeutic targets for malig-
nant ovarian cancer patients.

m6A has been discovered to correlate with antitumor
immunity and immune evasion [36, 37] in cancers. In our
study, we noticed that antigen processing and presentation
pathways were blocked in the high-MS group according to
the GSEA analysis, and immunocyte marker expressions were
lower in the high-MS group, implying MS signature can per-
turb the anticancer immunity in ovarian cancer. m6A modifi-
cation can control the critical pathways during differentiation
of naïve T and sustained the immunosuppressive functions of
Treg cells [38]. Besides, m6A “reader” IGF2BP2 switched
macrophages from M1 to M2 phenotype via modulation of
tuberous sclerosis 1 [39]. These discoveries were consistent
with our finding that high MS was associated with high Treg
cells and macrophage infiltration. Notably, the negative corre-
lation of Th1 cells and positive correlation of Th2 cells with
the MS were identified; this Th1/Th2 cell balance disruption
has been previously stated to escape cancers from immune
surveillance [40], and it was also distinctively detected in
peripheral blood of ovarian cancer patients compared to
normal patients [41], demonstrating that ovarian cancer cells
harness the Th1/Th2 balance for avoiding immune attack.
Comprehensive considering, the m6A signature promotes
the malignancy of ovarian cancer probably by suppressing
the anticancer immunity.

Since Treg cells and Th1/Th2 balance can suppress anti-
cancer immunity via immune checkpoint-related mecha-
nisms [42, 43], the immune checkpoint status of TCGA
samples was investigated. Not surprisingly, several highly
expressed checkpoint genes were observed in the high-MS
group, including NRP1, TNSF9, and VSIR. NRP1 targeted
inhibitors were found to enhance the proliferation and anti-
tumor effect of CD8+ T cells [44]; it was discovered as a
marker for Treg cells and M2 macrophages [45, 46]. TNSF9
was a conserved pan-cancer marker of Treg cells that affect
CD8+ T cell activity [47]. VSIR was also found to regulate
Treg cells in combination with CTLA-4 [48], as well as T2
helper cell generation and functions [49]. The discovered
elevation of these checkpoint markers corresponded to our
findings that high-MS has a high infiltration of Treg cells,
Th2 cells, and macrophages, manifesting the m6A-
associated immunosuppressive roles in ovarian cancer.

However, there are numerous limitations to our study
that should be considered. Our research was only based on
TCGA database, and we do not conduct vitro assays for
hub lncRNAs. Beyond the effects on the immune, MS can
predict the sensitivities to chemotherapeutic drugs. The
low estimated IC50 of vinorelbine and vorinostat in the
high-MS group has suggested their promising efficacy. Since
no clinical trial of these two drugs’ effects on ovarian cancer
patients has been conducted, the future exploration of bene-
fits from them depending on the MS status is required.

5. Conclusion

Comprehensively, this study established a robust tool for
prognostic management of ovarian cancer patients and pro-

viding candidate adjuvant chemotherapy, as well as novel
therapeutic strategies targeting the cross-talk between m6A
and immunosuppression.
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