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ABSTRACT
Machine Learning (ML) software can lead to unfair and unethical
decisions, making software fairness bugs an increasingly significant
concern for software engineers. However, addressing fairness bugs
often comes at the cost of introducing more ML performance (e.g.,
accuracy) bugs. In this paper, we propose MAAT, a novel ensemble
approach to improving fairness-performance trade-off for ML soft-
ware. Conventional ensemble methods combine different models
with identical learning objectives. MAAT, instead, combines models
optimized for different objectives: fairness andML performance. We
conduct an extensive evaluation of MAAT with 5 state-of-the-art
methods, 9 software decision tasks, and 15 fairness-performance
measurements. The results show that MAAT significantly outper-
forms the state-of-the-art. In particular, MAAT beats the trade-off
baseline constructed by a recent benchmarking tool in 92.2% of the
overall cases evaluated, 12.2 percentage points more than the best
technique currently available. Moreover, the superiority of MAAT
over the state-of-the-art holds on all the tasks and measurements
that we study. We have made publicly available the code and data
of this work to allow for future replication and extension.

CCS CONCEPTS
• Software and its engineering→ Software creation and man-
agement; • Computing methodologies→Machine learning.

KEYWORDS
Software fairness, bias mitigation, fairness-performance trade-off,
ensemble learning, machine learning software
ACM Reference Format:
Zhenpeng Chen, Jie M. Zhang, Federica Sarro, and Mark Harman. 2022.
MAAT: A Novel Ensemble Approach to Addressing Fairness and Perfor-
mance Bugs for Machine Learning Software. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE ’22), November 14–18,
2022, Singapore, Singapore. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3540250.3549093

1 INTRODUCTION
Software systems have been widely adopted to make decisions in
social-critical, human-related tasks, including credit assessment [1],
disease detection [55], criminal justice [4], and hiring [31]. The
wide adoption of such decision-making software raises concerns

about software fairness bugs (i.e., unfair software decisions) [27].
These bugs have been frequently reported, related to protected
attributes such as race [5, 9] and sex [7, 17]. They may particularly
disadvantageminorities and protected groups, resulting in unethical
and unacceptable consequences.

The issue in fairness has been studied in both Software Engineer-
ing (SE) [40] andMachine Learning (ML) [62] research communities
since 2008. From the SE perspective, fairness is a non-functional
software property, as such can be the subject of testing to find
fairness bugs [79]. In recent years, the surging ML software (i.e.,
software that relies on ML to tackle decision problems), increases
the prevalence of software fairness bugs [58, 67]. Such prevalence at-
tracts increasing attention from the SE community, and researchers
have called for actions by the SE research to tackle fairness bugs
[27]. As a result, the SE literature has witnessed a large number
of recent results on addressing fairness bugs (i.e., software bias1
mitigation) [25, 26, 28, 29, 46, 47, 78].

Although bias mitigation methods aim to address fairness bugs,
many theoretical and empirical studies [23, 34, 36, 47, 73] have
revealed that the reduction of fairness bugs can come at the cost of
introducing more performance (e.g., accuracy) bugs into ML soft-
ware, causing decrease in ML performance. Therefore, fairness and
ML performance can be conflicting goals in software development.
Software engineers are often in a dilemma between the functional
property (i.e., ML performance) and the non-functional property
(i.e., fairness), known as “fairness-performance trade-off ”.

We presentMAAT, a fairness-performance ensemble approach,
for improving ML fairness-performance trade-off. Conventional
ensemble methods combine different ML models with identical
learning objectives (e.g., accuracy). In this paper, we propose a
novel ensemble method that combines ML models with differ-
ent learning objectives (i.e., fairness and performance) to optimize
the trade-off between them. Specifically, MAAT learns individual
models with fairness and ML performance as optimization goals
separately, and combines the learned knowledge to make specific
decisions. To get optimized fairness, we also design a data debugging
technique to mitigate selection bias and label bias in the training
data of ML software, both of which are demonstrated to be major
causes of software unfairness [28, 73].

We conduct an extensive evaluation of MAAT on nine widely-
adopted software decision tasks, which cover social, financial, and
1We treat “bias” and “unfairness” as synonyms, referring to the opposite of “fairness”.
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medical application domains, as well as scenarios with single and
multiple protected attributes. We compare MAAT with five state-of-
the-art bias mitigation methods from the ML and SE communities,
using 15 types of fairness-performance measurements (i.e., combi-
nations of three fairness metrics and five ML performance metrics).

We observe that MAAT is more effective in improving fairness-
performance trade-off than existingmethods. According to the state-
of-the-art benchmarking tool [47], MAAT surpasses the trade-off
baseline constructed by the tool in 92.2% of the studied cases, while
existing methods achieve it in between 33.3% and 80.0% of the cases.
When considering multiple protected attributes at the same time,
MAAT beats the trade-off baseline in 96.5% of the cases evaluated,
46.3 percentage points more than the state-of-the-art. Furthermore,
MAAT is widely applicable, as it outperforms existing methods on
all the software decision tasks and fairness-performance measure-
ments that we consider.

In summary, this paper makes the following contributions:
• We propose MAAT, a novel fairness-performance ensemble ap-
proach, to improve fairness-performance trade-off for ML soft-
ware.

• We conduct a large-scale study of MAAT and 5 existing bias
mitigation methods on 9 software decision tasks with 15 fairness-
performance measurements. The results show that MAAT signif-
icantly outperforms the state-of-the-art.

• We make available the scripts and data used in our study [18] to
the research community for other researchers to adopt MAAT or
replicate and extend this work.
The rest of this paper is structured as follows. Section 2 intro-

duces the preliminaries about software fairness. Section 3 presents
the MAAT approach. Section 4 describes the evaluation settings
and research questions. Section 5 reports and analyzes the results.
Section 6 discusses the advantages and implications of MAAT as
well as the threats to validity, followed by concluding remarks in
Section 7.

2 PRELIMINARIES
We start by introducing the background and related work about
software fairness.

2.1 Background
Classification tasks are the most widely-adopted research subjects
in the software fairness literature [25, 26, 28, 29, 47, 78]. For such
tasks, ML software can be considered a function that maps fea-
ture vectors to class labels. Among the features, some (such as sex
and race; termed protected attributes) need to be protected against
unfairness. Based on the value of a protected attribute, a popula-
tion is partitioned into the privileged and unprivileged groups. It is
recognized that ML software tends to produce the favorable class
label for the members in the privileged group [58], thus making the
unprivileged group at disadvantage. For example, the recidivism
assessment software that US courts used has been shown to be par-
ticularly likely to falsely flag black defendants as future criminals
compared to white defendants [5].

Building responsible software with group fairness has been an
important ethical duty for software engineers. It requires that the
protected attributes do not affect the decision outcomes and thus

ML software treats the privileged and unprivileged groups equally.
Group fairness has been advocated in legal regulations such as the
four-fifths rule in US law [73], and widely studied in software bias
mitigation research [58]. In this paper, we focus on classification
tasks and group fairness.

2.2 Related Work
Fairness has been an important non-functional property that soft-
ware engineers need to meet in software development practice.
Therefore, major software companies have started to put signif-
icant efforts into software fairness. For instance, Meta (formerly
Facebook) developed the Fairness Flow tool to detect bias in ML
software [11]; Microsoft established the FATE group [8] to promote
software fairness, and published the ethical principles of artificial
intelligence [15], stating that ML software must be fair in real-life
applications.

Meanwhile, fairness has been a hot research topic in the SE
community. In particular, at ESEC/FSE 2018, researchers [27] set out
a vision on how SE research can help reduce fairness bugs, fostering
a series of SE efforts in software fairness. Next, we introduce related
work about fairness bug detection and resolution.

Detecting fairness bugs (fairness testing): Chen et al. [33]
provided a comprehensive survey of existing research on fairness
testing. Galhotra et al. [43] proposed Themis to generate test suites
for detecting causal discrimination in ML software. Udeshi et al.
[69] leveraged the inherent robustness property in ML models for
scalable fairness test generation. Angell et al. [20] presented an auto-
mated test suite generator to measure causal relationships between
sensitive inputs and program behaviour. Aggarwal et al. [19] com-
bined symbolic execution and local explainability for fairness test
input generation. Zhang et al. [81] used gradient computation and
clustering to generate discriminatory instances. Chakraborty et al.
[30] used trustworthy explanation for uncovering underlying fair-
ness bugs. Zhang et al. [80] generated diverse discriminatory seeds
and individual discriminatory instances around these seeds through
gradient search. Asyrofi et al. [21] generated bias-uncovering test
cases by text mutation for sentiment analysis software.

Addressing fairness bugs (biasmitigation): Some researchers
provided implications for bias mitigation through empirical stud-
ies. For example, Zhang and Harman [78] investigated potential
influencing factors of software fairness and found that enlarging
the feature set was a possible way to improve fairness. Valentim
et al. [70] and Biswas and Rajan [26] explored the impact of differ-
ent pre-processing techniques on fairness and derived insights for
choosing appropriate techniques to improve software fairness.

Additionally, researchers proposed numerous bias mitigation
methods to address fairness bugs, including pre-processing, in-
processing, and post-processing methods [45, 58]. Pre-processing
methods processed training data to reduce data bias; in-processing
methods mitigated bias by optimizing training algorithms; post-
processing methods modified prediction outcomes of ML software
to improve fairness. Recently, IBM has launched a toolkit named
AIF360 [14] to integrate popular pre-processing, in-processing, and
post-processing methods, such as Reweighing [49], Adversarial
Debiasing [77], and Reject Option Classification [51].
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Furthermore, researchers proposed ensemble techniques that
combined different bias mitigation methods/models [24, 28, 29, 48,
53] to address fairness bugs. These techniques often combinedmeth-
ods/models with the identical objective (i.e., fairness) to achieve bet-
ter fairness than any of the individuals. For example, Chakraborty
et al. [29] combined a pre-processing method (i.e., situation testing)
and an in-processing method (i.e., multi-objective optimization),
and demonstrated that the ensemble performed better than each
of the individuals; similarly, their follow-up work [28] combined
two pre-processing bias mitigation techniques, i.e., situation testing
and data distribution balancing. Different from them, we propose
an ensemble approach that combines models with different objec-
tives (i.e., fairness and ML performance) to deal with the trade-off
between them.

With the emergence of various bias mitigation methods, some
work focused on empirical evaluation of them. For example, Biswas
and Rajan [25] applied seven bias mitigation methods on real-world
ML models collected from a crowd-sourced platform. However,
existing work often measured the changes caused by bias mitiga-
tion methods in fairness and ML performance separately. In this
way, it was unclear whether the improved fairness was simply
the consequence of ML performance loss. To tackle this problem,
Hort et al. [47] proposed a benchmarking tool named Fairea, which
provided a unified baseline to evaluate and compare the fairness-
performance trade-off of different bias mitigation methods. In this
paper, we adopt Fairea to compare our approach and existing bias
mitigation methods. We use “trade-off baseline” to refer to the
baseline that Fairea provides, which is expected to be surpassed by
any reasonable bias mitigation methods.

3 THE MAAT APPROACH
In this section, we first introduce the workflow of MAAT, then
present a detailed description of its key components.

3.1 MAAT: In a Nutshell
MAAT is a fairness-performance ensemble approach for improving
the fairness-performance trade-off in ML software development.
Inspired by the ensemble theory [56, 66] that ensembles tend to
yield better results when there is a diversity among the involved
models, MAAT makes use of ML models with different objectives
(i.e., fairness and performance), and combines the behaviours of
them to make the final decisions.

Figure 1 presents the overview of MAAT. First, we train two
individual models, named the Fairness Model and the Perfor-
mance Model. The fairness model is optimized for fairness; the
performance model is optimized for ML performance (e.g., accu-
racy). Each model maps the input feature vector to a probability
vector, indicating the probability that the input belongs to each
class label. We then combine the output probability vectors of the
fairness model and the performance model to produce the final
predictions.

MAAT is a general framework for tackling fairness-performance
trade-off for ML software. Researchers and practitioners can design
the fairness model, the performance model, and the combination

Figure 1: Overview of MAAT.

strategy according to their applications. In the following, we intro-
duce a default configuration of MAAT, with a fairness model that
we propose using data debugging.

3.2 Fairness Model
We propose a training data debugging approach for obtaining the
fairness model.

ML software is developed following the data-driven program-
ming paradigm, and the training data determines its decision logic
to a large extent [79]. As a result, bias in the training data is con-
sidered a root cause of ML software bias [28]. For example, in the
Adult dataset [6], which is commonly used for predicting income of
individuals, 31% of men are labeled with “high income” and 11% of
women, a difference of almost three times. Therefore, ML software
developed on this dataset tends to favor men.

Data debugging is an emerging technique, which aims to locate
and modify the data that causes program bugs. For example, Wu et
al. [74] proposed a data debugging approach, which allows users
to complain about queries’ output of database integrating ML in-
ference and returns the smallest set of training data that can be
removed to fix the database bugs; Kirschner et al. [54] proposed an
approach to maximizing the subset of input that can be processed
by the program, thus debugging as much input data as possible.
Different from these work, we propose a data debugging approach
for addressing fairness bugs, i.e., improving software fairness.

Specifically, we debug the training data by encoding the “We’re
All Equal” (WAE) worldview [41, 76] into it. The WAE worldview
holds the belief that there is no statistical association between
the outcome decision and the protected attribute, and has been
widely advocated in the literature [58] and law [76]. To encode the
worldview, we first divide the training data into four subgroups
based on the values of the outcome label (Favorable or Unfavorable)
and the protected attribute (Privileged or Unprivileged), and use 𝑃𝐹 ,
𝑃𝑈 ,𝑈𝐹 , and𝑈𝑈 to denote the number of samples in the Privileged
& Favorable, Privileged & Unfavorable, Unprivileged & Favorable,
and Unprivileged & Unfavorable subgroups. Then, we need to make
the favorable rates of privileged and unprivileged groups equal, i.e.,

𝑃𝐹
𝑃𝐹+𝑃𝑈 = 𝑈𝐹

𝑈 𝐹+𝑈𝑈
, to satisfy the WAE criteria. However, in fact, the

two rates in current training data are often unequal, or even very
different (as shown in the aforementioned Adult dataset).

We design a debugging strategy according to the recognized
major factors of training data bias. Existing work [28, 73] attributes
training data bias to two factors: selection bias, which occurs when
sampling real-world data as the training data in a way that hap-
pens to introduce an unexpected correlation between the protected
attribute and the outcome label, and label bias, which occurs when
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the process that produces the labels is influenced by factors that
are not germane to the determination of labels. To mitigate the
selection bias, we aim to undersample the training data to remove
the unexpected correlation, making 𝑃𝐹

𝑃𝐹+𝑃𝑈 = 𝑈𝐹
𝑈 𝐹+𝑈𝑈

. Since many
research results and real-world cases have shown that ML software
tends to falsely produce the favorable label for the privileged and
the unfavorable label for the unprivileged [58], label bias mainly
exists in the Privileged & Favorable and Unprivileged & Unfavor-
able subgroups. Therefore, we perform undersampling by reducing
data samples in the two subgroups to alleviate the label bias as
well as the selection bias. Meanwhile, we keep the ratio of privi-
leged and unprivileged individuals during the sampling process, as
we expect that the final training data still shares the same privi-
leged/unprivileged ratio as the real-world. We use 𝑎 and 𝑏 to denote
the number of samples that we need to remove from the Privi-
leged & Favorable and Unprivileged & Unfavorable subgroups, and
formulate the aforementioned constraints as follows:

𝑃𝐹−𝑎
𝑃𝐹−𝑎+𝑃𝑈 = 𝑈𝐹

𝑈 𝐹+𝑈𝑈−𝑏 ,
𝑃𝐹+𝑃𝑈
𝑈𝐹+𝑈𝑈

= 𝑃𝐹−𝑎+𝑃𝑈
𝑈𝐹+𝑈𝑈−𝑏 ,

𝑎 ≥ 0, 𝑏 ≥ 0.

(1)

Based on the constraints, we calculate the numbers 𝑎 and𝑏. Then,
we randomly remove 𝑎 samples from the Privileged & Favorable
subgroup and 𝑏 samples from the Unprivileged & Unfavorable
subgroup. Finally, based on the remaining training data, we train
the fairness model to predict favorable or unfavorable outcome.

In Section 5.3, we also use the models obtained by applying ex-
isting bias mitigation methods as the fairness model, to investigate
how different fairness models affect MAAT.

3.3 Performance Model
By default, the training process of ML models uses ML performance
as the optimization goal. Therefore, we use the models obtained
by traditional ML algorithms on the original training data, as the
performance model.

In Section 5.3, we employ the models trained using different ML
algorithms as the performance model, to investigate how different
performance models affect MAAT.

3.4 Combination
The fairness model and the performance model produce their re-
spective probability vectors based on identical inputs. Our default
combination strategy is to average the produced probabilities of
the two models. Let us consider a binary classification task with
unfavorable and favorable labels (i.e., 0 and 1), and denote the two
probability vectors obtained by the fairness model and the per-
formance model as [𝑝0𝑓 , 𝑝1𝑓 ] and [𝑝0𝑝 , 𝑝1𝑝 ], where 𝑝0𝑓 and 𝑝0𝑝
indicate the probabilities that the input belongs to the class 0, 𝑝1𝑓
and 𝑝1𝑝 the class 1. Then, we average the two vectors to obtain
the final probability vector [ 𝑝0𝑓 +𝑝0𝑝2 ,

𝑝1𝑓 +𝑝1𝑝
2 ]. If 𝑝0𝑓 +𝑝0𝑝

2 is greater
than 𝑝1𝑓 +𝑝1𝑝

2 , we predict the input as the class 0, otherwise the class
1. Averaging is a common strategy in ensemble learning [83], and
we use it as the default combination strategy of MAAT.

In Section 5.4, we also explore other combination strategies to
investigate how different strategies affect MAAT.

3.5 For Multiple Protected Attributes
Software systems may have multiple protected attributes that need
to be considered at the same time. For such multi-attribute tasks,
it is difficult for software engineers to improve fairness for each
protected attribute simultaneously. For example, existing ML soft-
ware, which has been removed gender bias [50], is demonstrated
to exhibit severe racial bias [43].

MAAT, as a general framework, can be easily adopted for multi-
attribute tasks. Specifically, we can train an individual fairness
model for each protected attribute according to the steps in Sec-
tion 3.2. Each fairness model predicts the same target (favorable or
unfavorable). Then, given the input data, the performance model
and each fairness model produce a probability vector, respectively.
We average these vectors to obtain the final probability vector and
then make the decision based on it.

In Section 5.5, we evaluate MAAT in multi-attribute decision
tasks to demonstrate its effectiveness in dealing with multiple pro-
tected attributes simultaneously.

4 EVALUATION
In this section, we describe the evaluation design and propose our
research questions.

4.1 Benchmark Datasets
We consider five representative benchmark datasets with different
protected attributes (as shown in Table 1). The five datasets cover
financial, social, and medical application domains. They have been
the most widely-adopted datasets in the fairness research [26, 28,
29, 47, 58, 78] and integrated in the IBM AIF360 toolkit [22]. The
number of datasets that we use aligns with the fairness literature,
as previous work [47] points out that 90% of the fairness research
uses no more than three datasets. Next, we introduce each dataset
briefly.

• Adult [6, 39] dataset is used to predict whether individuals have
annual income over $50K based on their demographic and finan-
cial information.

• Compas [4] dataset is used to predict whether defendants will
be re-offended within two years based on their demographic
information and criminal histories.

• German [1, 39] dataset is used to predict credit risk levels of
people based on their demographic and credit information.

• Bank [2, 39] dataset is used to predict whether clients will sub-
scribe a term deposit based on their demographic, financial, and
social information.

• Mep [3] dataset is used to predict health care needs of individuals
based on how Americans pay for medical care, health insurance,
and out-of-pocket spending.

We covert the five datasets to nine benchmark tasks. First, we
consider one protected attribute at a time, thus having seven uni-
attribute tasks (e.g., Adult-Sex and Adult-Race). Second, we consider
more than one protected attribute at the same time, thus having
two multi-attribute tasks (i.e., Adult and Compas).
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Table 1: Benchmark datasets.

Name Protected attribute(s) #Features Favorable label Majority label Size
Adult Sex, Race 14 1 (income > 50K) 0 (75.2%) 45,222
Compas Sex, Race 10 0 (no recidivism) 0 (54.5%) 6,167
German Sex 20 1 (good credit) 1 (70.0%) 1,000
Bank Age 20 1 (subscriber) 0 (87.3%) 30,488
Mep Race 41 1 (utilizer) 0 (82.8%) 15,830

4.2 Existing Methods
We use five existing bias mitigation methods for comparison. On the
one hand, we consider three state-of-the-art methods proposed in
the ML community: Reweighing (REW) [49], Adversarial Debiasing
(ADV) [77], and Reject Option Classification (ROC) [51]. They have
been integrated into the IBMAIF360 toolkit [22] andwidely adopted
in previous SE studies [25, 29, 47]. On the other hand, we employ
two state-of-the-art methods recently proposed in SE venues: Fair-
way [29] at ESEC/FSE 2020 and Fair-SMOTE [28] at ESEC/FSE
2021. The five methods cover pre-processing, in-processing, post-
processing, and ensemble bias mitigation methods. Next, we intro-
duce each method briefly.
• REW [49] is a pre-processing method that calculates weights for
training samples in each (group, label) combination.

• ADV [77] is an in-processing method that uses adversarial tech-
niques to reduce evidence of the protected attribute in predictions
while simultaneously maximizing ML performance.

• ROC [51] is a post-processing method that targets predictions
with high uncertainty and tends to assign favorable outcomes to
the unprivileged and unfavorable outcomes to the privileged.

• Fairway [29] combines pre- and in-processing techniques. First,
it removes ambiguous data points from training data via situa-
tion testing. Second, it employs multi-objective optimization to
improve fairness while maximizing ML performance.

• Fair-SMOTE [28] combines two pre-processing strategies. First,
it generates new data points to make the numbers of training
data in different subgroups equal. Second, it removes ambiguous
data points from training data like Fairway.

4.3 Metrics and Measurements
We evaluate MAAT and existing methods in terms of 15 fairness-
performance measurements, i.e., combinations of three fairness
metrics and five ML performance metrics. In this section, we first
introduce the fairness and ML performance metrics, and then de-
scribe how to measure the fairness-performance trade-off.

4.3.1 Fairness metrics. To measure software bias, we use group
fairness metrics that are widely adopted in the literature [25, 26, 28,
29, 47, 78]. Let 𝐴 be a protected attribute, with 1 as the privileged
group and 0 the unprivileged group; let 𝑌 be the original class label
and 𝑌 the predicted label, with 1 as the favorable class and 0 the
unfavorable class; let 𝑃 denote the probability.
• SPD (Statistical Parity Difference) measures the difference in
probabilities of favorable outcomes obtained by privileged and
unprivileged groups:

𝑆𝑃𝐷 = 𝑃 [𝑌 = 1|𝐴 = 0] − 𝑃 [𝑌 = 1|𝐴 = 1] . (2)

• AOD (Average Odds Difference) measures the average of the
false-positive rate difference and the true-positive rate difference
between privileged and unprivileged groups:

𝐴𝑂𝐷 =
1
2
( |𝑃 [𝑌 = 1|𝐴 = 0, 𝑌 = 0] − 𝑃 [𝑌 = 1|𝐴 = 1, 𝑌 = 0] |

+ |𝑃 [𝑌 = 1|𝐴 = 0, 𝑌 = 1] − 𝑃 [𝑌 = 1|𝐴 = 1, 𝑌 = 1] |).
(3)

• EOD (Equal Opportunity Difference) measures the true-positive
rate difference between privileged and unprivileged groups:

𝐸𝑂𝐷 = 𝑃 [𝑌 = 1|𝐴 = 0, 𝑌 = 1] − 𝑃 [𝑌 = 1|𝐴 = 1, 𝑌 = 1] . (4)

There is another widely-adopted metric called Disparate Im-
pact (DI). Like SPD, DI compares the probabilities of favorable out-
comes in privileged and unprivileged groups. Specifically, DI com-
putes the ratio of the two probabilities, while SPD computes their
difference. Between SPD and DI, we follow previous work [26, 47]
to use only SPD.

For all the fairness metrics, we use their absolute values. In this
way, these metrics suggest the greatest fairness when they equal to
0, and larger values indicate more bias.

4.3.2 Performance metrics. To measure ML performance, we use
traditional classification metrics, including precision, recall, F1-
score, as well as accuracy.

For a given class, precision is the proportion of samples predicted
as this class that actually belong to it; recall is the proportion of
samples belonging to this class that are predicted as it; F1-score
is the harmonic mean of precision and recall. Following previous
work in SE [32, 60, 61], we report the macro-average values for
precision, recall, and F1-score to enable quick comparison of the
overall performance over favorable and unfavorable classes. Specifi-
cally, we first calculate precision, recall, and F1-score for each class,
and then average the results of the two classes.

Accuracy is the most widely-adopted metric in the fairness liter-
ature [25, 26, 28, 47, 49, 78], which measures how often a method
makes the correct prediction. However, it is often criticized as not
being suitable for the imbalanced class distribution, because it is
easy for an ML model to obtain a high accuracy just by predicting
all samples as the majority class in such a distribution. Consider-
ing that some benchmark datasets (e.g., the Bank dataset) have an
imbalanced class distribution, we use another metric calledMCC
(Matthews Correlation Coefficient), to mitigate the threat of accu-
racy. MCC has been demonstrated to be suitable for dealing with im-
balanced scenarios [35] and widely adopted in SE research [64, 75].
It is calculated as:
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𝑀𝐶𝐶 =
𝑇𝑃 ×𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︁

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁 ) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁 )
, (5)

where TP, TN, FP, and FN denote the numbers of true positives,
true negatives, false positives, and false negatives, respectively.

For all the five metrics, larger values indicate better ML perfor-
mance. The value of MCC is between -1 and 1, where 1 indicates a
perfect prediction, 0 no better than random prediction, and -1 total
disagreement with observation; the values of other four metrics are
between 0 and 1. By default, we use performance to refer to all the
five metrics, and report the overall results for them.

4.3.3 Fairness-performance trade-off measurements. To compare
the fairness-performance trade-off of bias mitigation methods, we
adopt Fairea [47], a benchmarking tool proposed at ESEC/FSE 2021,
which can classify the trade-off effectiveness of these methods into
different levels. Specifically, it works as follows:

(1) Creation of trade-off baseline: Fairea constructs a trade-off
baseline using the performance and bias (measured by the afore-
mentioned metrics) of the original model and a series of pseudo
models generated by randomly mutating model predictions (by
replacing them with the majority class of data). Fairea considers
different mutation degrees (i.e., the fraction of chosen predictions;
10%, 20%, ..., 100%) to obtain a series of pseudo models. The core
insight of Fairea is that when it mutates the original model into a
random guessing model gradually, the fairness will be improved
as the predictive performance is equally worse in privileged and
unprivileged groups. As any reasonable bias mitigation methods
are expected to surpass these naive mutated models, Fairea uses
them as the trade-off baseline.

(2) Division of effectiveness levels: The baseline classifies bias
mitigation methods into five levels of trade-off effectiveness. A bias
mitigation method falls in win-win trade-off if it improves both ML
performance and fairness compared to the original model. On the
contrary, if a method reduces both, it belongs to lose-lose trade-off.
If a method improves ML performance but reduces fairness, it falls
in inverted trade-off. There are another two levels of trade-off where
methods reduce ML performance but improve fairness. Specifically,
if a method achieves a better trade-off than the baseline, it belongs
to good trade-off ; otherwise, it falls in poor trade-off.

In the original paper [47], Fairea is applied to only SPD-accuracy
and AOD-accuracy measurements. In this work, we extend our eval-
uation to 15 fairness-performance measurements, i.e., combinations
of three fairness metrics and five ML performance metrics.

4.4 Experimental Settings
We describe the experimental settings in details to ensure the re-
producibility of this work.

Implementation of datasets. As the five benchmark datasets have
been integrated in the IBMAIF360, we use them by directly invoking
off-the-shelf APIs provided by this toolkit. In addition, we follow
previous work [28, 29, 47] to normalize all the feature values to be
between 0 and 1.

Implementation of bias mitigation. For each benchmark task, we
train the original models using three ML algorithms that are widely
adopted in the fairness literature: Logistic Regression (LR) [25, 28,

29, 47, 78], Support Vector Machine (SVM) [25, 28, 47], and Random
Forest (RF) [25, 28, 78]. Following previous work [28, 47, 78], we use
the default configuration provided by the scikit-learn library [16]
to implement each ML algorithm. We apply MAAT and existing
bias mitigation methods to the original models, respectively. We
apply REW, ADV, and ROC based on the IBM AIF360 [14]; we
apply Fairway and Fair-SMOTE based on the code released by their
authors [10, 12]. The experiments are repeated 50 times. Each time,
we shuffle the dataset and randomly split it into 70% training data
and 30% test data.

Implementation of Fairea. We adopt Fairea using the code re-
leased by its authors [13]. We create the trade-off baseline for each
(benchmark task, ML algorithm, fairness-performance measurement)
combination. Specifically, we train the original model 50 times;
each time, based on the original model, we repeat the mutation
procedure 50 times for each mutation degree. Finally, we construct
the baseline using the mean result of the multiple runs, as suggested
by Fairea [47].

Experimental environment. The experiments are implemented
with Python 3.7.11 and TensorFlow 2.6.0, and executed on a Ubuntu
16.04 LTS with 128GB RAM, 2.3 GHz Intel Xeon E5-2653 v3 Dual
CPU and two NVidia Tesla M40 GPUs.

4.5 Research Questions
We evaluate MAAT via answering the following research questions.

• RQ1 (Trade-off effectiveness):What fairness-performance trade-
off does MAAT achieve? This RQ compares MAAT with existing
bias mitigation methods by analyzing which trade-off effective-
ness levels they belong to overall according to the benchmarking
tool Fairea [47].

• RQ2 (Applicability): How well does MAAT apply to different
ML algorithms, decision tasks, and fairness-performance measure-
ments? In addition to the overall effectiveness, we further analyze
the effectiveness of MAAT on different ML algorithms, decision
tasks, and measurements to evaluate its applicability.

• RQ3 (Influence of fairness and performance models): How
do different fairness models and performance models affect MAAT?
RQ1 and RQ2 evaluate MAAT with the default fairness model
and performance model. In this RQ, we adopt different fairness
models and performance models to investigate the impacts of
the two key components on MAAT.

• RQ4 (Influence of combination strategies): How do different
combination strategies affect MAAT? We use averaging, a common
ensemble strategy, as the default combination strategy of MAAT.
In this RQ, we investigate other combination strategies to provide
implications for further improvement of MAAT.

• RQ5 (Multiple protected attributes): Is MAAT effective when
dealing with multiple protected attributes at the same time? In
RQs1∼4, we consider one protected attribute at a time for ease
of comparison with previous work [25, 26, 29, 47, 78], because
little previous work supports multiple attributes [28]. However,
real-world software systems may need to consider multiple pro-
tected attributes at the same time. This RQ investigates whether
MAAT provides an effective solution to such common but often
overlooked application scenarios (i.e., multi-attribute tasks).
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Figure 2: (RQ1) Effectiveness level distributions ofMAAT and
existing methods in uni-attribute benchmark tasks. Overall,
MAAT achieves the best trade-off, with 92.2% of the mitiga-
tion cases falling in good or win-win trade-off.

5 RESULTS
In this section, we answer our RQs based on experimental results.

5.1 RQ1: Trade-off Effectiveness
This RQ evaluates the effectiveness of MAAT and existing meth-
ods in seven uni-attribute benchmark tasks. In each task, each
method is applied with three ML algorithms 50 times. We treat each
single run as an individual mitigation case. As a result, we have
6×7×3×50=6,300 cases in total. We answer RQ1 based on them.

First, we compare MAAT and existing methods in terms of the ef-
fectiveness levels classified by Fairea. Figure 2 shows the results. We
observe that MAAT achieves good or win-win trade-off (i.e., beat-
ing the trade-off baseline constructed by Fairea) in the most cases,
accounting for 92.2%. In contrast, the corresponding proportions of
REW, ADV, ROC, Fairway, and Fair-SMOTE are 80.0%, 33.3%, 66.7%,
69.8%, and 33.3%, respectively. Moreover, MAAT achieves poor or
lose-lose trade-off in much fewer cases (only 5.4%) than existing
methods. For example, Fair-SMOTE suffers from poor or lose-lose
trade-off in 40.6% of the cases, about seven times more than MAAT.

Then, we dive deeper to investigate the reason behind the ef-
fectiveness of MAAT, by analyzing its impact on fairness and ML
performance, respectively. To this end, for each (task, ML algorithm,
fairness/performance metric) combination scenario, we compare
the metric values of the 50 original models and the 50 models af-
ter applying MAAT. We use the non-parametric Mann Whitney
U-test [57] (which suits our purpose well as it does not assume
normality) to test whether the fairness/performance is significantly
improved/decreased. The fairness/performance change is consid-
ered statistically significant, only if the 𝑝-value of the computed
statistic is lower than 0.05. We also compare the original models
with the models applied existing bias mitigation methods. For each

Table 2: (RQ1) Proportions of scenarios where each method
significantly improves fairness and decreases performance.
MAAT significantly improves fairness in 96.8% of the scenar-
ios, without decreasing ML performance too much.

REW ADV ROC Fairway Fair-SMOTE MAAT
Fairness ↑ 87.3% 33.3% 66.7% 69.8% 33.3% 96.8%

Performance ↓ 42.9% 51.4% 76.2% 61.9% 48.6% 44.8%

method, we calculate the proportions of scenarios where it signifi-
cantly improves fairness and decreases performance, respectively.

Table 2 presents the results. We observe that MAAT significantly
improves fairness in 96.8% of the scenarios, while existing methods
are in between 33.3% and 87.3%. Moreover, MAAT significantly de-
creases ML performance in 44.8% of the scenarios, only 1.9% more
than the current best alternative (42.9%). In summary, the effective-
ness of MAAT in fairness-performance trade-off is because that
compared to existing methods, MAAT significantly improves fair-
ness in much more scenarios without decreasing ML performance
too much.

Ans. to RQ1: MAAT surpasses the trade-off baseline in 92.2%
of the overall cases evaluated, 12.2 percentage points more than
the best technique currently available. This is because MAAT
can significantly improve fairness in 96.8% of the scenarios,
without decreasing ML performance too much.

5.2 RQ2: Applicability
To evaluate the applicability of MAAT, we further compare MAAT
with existing methods on different ML algorithms, decision tasks,
and fairness-performance measurements. For ease of illustration,
we use the proportion of mitigation cases that surpass the trade-
off baseline constructed by Fairea (i.e., falling in good or win-win
trade-off) as the effectiveness indicator.

Figures 3(a), (b), and (c) show the results organized by different
ML algorithms, decision tasks, and measurements, respectively. We
observe that MAAT surpasses the trade-off baseline in a larger
proportion of cases than existing methods on all the ML algorithms,
tasks, and measurements that we consider.

In addition, compared to existing methods, MAAT shows wide
effectiveness. From Figure 3, we observe that existingmethods show
unstable effectiveness across different decision tasks. For example,
in the Compas-Sex task, REW and Fair-SMOTE beat the trade-off
baseline in 95.3% and 99.6% of the cases respectively, while in the
Adult-Sex task, the proportion obtained by the two methods is only
56.2% and 49.0%. In contrast, MAAT beats the trade-off baseline in
99.9% and 95.3% of the cases in Compas-Sex and Adult-Sex tasks,
with a difference of only 4.6%. MAAT also works well for small
datasets, although it employs a undersampling strategy. For the
smallest task that we consider (i.e., the German-Sex task), only
34 samples (a = 24, b = 10) out of the 1,000 samples are removed
by MAAT, because the data bias in the original training data is
relatively minor. Since MAAT mitigates bias while retaining the
majority of the data, it beats the trade-off baseline in 73.2% of the
cases in the German-Sex task, surpassing existing methods.
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Figure 3: (RQ2) Proportion of mitigation cases that beat the trade-off baseline, organized by different models (a), benchmark
tasks (b), and fairness-performance measurements (c). MAAT surpasses the trade-off baseline in a larger proportion of cases
than existing methods on all the ML algorithms, tasks, and measurements that we consider.

Ans. to RQ2: The superiority of MAAT over the state-of-the-
art holds on all the ML algorithms, decision tasks, and fairness-
performance measurements that we study.

5.3 RQ3: Influence of Fairness and Performance
Models

This RQ explores the impact of different fairness models and per-
formance models on the effectiveness of MAAT.

5.3.1 Fairness models. Existing bias mitigation methods (described
in Section 4.2) have been demonstrated to be able to improve fair-
ness [25, 28, 29]. In this section, we use them to obtain the fairness
model and compare with our training data debugging technique.
MAAT requires the fairness model to produce the probability vector,
but the IBM AIF360 toolkit does not provide this API for ADV and
ROC. Therefore, here, we employ REW, Fairway, and Fair-SMOTE
for experiments. As a result, we have three variant methods, de-
noted as M-REW, M-Faiway, and M-Fair-SMOTE, which differ from
MAAT only in the fairness model. We compare them with their
original versions and the default setting of MAAT. To ease the com-
parison, we use the proportion of cases that surpass the trade-off
baseline as the effectiveness indicator.

Table 3 presents the results. Compared to their original versions,
M-REW,M-Faiway, andM-Fair-SMOTE achieve 4.0%, 4.1%, and 2.2%
more cases beating the trade-off baseline respectively, indicating
the potential of MAAT in improving the trade-off effectiveness
of existing bias mitigation methods. Then we compare the three
variants with the default setting of MAAT.We find that our training
data debugging technique is more effective in fairness-performance
trade-off than existing methods under the framework of MAAT,
although it is simpler than them. It achieves 8.2%more cases beating
the trade-off baseline than the best variant (i.e., 92.2% vs. 84.0%). It
is not the first time in SE research to observe that simple techniques
produce better results [42, 63, 82]. It is important to stress that
the point is not to deprecate the existing advanced techniques.

Table 3: (RQ3) Proportions of cases beating the trade-off base-
line, achieved by existing bias mitigationmethods, their com-
binations with MAAT, and the default setting of MAAT. The
results show that the ensemble approach of MAAT can im-
prove the trade-off for each method, but the default setting
of MAAT still performs the best.

REW Fairway Fair-
SMOTE

M-
REW

M-
Fairway

M-Fair-
SMOTE MAAT

80.0% 61.7% 41.7% 84.0% 65.8% 44.0% 92.2%

We would like to demonstrate that, for MAAT, the training data
debugging technique proposed by us is more effective.

5.3.2 Performance models. To investigate the impact of the perfor-
mance model on MAAT, we use different ML algorithms to obtain
different performance models, while keeping the fairness model
unchangeable. Specifically, we take the fairness model trained us-
ing the LR algorithm as the example, and change the performance
model with the models trained using LR, SVM, RF, and two other
very popular ML algorithms, i.e., Naive Bayes (NB) and Decision
Tree (DT). Each variant ofMAAT is evaluated on seven uni-attribute
tasks 50 times. We calculate the average of ML performance of each
performance model and the trade-off effectiveness (indicated as
the proportion of cases beating the baseline) of the corresponding
variant of MAAT over the 50 runs.

Figure 4 shows the results. Due to space limit, we show only the
accuracy of these performance models in Figure 4(a).2 We observe
that the performance models trained using the NB and DT algo-
rithms exhibit poor ML performance compared to LR, RF, and SVM;
correspondingly, the variants of MAAT that use the two perfor-
mance models yield lower proportions (35.3% and 54.6%) of cases
surpassing the trade-off baseline than the others (96.1%, 96.6%, and
97.0%). It indicates that MAAT tends to have better effectiveness
with more accurate performance models.
2The figure for all the performance metrics can be found in our repository [18].
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Figure 4: (RQ3) Impact of the performance model on MAAT.
MAAT tends to have better effectiveness with more accurate
performance models.

Ans. to RQ3: Our training data debugging technique is more
effective than existing bias mitigation methods in improving
fairness-performance trade-off under the framework of MAAT.
In addition, MAAT tends to have better effectiveness with more
accurate performance models.

5.4 RQ4: Influence of Combination Strategies
This RQ investigates the impact of different combination strate-
gies on the effectiveness of MAAT. To this end, we employ 11
strategies, i.e., 0-1, 0.1-0.9, ..., 0.9-0.1, and 1-0, which combine the
output probability vectors of the performance model ([𝑝0𝑝 , 𝑝1𝑝 ])
and the fairness model ([𝑝0𝑓 , 𝑝1𝑓 ]) in different proportions. For
example, the 0.1-0.9 strategy calculates the final probability vector
as 0.1 ∗ [𝑝0𝑝 , 𝑝1𝑝 ] + 0.9 ∗ [𝑝0𝑓 , 𝑝1𝑓 ]. We use the proportion of cases
surpassing the trade-off baseline as the effectiveness indicator.

Figure 5 presents the result for each strategy in each benchmark
task and over all tasks. From Figure 5(a), we observe that different
benchmark tasks have different optimal strategies. For example, for
the Adult-Sex task, 0.8-0.2 is the optimal strategy, with 99.7% of
mitigation cases beating the baseline; for the Adult-Race task, 0.6-
0.4 is the optimal, with 95.9% of cases beating the baseline. Overall,
the averaging strategy (i.e., 0.5-0.5) that we use as the default setting
shows the best effectiveness, as shown in Figure 5(b).

We then compare the 0.5-0.5 strategy (i.e., MAAT) with the 0-1
strategy (i.e., the fairness model). We find that the fairness model
itself improves fairness in 81.0% of the cases studied (96.8% for
MAAT) and decreases performance in 65.7% of the cases (44.8% for
MAAT). As a result, the fairness model is not as effective as MAAT,
beating the trade-off baseline in only 79.0% of the cases (92.2% for
MAAT). This finding supports the need for the ensemble approach.

The results provide the following implications for the adoption
of MAAT in real-world applications: (1) The ensemble strategy in
MAAT can be configured to balance the improvements between
fairness and performance via adjusting the combination strategy.
In fact, this is one advantage of our novel fairness-performance
ensemble approach. Indeed, in practice software engineers may
have different requirements regarding fairness and performance.

They could try different strategies, and compare the effectiveness
of these strategies on validation data to find the optimal one for
them. Although the simple linear combination that we use can
outperform existing methods, we still encourage future work to
try more advanced strategies to further improve MAAT. (2) For the
applications that do not have enough validation data for strategy
selection, the default averaging strategy is a safe option.

Ans. to RQ4: Different bias mitigation tasks have different
optimal combination strategies. Overall, the averaging strategy
that we adopt by default achieves the best effectiveness.

5.5 RQ5: Multiple Protected Attributes
The first four RQs explore bias mitigation with a single protected
attribute, which is the focus of the current fairness literature [25, 26,
29, 47, 78]. Nevertheless, bias mitigation with multiple protected
attributes is a demanding task. Therefore, this RQ explores the
effectiveness of MAAT with multiple protected attributes, and com-
pares it with Fair-SMOTE [28]. According to Chakraborty et al. [28],
Fair-SMOTE is the only approach that reduces bias for multiple
protected attributes at the same time.

We compare MAAT and Fair-SMOTE in twomulti-attribute tasks
(i.e., Adult and Compas). For MAAT, we train a fairness model for
each protected attribute, and then combine the fairness models with
the performance model; for Fair-SMOTE, we balance the training
data with respect to the class and each protected attribute by data
generation, as suggested by its authors [28]. In each task, each
method is implemented with LR, SVM, and RF 50 times. As a result,
we have 2×2×3×50=600 mitigation cases in total. We answer RQ5
based on these cases.

We compare MAAT and Fair-SMOTE in terms of the trade-off
effectiveness levels classified by Fairea. Figure 6 shows the results
for each protected attribute in each task. On the one hand, MAAT
achieves good or win-win trade-off (i.e., beating the trade-off base-
line constructed by Fairea) in a larger proportion of the studied
cases (MAAT: 96.5% vs. Fair-SMOTE: 50.2%). The gap between the
two methods is particularly obvious in some tasks. For example, in
the Adult task, MAAT beats the baseline for race in 93.9% of the
cases, while Fair-SMOTE achieves it in only 1.7%. On the other hand,
MAAT achieves poor or lose-lose trade-off in fewer cases. Specifi-
cally, the proportion of cases falling in poor or lose-lose trade-off
achieved by MAAT ranges from 0.4% to 4.4%, while Fair-SMOTE is
from 7.7% to 69.6%.

Ans. to RQ5:When there is more than one protected attribute,
MAAT still outperforms the state-of-the-art. Specifically, it
beats the trade-off baseline in 96.5% of the studied cases, 45.2
percentage points more than the state-of-the-art.

6 DISCUSSION
In this section, we discuss the advantages of MAAT and the threats
to the validity of our results.
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(b) Overall proportions of cases beating the baseline,
for different combination strategies

(a) Proportions of cases beating the baseline, for different
combination strategies on each benchmark task

Figure 5: (RQ4) Impact of combination strategies on MAAT. Although different benchmark tasks have different optimal
strategies, the averaging strategy (i.e., 0.5-0.5 in the figure) achieves the best effectiveness overall.
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Figure 6: (RQ5) Effectiveness level distributions of MAAT
and Fair-SMOTE in multi-attribute tasks. On average, MAAT
achieves good or win-win trade-off in a much larger pro-
portion of the mitigation cases than Fair-SMOTE (96.5% vs.
50.2%).

6.1 Why MAAT?
Uncompromising. MAAT improves fairness significantly in 96.8%
of the scenarios studied, while not compromising ML performance
much. In other words, it is more effective in fairness-performance
trade-off than existing methods. The conclusion is supported by
an extensive evaluation on 15 fairness-performance measurements
and 9 decision tasks, which increases our confidence on the claim.
Widely applicable.MAAT can be easily adopted for differentML al-
gorithms, because it just debugs the training data to find and remove
bias, and does not rely on the internal logic of ML algorithms. In
contrast, there have been many techniques that tackle the fairness-
performance trade-off problem using optimization techniques dur-
ing the training process [52, 77]. These techniques need to design

different optimization strategies to align with the internal logic of
different ML algorithms, and thus are algorithm-specific. In addi-
tion, in Section 5.2, we show the wide effectiveness of MAAT across
different ML algorithms, decision tasks, and fairness-performance
measurements.
Versatile. The core idea of MAAT is task-independent, although
we evaluate it only in common classification tasks like previous
work [25, 26, 28, 29, 47, 78]. MAAT combines the performance
model and the fairness model obtained based on our training data
debugging technique. This idea can be directly applied to regression
tasks and even deep learning tasks (e.g., face recognition and text
classification), to have a broad impact on a variety of real-world
software systems.
Fast.MAAT is much faster, compared to the state-of-the-art ensem-
ble bias mitigation methods (i.e., Fairway and Fair-SMOTE). We use
the LR algorithm as the example. Table 4 shows the execution time
of the 50 runs of MAAT and the state-of-the-art methods with LR
for different benchmark tasks. On average, MAAT is 72 times faster
than Fairway and 195 times faster than Fair-SMOTE. It is reasonable
since Fairway needs much more time for multi-objective optimiza-
tion, while Fair-SMOTE spends a lot of time on data generation. In
contrast, MAAT is simple, fast, yet effective.

Overall, MAAT explores a new ensemble way to combine models
with different objectives (i.e., fairness and performance) to deal with
the trade-off between them, and an extensive evaluation demon-
strates the effectiveness of this new ensemble way. Our successful
practice of MAAT may also shed light on other trade-off prob-
lems in software development. For example, existing work [68]
demonstrated that the improvement of robustness, an important
non-functional property that has attracted enormous software test-
ing efforts [38, 44, 72], often leads to a reduction of ML performance,
thusmaking them conflicting software objectives. To achieve a good
trade-off between robustness and ML performance, researchers can
borrow the insight of MAAT to design robustness-performance
ensemble learning, which combines models that use robustness and
ML performance as respective optimization objectives.
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Table 4: Execution time (in seconds) of Fairway, Fair-SMOTE,
and MAAT, for the LR algorithm. MAAT needs much less
execution time than Fairway and Fair-SMOTE.

Task Fairway Fair-SMOTE MAAT
Adult-Sex 5,946 8,553 77
Adult-Race 6,169 16,337 79
Compas-Sex 1,428 2,139 20
Compas-Race 1,594 1,641 20
German-Sex 91 126 5
Bank-Age 3,192 20,413 47
Mep-Race 1,760 5,219 31

6.2 Threats to Validity
Selection of tasks. The choice of benchmark tasks may be a threat
to validity of our results. To mitigate this threat, we use nine bench-
mark tasks that have been widely adopted in the fairness literature
[26, 28, 29, 47, 58, 78] and integrated in the well-known AIF360
toolkit, covering financial, social, and medical application domains.
The use of widely-studied tasks guarantees a fair comparison with
the state-of-the-art.
Selection of existing methods. For a paper that proposes a new
bias mitigation approach, it is sufficient and common to demon-
strate an improvement over the state-of-the-art. To this end, we use
representative bias mitigation methods from the ML and SE com-
munities, covering pre-processing, in-processing, post-processing,
and ensemble methods. These methods have been demonstrated to
be state-of-the-art in addressing fairness bugs [25, 28, 29].
Selection of ML algorithms. Although MAAT can apply to both
classic ML algorithms and Deep Learning (DL) algorithms, we use
classic ML algorithms in the evaluation for four reasons: (1) The
most widely-adopted datasets for fairness research (listed in Table
1) are tabular data, while DL is more suitable for complex unstruc-
tured data, e.g., text and images [65]. (2) These widely-adopted
datasets are relatively small in size (e.g., German dataset has 1,000
samples), where DL may easily overfit due to its nature of complex-
ity. (3) Decision-making scenarios that demand fairness often also
require explainability, while low explainability is a big disadvantage
of DL. (4) State-of-the-art group fairness work [25, 26, 28, 29, 47, 78]
also uses classic ML algorithms. In the future, one could replicate
our work with more ML algorithms.
Selection of evaluation criteria. The measurements that we use
may also be a threat. To alleviate this threat, we use 15 fairness-
performance measurements, the most in the literature to date. In
the future, with more fairness metrics being proposed, one could
replicate this work with more evaluation criteria.
Implementation of existing methods. To mitigate the threat in
implementation of existing methods, we shared our code with the
authors of Fairway [29] and Fair-SMOTE [28]. Their first author
checked and confirmed the soundness of our source code.
Access to protected attributes. Studying group fairness requires
access to the protected attributes of interest, but in practice, this
information might be unavailable due to the recent released reg-
ulations such as GDPR (General Data Protection Regulation) [71].
GDPR requires users’ consent for collecting and using their per-
sonal information. However, over 90% of users consent to legal

terms and service conditions without reading them [59]. Moreover,
GDPR applies to only Europe. Consequently, protected attributes
are still prevalent in the training data that many companies collect.
In addition, simulation has been commonly used in companies [37]
to generate data, which may contain protected attributes. These can
explain why almost all the recent fairness papers [19, 20, 25, 26, 28–
30, 43, 47, 69, 78, 80] are still working on fairness issues based on
protected attributes.

7 CONCLUSION
This paper presents MAAT, a widely applicable, versatile, and fast
fairness-performance ensemble approach, which improves fairness-
performance trade-off for ML software. MAAT first trains individ-
ual models optimized for fairness and ML performance, and then
synthesizes their outcomes to make the final decision. An exten-
sive evaluation demonstrates that MAAT outperforms existing bias
mitigation methods from the ML and SE communities. Moreover,
the superiority of MAAT over the state-of-the-art holds on all the
software decision tasks, ML algorithms, and fairness-performance
measurements that we study. Furthermore, the successful practice
of MAAT opens up to further opportunities for software engineers
dealing with other conflicting objectives in software development.
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