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Abstract

The parameter estimation of moving�average �MA� signals from second�order statistics was deemed

for a long time to be a di�cult nonlinear problem for which no computationally convenient and re�

liable solution was possible� In this paper we show how the problem of MA parameter estimation

from sample covariances can be formulated as a semide	nite program which can be solved in poly�

nomial time as e�ciently as a linear program� Two methods are proposed which rely on two speci	c

�over�parametrizations of the MA covariance sequence
 whose use makes the minimization of the

covariance 	tting criterion a convex problem� The MA estimation algorithms proposed here are com�

putationally fast
 statistically accurate
 and reliable �i�e� they �never� fail�� None of the previously

available algorithms for MA estimation �methods based on higher�order statistics included� shares all

these desirable properties� Our methods can also be used to obtain the optimal least squares approx�

imant of an invalid �estimated� MA spectrum �that takes on negative values at some frequencies�


which was another long�standing problem in the signal processing literature awaiting a satisfactory

solution�

Keywords

moving�average
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 semide	nite programming
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I� Introduction

Estimation of moving
average �MA� parameters has been a research problem in the

signal processing literature and elsewhere �statistics� econometrics etc�� for more than
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� years� Even so� all existing solutions to this problem appear to su�er from one or

more drawbacks� as we explain brie�y below�

� Several MA estimation methods� such as the maximum likelihood and moment �t


ting ones� depend on a multidimensional search� consequently they require the use of

�global� search algorithms �and hence inordinately long computer time� for successful

completion� or may otherwise fail to �nd the global optimum�

� Some methods �rst estimate MA covariances and then the MA parameters� for in


stance via spectral factorizations� and they have a hard failure each time the estimated

covariances do not form a valid MA covariance sequence�

� Other methods obtain a long auto
regressive approximation of the MA signal� which

is later used to estimate the MA parameters� Examples include Durbin method and

the inverse covariance method� For any given sample length one can �nd MA signals

for which this class of methods provide grossly biased MA estimates�

In summary� to our knowledge there were no methods available that�

�i� Obtain accurate MA parameter estimates in small or medium sized samples�

�ii� Require a computer time that is a polynomial function of the problem size �e�g�

the MA order�� and

�iii� Do not have a hard failure mode�

It should be noted that MA estimation methods based on higher
order statistics exist�

which obtain MA parameter estimates by solving a linear system of equations and

hence satisfy requirements �ii� and �iii� above� However accurate estimation of higher


order moments may need a rather large number of data samples� and consequently

desideratum �i� may not be met by these methods�

Our main goal in this paper is to present two algorithms for MA parameter estimation

from second
order statistics which possess all desiderata �i�
�iii� above� Brie�y stated�

these methods obtain MA estimates by minimizing a covariance �tting criterion� To

do so they rely on two speci�c �over�parametrizations of the MA covariance sequence�

whose use makes the minimization of the covariance �tting criterion a convex problem

that can be e�ciently solved in polynomial time�

We should note that the algorithms introduced here also provide a polynomial
time

solution to a problem related to MA estimation that has been studied in the signal

processing literature for quite some time� To describe this problem brie�y� assume

that the estimated covariances of an MA signal do not belong to the set of valid MA

	



covariance sequences� Consequently� the corresponding estimated spectrum takes on

negative values at some frequencies and is hence not factorizable� To �factorize the

unfactorizable� researchers have tried to correct the estimated MA covariance sequence

in various ways to bring it back into the valid set see� e�g�� ���� and the references

therein� The methods of this paper can be used to obtain a least squares optimal

solution to this problem in polynomial time�

Finally� we note that in ���� ��� we extend the ideas introduced here and combine them

with subspace
based techniques to solve the more complicated problems of autoregres


sive moving
average �ARMA� and� respectively� vector ARMA �VARMA� parameter

estimation from second order statistics� The reader who has found the present paper

of interest should plan to study ��� and ��� as well�

II� Problem Formulation

Consider the following MA signal

y�t� � e�t� � c�e�t� �� � � � �� cne�t� n� � �� � c�z
�� � � � �� cnz

�n�e�t�
�
� C�z�e�t�

���

where t � �� 	� � � � denote the time index� z�� is the unit delay operator� and e�t� is

white noise with mean zero and variance denoted by ��� The polynomial C�z� can

be assumed to have all its zeros inside the unit circle �the minimum
phase case� since

such an assumption means no restriction for the second
order statistics that will be

considered throughout this paper�

Let

r�k� � E�y�t�y�t� k��� k � �� �� � � � �	�

denote the MA covariances� and let

�r�k� �
�

N

NX
t�k��

y�t�y�t� k�� k � �� �� � � � ���

denote their sample counterparts� Hereafter� N is the number of available data samples�

For Gaussian signals the variance 
 covariances of f�r�k�g are readily derived �see� e�g��
������

E f��r�k�� r�k����r�p�� r�p��g � �

N�

nX
j��n

�N � jjj��r�j�r�j � k � p� � r�j � p�r�j � k��

���

�



for k� p � �� �� � � � and N �� n� If fe�t�g is a sequence of random variables that

are only uncorrelated but not independent �which may happen if e�t� is not Gaussian

distributed�� then ��� no longer holds ��	�� Nevertheless� in many cases ��� expresses

in a reasonable manner the relative estimation errors in f�r�k�g� and we make use of

it to weight or outweight the elements of our covariance �tting criterion �see below��

regardless whether the data is Gaussian or not�

Let �W denote the �n � m � �� � �n � m � �� matrix whose �k� p�
element is the

following estimate of ����

�Wkp �
�

N�

nX
j��n

�N � jjj���r�j��r�j � k � p� � �r�j � p��r�j � k��� k� p � �� �� � � � � n�m

��

where m is an integer whose choice will be discussed shortly� We can obtain estimates

of fckg and �� by minimizing the following weighted least
squares covariance �tting

criterion�

f �

�
� ��r � r�

�

�
�
T

�W��

�
� ��r � r�

�

�
� ���

where the inverse exists under the assumption that N is not too small� and

�r �
h
�r��� � � � �r�n�

iT

r �
h
r��� � � � r�n�

iT

� �
h
�r�n� �� � � � �r�n�m�

iT
���

The reason for including the sample covariances beyond lag n in the above covariance

matching criterion can be explained as follows� For MA signals� unlike auto
regressive

signals� the sample covariance vector �r does not form a �su�cient statistic� �roughly

speaking this means that �r does not contain all �information� about the unknown pa


rameters that is present in the raw data fy�t�gNt���� The m extra sample covariances

in � used in ��� correspond to true covariances equal to zero� yet they contain �in


formation� about the unknown MA parameters via their correlation with the sample

covariances in �r� One can in e�ect show that the asymptotic �for N �� �� accuracy

of the parameter estimates obtained by minimizing ��� monotonically increases with

increasing m� provided that m increases at a slower rate than N � and in the limit� as

m�N �� and m
N
� �� the estimates derived from ��� can be shown to be a realization

�



of the �Gaussian� maximum
likelihood estimator ���� In samples of practical length

�with N in the order of hundreds� we found that choosing m �
p
N gives satisfactory

results whenever the zeros of the MA signal are close to the unit circle� If the MA

zeros are well inside the unit circle one can choose a smaller m than
p
N to reduce

the computational burden �without sacri�cing the statistical accuracy�� provided that

information about the approximate zero locations is available�

The criterion in ��� can be rewritten in a more convenient form as follows� Partition

�W as

�W �

�
� �W��

�W��

�W T
��

�W��

�
� ���

where �W�� is of dimension �n���� �n��� etc� Then� make use of a standard formula

for the inverse of a partitioned matrix �see� e�g�� ����� to write f in ��� as�

f � ��r � r�T � �W�� � �W��
�W��
��

�W T
���

����r � r� � const� ���

where

�r � �r � �W��
�W��
�� � ����

The vector �r in ���� is readily checked to be a consistent estimate of r with the following

large
sample covariance matrix�

� � �W�� � �W��
�W��
��

�W T
�� ����

�see� e�g�� ����� Since �W�� is the large
sample covariance matrix of �r� and as � � �W��

by the de�nition in ����� it follows that �r is a more accurate estimate of r than �r�

The previous discussion implies that the optimally
weighted least
squares �tting in

��� based on the �n�m� �� sample covariances in �r and � can be reformulated as an

optimally
weighted least
squares �tting involving only the �n��� enhanced covariance

estimates in �r� The �rst advantage of this reformulation is a dimension reduction from

�n �m � �� for ��� to �n � �� for ���� To explain the second advantage� let � denote

the matrix � de�ned as in ���� but made from �r� Since �r is a better estimate of r than

�r we propose to use � instead of � in ���� Hence we will obtain estimates of the MA

parameters by minimizing the following criterion

g � ��r � r�T � ����r � r� ��	�





Regarding the MA order� n� we assume that it is given� and write MA�n� whenever

it is important to specify the order of the MA signal under discussion� Note� however�

that we do not assume that cn �� � etc�� which means that n is only an upper bound on

the true MA order� Methods for estimating n when it is unknown are discussed� for

example� in �����

The minimization of ��	� with respect to fckg and �� is a highly nonlinear� essentially
unconstrained problem� The minimization of ��	� with respect to fr�k�g is a quadratic
problem with a convex but rather complicated constraint set� Neither of these opti


mization problems can be conveniently solved by means of existing algorithms�

To obtain a minimization problem that can be solved in polynomial time we use a

larger number of parameters than n � � for describing the permissible MA covariance

set� In the next section we make use of an overparametrized state
space model for

the MA signal and call the resultant MA parameter estimation algorithm OS �stand


ing for Overparametrized Signal�� In Section IV we introduce another algorithm for

minimizing ��	� called OC �Overparametrized Covariances� which relies on an over


parametrized model for the MA covariance sequence�

The use of either of the aforementioned overparametrizations makes it possible to

transform ��	� into a so
called Semide�nite Program �SP�� the generic form of which

is �see� e�g� ���� ������

min
x

cTx�

s�t� A�x� 	 �
����

where s�t� is an abbreviation for �subject to�� A�x� � A��A�x�� � � ��Amxm 	 � is an

�m� �m matrix that depends a�nely on the elements fxkgmk�� of x� fAig and c are given�
and A 	 � means that A is a positive semide�nite matrix� The SP ���� can be solved

e�ciently in polynomial time by means of interior
point methods ����� ����� ��� which

are iterative in nature� The worst
case number of iterations to �nd a solution to �����

at a given accuracy� grows with problem size as O� �m����� In reality though� the number

of iterations grows much more slowly and can often be assumed to be constant �see

����� ������ typically ��
� iterations� On its turn� each iteration requires the solution

of a set of linear equations or a least
squares problem with a size that grows with m

and �m� Without utilizing any structural properties of A�x� �besides symmetry�� each

iteration requires O� �m�m�� �ops� To summarize� an SP can be solved as e�ciently

as a linear program �which can be viewed as a special case of ���� corresponding to

�



diagonal fAkg matrices�� In addition the available algorithms for solving ���� do not
encounter any problems when ���� has multiple solutions�

III� Overparametrized Signal �OS� Approach

It is readily veri�ed that the following state
space equations constitute a represen


tation of the MA signal in ����

x�t � �� � Ax�t� � ce�t�

y�t� � �Tx�t� � e�t�
����

where

A �

�
�������

� � � � �

�
� � �

���
� � � � � �

���

� � �

�
�������
� � �

�
�������

�
���

�

�

�
�������

c �

�
����

cn
���

c�

�
���� ���

De�ning

v�t� � ce�t� ����

we can rewrite ���� as�

x�t � �� � Ax�t� � v�t�

y�t� � �Tx�t� � e�t�
����

which� in turn� yields the following equation for the output signal

y�t� � �T �zI � A���v�t� � e�t� �
h
z�n � � � z��

i
v�t� � e�t� ����

Note that we could obtain ���� directly from the signal equation ���� The use of the

above state
space representation to derive ���� serves only the purpose of contrasting

the approaches in this and the next section�

Let Q denote the �n���� �n��� covariance matrix of the vector
h
vT �t� e�t�

iT
�

E

�	



�
� v�t�

e�t�

�
� h vT �s� e�s�

i
��
 � Q�t�s ����

where �t�s is the Kronecker delta� Also� let uk denote the kth column of the �n � ���
�n��� identity matrix� Using this notation and ���� we obtain the following expression

�



for the covariances of fy�t�g�

r�j� � E

�	



n��X
k��

n��X
p��

uTk

�
� v�t� n� � � k�

e�t� n� � � k�

�
�
�
� v�t� n� � � p� j�

e�t� n� � � p� j�

�
�
T

up

��
 �

�
n��X
k��

n��X
p��

uTkQup�k�p�j �

�	


Pn���j

k�� uTk�jQuk j � �� � � � � n
� j 	 n� �

�	��

Note from the de�nition ���� of v�t� that�

Q �

�
�������

cn
���

c�

�

�
�������

h
cn � � � c� �

i
�� �	��

If we observe �	�� and hence parametrize fr�j�g via fckg and �� then there is no

known method to solve the minimization problem ��	� in polynomial time� A natural

way to overcome this problem is to �over�parametrize fr�j�g in a linear manner via

the independent elements of Q� A similar idea has been used in ���� for estimation of

power spectra from frequency measurements�

Note that the transformation from Q to fr�j�g �and also fckg� is a many
to
one

mapping see� e�g�� ���� In particular the covariance sequence corresponding to the rank


one matrix Q in �	�� can also be described by using other Q matrices with rank larger

than one� It is also important to note that for any Q 	 � the fr�j�g obtained by �	��

form a valid MA covariance sequence of length k � n� and that one can span the whole

set of permissible MA�k� covariances� with k � n� by varying Q 	 � in �	���

Let 	 denote the �n � ���n � 	�
	� � vector comprising the elements of Q on and

above the main diagonal� i�e�� Q � Q�	�� also� let T denote the transformation from 	

to vec �Q�� Then� making use of ���� and a simple property of the Kronecker matrix

product �denoted by the symbol 
�� we obtain�

r �
n��X
k��

�
����

uTk
���

uTk�n

�
����Quk �

n��X
k��

����	
���

uTk 


�
����

uTk
���

uTk�n

�
����

�����
���
T	

�
� !	

�		�

where uk � � for k � n��� Inserting �		� into ��	� results into the following reformu


�



lation of the problem�

min
�
��r � !	�T � ����r � !	�

s�t� Q�	� 	 �
�	��

or equivalently �see e�g�� ���� ������

min
���

��

s�t� �� ��r � !	�T � ����r � !	� 	 �

Q�	� 	 �

�	��

where � is an auxiliary variable� Making use of a simple property of Schur complements

we can readily rewrite �	�� as a SP�

min
���

�

s�t

�
����

� ��r � !	�T �

�r � !	 � 

� Q�	�

�
���� 	 �

�	�

Observe that both the criterion function and the linear matrix inequality �LMI� in �	�

depend a�nely on � and 	�

Denote by S the set of covariances of an MA�n� signal�

S � frjfrkgnk�� are the covariances of an MA�n� signalg �	��

By using the convention that this set also includes the covariances of all MA signals of

orders less than n we note that this set is �over�parametrized by 	 through �		��

S � frjr � !	� Q�	� 	 �g �	��

The OS algorithm derives from �	� and consists of the following steps�

The OS Algorithm�

�� Test if �r de�ned by ���� belongs to the set of valid MA�n� covariance vectors S� If
yes� set f��r�k� � �r�k�g and go to step � below� If not go to step �� There are several
test procedures available for checking whether �r � S �e�g� ����� An alternative �which

we will shortly discuss in some detail� is to check the feasibility of a linear matrix

inequality� i�e�� to check the existence of a P � P T such that "�P� �r� 	 � where "�P� r�

is de�ned by ���� below�

�



�� Obtain an estimate of Q by solving the SP �	��

	� Use the so
estimated Q to derive valid estimates of the MA�n� covariances and

spectrum� Let the latter estimates be denoted by f��r�k�g and� respectively� ���z� �
P

jkj�n
��r�k�zk�

�� Estimate fckg and �� by factoring the estimated spectrum�

���z� � ��� �C�z� �C�z��� �	��

This can be done e�ciently by several procedures �see �	��� ����� �	��� the resultant �C�z�

polynomial will be minimum phase�

Remark �� Note that given the estimated Q from step �� fckg can also be directly

found by solving the discrete
time Riccati equation for the associated optimal �ltering

problem without having to form the the covariance sequence �rst� To see this� return

to the state
space realization given in ����� It is known as the innovations form and the

vector c containing the fckg parameters is the Kalman gain for the associated optimal
state
estimation problem� Given a matrix Q representing the covariance matrix of the

driving noise in the MA model ����� solving the Riccati equation for the Kalman gain

vector directly yields the MA parameters fckg�
The number of variables in the SP above is

#OS �
�n� ���n� 	�

	
� � �	��

as compared with the n�� variables of the original problem� This seemingly signi�cant

overparametrization might suggest a possible degradation of the estimation accuracy�

However this is not so� The SP in �	� is just a reformulation of ��	�� Both problems

determine the valid MA�n� covariance sequence r that is minimally distanced from �r�

in the metric induced by � � Hence the OS algorithm outlined above provides the same

estimates of the MA parameters as the �global� minimization of ��	� with respect to ��

and fckg� Consequently the only e�ect of the overparametrization via 	 is to transform
the di�cult problem ��	� into a tractable SP�

The discussion in the previous paragraphs also implies that if �r does not belong to

S �the set of valid MA�n� covariances� then the estimated covariance vector ��r obtained

by OS will belong to the boundary of S� �This follows from the equivalence of ��	� and

�	�� and the convexity of S�� In such a case� the polynomial �C�z� in �	�� will have

zeros on the unit circle� which is natural as the usually small estimation errors in �r

��



may pull this vector out of S only if r was �close to� the boundary of S and hence

C�z� had zeros �close to� the unit circle�

IV� Overparametrized Covariance �OC� Approach

The approach in the previous section eventually relies on an overparametrized co


variance model� see �	��� However this model was obtained by starting from an over


parametrized signal equation ����� This distinguishes the OS approach from the OC

approach of this section that overparametrizes the MA covariance sequence directly�

To solve the covariance �tting problem ��	� we must parametrize S in some way� The
parametrization of S via r is quite complicated and� as already stated� does not lead

to a tractable problem� However we can append to r a number of auxiliary variables

in such a manner that the condition on the extended vector of variables for r to belong

to S becomes a simple LMI� Reformulation of the problem ��	� as a SP will then be

straightforward� This idea� which was utilized in �	��� �	�� for FIR �lter design� is

detailed in what follows�

Let

$�z� �
�

	
r��� � r���z�� � � � �� r�n�z�n ����

The spectrum of the MA signal in ��� can then be written as

��z� � $�z� � $�z��� ����

and it is well known that a possible mathematical characterization of the set S is�

S �
�
rjRe�$�ei��� 	 � for  � ���� ��� ��	�

Next let A be as de�ned in ���� and let

g �
h
� � � � � �

iT
� h �

h
r��� � � � r�n�

iT
� d � r���
	 ����

It is a simple matter to check that�

�
�������

z � � � � �

�� � � � � � �

� � � � � �

� � � � �� z

�
�������

�
����

z��

���

z�n

�
���� �

�
�������

�

�
���

�

�
�������

��



which directly implies that�

hT �zI � A���g � d � $�z� ����

Hence �A� g� h� d� is a state
space realization of the FIR �transfer function� $�z� made

from fr�k�gnk��� Furthermore� this state
space realization is always controllable and in
Appendix A we prove that it is minimal if and only if

cn �� � ���

In �	��� �	�� the �minimality condition� ��� was thought of being necessary for the

formulation of ��	� as an LMI� In reality ��� is not required� which allows n to be larger

than the true MA order� Indeed� because �A� g� in the above state
space realization is

a controllable pair it follows from the positive real lemma �see Appendix B� that r � S
if and only if there exists an n� n symmetric matrix P such that �

"�P� r� �

�
� P � ATPA h� ATPg

hT � gTPA 	d� gTPg

�
� 	 � ����

Observe that ���� is an LMI in the covariances fr�k�gnk�� and the n�n���
	 independent
elements of P � Making use of this observation and a Schur complement trick similar

to the one that led to �	�� we can reformulate ��	� as the SP�

min
��P�r

�

s�t�

�
����

� ��r � r�T �

�r � r � 

� "�P� r�

�
���� 	 �

����

We can now outline the OC algorithm�

The OC Algorithm�

�� As for the OS algorithm�

�� Determine a solution of the SP ���� and obtain an estimate ��r � S of r from the

corresponding elements of the solution vector ��

	� Same as Step � of the OS algorithm�

The number of variables in the SP associated with the above algorithm is

#OC �
�n� ���n� 	�

	
� � ����

�	



This is exactly the same as the number of variables in the OS algorithm �see �	����

Also� the size of the LMI is 	n � � for both algorithms� Accordingly� one can expect

that the computational complexities of the OS and OC algorithms are quite similar to

one another� In the numerical example section we compare the computational burdens

of the two algorithms as well as their accuracies� Theoretically both algorithms should

provide the same estimates of fckg and ��� as they both obtain the global minimizer

of the criterion in ��	�� However the numerical accuracies of the two algorithms may

di�er from one another� and this might introduce some �small� di�erences between the

parameter estimates obtained by using them�

V� Numerical examples

This section presents two numerical examples to illustrate the performance of the

proposed algorithms and to compare them with existing techniques� The new algo


rithms are implemented in MATLAB and the semide�nite program is solved using the

software given in ����� The following algorithms are compared�

�� The OS algorithm with m � 	��

	� The OC algorithm with m � 	��

�� Durbin%s algorithm� which can be outlined as follows� First a high order AR model

�A�z� is estimated by using the least
squares method �LS�� The MATLAB implementa


tion of this step �see ���� uses an AR equation of order �n� which is also what we use in

the following� Using the AR model� the innovations are estimated by �e�t� � �A�z�y�t��

The MA�n� polynomial C�z� is then estimated by a LS procedure applied to the linear

regression

y�t� � C�z��e�t��

Any zeros zi of the estimated polynomial �C�z� which are outside the unit circle are

moved inside by replacing them with �
zi
�which does not alter the power spectrum

estimate��

�� The maximum
likelihood method �ML� for which the ARMAX command in the MAT


LAB System Identi�cation Toolbox ��� is used� The solution is found by non
linear

optimization using a Gauss
Newton type of algorithm� The optimization is initialized

by the estimate from the Durbin algorithm� The Gauss
Newton optimization algorithm

constrains the zeros of the estimate to lie strictly inside the unit circle by modifying

the parameter updates which would yield zeros outside or on the unit circle�

��



A� Example �

Consider an MA��� signal y�t� � C�z�e�t� where

C�z� � ��� ���z������ ����ei
�

� z������ ����e�i
�

� z��� ����

and e�t� is a zero
mean Gaussian white noise with unit variance� The sample size is

N � ���� A Monte
Carlo simulation is performed based on 	� independent data sets

fy�t�g� For each data set the four aforementioned estimation algorithms were applied�
The results of the simulation are summarized in Figures �&��
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Fig� �� Example � Superimposed estimated zero locations for �� independent data sets� The large

crosses indicate the true locations�
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True
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2 * Std. dev.

�d� Maximum�likelihood

Fig� �� Example � Estimated power spectra� Sample statistics based on �� independent realizations�

Solid line true spectrum� Dashed line estimated mean� Dash�dotted lines � twice the standard

deviation�

The two new methods �OS and OC� start from an initial estimate �r of the covariance

vector� If this estimate is not a valid covariance sequence ��r �� S� then the SP opti


mization is initiated� In Table I the percentage of invalid initial estimates is reported

together with the average execution time�

B� Example �

The second example investigates parameter estimation performance for an MA sys


tem of order � with zeros located at ���� e�i
�

� � ���� e�i
��

� and ����� e�i
�

� � The data are

generated using the same setup as in Example �� Figures �&� and Table II present the

results of the Monte
Carlo simulation�
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Fig� �� Example � Superimposed estimated spectra for �� independent data sets�

TABLE I

Results from the Monte�Carlo simulation for Example �� �n�a� � not applicable�

Method Aver� exec� Invalid initial

time �sec� estim��'�

OS ��	�� �

OC ��	�� �

Durbin ����� n�a�

Maximum
likelihood ��	� n�a�

��
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Fig� �� Example � Superimposed estimated zero locations for �� independent data sets� The large

crosses indicate the true locations�

TABLE II

Results from the Monte�Carlo simulation for Example �� �n�a� � not applicable�

Method Aver� exec� Invalid initial

time �sec� estim��'�

OS ���� ��

OC ���� ��

Durbin ����� n�a�

Maximum
likelihood ���		 n�a�

��
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�d� Maximum�likelihood

Fig� �� Example � Estimated power spectra� Sample statistics based on �� independent realizations�

Solid line true spectrum� Dashed line estimated mean� Dash�dotted lines � twice the standard

deviation�

C� Summary

As already stated the OS and OC algorithms should theoretically yield identical esti


mates since they only di�er by the way the constraint is implemented� The simulation

results con�rm this� as only small numerical di�erences can be detected between the

OS and OC estimates which are likely due to the choice of stopping criteria in the SP

solver�

Note that the MA signals considered in both examples have zeros near the unit

circle� Such signals have a large spectral range and estimation of their parameters is

more challenging and hence more interesting� We have also considered MA signals

with zeros well inside the unit circle� While we omit the results obtained in such cases�

��
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Fig� �� Example � Superimposed estimated spectra for �� independent data sets�

let us mention that for this type of MA signals the four methods above behave quite

similarly and that the OS and OC algorithms usually terminate after step ��

The performance of OS and OC algorithms is clearly better than that of the Durbin

method and is very close to the maximum
likelihood performance� Although the per


formance of the ML method in the two examples was quite good it should be noted

that the ML method relies on a non
linear optimization without any guarantee of global

convergence� The risk of the ML algorithm being trapped in a false maximum of the

likelihood function is higher for real data that do not exactly satisfy any MA equation

than for synthetic MA data� In contrast the OC and OS methods are based on a convex

optimization formulation and convergence to the optimum is guaranteed in polynomial

time�

The execution time for the OS and OC methods seems to increase faster with in


��



creasing model order n as compared with the other methods� The reason is that for

the new methods the number of estimated �parameters� grows as O�n��� see �	�� and

����� However� we should note that the SP solver used does not exploit any structure

of the problem� Signi�cant execution time reductions are expected if the sparseness of

the problem is properly utilized� Furthermore� our code for the OS and OC algorithms

is far from optimal� in particular it contains� unlike the code for the ML algorithm�

a relatively large number of external loops that are notoriously slow in MATLAB�

Optimization of future versions of our code should lead to further reductions of the

execution times associated with the OS and OC algorithms� The reader can download

the latest available version of the code for the OS and OC algorithms from the www

address http���www�control�isy�liu�se��tomas�maestim

VI� Conclusions

Two novel methods for estimation of the parameters of a moving average signal have

been introduced� The methods share the following important features�

�i� They obtain accurate MA parameter estimates in small or medium sized samples�

�ii� They require a computer time which� in worst case� is a polynomial function of the

problem size �e�g� the MA order�� and

�iii� They do not have a hard failure mode�

The two methods obtain MA estimates by minimizing an optimally weighted covariance

�tting criterion� To do so they rely on two speci�c �over�parametrizations of the

MA covariance sequence� whose use makes the minimization of the covariance �tting

criterion a convex problem that can be e�ciently solved in polynomial time�
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Appendix

I� Proof of the minimality property

A state
space realization �A� g� h� d� is minimal if and only if its observability matrix

O �

�
�������

hT

hTA
���

hTAn��

�
�������

and its controllability matrix

C �
h
g Ag � � � An��g

i

are non
singular� A straightforward calculation shows that

O �

�
�������

r��� r�	� � � � r�n�

r�	� � �
��� � ���

r�n� � � � � �

�
�������

and

C � I

Hence C is always nonsingular� whereas O is so if and only if r�n� �� �� or equivalently

cn � r�n�
�� �� ��

II� The positive real lemma

First we state the discrete
time version of the celebrated Kalman
Yacubovich
Popov

�KYP� lemma� We present the result for the multivariable case for the sake of gener


ality�

Lemma � �KYP� Given A � R
n�n � B � R

n�m � M � R
�n�m���n�m� � with det�ei�I �

A� �� � for  � R and �A�B� controllable� the following two statements are equivalent�

�i� For  � R

�
� �ei�I � A���B

I

�
�
�

M

�
� �ei�I � A���B

I

�
� 	 �

where superscript ( denotes the conjugate transpose�

	�



�ii� There exists a matrix P � R
n�n such that P � P T and

M �

�
� P � ATPA �ATPB

�BTPA �BTPB

�
� 	 �

The corresponding equivalence for strict inequalities holds even if �A�B� is not con


trollable�

Proof� See e�g� �����

Based on the KYP
lemma� the following positive real lemma is easily derived� �see also

���� ����

Lemma � �PR� Given A � R
n�n � B�CT � R

n�m � D � R
m�m � with det�ei�I�A� �� �

for  � R� �A�B� controllable and $�� � D � C�ei�I � A���B� the following two

statements are equivalent�

�i� For  � R

$��� � $�� 	 �

�ii� There exists a P � R
n�n such that P � P T and

�
� P � ATPA CT � ATPB

C �BTPA D �DT �BTPB

�
� 	 � ����

The corresponding equivalence for strict inequalities holds even if �A�B� is not con


trollable�

Proof� The result follows directly from the KYP
lemma by letting

M �

�
� � CT

C D �DT

�
�

Note that for scalar systems we have

$��� � $�� � 	Re�$���

which clari�es the name of the lemma�

Consider the state
space formulation $�z� as de�ned by ���� ���� and ����� The

pair �A� g� is controllable as shown in Appendix A� Consequently the counterpart of

���� in ���� is the necessary and su�cient condition for the positive realness of $�z�

in ����� or equivalently for the vector r to be a valid covariance sequence �r � S��
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