
1702 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 5, MAY 2007

MAC Access Delay of IEEE 802.11 DCF
Taka Sakurai, Member, IEEE, and Hai L. Vu, Senior Member, IEEE

Abstract— The MAC access delay in a saturated IEEE 802.11
DCF wireless LAN is analyzed. We develop a unified analytical
model and obtain explicit expressions for the first two moments
as well as the generating function. We show via comparison with
simulation that our model accurately predicts the mean, standard
deviation, and distribution of the access delay for a wide range
of operating conditions. In addition, we show that the obtained
generating function is much more accurate than others that have
appeared in the literature.

Using our model, we prove that the binary exponential backoff
mechanism induces a heavy-tailed delay distribution for the case
of unlimited retransmissions. We show using numerical examples
that the distribution has a truncated power-law tail when a
retransmission limit exists. This finding suggests that DCF is
prone to long delays and not suited to carrying delay-sensitive
applications.

Index Terms— Medium access delay, IEEE 802.11, wireless
LAN, performance analysis, generating function, heavy tail.

I. INTRODUCTION

IN recent years, demand for wireless Internet connectivity
has led to a proliferation of wireless local area networks

(WLANs). Products based on the IEEE 802.11 family of stan-
dards have acquired the lion’s share of this burgeoning market.
As in the wider Internet, the majority of traffic carried on a
typical IEEE 802.11 WLAN today consists of non-realtime
applications such as web browsing and email. However, in
the near future, it is expected that a significant proportion of
the traffic on WLANs will consist of realtime applications
such as voice over IP. To understand the potential for IEEE
802.11 WLANs to support such delay-sensitive applications,
performance models for evaluating delay characteristics are
needed. This paper is a step in this direction. We study
the access delay of the MAC layer when there are multiple
wireless stations in ideal channel conditions, where each
station always has a packet available for transmission.

Formally, we define the access delay as the time interval
between the instant when the packet reaches the head of the
transmission queue and begins contending for the channel,
and the time when the packet is successfully received at the
destination station. The IEEE 802.11 MAC layer employs a
channel access mechanism called the distributed coordination
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function (DCF). DCF is a backoff protocol, so the access delay
is a stochastic quantity.

The analysis of a buffered backoff protocol system amounts
to the analysis of a system of coupled queues [1]. Exact
delay analysis of such systems has so far proved elusive, so
approximation techniques are typically used. The approximate
analysis of the access delay (or the closely related inter-
departure time) in IEEE 802.11 WLANs has been the subject
of several papers. While most studies consider only the mean
delay, Carvalho and Garcia-Luna-Aceves [2] find approximate
formulae for both the mean and variance of the inter-departure
time by working with distributions. However, their model
assumes features inconsistent with DCF, such as infinite
retransmissions; moreover, simulation results presented in the
same paper reveal that the formulae lack accuracy. In a
recent paper, Zhai, Kwon and Fang [3] derive the generating
function of the probability mass function of the inter-departure
time. The generating function is derived from an approximate
Markov chain model of the DCF introduced in the seminal
paper by Bianchi [4]. Tickoo and Sikdar [5] derive a different
expression for the generating function of the inter-departure
time using probabilistic arguments.

In this paper, we build a detailed stochastic model of
DCF to obtain an approximate yet accurate expression for
the access delay random variable. The expression enables a
unified analysis of the moments and the generating function.
We derive explicit formulae for the mean, standard deviation,
and generating function. In principle, it should be possible
to obtain all moments of the access delay by repeated differ-
entiation of the generating function followed by appropriate
limit taking, which is the approach suggested in [5] and [3].
However, the generating function in question is complicated,
making this approach extremely tedious, so the explicit mo-
ment expressions we obtain have utility. We demonstrate that
numerical transform inversion [6] can be used to obtain values
of the distribution from the generating function. With the aid
of the ns-2 simulator [7], we show that our analytical for-
mulae for the mean and standard deviation are very accurate.
Significantly, we also find that the distribution values obtained
by numerical inversion are in excellent agreement with the
simulation results. Our generating function differs from that
in [5] and [3], and we show that numerical inversion of these
other generating functions leads to inaccurate distributional
values.

Another major contribution of this paper is an asymptotic
analysis of the model for the theoretical setting of unlimited
retransmissions. We prove that the distribution of the access
delay is heavy-tailed and that, as the number of active stations
increases, the number of bounded moments decreases. The
analysis shows that the asymptote of the mean access delay
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is linear in the number of active stations. Through numeri-
cal examples, we show that the heavy-tailed characteristics
in the theoretical system manifest as truncated heavy-tailed
characteristics in systems with limited retransmissions i.e.
DCF. The access delay distributions exhibit truncated power-
law tails, the mean delay curves are initially close to linear,
and the standard deviation curves grow rapidly with both the
number of stations and the retransmission limit. These findings
suggest that DCF is poorly suited to carrying delay-sensitive
applications.

The rest of this paper is organized as follows. In Section II,
we briefly describe the IEEE 802.11 Medium Access Control
(MAC) protocol. In Section III, we present our analysis of
the access delay. We first review a fixed point approximation
for the packet collision probability which was introduced by
Bianchi [4]. Then, we develop a probabilistic expression for
the access delay that we exploit to obtain the mean, standard
deviation and generating function. In Section IV, we present
an asymptotic analysis of our model and in Section V, we
compare our analytical results with simulation and explore the
implications of our asymptotic analysis. Finally, Section VI
contains concluding remarks.

II. THE 802.11 MAC PROTOCOL

The IEEE 802.11 standard [8] specifies a multiple access
mechanism called the distributed coordination function (DCF),
in which nodes contend for the channel using a carrier
sense multiple access mechanism with collision avoidance
(CSMA/CA). To reduce the incidence of collisions, DCF
employs both sensing of the channel to detect channel activity
and truncated binary exponential backoff (BEB) to randomize
the start times of packet transmissions.

After every successful data packet transmission, a station
initiates a post-transmission random backoff. If the next packet
was already enqueued when the previous packet was sent,
its defer time will span the entire backoff period, whereas
a packet that arrives at the MAC layer after the previous
packet was sent would experience only part of the backoff
period, or none at all if the backoff period has already elapsed.
We limit attention to the scenario when stations always have
packets backlogged — the so-called ‘saturated’ case — so
every packet defers for the entire post-transmission backoff
period associated with the previous packet.

Prior to a backoff interval, the channel must be sensed idle
for a guard period known as the distributed interframe space,
DIFS. Backoff intervals are slotted, and stations are only
permitted to commence transmissions at the beginning of slots.
When backoff is initiated, a random backoff time is selected,
representing the number of idle slots that must pass before the
next packet can be transmitted. The discrete backoff time is
uniformly distributed in the range [0, CW − 1], where CW
is the contention window. At the first transmission attempt,
CW is set equal to W , the minimum contention window. The
backoff time counter is decremented by one at the end of each
idle slot. It is frozen when a packet transmission is detected
on the channel, and reactivated after the channel is sensed
idle again for a guard period. The guard period is equal to a
DIFS if the transmitted packet was error-free, and equal to the

extended interframe space, EIFS, if the packet was in error.
The station transmits when the backoff time counter reaches
zero. A collision occurs when the counters of two or more
stations reach zero in the same slot.

We digress briefly to touch upon a little-known subtlety
of DCF behaviour. The backoff operation described above
induces a significantly lower level of contention in the slot
immediately following a DIFS compared to other slots [9],
since the only stations that attempt in this slot are those that
transmitted in the preceding busy period and selected a new
backoff time of zero. This phenomenon, which we dub the
reduced contention effect, presents a complication for accurate
analysis of the collision probability, and will be discussed
further in Sections III and V.

Following a successful packet transmission, the receiving
MAC layer sends an ACK after a short interframe space, SIFS,
where a SIFS is shorter than a DIFS. This ordering relationship
ensures that ACK packets are sent without contention. If
the packet transmission is unsuccessful (an event indicated
by an ACK timeout at the sending station), the congestion
window evolves according to truncated BEB. The congestion
window size is multiplied by 2, and another backoff period
is initiated. Window doubling continues until the maximum
possible value, CWmax = 2mW , is reached. If the packet
is unsuccessful after m attempts, the window is maintained
at CWmax for the remaining attempts until the packet is
successful, or until the maximum number of attempts, K , is
reached. If the packet is still unsuccessful after K attempts,
the packet is discarded and the MAC protocol reports back to
the layer above. In this paper, we are only interested in the
delay of packets that are successful at the MAC layer.

The two-way handshaking scheme described above, where
the sender transmits a MAC data packet and the receiver
responds with a MAC ACK, is known as the basic access
mechanism of DCF. Another access mechanism defined for
DCF is a four-way handshaking scheme called RTS/CTS.
While we restrict our attention to the basic access mechanism
setting, our model can be readily extended to the RTS/CTS
mechanism.

III. ANALYSIS OF ACCESS DELAY

In our study, we consider a population of n stations, each
operating in saturation, and assume ideal channel conditions
(no channel errors, hidden terminals or capture). While DCF
employs truncated BEB, we develop our analysis for the more
general framework of truncated exponential backoff (EB) with
backoff multiplier λ ≥ 1.

A. Collision Probability

An important ingredient for our delay analysis is the colli-
sion probability p seen by a packet transmitted on the channel.
A fixed point formulation for p was introduced by Bianchi [4],
who proposed the relationship

p = 1 − (1 − τ)n−1, (1)

where τ is the attempt probability and is a function of p.
Bianchi used a two-dimensional Markov chain analysis to
obtain an expression for τ for the case of no retransmission
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limit. Later, the retransmission limit was addressed in [10].
Instead of a two-dimensional Markov chain analysis, Kwak,
Song and Miller [11] used a simpler analysis based on a
one-dimensional Markov chain. Finally, Kumar et al. [12]
recently developed an expression for τ using a renewal theory
approach.

In our work, we adopt the approach proposed in [11], for
which we provide a brief summary here. The idea is to obtain
a mean-value analysis of the evolution of a node’s backoff
process over the K backoff periods. According to the protocol
description in Section II, the backoff period durations U (i),
i = 0, . . . , K−1, are discrete uniform random variables given
by

U (i) =
{ U(0, λiW − 1), i = 0, . . . , m − 1,

U(0, λmW − 1), i = m, . . . , K − 1,
(2)

where U is the uniform distribution. From (2), it can be shown
that the average backoff durations are

E[U (i)] =

{
(λiW − 1)/2 for i = 0, . . . , m − 1,
(λmW − 1)/2 for i = m, . . . , K − 1.

(3)

Let πi denote the relative frequency that a node enters the
ith backoff period in steady state. In [11], it is shown that
πi = (1−p)pi(1−pK)−1 and that the reciprocal of the attempt
probability is

τ−1 =
K∑

i=0

πi E[U (i)]

=
(1 − p)W (1 − (λp)m)

2(1 − pK)(1 − λp)
+

λmW (pm − pK)
2(1 − pK)

− 1
2
.

(4)

Equation (4) has the intuitive interpretation that the reciprocal
of the attempt probability is equal to the mean backoff time.
It can be shown that the approach of [12] also leads to (4).
Equations (1) and (4) establish a fixed point formulation from
which p can be computed using a numerical technique.

The starting assumption of our analysis, and all analyses
for p cited above, is that p is the same for every slot, which
clearly ignores the reduced contention effect. We investigate
this effect in Section V through a numerical example. We will
find, however, that this does not have a significant impact on
the accuracy of our delay analysis.

B. Expression for the Access Delay

We consider a selected (tagged) station and derive an
expression for the access delay as seen by packets of this
station under saturation. From the protocol description in
Section II, we can identify several events that contribute
to the access delay. The most obvious is the successful
transmission of the packet. Preceding this event will be the
initial (post-transmission) backoff plus a variable number of
collisions involving the tagged station and subsequent backoff
periods. Successful transmissions and collisions not involving
the tagged station also contribute to the access delay, since
they manifest as interrupts to the backoff counter. The access
delay of a packet can be large if there are many collisions

and interrupts to the backoff timer. However, it is important
to recognize that the access delay is always bounded since the
number of retransmissions is limited.

Let D be the random variable (r.v.) representing the access
delay. We write

D = A + T, (5)

where T is a r.v. representing the channel occupancy of a
transmitted packet. The r.v. A represents the sum of durations
of collisions and backoffs involving the tagged station, and
the durations of successful transmissions and collisions by
non-tagged stations. Since the number of backoff periods
depends on the number of retransmissions, the value of
A strongly depends on the number of retransmissions. We
therefore deduce that the distribution of A can be represented
as a simple mixture of distributions, where each component
distribution represents a conditional distribution conditioned
on a certain number of retransmissions taking place, and the
mixing probabilities are the respective probabilities of the
number of retransmissions. The number of retransmissions
before success obeys a truncated geometric distribution, so
that the probability of i retransmissions is ηpi, where η =
(1 − p)(1 − pK)−1. We therefore have that

A = A(i) w.p. ηpi, 0 ≤ i ≤ K − 1, (6)

where ‘w.p.’ means ‘with probability’. The generic component
r.v. A(i) is comprised of i collisions, i + 1 backoff intervals,
and their associated interruptions. We write

A(i) =
i∑

j=0

B
(j)
i +

i∑
j=1

Cij , (7)

where it is understood that if i = 0, the value of the
second sum is zero. The r.v.’s Cij account for the channel
occupancies of collisions involving the tagged user, while the
B

(j)
i represent the backoff intervals and their interruptions.

Clearly, the r.v.’s Cij , i = 1, . . . , K − 1 and j = 1, . . . , i, are
i.i.d.. The r.v.’s B

(j)
i , i = 0, . . . , K − 1 and j = 0, . . . , i, are

independent and, for fixed j, are i.i.d. in i.
The scope of B(j) (for simplicity, we drop the index i

from the notation) is defined by a backoff interval that takes a
discrete uniform distribution. Each slot of the backoff interval
can, with certain probabilities, be interrupted at the start of the
slot by a successful transmission by a station other than the
tagged one, or by a collision not involving the tagged station.
After an interruption, the backoff slot that was interrupted is
assumed to pass without further incident. In other words, we
ignore the possibility of the same slot being interrupted more
than once. Our justification for making this simplification is
that, due to the reduced contention effect, the probability of
multiple interruptions is small.

The preceding arguments imply that B(j) can be represented
as a random sum:

B(j) =
U(j)∑
k=1

(tslot + Yk), (8)

where tslot is the duration of a slot, Yk are i.i.d. and represent
interruptions, and U (j) are defined in (2).
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It remains to decompose Yk into its constituent parts. In the
following, we denote a generic Yk by Y . The random variable
Y is equal to zero if none of the non-tagged stations transmit
in the slot. If there is only one transmission, Y is equal to
the channel occupancy of a successful transmission as seen
from the point of view of the tagged station, and if there is
more than one transmission, Y equals the channel occupancy
of a collision as seen from the point of view of the tagged
station. It can be shown that the probability of at least one
transmission by the n − 1 non-tagged stations is the same as
the collision probability p, and the probability q of only one
transmission is

q = (n − 1)τ(1 − τ)n−2. (9)

We can now write Y as

Y =

⎧⎪⎨⎪⎩
0 w.p. 1 − p,

T ∗ w.p. q,

C∗ w.p. p − q,

(10)

where T ∗ is a r.v. representing the channel occupancy of
a successful transmission of a station other than the tagged
station, and C∗ is a r.v. representing the channel occupancy
of a collision not involving the tagged station.

In our analysis, we permit general distributions for the
occupancy r.v.’s T , T ∗, C and C∗, which is tantamount to
allowing general distributions for the data packet lengths.
However, for the numerical examples in Section V, we assume
constant length data packets for all stations for simplicity. Let
tdata denote the fixed transmission time of a data packet, and
tack be the transmission time of the ACK packet. Also denote
the duration of the DIFS and SIFS by tdifs and tsifs,
respectively. We have

T = tdata + tdifs, (11)

C = T ∗ = C∗ = tdata + tsifs + tack + tdifs, (12)

where C denotes a generic Cij .

C. Mean and standard deviation

We now derive the mean E[D] and standard deviation
StdDev[D] of the access delay from the analysis of the
previous section. From (5), we trivially obtain

E[D] = E[A] + E[T ], (13)

StdDev[D] = (Var[A] + Var[T ])1/2, (14)

where Var[.] denotes the variance.
From (6), we obtain

E[A] = η

K−1∑
i=0

pi E[A(i)],

Var[A] = η

K−1∑
i=0

pi(Var[A(i)] + (E[A(i)] − E[A])2).

The mean and variance of A(i), are derived from (7):

E[A(i)] =
i∑

j=0

E[B(j)] + i E[C],

Var[A(i)] =
i∑

j=0

Var[B(j)] + i Var[C].

Next, we derive the mean and variance of B(j). From (8),
it follows that

E[B(j)] = θ E[U (j)],

Var[B(j)] = E[U (j)] Var[Y ] + θ2 Var[U (j)],

where θ = tslot + E[Y ]. The mean E[U (j)] of the uniform
distribution is given by (3), and it can be shown from (2) that

Var[U (j)] =

{
(λ2jW 2 − 1)/12 for j = 0, . . . , m − 1,
(λ2mW 2 − 1)/12 for j = m, . . . , K − 1.

(15)
Next, from (10), we obtain

E[Y ] = q E[T ∗] + (p − q) E[C∗], (16)

Var[Y ] = q(Var[T ∗] + (E[T ∗] − E[Y ])2)

+ (p − q)(Var[C∗] + (E[C∗] − E[Y ])2). (17)

Putting everything together, we finally obtain

E[D] = η

K−1∑
i=0

pi

{
(tslot+E[Y ])

i∑
j=0

E[U (j)]+iE[C]
}

+E[T ],

(18)

Var[D] = η

K−1∑
i=0

pi

{ i∑
j=0

(
E[U (j)] Var[Y ] + θ2 Var[U (j)]

)

+ i Var[C] +
(

θ

i∑
j=0

E[U (j)] + iE[C] − E[A]
)2}

+ Var[T ],
(19)

where E[U (j)] ,Var[U (j)], E[Y ] and Var[Y ] are given by (3),
(15), (16) and (17), respectively.

For the case of constant length data packets, we obtain from
(11) and (12),

E[T ] = tdata + tdifs,

E[C] = E[T ∗] = E[C∗] = tdata + tsifs + tack + tdifs,

V ar[T ] = V ar[C] = V ar[T ∗] = V ar[C∗] = 0.

D. Generating function

We adopt the following notational convention for a gener-
ating function: if X is a non-negative, integer-valued random
variable, then we denote the generating function of the prob-
ability mass function (pmf) of X by

X̂(z) =
∞∑

k=0

P (X = k)zk, for z ∈ C .

All the random variables described in Section III-B were
non-negative and discrete, but not necessarily integer-valued.
However, they can be easily transformed to integer-valued
random variables by defining a lattice, with spacing δ say,
such that the values of all random variables fall on the lattice
points, and then scaling δ to one. In the following analysis,
we avoid an additional set of notation for the scaled random
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variables by reusing the random variable names in Section III-
B to refer to their integer-valued correspondents.

We commence our analysis by writing down an expression
for D̂(z) based on (5):

D̂(z) = Â(z)T̂ (z).

In the numerical examples presented in Section V, we focus on
the complementary cumulative distribution function (CCDF)
of the access delay rather than the pmf. The generating
function of the CCDF, D̂c(z), can be obtained from D̂(z)
via the identity

D̂c(z) =
1 − D̂(z)

1 − z
. (20)

The next task is to find an expression for Â(z). From (6),
it can be shown that

Â(z) = η

K−1∑
i=0

piÂ(i)(z),

and from (7), we obtain

Â(i)(z) = Ĉ(z)i
i∏

j=0

B̂(j)(z).

From (8), it follows that

B̂(j)(z) = Û (j)(zσŶ (z)),

where σ is an integer constant defined by σ = tslot/δ, with δ
being the lattice spacing. Equation (2) yields

Û (j)(z) =

{
1−zκ(j)

κ(j)(1−z) for j = 0, . . . , m − 1,
1−zκ(m)

κ(m)(1−z) for j = m, . . . , K − 1,
(21)

where κ(j) = λjW .
The remaining task is to derive an expression for Ŷ (z).

From (10), it follows that

Ŷ (z) = qT̂ ∗(z) + (p − q)Ĉ∗(z) + (1 − p). (22)

Thus, the generating function of the pmf of the access delay
is given by

D̂(z) = η T̂ (z)
K−1∑
i=0

piĈ(z)i
i∏

j=0

Û (j)(zσŶ (z)), (23)

where Û (j)(z) and Ŷ (z) are given by (21) and (22), respec-
tively.

For the case of constant length data packets, it follows from
(11) and (12) that

T̂ (z) = zα,

Ĉ(z) = T̂ ∗(z) = Ĉ∗(z) = zβ,

where α and β are integer constants defined by

α = (tdifs + tdata)/δ,

β = (tdata + tsifs + tack + tdifs)/δ.

Our analysis approach and obtained generating function
differ from that of Tickoo and Sikdar [5] and Zhai, Kwon
and Fang [3]. The generating function in [5] is found by first
deriving the probability mass function; the end result differs

significantly from (23) because they ignore a critical detail,
namely the dependence between the number of backoff slots
of a node and the delay due to transmissions and collisions
of competing stations. In a companion paper [13], we explain
the differences in detail, and show how the analysis in [5] can
be corrected to obtain (23). The generating function in [3] is
derived from the well-known Markov chain model of DCF [4]
using a transformation technique. Their solution is similar
in structure to (23), but omits the normalization term η and
displays a very different expression for the term corresponding
to Ŷ (z) in (22). The latter difference results because the
authors of [3] make no allowance for the reduced contention
effect. Instead, they assume there can be multiple interruptions
to each backoff slot and that all non-tagged stations can source
such interruptions. In Section V, we compare the accuracy of
(23) with that of the solutions in [5] and [3].

IV. ASYMPTOTIC ANALYSIS

In this section, we investigate the asymptotic behaviour
predicted by our delay model. First, we consider the rate of
growth of the mean access delay when the number of nodes
n → ∞. To obtain meaningful results under this regime, it
must also be assumed that m = ∞ and K = ∞. The reason
for this can be deduced from (4) and (1). For finite m or
K , the attempt probability τ is always bounded away from
zero, which means that p → 1 as n → ∞. The result is
that no packets will be successful and the access delay will
be undefined. Conversely, it has been shown in [11] and [12]
that when m = ∞ and K = ∞,

lim
n→∞ τ = 0, (24)

lim
n→∞nτ ↑ ln(

λ

λ − 1
), (25)

lim
n→∞ p ↑ 1/λ. (26)

The following lemma states that E[D] ∼ O(n).
Lemma 1: For m = ∞ and K = ∞,

lim
n→∞E[D] = n

(
(λtslot + E[C∗])
ln( λ

λ−1 )(λ − 1)
+E[T ∗]−E[C∗]

)
. (27)

Proof: It can be shown from (18) that when m = ∞
and K = ∞,

E[D] =
(tslot + pE[C∗])

τ(1 − p)
+

(n − 1)(E[T ∗] − E[C∗])
1 − τ

+
pE[C]
(1 − p)

+ E[T ].

Taking the limit and applying (24)-(26) leads to the result.
We see that the asymptotic mean delay depends on the backoff
multiplier λ and the durations of collisions and transmissions
but is independent of the initial window size W . Kwak et
al. [11] previously obtained the O(n) result for the asymptotic
mean access delay, but they performed a simplified analysis
of the delay which took only the backoff slots into account
and ignored other contributions to the delay.

The above result naturally raises the following questions.
How do higher order moments behave as n (and consequently
p) is varied? What is the tail behaviour of the delay distrib-
ution? The next theorem sheds some light on both of these
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questions. The theorem refers to the notion of a heavy-tailed
distribution; we understand that a distribution F is heavy-
tailed if its moment generating function diverges, namely∫ ∞
0

eεxdF (x) = ∞ ∀ ε > 0 [14].
Theorem 1: For m = ∞ and K = ∞,

i) the kth moment of the access delay D is finite for
0 � p < 1

λk , and infinite elsewhere,
ii) the access delay D has a heavy-tailed distribution.

Proof: From (13), we have E[Dk] = E[(A + T )k]. For
realistic traffic the r.v. T is bounded, implying that all its
moments exist. In contrast, we will find that not all moments of
A exist. We focus on the component of E[Dk] which preserves
the highest order moment in A, namely E[Ak] given by

E[Ak] = (1 − p)
∞∑

i=0

pi E[(A(i))k]. (28)

Again, since the r.v.’s Cij are bounded, we focus on the
component of (28) given by

(1−p)
∞∑

i=0

pi E[(
i∑

j=0

B(j))k] =
∞∑

i=0

pi E[(B(i))k]+other terms.

(29)
The other terms in (29) have moment order less than k so we
ignore them. We consider the term E[(B(i))k] in the sum. It
can be shown (e.g. using transforms) that

E[(B(i))k] = E[(U (i))k](E[tslot + Y ])k + other terms,

where the other terms involve moments of U (i) of order less
than k. Now, it can be shown that for a discrete uniform
distribution on the integers 0, 1, . . . , N −1, the dominant term
in the kth moment has the form c1N

k, for some constant c1.
Hence the sum

∑∞
i=0 pi E[(B(i))k] in (29) will contain the

term

c2W
k

∞∑
i=0

piλik =
c2W

k

(1 − pλk)
, (30)

for some constant c2. Clearly, the sum (30) is finite for 0 �
p < λ−k but divergent elsewhere. The sum blows up due to
the rapid (exponential) growth in the kth moment over the
sequence of uniform distributions. All other terms that we
have ignored in the steps of the derivation above involve lesser
moments of the uniform distributions, and it is easy to see that
these terms are finite for 0 � p < λ−k + ε for some ε > 0.
This completes the proof of (i).

Since there are infinite moments, the proof of (ii) is imme-
diate.
The theorem shows that for λ > 1, the number of bounded
moments decreases as p increases. The proof of the theorem
shows that the heavy tail is a direct consequence of the
exponential growth of the backoff window in the EB process.
In reality, of course, truncated BEB is implemented and the
delay is always bounded. Nevertheless, Theorem 1 suggests
that the access delay statistics for truncated BEB will contain
precursors of heavy-tailed characteristics, such as large vari-
ance. We confirm this in Section V by demonstrating that our
model yields a truncated heavy-tail for even moderate m and
K .

TABLE I

802.11B MAC AND PHY PARAMETERS

Parameter Symbol Value
Data bit rate rdata 11 Mbps

Control bit rate rctrl 1 Mbps
PHYS header tphys 192 µs
MAC header lmac 224 bits

UDP/IP header ludpip 320 bits
ACK packet lack 112 bits

Slot time tslot 20 µs
SIFS tsifs 10 µs
DIFS tdifs 50 µs

Min CW W 32
Doubling limit m 5

Retry limit K 7
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Fig. 1. Collision probability.

V. NUMERICAL EVALUATION AND DISCUSSION

The objectives of this section are to verify our analytical
model with simulation, and to study the characteristics of the
access delay as a function of n, m, K and the packet size.
The simulations were performed using the ns-2 simulator [7]
(version 2.27) which has a built-in implementation of the
IEEE 802.11 MAC. Detailed testing revealed that the simulator
contains several points of non-compliance with the IEEE
802.11 MAC standard [8] that noticeably affect the output
delay statistics, so these were remedied. The main problems
with the standard simulator are: the timer modelling the DIFS
deferral is not stopped when the channel becomes busy; a
post-backoff is not preceded by a DIFS; after the backoff
counter is frozen, the remaining backoff time is incorrectly
calculated; and the EIFS period is erroneously followed by a
DIFS deferral.

We simulate a network scenario comprised of n saturated
stations sending packets to an access point, in ideal channel
conditions. The stations use the UDP protocol with a fixed
packet size. We choose MAC and physical layer parameter
values consistent with an 802.11b system [15]. Table I lists the
parameters, the symbols that we use for them, and their values.
Denoting the UDP packet payload by lpay bits, the packet
transmission times used in our analytic models are given by
tdata = tphys + lmac+ludpip+lpay

rdata
, and tack = tphys + lack

rctrl
.

We ignore propagation delays since they are several orders of
magnitude smaller.

First we examine the agreement between the collision
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Fig. 2. Average access delay for lpay =33 and 1000 bytes.
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Fig. 3. Standard deviation of access delay for lpay =33 and 1000 bytes.

probability measured from simulation and that calculated
using (1) and (4). Fig. 1 displays the collision probability as a
function of the number of stations n, where the simulation
curve is labeled ‘DCF’. The simulation results are shown
with 95% confidence intervals. Observe that the fixed point
approximation provides a reasonable estimate for the collision
probability, although the approximation becomes less accurate
as n increases. The discrepancy is partly due to the reduced
contention effect, which is not addressed by the analytical
model. To show this, we eliminated the reduced contention
effect in the ns-2 simulator by modifying the backoff operation
to decrement at the end of every DIFS as well as at the end of
every idle slot. The results, labeled ‘modified DCF’ in Fig. 1,
indeed give a simulation curve that is closer to the analytical
result.

In Fig. 2 we plot the average access delay of DCF as a func-
tion of n using both simulation and our analytic formula (18),
for UDP payloads lpay =33 and 1000 bytes. We give results
for up to n = 50 active nodes, which we believe encompasses
the size of active user populations encountered in most IEEE
802.11b deployments. We plot the corresponding results for
the standard deviation of the delay in Fig. 3, where the analytic
curve is obtained by taking the square root of (19). Although
calculation of the delay moments relies on an approximate p
that ignores the reduced contention effect, the results obtained

from our analysis match our simulation results very well. From
the graphs we conclude that the accuracy of our analytical
model is also maintained for a range of different packet sizes.
Observe that for the plotted range of n, the mean delay
and jitter each station experiences increases dramatically with
n, which is due to each node experiencing more collisions
and more interruptions to its backoff timer. The durations of
collisions and interruptions also has an impact, as evidenced
by the increased delays for the larger packets.

Next, we compare the CCDF of the access delay obtained
by numerically inverting (20) with that obtained from simu-
lation. The LATTICE-POISSON inversion algorithm developed
by Abate, Choudhury and Whitt [6] was used, with parameters
selected to give an inversion error no greater than 10−8 and
the lattice spacing δ = 10μs. In Figs. 4(a) and 4(b) we
plot results for n = 10 and lpay =33 and 1000 bytes,
respectively. Figs. 4(c) and 4(d) display results for n = 30 and
lpay =33 and 1000 bytes, respectively. All results confirm that
our model is very accurate, even for small tail probabilities.
The analytical points do not merely predict the general trend
of the simulation curves, they actually follow most of the
undulations in the curves. In contrast, inverting the generating
functions derived by Tickoo and Sikdar [5], and Zhai, Kwon
and Fang [3] leads to distribution results which are far from
the simulation curves.

Finally, we investigate what the asymptotic results can
tell us about practical operating regimes. Recall that the
asymptotic results are for infinite m and K so there is no
discarding of packets. Therefore, we expect that the asymptotic
results can only inform about protocol performance for finite
m and K for loading regimes that do not result in high rates
of packet discards. In Fig. 5, we plot for 0 < n ≤ 300 the
linear asymptotic result for mean delay (27), as well as the
analytic mean (18) for various pairs of m and K . We see that
the analytic curves agree quite well with the asymptote for
relatively small n, but they fall away as n is increased due to
more packets reaching the m and K limits. When m and K
are increased, the agreement is maintained for a wider range
of n. In Fig. 6, we plot the analytic standard deviation (19) for
various m and K pairs. Theorem 1 tells us that for infinite m
and K , the standard deviation grows rapidly with load and is
ultimately unbounded. Fig. 6 shows an initial rapid growth of
the standard deviation as n increases, with the rate of growth
increasing with m and K , before hitting a plateau due to
the m and K limits. Fig. 7 shows the analytic CCDF (20)
for n =10 and 30 and various m and K pairs plotted on a
log-log scale. We observe the precursors of heavy-tailedness
suggested by Theorem 1. There is an initial linearity followed
by a faster roll-off, which are characteristics of a truncated
power-law tail distribution. The power-law exponent decreases
with increasing n and the point of truncation moves further
into the tail with increasing m and K .

Before closing this section, we comment on the relevance
of our findings on heavy tails to real wireless LANs. While
our analysis has been for the saturated setting, we argue that
episodes of long delays and large delay variance are possible
for statistical traffic if there are concurrent long bursts or
a sufficient number of stations. Indeed, empirical evidence
for extremely long access delays due to truncated BEB have

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on February 15, 2009 at 17:57 from IEEE Xplore.  Restrictions apply.



SAKURAI et al.: MAC ACCESS DELAY OF IEEE 802.11 DCF 1709

0 50 100 150 200 250
10

−3

10
−2

10
−1

10
0

Delay [ms]

P
ro

ba
bi

lit
y

Simulation
Analysis
Tickoo
Zhai
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(b) n = 10 and lpay = 1000 bytes.
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(c) n = 30 and lpay = 33 bytes.
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(d) n = 30 and lpay = 1000 bytes.

Fig. 4. Complementary cumulative distribution function (CCDF) of access delay.
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been reported in measurements on Ethernet [16]. A heavy-
tailed access delay leads to an even heavier queueing delay
distribution. Large delays not only degrade the quality of real-
time services, but if delays are extremely long, there is the
possibility of causing timeouts in non-real-time higher layer
protocols such as TCP, resulting in throughput degradation.
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Fig. 6. Analytical standard deviation of delay for lpay = 33 bytes and
different m and K .

VI. CONCLUSION

In this paper, we have developed a model of the access delay
of the IEEE 802.11 MAC for saturated stations. The model
enables a unified analysis of the moments and generating func-
tion. We have shown how numerical transform inversion can
be used to compute distributional values from the generating
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function. Our formulae for the mean, standard deviation and
generating function are much more accurate than others that
have appeared in the literature [2], [5], [3].

Our asymptotic analysis of the theoretical unlimited retrans-
mission case provides insights for practical DCF systems. In
particular, we have shown that the heavy-tail induced by BEB
in the theoretical system translates to a truncated power-law
tail induced by truncated BEB in DCF. This result implies
a relatively high probability of long packet delays in DCF
and raises doubts about the efficacy of using DCF for delay-
sensitive applications.
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