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MACAULAY STYLE FORMULAS FOR SPARSE RESULTANTS 

CARLOS D'ANDREA 

ABSTRACT. We present formulas for computing the resultant of sparse polyno- 
mials as a quotient of two determinants, the denominator being a minor of the 
numerator. These formulas extend the original formulation given by Macaulay 
for homogeneous polynomials. 

1. INTRODUCTION 

Let A0,. .. , An be finite subsets of Zn and consider n + 1 polynomials fo, ..., fn 
in n variables such that supp(fi) = Ai, i = 0,..., n. The sparse resultant is an 
irreducible polynomial in the coefficients of fo,... , fn, which vanishes if the system 
fi = 0, i = 0,..., n, has a solution in an algebraically closed field. It will be denoted 

by ResA(f0o,. . , fn), where A := (A4,. . , An). 
Resultants eliminate the input variables, so they are also called eliminants. They 

have been used in the last decade as a computational tool for elimination of variables 
and for the study of complexity aspects of polynomial system solving. This has 
renewed the interest in finding explicit formulas for their computation (see [AS, 
Canl, Can2, CE1, CE2, CDS, CLO, DD, Emil, EM, KPS, Laz, Ren, Roj, Stul, 
Stu2, Stu3, ZCG]). 

The study of resultants goes back to the classical work of Sylvester, Bezout, 
Cayley, Macaulay and Dixon in the context of homogeneous polynomials ([Syl, 
Bez, Cay, Mac, Dix]). The sparse resultant, a generalization of the classical one, 
first appeared in the study of hypergeometric functions and A-discriminants done 

by Gelfand, Kapranov and Zelevinski a few decades ago ([GKZ1, GKZ2]). 
The first effective method for computing the sparse resultant was proposed by 

Sturmfels in [Stul]. In [CE1, CE2], Canny and Emiris gave algorithms for comput- 
ing square Sylvester style matrices with determinants equal to nonzero multiples 
of the resultant. By a Sylvester style matrix we mean the matrix in the monomial 
bases of a linear map given by a formula as follows: 

Seo e SE1 e . . . Se,, S , 

(go,01,... n ) n 3 g9ifif 

Here, 0o,... n, ? are finite sets of monomials in a ring of Laurent polynomials 

IK [xi, x ,... Xni Xn1] , and S denotes the K-vector space generated by B. This 
construction was generalized by Sturmfels in [Stu2], and it was pointed out in 
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[Emil, CE2] that the extended formulas, when applied to the classical case, give 
Macaulay's original formulation (see [Mac]). 

However, Macaulay succeeded in giving an explicit formula for the extraneous 
factor appearing in his own formulation, i.e. he showed that, in the classical case, 
the ratio 

det(Sylvester matrix) 

ResA(fo,...,fn) 

is a minor of the Sylvester matrix (see [Mac]). This was conjectured to happen in 
the sparse case, but no proof of it was available (see [CE1, CE2, CLO, Emil, EM, 
GKZ2, Stu2]). For instance, in [CLO, Chapter 7], we may read: 

One of the major unsolved problems concerning sparse resultants is 
whether they can be represented as a quotient of two determinants. In 
the multipolynomial case, this is true by Theorem (4.9) of Chapter 3. 
Does this have a sparse analog? Nobody knows! 

In [GKZ2, Introduction], the following is written: 

Macaulay made another intriguing contribution to the theory by giving 
an ingenious refinement of the Cayley method [Mac]. It would be inter- 

esting to put his approach in the general framework of this book. 

In [Stu2, Corollary 3.1], we also find: 

It is an important open problem to find a more explicit formula for P,,^6 
in the general case. Does there exist such a formula in terms of some 
smaller resultants? 

The main contribution of this paper is a positive answer to this question, i.e. a 

generalization of Macaulay's classical formulas to the sparse case by means of an 

explicit algorithm which produces square Sylvester style matrices. The determinant 
of each of these matrices is a nontrivial multiple of ResA (fo, .. ? , fn). Moreover, we 
succeed in describing the extraneous factor of our formulation (i.e. the ratio which 

appears in (1)), which again happens to be the determinant of a submatrix of the 

Sylvester matrix. 
The paper is organized as follows: In Section 2, some notation and preliminaries 

are introduced. In Section 3, we explicitly construct Sylvester style matrices for 

generalized unmixed families of polynomials and prove that our algorithm produces 
formulas "a la Macaulay" for computing the sparse resultant in this case. 

Section 4 deals with the general case, and may be regarded as an extension of 
the previous section. The algorithms are illustrated with examples at the end of 
both sections. 

Acknowledgements. I am grateful to Alicia Dickenstein, who brought my atten- 
tion to this problem, and to Ioannis Emiris, for helpful comments. I also wish to 

express my deep gratitude to David Cox for his thorough reading of preliminary 
drafts of this paper and very thoughtful suggestions for improvement. 

This research began during the Long Semester Program in Symbolic Computa- 
tion in Geometry and Analysis held at MSRI in the Fall Semester of 1998. I am 

grateful to the organizers for their help and support. I am especially grateful to 
Bernd Sturmfels for helpful conversations during those days. 

1P,,5 is the extraneous factor 
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2. PRELIMINARIES 

We review here some definitions and properties of convex polytopes and sparse 
resultants. More details and proofs can be found in [CLO, EM, GKZ2, Stul, Stu2]. 

Let Ao,... ,A4n be finite subsets of the lattice Zn. Set mi := #(Ai), m: 

Ei=O mi and Qi := conv(Ai), i = 0,... , n. Here, conv(-) denote the convex hull 

in ?R := ? 0 IR, where ? is the affine lattice generated by Z=no Ai. 
For any subset J c {0, 1,..., n}, consider the affine lattice generated by EjeJ Aj, 

and let rk(J) be the rank of this lattice. For every a E Ai, we shall introduce a 

parameter ci,a. Consider the family of generic polynomials: 

(2) fi (Xl, .. , Xn) = Z Ci,a Xa (i = ,... , n) . 

aEAi 

Let 1K be an algebraically closed field. The vector of coefficients (ci,a)aEA of such a 

family defines a point in the product of IK-projective spaces IPl-1 x ... x Pn-1. 

Let Z denote the subset of those families (2) which have a solution in (K**)n . Here, 
K* denotes the torus K \ {0}. Finally, denote by Z the Zariski closure of Z in 
po--1 X ...X pTn-1.- 

Theorem 2.1 ([GKZ2, Stu2]). The projective variety Z is irreducible and defined 
over Q. Its codimension in P?"-1 x... xP' n-1 equals the maximum of #(I)-rk(I), 
where I runs over all subsets of {0, 1,..., n}. The variety Z has codimension 1 if 
and only if there exists a unique family {(Ai}iI such that 

1. rk(I) = #(I) 
- 1, 

2. rk(J) > #(J), for each proper subset J of I. 

Definition 2.2 ([Stu2]). If I satisfies conditions 1 and 2 in the previous theorem, 
then the family {Ai}iEI is said to be essential. 

Note that if each Qi is n-dimensional, it is easy to check that the unique set 

satisfying both conditions is I = {0, 1,... , n}, so in this case Z has codimension 1. 

The sparse mixed resultant ResA(fo,... , fn) is defined as follows: if codim(Z) = 

1, then ResA(fo, . . , fn) is the unique (up to sign) irreducible polynomial in Z[ci,a] 
which vanishes on Z. If codim(Z) > 2, then ResA(fo,.. , fn) is defined to be the 
constant 1. 

Theorem 2.3 ([PS, Stu2]). If the family of supports {Ao,... ,An} is essential, 
then for i = 0,... , n, the degree of ResA(fo,..., fn) in the coefficients of fi is 

equal to the normalized mixed volume 

MV(Qo, . ., Qi-l Qi+l ... , Qn) 

EJc{ ....i-,i+l ...,n(-1)n-#(J)vol (jeJ QJ ) 

vol(P) 

where vol(') stands for the euclidean volume in the real vector space LR, and P is a 

fundamental lattice parallelotope in L. In general, if there exists a (unique) subset 

{AAi}iei which is essential, the sparse mixed resultant coincides with the resultant 

of the family {fi : i E I}, considered with respect to the lattice iEIE Ai. 
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Example 2.4. Set Ao = A1 = A2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, and consider the 

family 

fo = co,(o,o) + CO,(1,0)Xl + Co,(0,1l)2 + Co,(1,l)Xl X2, 

fl = Cl,(o,o) + Cl,(1,O)Xl + Cl,(O,1)X2 + Cl,(1,1)Xl X2, 

f2 = C2,(o,o) + C2,(1,0)Xl + C2,(0,1)X2 + C2,(l,l)Xl X2. 

Here, the Newton polytopes Qo, Q1, Q2 are equal to the unit square C := [0,1] x 

[0,1] whose vertices are precisely the points in the common support; and we have 
that 

degcoeff f (ResA(fo, fl, f2)) = MV(C, C) = 2, i = 0, 1, 2. 

A nice formula due to Dixon ([Dix]) allows us to computate the resultant as follows: 

f Co,(o,o) CO,(1,O) Co,(O,i) CO,(1,) 0 0 

Cl,(o,0) C1,(1,0) Cl,(o,1) C1,(1,1) 0 0 

ResA(fo, f, f2) = det C2,(o,o) C2,(1,) C2,(01) C2() 0 0 

0 Co,(o,o) 0 CO,(0,1) C0,(1,O) cO,(1,1) 
0 Cl,(0,0) 0 Cl,(O, 1) l1,(1,O) cl,(l,l) 

0 C2,(0,0) 0 C2,(0,1) c2,(1,0) C2,(1,1) 2 

Example 2.5. Let 

Ao = {(0,0), (2,2), (1,3)}, 
A1 = {(0,0), (2,0), (1,2)}, 
A2 = {(3,0), (1,1)}. 

Consider the family 

fo - a+1 
q 

2X 2x2 + a3X3l 23, 

-f = Z1 + 2Xl2 + z33Xi x2, 

f2 = 'YlXi + 7Y2xli 2. 

A straightforward computation shows that 

MV(Qo, Q1) = 7, MV(Qo, Q2) = 7, MV(Q1, Q2) = 5, 

and the sparse resultant equals 
5rW 6 3 2C 4 23 2 5 

aI33y4%2 + 34a2C2/3,2 + 3aya23 2 111rJ3 1 21 1 2 

-13a 3a233/32/34^15 y2 - 7aT3 2 a 333 
3 

4 23 + 6a2a 333 4 a 3y-y3 2 3 6 2 1 3 1 12 1 1 2 

-+al2/3726/32-7 
2 2 a 2a3/^2374 . 2+ 52aQ433-Y6 

2-1 132 - 2 1 4 2 y 2 3lY13'2 2 2 
3/31/335 25 + 14a 2 3 

/33,2232722 ++ 23 7 
y6 

-2ala 243/233372ly25 
- 5ce a3l/,3"7"57 

2 + a01362"7 "2 4 

3 

32 1 3 2 5 1 2 -55+653 143 
+12?c3p1 2 3 u 1 3 /-1 22 u 0o 3 1 

3 1 32 y- 7 32 1 13'12 
+-2al Q 3^j 37h 2 

- 
2a1a243/336 5 - 47ai a352/772 

2 3 6 5 2 3 5,7 
+q-o203/132k717Y2 -+ 3/pl7 

For an explicit computation of this resultant, see [Stu2]. 

As usual, to define a face of a polytope Q C LC c R1, let v be a vector in R1. 

Set 

mQ(v) :=min{(q, v)}, 
qEQ 

and call 

Qv :=Q n {m R I : (m, v) = mQ(v)} 

the face of Q determined by v. The vector v will be called an inward normal vector 
of Qv. If dim(Qv) = n - 1, then Q, will be called a facet. 
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3. MACAULAY STYLE FORMULAS 

FOR GENERALIZED UNMIXED FAMILIES OF POLYNOMIALS 

In this section, we will construct square Sylvester style matrices in the case when 
all Qi are integer multiples of a fixed polytope P, i.e. there exist positive integers 
ko, kl,...,kn such that 

Qi = conv(Ai) = ki P, i = 0,... ,n. 

This case is treated in [CDS] in a toric setting. These families may be identified 
with homogeneous polynomials in the coordinate ring of a projective toric variety 
(in the sense of [Cox]), with "degrees" ao,..., ac,n where every ai is Q-ample (see 
[Ful]). We shall call them generalized unmixed polynomials because they contain 
the well-known unmixed family of polynomials, which is the case when all input 
supports Ai coincide. 

The matrices to be constructed here also generalize the formulas given by Mac- 

aulay in [Mac] in the homogeneous case, where all the supports are multiples of the 
standard simplex 

n 

Sn:= {(ql, ...n) E R : 0 qi < <l, qi <}. 
i=1 

Warning: Some care must be taken with taking convex hulls, because the sparse 
resultant depends strongly on the finite data (A40, A1,... , An) and different families 
of input supports may give the same polytopes Qo,... , Qn (see [Stu2]). 

Remark 3.1. It is easy to see that, in the generalized unmixed case, because of 
Theorem 2.1, in order to have a nontrivial resultant, P must be n-dimensional. It 
is also clear that, in this case, LR = R'. 

Given A E Q>o and a generic 6 E LC 0 Q as in [CE1, CE2, Stu2], our algorithm 
will produce a Sylvester style matrix M whose rows and columns will be indexed 

by the integer points in 

(3) ? := ((ko + kl + ... + kn + A)P + 6) n r, 

and whose determinant will be a nonzero multiple of the sparse resultant. Moreover, 
we shall be able to identify the extraneous factor det(M)/ResA(fo,..., fn) as a 
minor of this determinant. 

The algorithm is recursive in the dimension of the polytope P, and, in its in- 
termediate steps, uses the mixed-subdivision algorithm of Canny and Emiris (see, 
[CE1, CE2, Stu2]) in order to refine the subdivision (see the comments in Remark 

3.15). 

Remark 3.2. It was stated in the introduction that E should be a set of monomials. 
Indeed this is true provided that we identify an integer point a E E with the Laurent 
monomial x'. 

3.1. Constructing the Matrix M. Given A and a as before, set Q := A P. Let 

V(Q) c LC Q be the set of vertices of Q. Observe that they are not necessarily 
integer points. 
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Choose a vertex bo E Ao, and consider the following lifting functions: 

0 : Ao - R, 

bo 1, 
b 0 if b bo, 

(4) i Ai - I, 
b -+ 0 VbE A, i 1,... n, 

w: V(Q) - *R, 
b H 0 b Vc(Q). 

Set 

: (wi(b)bEAi,i=,1,...,n, w(b)bEV(Q) ) ER+#V(Q) 

and consider the lifted polytopes in I1+l: 

Qi,Q := conv{(a, wi(a)) : a E Ai}, 
QQ := conv{(b,w(b)) : b E V(Q)}. 

By projecting the upper envelope of Qi,Q (resp. QQ) we get a coherent mixed 

decomposition Ai,Q (resp. An) of the polytopes Qi (resp. Q). The cells in this 

decomposition are the projections of precisely those faces of Qi,Q and QQ on which 
a linear functional with negative last coordinate is minimized (see [Stu2]). 

Similarly, by projecting the upper envelope of the Minkowski sum 

Qo,Q + Q1,Q +.. + Qn,Q + QQ, 

we get a coherent mixed decomposition of 

(5) Q := Qo + Qi +... + Qn + Q. 

Each cell in this decomposition is of the form 

F = Fo + F . +...+ Fn +F, 

where Fi (resp. F) is a cell in A/,n, (resp. AQ). 
Because most of the lifting functions we have used in (4) are trivial, we can 

characterize all the proper cells in Ai, ... I An,, AQ : 

* the whole polytopes Q1,. . , Qn, Q corresponding to the linear functional as- 
sociated to the vector (0, -1) G Itn x t; 

* for every v E Rn \ {0}, the faces Ql,v..., Qn,, Qv associated to the vector 

(v, a), where a is any negative number. 

On the other hand, on Ao,Q, the cell corresponding to (0, -1) is the singleton {bo}, 
and it is easy to check that every cell of dimension n in its decomposition is the 
convex hull of bo and a facet of Qo not containing this point. We shall call it Fo,v, 
where v denotes the integer primitive inward normal of the facet. 

So, we can characterize all maximal (i.e. of dimension n) cells in the polyhedral 
decomposition of Q as follows: 

* {bo} + Qi + ... + Qn + Q. This shall be called the primary cell. 
* Fo,v + Ql + Q . + Qnv + Qv, for some v E Rn. These will be called secondary 

cells, and are associated to a nonzero vector v E IR1. 

The following lemma will be useful in the sequel: 
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Lemma 3.3. Suppose that dim(Fo,v) = n. Then, for every q E Q, if Fo,v n {m E 

LR : (m, v) = q} 7 0, there is Aq E Q>o such that the intersection is a polytope 
congruent to AqPv. 

Proof. Suppose w.l.o.g. that bo = 0; then Fo,v is the convex hull of the origin in 

LR and a finite set of points {Vl,... , VM all of them satisfying (vi, v) = A, < 0, 
hence lying in a hyperplane '-v not passing through the origin. 

The intersection of Fo,v with a hyperplane parallel to 7-v will be nonempty if 
and only if Av < q < 0. If this happens, the intersection will be the convex hull of 

q q 
A v 

Av 

which is equal to - Qov = - koPv. 0 

In order to construct the Sylvester style matrix, we will take into account whether 
the points lie in a translation of the primary cell or not. The first requirement we 

impose on 6 is that every point in (Q + 3) n ? must belong to the interior of a 
shifted maximal cell (primary or secondary). 

3.1.1. Points in the shifted primary cell. Proceed as in [CE1, CE2, Emil, Stu2]: 
choose generic lifting functions 51,... , &, c), defined over A1, ... , 4n, V(Q), in 

such a way that they produce a tight mixed coherent decomposition of the Minkowski 
sum 

Ql + ... + Qn + Q. 

This implies that each n-dimensional cell Y in this decomposition equals 

Fi + F2 +... + Fn + F, 

where Fi is a cell in Ai,,, F is a cell in A, and 

n = dim(F1) + ... + dim(Fn) + dim(F). 

As a consequence, at least one of these dimensions is equal to 0. The row content 
of p E ({bo} + Q1 + ... + Qn + Q + )) n C is a pair (i, a) defined as follows: 

* If p - - bo liesinthecell F = F +...+Fn + F, andtheset {j: 1 < j < 

n, dim(Fj) = 0} is not empty, let i be the largest index such that dim(Fi) = 0, 
and let Fi = {a}. 

* If dim(Fj) > 0 for all j (because of the genericity of the lifting functions ?j, 
this implies that dim(F) = 0), then i := 0, and a := bo. 

We shall say that F is mixed of type 0 if the last item holds; otherwise, the cell 
shall be called non-mixed. 

Remark 3.4. The concepts of row content, mixed and non-mixed cells defined pre- 
viously, appear with a slightly different meaning in [CE1, CE2, Stu2]. We shall 
discuss some relations between the definitions in example 3.3.3. 

We can now fill the rows of the matrix M indexed by those points p lying in 

({bo} + Q1 + ...+ Qn + Q + ) n as follows: for every p' E ?, the entry indexed 

by (p, p') equals the coefficient of xp' in the expansion of the polynomial xP-a fi (x). 
Here, (i, a) is the row content of p. 
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3.1.2. Points in the shifted secondary cells. Let v E Rn be such that 

(6) Ev = Fo,v + Qlv +... + Qnv + Qv 

is a maximal cell in the polyhedral decomposition of Q. This implies that 

* dim(Pv) = n- 1, Qv = APv, and Qiv = ki Pv, i = 0, 1,... ,n. 
* dim(Fo,v) = n. 

Intersecting the shifted cell Fo0, with hyperplanes parallel to Pv and using Lemma 

3.3, it is easy to see that (5F + 6) n ? can be written as a disjoint union of sets of 
the type 

((AP + 4 klPv 4+... 4 knPv + APv +4 6) 
n , 

A 
EQ>o, 

which may be rearranged as follows: 

(7) (klPv + ... + knPv + AvPv + 6x) n L, Av E Q>o, 

where 6x := 6 + 6'. Here is where the recursion step comes: consider the v-facet 
family 

(8) fiv (XI, I Xn) C= i,axa (i=1,., n). 

aEQzinAi 

Due to the fact that Qiv = ki Pv, has dimension exactly n - 1, it is straightforward 
to check that the family {Qiv n Ai}i=1,... ,n is essential. This implies that the sparse 
resultant of the polynomials (8) is not constantly equal to one. We shall denote 
this sparse resultant as 

(9) Res(fv,..., fn) 

In order to use the inductive hypothesis, we must decrease the dimension of the 

supports with some care: let L? C L be the lattice which is orthogonal to v, and 
denote by ?LAv+...+A,, the affine lattice generated by Alv + - * + Anv. 

After a translation, we may suppose w.l.o.g. that 0 E Ri is a vertex of Pv. This 

implies that LAv+ ...+Anv is a sublattice of Lv, both having dimension n - 1, and 
we may consider the index [L : LAv+...+Anv], which will be denoted by ind,. Let 

ql,... , qindv be coset representatives for LA,, +.+Anv in Lv. 
For every p E ?, there exists a unique j E {1,..., indv} such that 

p E (q3 + ?Av+...+A,v ) Zv, 

so p may be written as Pv + pv, the latter being an integer multiple of v, and 

Pv E qj + 1Ai,+-++Anv- Also, 6A E 1? 0 Q = (CA1v+.-+An,, 0 Zv) ( Q may be 

decomposed as 6v + 56v, where 56 (resp. 6xv) lies in Qv (resp. ?A1V+.+An , 0 Q). 
If, in addition, p belongs to (7), we must have pv = 68. This is due to the fact 

that klPv + ... + knPv + AvPv + 6,Xv C LAlv+.+A+ n ? R. So, p - p = p - 6v lies 

in 

(klPv + ... + knPv + AvPv + 6Sxv) n (qj + A4 ? +...+,,v) . 

Finally, set 6jv := 6\v - qj E L?AA1v+-+Anv Q. Now it is straightforward to check 

that a point p belongs to (7) if and only if there exists j = 1,..., indv such that 

p := p - 6, - qj lies in 

(10) (k1P, + ... + knPv + AvPv + 6jv) n ?A1+...+A,. 

We have decreased dimension, and may use the inductive hypothesis in order to 

compute the resultant (9) using ?A1+...+A,, instead of C and 6jv instead of 6. 
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It turns out that, for every Av > 0, there will be indv square matrices of the 
form Mv,xv indexed by the points p lying in (10). Using the monomial bijection 
p = p + 6X + qj, we can relabel rows and columns of these matrices with the points 
of (7). The determinant of each Mv,xv will be a nontrivial multiple of (9), and 
each of these determinants will have the same degree as Resv(flv,.. , fnv) in the 
coefficients of fiv (fiv will play here the role of fo in the previous step). 

Again, as in the primary cell, each of these matrices has, in the row corresponding 
to a point p, the coordinates of the monomial expansion of xp-a fiv(x) for some 
a and i. In order to fill the row of M corresponding to p, we proceed as before: 
the entry indexed by (p,p') equals the coefficient of xP in the expansion of the 

polynomial xP-a fi (x). 
In order to finish the algorithm properly, the reader should check that, in the case 

n = 1, this procedure constructs a classical "Sylvester style matrix" ([Syl, Mac], see 
also Example 3.3.1) for two polynomials in one variable. If the supports generate 
the affine lattice Z, the matrix will be indexed by a set of monomials of the type 

, xa+1, . +s} a E Z, s N. 

Remark 3.5. Observe that, at each step of the recursion, we need to impose some 
conditions on the different 6's in order to guarantee that all integer points are in 
the interior of a cell in each intermediate step. This happens for 6 generic. 

Remark 3.6. Let dv be the v-lattice diameter of the cell Fv, which is defined as 
follows: 

(11) dv := max (m, v)- min (m, v). 
m EFrv m E _F, 

It is straightforward to check that the number of matrices of the type Mv,xv is 

exactly dv := dvindv. Besides, due to the fact that F1, F2,... , Fn, F are facets 

associated to v, the difference (11) may be actually computed as 

(12) max (m,v) - min (m,v). 
mEFo, v mEFo,v 

Remark 3.7. At each step of the recursion, the shifted secondary cells of the previ- 
ous step are partitioned in such a way that their integer points are distributed into 

new primary and secondary cells. The new primary is again subdivided into mixed 

and unmixed cells. We shall keep track of this information, so a point will be said 

to be in a mixed cell of type i, if it belongs to a mixed cell which appeared at step 
i + 1. It is easy to see that, if a point is in a mixed cell of type i, then the row it 

indicates contains some coefficients of the expansion of a multiple of fi. 
It is also clear that, at the end of the recursion, each point in ? has associated 

a row content. 

3.2. Generalized Macaulay Formula. Now we are ready to state and prove the 

central result of this section. Before doing that, note that det(M) is well defined 

up to sign, because we have not given any order among the elements of E. Also, 
ResA (fo, ..., fn) is well defined up to sign. So, the following statement will be true 

up to sign. 

Theorem 3.8. M is a generically nonsingular Sylvester style matrix. Moreover, 
we have the following formula "a la Macaulay": 

det (M) = ResA(fo,.. , fn) det (E), 
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where E is the square submatrix of M formed by omitting all rows and columns 
indexed by points lying in mixed cells. 

Remark 3.9. It is easy to see that E does not contain coefficients of fo, so as an 
inmediate corollary of Theorem 3.8 we get that det (M) has the same degree as 

ResA (fo,. . , fn) in the coefficients of fo. Replacing the role played by fo with any 
fi, i = 1,... , n, we also have a formula for computing ResA(fo,... , fn) as the gcd 
of n + 1 determinants (see also [CE1, CE2, EM]). 

Proof. First of all, we will prove that, for a given point p E ?, if p' belongs to the 

support of xP-a fi, then p' must also be a point of E. Here, the pair (i, a) is the row 
content of the point p. This will imply that M is a Sylvester style matrix. 

Two different scenarios must be considered: 

* If the point belongs to the shifted primary cell, proceeding as in [CE1, CE2], 
it is easy to see that this happens. 

* If the point belongs to a shifted secondary cell, let us say v-, because of (6), 
xp-a fi, has its support contained in 

Fo,v + Qlv + ... + Qnv + Qv + . 

This, combined with the fact that, in secondary cells, i is always bigger than 

0, implies that the support of xP-afi is contained in 

Fo,v + Qlv +... + Qi-lv + Qi + Qi+l, + ... +- Qnv + Qv + 6, 

the latter set being a subset of Q + 6. From here, the claim follows straight- 
forwardly. 

Once we know M is a Sylvester style matrix, it is easy to see that ResA(fo, . , fn) 
divides det (M) using the standard argumentation given in [CE1, CE2, Stu2]. 

We shall regard det (M) as a polynomial in Z[ci,a] and will prove that it is not 

identically zero by showing that its highest term with respect to some monomial 
order is nonzero. Explicitly, we shall prove that, for the vector 

(13) :=- (WO, l, , Wn) C Rm, 

where the wi were defined in (4), 

(14) initw (det (M)) : 0. 

It is easy to see that, writing det (M) as a polynomial in co,bo with coefficients in 

Z[ci,a \ {co,bo}], the leading term of this polynomial is (14). 
Due to the special role that fo has played in the construction of the matrix, 

the number of integer points lying in shifted O-mixed cells is equal to Mo : 

MV(Q1,... ,Qn), i.e. the degree of ResA(fo,... , f) in the coefficients of fo 
([HS, CE1, CE2, Stu2]). So, it is straightforward to check that 

degcoeff(fo) (ResA(fo,.. , fn)) = degcoeff(fo) (det(M)). 

This, combined with the special way in which we have lifted the polytopes (i.e. just 
lifting the point bo), implies that 

det (M) _ nit, (det(M)) 

ResA(f0, . . ., fn) initz (ResA(fo, . , fn)) 

coefficient of co in det(M) 

coefficient ofcoMo in ResA (fo,. , fn) 
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In order to prove the theorem, we shall proceed as in [Mac], by showing that the 
numerator of this fraction is nonzero, and that the extraneous factor, i.e. the ratio, 
is det(E). The proof will be again by recurrence on n. 

The basic case (n = 1) is completely contained in the classical formulas given 
by Macaulay in [Mac]. In the general case, in order to compute init (det(M)), 
we proceed as in [CE1, CE2, Stu2]: replace the polynomials (2) by the following 
deformed family: 

(15) fi,':= 
- Ci,a t i(a)x, i = 0, 1, ... ,n, 

aEAi 

and consider the deformed matrix M (ci,a twi(a)) 

Remark 3.10. Actually, 

fO,W = CO,b to + EaEAi\{bo} Ci,aXa, 

fi, = fi, i> 1. 

It is easy to see that initu (det(M)) is the leading coefficient of the determinant of 
the matrix M(ci,a twi(a)) regarded as a polynomial in t. 

For every p E ?, let h(p) be the biggest rational number such that 

(p - 5, h(p)) E Q = Q,Q + Q1,Q + +... Qn,Q + QQ. 

The following observations will be useful later: 

Lemma 3.11. The function h satisfies the following conditions: 

1. 0 < h(p) < 1, for all p E E. 
2. h(p) = 1 if and only if p- 6 lies in the primary cell. 
3. If p - 6 and q - 6 are in the same secondary cell, say vT, then 

h(p) = h(q) i (p, v) = (q, v). 

4. Ifp E (vf + 6)n?, the row content ofp is the pair (i,a), and v' Z iuv, I > 0, 
then 

((p - 6 - a, h(p)) + Qi,Q) n QQ(v,,,) = 0, Vl' E R<o; 

here, QQ(v,,'/) C Rn+1 is the face of QQ determined by (v', l'). 

Proof of the lemma. The first two statements are obvious. The third assertion 
holds straightforwardly just noting that Fv is the projection of QQn(V,), where 1 is 
a negative real number, and 

p - 6, q - 6 E 5v <- (p- 6, h(p)) , (q - 6, h(q)) E QQ(V,l). 

Hence 

((p - 6, h(p)), (v, 1)) = ((q - 6, h(q)), (v, )). 

Finally, let I eE R<o be such that QQ(v,I) projects bijectively onto Fv. Due to the 

generic conditions imposed on 6, it turns out that the point pQ := (p - 6, h(p)) 
belongs to the relative interior of QQ(v,). If v' = f v and 1' = / 1, with _t < 0, this 
would imply 1' E Rl>o, which is not of interest for us, so we can suppose w.l.o.g. that 

(v', I') is not parallel to (v, 1). Then, one can slightly displace the point pQ inside 
QQ (v,), in the direction of the orthogonal projection of -(v', l') over the hyperplane 
{(x, (v, 1)) = 0} C Rn+l. After this displacement, all the points in the shifted Qi 
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will still lie in Q?. This is due to the convexity argument given in [CE1, CE2], 
which states that for every point qf2 lying in Q (v,l), 

q - (a, 0) + Qi,Q C Q. 

So, if the statement of the lemma were not true, the common points in the in- 
tersection with QQ(v,,l,) would not belong to QQ after the displacement, which is 

impossible. 

We shall use the convexity argument given in [CE1, CE2, Stu2] as follows: for 
each p E ?, we multiply every element in the row indexed by p by th(p)-"i(a), where 

the row content of p is (i, a). Let us call the matrix obtained in this way M'(t). 
It is easy to see that the leading coefficient of det(M'(t)) (as a polynomial in t) is 

initmz(det(M)). 

Proposition 3.12. Let 0 < 71 < 72 < ... < tN = 1 be the different values for 

h(p) as p ranges in ?. Then, the leading coefficient of det(M'(t)) (as a polynomial 
in t) factors as 

N 

(16) J7 det(Mj), 
j=l 

where Mj is the square submatrix of M made by choosing all rows and columns 
indexed by points p such that h(p) = -yj. 

Moreover, the product (16) can be reorganised as follows: 

(17) det(MN) J7 (det(M) ... det(Mdv)), 
2 V 

where the product is taken over all secondary cells TFv and M, is one of the matrices 

Mv,Av defined in Section 3.1.2, i.e. a Sylvester style matrix for the sparse resultant 
associated to the family (8). 

Proof of the proposition. We will compute the leading term of det(M'(t)) by search- 

ing, in each column, for the highest power of t appearing in that column, replacing 
by 0 all the entries which have not this highest power, and computing the determi- 
nant of the modified matrix. We shall call this matrix mod(M'(t)). 

It is straightforward to check that, in M'(t), the highest power appearing in the 
column indexed by p' is exactly h(p'). So, in mod(M'(t)), in the columns indexed by 
those p' such that h(p') = 71 there cannot be nonzero entries in the rows indexed 

by those p such that h(p) # 71; otherwise h(p) > 71, and this will imply that the 

power of t appearing in the (p,p') place of the matrix will be strictly bigger than 

71, which is impossible. 
This implies that mod(M'(t)), after division by some power of t, and ordering its 

rows and columns by putting the points p' such that h(p') = 71 at the beginning, 
has the following structure: 

(18) (M 
B) 
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Repeating the argument recursively, it turns out that the structure of mod(M'(t)) 
is triangular as follows: 

01I * ... * 

0 M2 ... * 

i IV 

0 0 ... MN 

and the first part of the proposition holds straightforwardly. 
In order to prove (17), we fix j < N. Then, the points p such that h(p) = yj < 1 

lie in shifted secondary cells, let's say Fvl + .,... TvM + 6, and one can arrange the 
rows and columns of the matrix Mj so that all the points in FT, + appear at the 

beginning, the points in Fv,, + immediately after, and so on. 
First of all, we will show that 

/ M(j,vl) 0 ... 0 

0 M(,V2) ... 0 

V 0 0 *...* M(j,vM) / 

where M(j,,k) denotes the submatrix of Mj whose rows and columns are indexed 

by points in the cell vk4 + 6. 
In order to do this, consider the deformed family (15). It is straightforward to 

check that 

supp (th(P)-i(a)xP-af) =(p - a, h(p) - wi(a)) + Qi, C QQ + (, 0), 

where, as usual, (i, a) is the row content of p. Moreover, the point 

(p - a, h(p) - wi(a)) = (p - a, h(p)) 

belongs to the facet of the shifted polytope QQ + (6, 0) determined by an inward 
normal vector of the type (vk, 1), 1 E R<o. 

Because of the last item of Lemma 3.11, there cannot be nonzero coefficients 

corresponding to the expansion of the polynomial 

(19) th(P)-wi(a)xp-afi, 

whose multidegree in (x, t) lies on the boundary of QQ + (6, 0) other than those in 
the facet determined by (vk, 1). This implies that, if the point (q, s) is an exponent 
arising in the expansion of (19) and q does not belong to the shifted secondary cell 

%vk + 6, then (q, s) must be an interior point of QQ + (6, 0), and this implies that 
s < h(q). Due to the remark made at the beginning of this proof, it turns out that 
the element indexed by (p, q) in mod(M'(t)) is zero. This gives the stated structure 
for Mj. 

Now, recalling Remark 3.6, and using the third item of Lemma 3.11, it turns 
out that M(j,vk) is actually a matrix of type Mvk,Avk. Moreover, all matrices of this 

type appear in this way, so the proposition holds straightforwardly. D 
Let us return to the proof of the theorem. By the inductive hypothesis, det(Mv) 
0 O, Vv, i, and using the special lifting cw,. .. , wn, in the primary cell (see Sub- 

section 3.1.1), it is easy to see that det(MN) 7 0. Moreover, 

det(MN) = c oM det(EN) # 0, - O,bo 
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where EN is the submatrix of MN formed by all the rows and columns indexed by 
points in non-mixed cells (see [CE1, CE2]). This proves that det(M) :7 0. 

Again by the inductive hypothesis, det(M/) equals Resv(fi,,... , fn) times a 
minor det(Ev) made by choosing all rows and columns non-mixed in M/. This 

implies that 

dv, 

(21) init det(M) = co det(EN) J (Res(f,,... ,fnv))dv I dndet(Ev). 
Yv vF i 

By selecting all rows and columns indexed by non-mixed points in M, a modified 
version of Proposition 3.12 holds for the matrix E, which also has a block structure, 
and we get 

(22) det(E) = det(EN) 1 rJ det(E/). 
F i 

The proof of the theorem will be complete if we show that 

init(R, f)) o (Res((fio... fn)) = b Rfn) 

Using Theorem 4.1 in [Stu2], we have that 

init (ResA (fo ,. . . fn)) = + H (Res(foFo, . * * * fn[Fn) ) , 

where F runs over all facets of the coherent mixed decomposition given by 
- 

in the 
Minkowski sum 

Q Qo + Q + ...+ n. 

Explicitly we have that 

= Fo + ... + Fn 

with Fi = conv(A'), A' C i, 

filFi= E Ci,aXa 

aEAi 

Resf is the sparse resultant associated to the data (A, ... ,A), and d? equals 

the unique integer such that (Res-(fo Fo ,.. ., fnlFn))d has total degree 

n 

, MV(Fo, .. . F-, F+, ., Fn). 
1=0 

It is easy to see that the coherent mixed decomposition induced by CD over Q 
is similar to the one induced over Q. More precisely, we get a big primary cell of 
the form bo + Q + ... + Qn, and for each v such that -v is a secondary cell of 

Q, there is a secondary cell Fv in Q. Moreover, the same analysis made in 3.1 says 
that these are all the cells of maximal dimension in Q. 

For the primary cell, we get that 

fOlFo = Co,bo xb 

fiF, = fi, i = 1,... ,n. 
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This implies that the unique essential set in the data (A, ... ,A' ) is just the 

singleton {bo}, so Resf(fo0Fo,... , fnF,) = CO,bo and ds = MV(Q1,... ,Qn) = 

Mo. 
Now, take a vector v such that Jv is a cell of maximal dimension. This implies 

that fo Fo has an n-dimensional support and 

filFi = fiv, i = 1,... ,n. 

This implies that, in this case, the unique essential set is ({Ai n Qivi=l,...,n, and 
Resf (foIFo, .. I, fn\IF.) = Resv(fi , ... , fnv). 

It remains to prove that d% = dv. To begin with, observe that 

MV(F1, . . , Fn) = MV(Qlv ... Qn) = 0, 

due to the fact that the supports lie in a hyperplane, so the Minkowski sum of any 
subfamily of {Fi,... , Fn} does not have positive n-volume. 

In order to compute the other numbers involved in the computation of dy , we 

shall use the recursive relation satisfied by the mixed volume ([Ber, CLO]): 

MVn (Fo, Fl ... , Fl-1, F+l,... , Fn) 

aFo (v') MV' -1 ((F)v, (F-l)v (Fl+l)v,) * *., (Fn)v), 

V' 

the summation being taken over all v' such that Pv' is a facet. Here, MV'1_ ((Fi)v ) 
denotes the normalized mixed volume with respect to the hyperplane v'l C C 

orthogonal to v', and 

aFo (v) := - m (m, v'). 
mEFo 

Using the fact that Fi = Qiv, it turns out that 

MV n-l ((F,l)v, (F_l-l)v (F,+ )v, . , (Fn)v) = 0, 

unless v' = v or v' = -v. Hence, we have that 

MVn (Fo, F~, ... , _-i, F1,..., Fn) 

= (aFo(v) + aFo(-v)) MVW-1 ((Fl)v, (Fl-)v, (Fl+l)v... (Fn)v) 

and therefore, due to the fact that 
n 

deg(Resv) = id MV n-1 ((Fl)v (F-1)v, (F+l)v. .. (Fn)), 

we get that 

d_v = (aFo (v) + aFo (-v)) indv = dv 

as claimed. D 

Corollary 3.13. For every i = 0, 1,..., n, the number of points lying in a shifted 
mixed cell of type i is exactly MV(Qo,... , Qi-, Qi+l,... , Qn)- 

Proof. It is straightforward to check the following equalities: 

degcoefffi.(det(E)) 
= #{non-mixed points of type i}, 

degcoeff f(det(M)) = #{non-mixed points of type i} 

+#{mixed points of type i}. 

[ 
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Remark 3.14. We required bo to be a vertex of Ao just in order to decrease the 
number of secondary cells in the algorithm, but this condition is not used in the 

proof. As an easy consequence, we get that 

If the family {fi}i=o,...,n is essential, then every generic coefficient ci,a of the 

input support appears in ResA(fo, ... , fn) with highest power 

MV(Qo,..., Qi-l, Qi+l,... , Qn) 

Remark 3.15. We have used the lifting algorithm of Canny and Emiris in primary 
cells in order to break ties, but the theorem holds just provided that one can 

recursively construct Sylvester style matrices having nonzero determinant and the 
same degree as the resultant in the coefficients of any fi. This has been already 
noted by Macaulay in the classical case (see [Mac, Section 6a]). 

3.3. Examples. 

3.3.1. The one-dimensional case. Set 

Ao := {0,2,4}, A1 := {4,8}. 

Here, the affine lattice ? equals 2 Z, and the polytope P is the unit segment [0, 1]. 
Set A := , 6:= , and bo := 0. Then, it is straightforward to check that: 

* E= [4+ ,14 + ]n2 : ={6,8,10,12,14}. 
* The points lying in the shifted primary cell are 6, 8 and 10; the other points 

belong to the (unique) shifted secondary cell. 
* There is a unique rule for filling the rows of the matrix M corresponding to 

the points lying in the shifted secondary cell. We have that 

x12 -+ x4fl (mixed), 
x14 - x6fl (mixed). 

* Although there are infinitely many different lifting functions W1l, w over A1 and 

V(Q) = {0, }, they cannot produce more than two different tight coherent 
mixed decomposition of the segment 

5 
[4,8+ ] =Qi +Q. 2 

Explicitly, we get the following cases: 
1. 

x6 H- x6 fo (mixed), 
x8 - x8 fo (mixed), 
x10 - x2 fi (non-mixed), 

which corresponds to liftings which give the same partition as 

1D(4,8) = (0,1), 

W(0,|) = (0,0); 

2. 

x6 x2 fi (non-mixed), 
x8 - x6 fo (mixed), 
x10 -+ x8 fo (mixed), 
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corresponding to 

&1,(4,8) = (0,0), 
C(0 5) = (0,1). 

Observe that both cases give essentially the same matrix; the only difference is that 
the rows are indexed differently. Setting 

(23) 
1 1 (23 fo = a+bx2 +cx4, 

) f dx + ex, 

we get the following matrix: 

a b c 0 
0 a b c 0 

M:= d 0 e 0 0 . 
0 d 0 e 0 
0 0 d 0 e 

The matrix E here consists of the element e which appears in the third row and 
column of M. Expanding the determinant by the last column, we have that 

a b c 0 
0 a b c 

det(M)=e d 0 
e 0b 

Od 0 e 0 d 0 e 

and we can easily see that the determinant of the matrix on the right hand side 

corresponds to the Sylvester resultant for the bivariate family given by (23). 

Remark 3.16. It is not hard to see that, for every bivariate family, every A, bo and 

generic 6, we get a scenario similar to this example. More precisely, the algorithm 
given in the previous section produces the same Sylvester style matrix given by 
Macaulay in [Mac]. 

3.3.2. Let us compute the resultant of Example 2.4. Take A = 1, so Q will be the 
unit square. Set also bo = (0, 0). In this case, L = Z2, the primary cell is equal to 3 
times [0, 1] x [0, 1], and there are two secondary cells, corresponding to the inward 
vectors (-1,0) and (0,-1). 

Setting 6 = (2, ?), we get that ? consists of sixteen points, nine of them lying 
in the shifted primary cell. Explicitly, we have that 

= {(a,b) E 22: 1 <a,b <4}. 

In this case, the facet polynomials {fi,, f2,} can be regarded as two polynomials in 
one variable. So, the rows indexed by points lying in shifted secondary cells may be 
filled in the classical Sylvester style as in the previous example. In order to fill the 
rows corresponding to points lying in the shifted primary cell, we will use the follow- 

ing lifting functions on the ordered sets Ai = V(Q) = {(0, 0), (1, 0) (0, 1) (1, 1)}: 

l= (0,1,1,2); 

-2 = (0,0,7,7); 

-J = (0, 14, 0,14). 

Observe that the lifting functions are actually the restriction of a linear function on 
R2. Using any algorithm for computing convex hulls like the one given by Emiris 
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in [Emi2], we obtain the following description for M: 

row coefficients of cell type 

xIX2 x1x2 fi primary non-mixed 

X22 x2 2 fo primary mixed 

x32 xx2 f primary non-mixed 

XX2 X1X2 f2 primary non-mixed 

2X2 x2x2 f2 primary non-mixed 1 2 x12 

3x2 X3x2fo primary mixed x1 2 1 2xf 
x1x3 X 2 f2 f primary non-mixed 2 2 
X2X3 2 f primary non-mixed 
x 3 22 l -mixed 

X33 X22 primary non-mixed x1 2 1 2f 
x4x3 x3x2 fi (-1,0)-secondary mixed 4X2 X3X2 f (-1, 0) - secondary mixed 42 3 2 

XX2 XX 2 (-1, 0) - secondary non-mixed 
4 x2 x2 f2 (-1, 0) - secondary mixed 

X4 lx3 f2 (0, -1)- secondary mixed 
24 

2 
(o X2 Xx4 3 

f2 (0 -1) -secondary non-mixed 

XlX2 XX f2 (0, -1) - secondary non-mixed 

X4X2 X3X fl (0, 1) - secondary mixed 

Writing fi = ai + biXl + cix2 + dixlx2 and ordering the monomials as in the table, 
we get that 

bi 0 ci di 0 

ao bo 0 co do 

ai bl 0 ci di 

b2 0 C2 d2 0 

a2 b2 0 C2 d2 

0 0 0 0 ao 

0 0 a2 b2 0 

0 0 0 a2 b2 
0 0 0 al bi 

0 0 0 0 ai 

0 0 0 0 a2 

0 a2 0 0 C2 

0 O O O 0 

0 O O O 0 

0 O O O 0 

0 O O O 0 

0 O O O O O O O 0 

0 O O O O O O O 0 

0 O O O O O O O 0 

0 O O O O O O O 0 

0 O O O O O O O 0 

0 0 co do bo 0 0 0 0 

C2 d2 0 0 0 0 0 0 0 

0 C2 d2 0 0 0 0 0 0 

0 Cl di 0 0 0 0 0 0 

0 0 ci di b 0 0 0 0 

0 0 C2 d2 b2 0 0 0 0 

0 0 0 0 d2 b2 0 0 0 

a2 b2 0 0 0 C2 d2 0 

0 a2 b2 0 0 0 0 C2 d2 

0 0 a2 b2 0 0 0 C2 

0 0 al bl 0 0 0 0 C1 

/ ai 
0 
0 

a2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

\ 0 

O 

0 \ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

d2 

di ? di / 
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and 

(a, 0 cl d, 0 0 0 0 0 0 

0 bi 0 c1 0 0 0 0 0 0 

Ia2 0 c2 d2 0 0 0 0 0 0 

E J 0 b2 0 c2 0 0 0 0 0 0 
E O 0 a2 b2 c2 d2 0 0 0 

o 0 a2 0 c2 d2 0 0 0 
o o 0 a, 0 cl di 0 0 0 
o 0 0 0 0 0 c2 b2 0 0 

0 0 0 0 0 a2 62 0 C2 d2 

k 0 0 0 0 0 a2 0 0 c2, 

With the aid of MAPLE, we can check that 

det(M) = ?ReSA(fO, fl, fl) det(IE), 

and that det(IE) factors as 

-c3(-cia2 + aiC2)b2(c1d2 - dlC2)(-b2Cl + biC2). 

In this easy example, one can also check that the leading term of det(M) as a 

polynomial in ao is the determinant of the following matrix: 

(a,b, 0 cl d, 0 00 00 00 0 0 0 
0 a0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 a, bi 0 cl di 0 0 0 0 0 0 0 0 0 0 

a2 b2 0 C2 d2 0 0 0 0 0 0 0 0 0 0 0 
0 a2 62 0 c2 d2 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 a0 0 0 0 0 0 0 0 0 0 0 
0 0 0 a2 b2 0 c2 d2 0 0 0 0 0 0 0 0 

(24) 0 0 0 0 a2 b2 0 c2 d2 0 0 0 0 0 0 0 

0 0 0 0 a, b1 0 cl d, 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 di bi 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 d2 b2 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 d2 b2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 c2 d2 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 c2 d2 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 c2 d2 

\ 00 00000 00 00 0 00 0 c1d1, 

and we can recognize in this matrix the block structure stated in Proposition 3.12. 

Explicitly, we have a 9 x 9 big block coming from the primary cell, and two blocks 

arising from the secondary cells, of sizes 3 x 3 and 4 x 4 respectively. Computing 
the determinant of (24), we get 

-a 2c3(-cia2 + alC2)b2 (-C2d, + d2C1 )2(bid2 - b2di)(C2bi - clb2), 

and we can check that 

det(IE) = c 3(-c1a2 + ajC2)b2(-C2dj + d2 C1)(C2b, - cb) 

and 

Res(o, -1) (ClX2 + dixiX2, C2X2 + d2XlX2) = (-C2dj + d2C), 

Res(-,,O) (blxl + dX1X2, b2X2 + d2XiX2) = (b1d2- b2- 

as expected. 
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3.3.3. We want to compute the sparse resultant of the family 

fo = al + a2I + a3X2, 

(25)~ fl = b1 + b21 + b3x2 + b4x2 + b5xlx2 4+ b6x2, 

f2 = Cl + C2X1 + C3X2 + C412 + C51112 + C6X2 

+C72 + C9X1X2 + C10o2X 

Here, Ai = {(a, b) E N : a + b < i + 1}, i = 0, 1, 2, the lattice ? coincides with 22 
and the polytopes Qi are integer multiples of the standard simplex S2. The sparse 
resultant coincides with the classical resultant of three homogeneous polynomials 
of degrees 1, 2 and 3 respectively, whose affinizations are the fi (see [CLO, Mac]). 

In order to compute this resultant, we set Q := 0 and bo := (0, 0). The primary 
cell equals 5 S2, and there is a unique secondary cell, corresponding to the vector 

(-1,-1). 
Setting 6 := (e,), with 1 > e > 0, we have that ? has 15 monomials, ten of 

them lying in the shifted primary cell. We use the following lifting function, defined 
on the vertices of each Qi, i = 1, 2, ordered as follows: {(0, 0), (k, 0), (0, k)), where 
k = 2,3, and extended to the rest of the points of the input support by linearity: 

C1 = (1, ,1), 

'2 = (1,1,0). 

In this case, the subdivision does not depend on the value of Co, the lifting function 
over the unique vertex of Q. As in the previous examples, the secondary cell will be 
filled in such a way that the facet resultants will be computed using the classical 

Sylvester formula for bivariate polynomials. 
Explicitly, we get 

row coefficients of cell type 

xX 3 
XZX2 fi primary non-mixed 

x1x4 x1x2 f primary non-mixed 2 2 

x2x3 2 f primary non-mixed 

X4X2 X1X2 f2 primary non-mixed 

xx2 x2 f2 (-1, -1) - secondary mixed 

xlx x3x f l (-1,-1) -secondary mixed 
2 4 2 2 fl 2x4 2 2f (-1, -1) - secondary mixed 

x132 32 f (-1, -1) - secondary mixed 
4 2 2 f2 X4X 2 X1 f (-1,-1) - secondary mixed 

X11XX22 f primary mixed 
x1x22 xx2 fo primary mixed 

xx2 xx2 fo primary mixed 
xx2 xX2 fo primary mixed x3x1 xx2 3Ixopmix 

X3x2 X3x2 fo primary mixed 
x12 X12X2 fo2 

XlX2 x2x2 fo primary mixed 2 2 2 primary mixed 
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and, indexing the matrix M using this order, we get 

b6 0 0 0 0 0 0 0 0 b1 b3 2 b5 b4 0 \ 
b3 b6 b5 0 0 0 0 0 0 0 bl 0 b2 0 b4 
0 0 b6 b4 0 0 0 0 0 0 0 bl b3 b2 b5 
C6 Clo C9 C7 0 0 0 0 0 C1 C3 C2 C5 C4 C8 

0 0 C6 C4 C7 0 C10 C9 C8 0 0 C1 C3 C2 C5 

bl b3 b2 0 0 b6 b5 b4 0 0 0 0 0 0 0 

0 0 b3 0 0 0 b6 b5 b4 0 0 0 bl 0 b2 

0 0 0 b2 b4 0 0 b6 b5 0 0 0 0 bl b3 

C3 C6 5 C 0 C0 C9 C8 C7 0 Cl 0 C2 0 C4 

0 0 0 0 0 0 0 0 0 al a3 a2 0 0 0 

a3 0 0 0 0 0 0 0 0 0 al 0 a2 0 0 

0 0 0 0 0 0 0 0 0 0 0 al a3 a2 0 

0 0 0 a2 0 0 0 0 0 0 0 0 0 ai a3 
0 0 0 0 0 0 0 a3 a2 0 0 0 0 0 ai 

\0 0 a3 0 0 0 0 0 0 0 00 ai 0 a2 

In this case, the extraneous factor E is the submatrix made by choosing the first 
four rows and columns of M, and its determinant equals 

b6 (c7 b2 - b4 b6 c9 + b4 b5 co). 

Observe that all points lying in shifted non-mixed cells are actually in the shifted 

primary cell, so there is a priori no significant block structure in this matrix. 

Curiosity: The matrix constructed here is exactly the one given by Canny and 
Emiris in the last section of [CE2] (see also section 3.1.4 of [Emil]) in order to show 

that, in their construction, the extraneous factor is not always the determinant of 
the minor formed by choosing all rows and columns indexed by non-mixed points. 
Of course, they work with another definition of non-mixed cells! 

To be more precise, their algorithm is not recursive. They produce this matrix 

by applying a lifting algorithm to the polytopes Qo, Q1 and Q2 using the linear 
functions lo := 104X1 + 103x2, 11 := 105x1, 12 := 102x + 10x2. By taking the lower 
hull of the lifted polytopes (Qi,li(Qi)), a tight coherent mixed decomposition of 
the Newton polytope Qo + Q1 + Q2 is seen to hold. Using 6 as before, the same 
matrix is constructed but the points lying in the shifted non-mixed cells are in 

correspondence with the monomials 

{XlX3, XlX4, 2x, X5X2}. 

By taking the determinant of the submatrix of M made choosing the rows and 
columns indexed by these monomials, we get b3 c7. 

3.4. An Overview of Macaulay's Classical Formulas. In this section, we will 
see how the formulas given by Macaulay in [Mac] can be recovered with our meth- 
ods. In order to have a notation similar to Macaulay's original paper, we shall deal 
with n generic polynomials in n - 1 variables xl,... , xn-i of total degree less than 
or equal to m1,... , mn respectively. In our terminology, the input supports are 

integer multiples of the standard simplex Sn-1. More precisely, the polynomials 
will be denoted as C1, C2,... , Cn, and 

supp(Ci) = mi Sn-1. 

Actually, Macaulay worked with n homogeneous polynomials in n variables, but it 
turns out that the homogeneous resultant of these polynomials coincides with the 

sparse resultant associated to the supports Ci as in Section 2. 
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Remark 3.17. Setting tn := En(mi- 1), and using the algorithm given by Canny 
and Emiris, it is also possible to recover Macaulay's classical formula in degree 
t = tn + 1. Moreover, the extraneous factor in Macaulay's original formulation is 

exactly the minor formed by using all rows and columns indexed by points lying in 
shifted non-mixed cells which they get with their methods (see [CE2] and [Emil]). 

In section 3 of [Mac], Macaulay constructed a Sylvester style matrix whose de- 
terminant is denoted by D(n,t), for every t C N>o. The matrix has its rows and 
columns indexed by all monomials of total degree less than or equal to t. For every 
t > tn, it turns out that D(n, t) is a nonzero multiple of ResA(Cl,..., Cn), denoted 
in that paper as R(n, t). 2 

His construction is recursive in the following sense: let v be the inward normal 
vector (-1, -1,... ,-1); it is easy to see that 

(26) Clv, C2,,... , Cn-li 

is a family of n - 1 homogeneous polynomials in the variables x 1,... , xn-1, so after 

setting xn-1 equal to one, it may be regarded as a sparse family with support in 

ml Sn-2,m2 Sn-2, ... , rmn-1 Sn-2, 

so D(n - , j) will be the determinant of a Sylvester matrix made with the same 
rules as D(n, j) but with n - 2 variables, using the polynomials (26). 

In section 5 of [Mac], he established the following theorem: 

m n-1 t-mn 

(27) D(n,t) D(n-,t-j) D(n- 1 k), 
R(I, t) R(n - l,t - j) 

- ) 
j=0 k=1 

which is the cornerstone of the main result given in section 6, namely, that R(n, t) 
can be recovered as the quotient of D(n, t) by the minor obtained by omitting all 
rows and columns corresponding to monomials reduced in all the variables. 

Here, a monomial x = x1 ... , xn_1 is said to be reduced if there exists a 

unique i e {1,... , n} such that xmi divides x' xn a. 

Macaulay gave also a recursive structure of the extraneous factor (in his notation, 

A(n, t)) as follows: 

mrn-1 t-mn 

(28) A(n,t) = A(n - l, t - j) HJ D(n - 1, k) 
j=0 k=l 

(see section 6 of [Mac]). 
In order to see this construction in light of the results presented in the previous 

section, extra care must be taken, because Macaulay's construction produces a 
determinant which has the same degree as the resultant in the coefficients of Cn, 
so we shall modify our algorithm in such a way that the role of fo is played by Cn; 
similarly, the role of fl will be played by Cn-i, and so on. 

The polytope P will be the standard simplex Sn-1. Given t > tn, in order to 
define Q, set 

A :=t-tn - 1, 

2For lower values of t, Macaulay also proposed a matrix with similar properties, but not of 

Sylvester type. 
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so Q will be equal to 

(ml + ... m- + X)Sn-i = {(ml,..., rn--1) E in-1 : 0 < mi < t + n - 1}, 

and L = Zn-1. By taking 6 = (e,... , e), with 1 > e > 0, we get that 

E = {(al,.. ,tn-1) E Zn-1 : 1 < ai, ai < t + n--1}. 
i 

Setting 

3 {z- E Nn-1' E/3i 
_ 
t), 

(29) { 
(a1,... , an-) (a- 1,... ,an-- 1), 

we get a bijection between our support and the one used by Macaulay for computing 
the matrix whose determinant is D(n, t). By choosing bo = (0,..., 0), we can check 
that there is only one secondary cell, associated to the vector v, whose v-diameter 
is exactly mn. 

Using lifting functions &1,... ,;n-l, I as in section 8 of [CE2], it is possible 
to get a subdivision of the primary cell such that the points lying in the 0-mixed 
cells are bijectively associated (with the bijection given in (29)) with those reduced 
monomials which are divisible by xmn. Lifting functions with the same properties 
should be used in the recursive steps. 

Now, comparing equations (28) and (22), it is not hard to check that 

mn --1 

H \ (n- 
- 

t- - ]I -I det(E )' 
j=0 i Fv i 

Hence, 

t-mn 

det(EN)= fI D(n-1,k). 
k=l 

4. THE GENERAL CASE 

We will extend here the results of the previous section by assuming only that 
the family {Ai}o<i<n is essential, without any other condition on the supports. 
Observe that this hypothesis ensures that ResA(fo,. . , fn) is nontrivial. 

As before, set 

Qi = conv(.Ai), i = 0,... , n, 

and consider the Minkowski sum Qo+.. .+Qn. As the family of supports is essential, 
this polytope must be n-dimensional. So, ?R = Rn. 

In order to give more generality to our algorithm, let us consider a "generic" 
polytope Q (in a sense which will be determined later, see for instance Remark 

4.4), with vertices in ? 0 Q. The algorithm will produce a Sylvester style matrix 
whose rows and columns will be indexed by the elements of 

(30) ? := (Qo + Q1 +... + Qn + Q) n ?, 

and whose determinant will be a nonzero multiple of the sparse resultant. The 
extraneous factor will be a minor of this matrix. 

As before, the algorithm will be recursive on the dimension of the polytope 

Q := QO + +- + Qn + Q, 
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and in its intermediate steps will use the subdivision technique of Canny and Emiris 

(see [CE1, CE2, Stu2]). 

4.1. Construction of the Sylvester Matrix. Let Q be a polytope as before, 
and let V(Q) cC C ( Q be the set of vertices of Q. 

Let us pick a vertex bo E Ao, and consider the same lifting functions wi, W, 
defined in (4). Consider also 

Qi,Q := conv{(a,wi(a)): a E Ai}, 
Qn := conv{(b,w(b)): b c V(Q)}, 

and the coherent mixed decomposition Ai,n (resp. A&) of the polytopes Qi (resp. 
Q) given by projecting the upper envelope of Qi,q (resp. QQ). 

In the decomposition of Q, each cell is of the form 

F = Fo + F + ... + Fn + F, 

where Fi (resp. F) is a cell in Ai,Q (resp. An). 
Our lifting functions are again mostly trivial. So, we can compute the cells which 

will appear in the subdivision: in Ai1,, ..., An,Q AQ we may have two types of 

cells, as in the previous section. 
The decomposition Ao0, has the following cells: the face determined by (0, -1) 

is just the singleton {bo}, and it is straightforward to check that, for every k > 0, 
every k-dimensional cell in the decomposition is a k-dimensional face of Qo which 
contains {bo}, or the convex hull of bo and a (k - 1)-dimensional face of Qo which 
does not contain this point. We shall denote it by Fo,v, where v is some interior 

primitive normal vector of that face. 

So, all cells in the decomposition of Q are as follows: 

* the primary cell: {bo} + Q1 + ... + Qn + Q. Observe that it always has 
dimension n, due to the fact that the family {Ai}i=o,,...,n is essential. 

* Fo,v + Qlv +... + Qnv + Qv for some v C Rn. Those that are n-dimensional 
will be called secondary, and they will be uniquely determined by their prim- 
itive inward vector v E R . 

As in the previous section, the Sylvester matrix will take into account of whether 
the points lie in the primary cell or not. The first assumption we will make on Q 
is that all points in Q n ? must belong to the interior of a maximal cell (primary 
or secondary). 

4.1.1. Points in the primary cell. Proceed exactly as in 3.1.1: choose generic lifting 
functions D1,... , n, over A1, ... ,An, V(Q) respectively, in such a way that 

they produce a tight coherent mixed decomposition of the Minkowski sum 

Q1 + * . . + Qn + Q 

by taking the upper envelope. Every n-dimensional cell F in the decomposition 
may be obtained as 

F1 + F2 + + ...+Fn + F, 

where Fi is a cell of Ai,, F is a cell of A^, 

n = dim(Fi) + ... + dim(Fn) + dim(F) 

and at least one of these dimensions is zero. 
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The concepts of row content, mixed cells of type 0, and the entries of M whose 
row coordinates are indexed by 

P E ({bo} + Q1 + ... + Qn + Q) n C, 

are defined in the same way as in 3.1.1. 

4.1.2. Points in the secondary cell. Here, we cannot use the recursive step given 
in 3.1.2, so we must proceed with some care. Let v E Rn be the primitive inward 
normal vector of the n-dimensional cell 

(31) v = Fo,v + Qlv +..+ Qnv + Qv. 

Consider the family of polynomials associated to the v-facet 

(32) fiv (x,... ,n) = Ci,aa (i =, ... ,n). 
aEQi vnAi 

We cannot claim now that the family 

(33) {Qiv n A4i)}i<n 

is essential, but certainly there always exists a subfamily of indices 1 < i1 < i2 < 

? . < ik < n such that 

(34) {Qi3 v n Aij 

is essential. It is not always true that (34) is the unique essential subfamily of (33), 
but that there exists at least one. Moreover, we may suppose that this subfamily 
is indexed as follows: 

(35) {Qiv n Ai}<i<k. 

This means that the sparse resultant of the polynomials fiv, f2v, " , fkv with re- 

spect to the supports (35) is nontrivial. We shall denote it as 

(36) Res,(fv,..., fkv). 

In order to mimic the inductive step of the previous section, suppose w.l.o.g. that 
0 E Aiv, i = 1,... , n. Then, we can consider the chain of lattices 

CAlv,+---+AkV C 4Ali-++Ant C Lv, 

and we know that +A1,,+-.+Akv has dimension equal to k - 1. Hence, we have that 

(37) Qlv + Q2v + + Qkv C CAl+...+Ak,, R. 

Set Qv := Fo,v + Qk+lv +. + Qnv + Qv. We have that 

(38) (Fo,v + Q +...+Qnv + Qv)n C= (Ql+... +Qk + v) nC. 

For a sublattice G C ?, its saturation will be denoted by s(G). Consider the orthog- 
onal decomposition C = 

s(LAlv+...+Akv) 0 L'. Every point p E ? may be written 

as p = qj + Pkv + pv, where ql,..., qindv are coset representatives for CA1v+.-+Akv 
in s(?CA1+...+Akv), the number of such cosets is indv, pkv E ?Al+...+AkV, and 

pv E L'. 
As (38) is finite, we can intersect Q, with finitely many rational translates of 

?Av+...+k+AV IR, and get polytopes 

Qv := (mv + CAl+...+Akv IR) n Qv, m = 1 ..., M, 
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such that (38) is equal to the disjoint union of the sets 

(Q1+ -... Qkv + 
Qv) n (Dmv + qj +q AV+-+A. ) 

where m = 1,...,M and j = 1,...,indv. Now, it is easy to see that Qm 

-qj - qmv + Qv is a polytope with vertices in ?.LA+...+Akv 0 So, as in the 

previous section, for every p in (38), there exists a unique m E {1,..., M} such 
that p := p - qmv - qj belongs to 

(39) (Qlv 
+ .. + Qkv + 

O) n lv...++Ak 

Consider also the family 

(40) {fiv (x1,... , )})l<i<k. 

We may now apply the inductive hypothesis to (39) and construct, as in the previous 
section, square matrices M, Qm indexed by the points in (38), whose determinants 

are nonzero multiples of Resv(fiv, ... , fk), each of them with the same degree in 
the coefficients of fli as the resultant. 

As in the primary cell, each of these matrices will have, in the row indexed by 
the point p, the coordinates, in the monomial basis, of the expansion of xp-a fiv(x) 
for some pair (a, i). In order to define the entries of the matrix M, we shall proceed 
as before: the entry indexed by (p, p') wil be the coefficient of xP in the expansion 
of Xp-a fi(x). 

Now that we have the matrix well defined, it remains to decide which points 
lying in secondary cells will be mixed and which not. In order to do this, we shall 

begin with the following definition. 

Definition 4.1. We shall say that the vector v is admissible if there exists a unique 
essential subfamily of (33). 

Recall that Theorem 4.1 in [Stu2] applied to the weight w defined in (13) gives 

init,(Res(fo., fn)) = ? 
1I (Res(f Fo, . * * * fnlFn)) , 

where F ranges over all facets of the coherent mixed decomposition given by w on 

Q := Qo+Q +... + Qn, 

= Fo +... + Fn, 

Fi conv(Ac), Ai C Ai, 

filF, = EaEA' Ci,a Xa 

Res - being the sparse resultant associated with the family of supports (A4, ..., Al), 
and ds being the unique integer such that 

(Res (foF ? . . .,n fn )) 

has total degree E10 MV(Fo,... , F-1, F+1,..., Fn). 

Remark 4.2. Observe that Res 7: 1 if and only if f is associated with an admis- 
sible vector v. 

The integer dl will allow us to "choose" the mixed points as follows: 

* If v is not admissible, then all points lying in Ev n L will be non-mixed. 
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*If v is admissible, then we may choose dj. of the matrices MV,Q made by 

subdividing vF n 1 into sets of the form (39). We will see in Proposition 4.3 
that there are at least this many such matrices. 

- If a point indexes one of the d: matrices Mv,Q and is "mixed" for that 

matrix, then it will be mixed for the matrix M. 
- All the other points lying in T,v n will be non-mixed. 

Again, it is easy to see that, in the case n = 1, we get the classical Sylvester style 
matrices ([Syl, Mac]). 

Proposition 4.3. If v is admissible, then the number of sets of the form (39) is 

greater than or equal to d: . 

Proof of the proposition. It is easy to see that init,(ResA(fo,..., f,)) is actually 
the sparse resultant ResA specialized in the family 

C0,boXbo , fl, ' ' ' fn 

In order to have a nice interpretation of df , we will use Minimair's formula given 

in [Min, Theorem 1] for computing ResA(co,boxbO, fi, *" , fn). First of all, observe 

that the hypothesis of Minimair's theorem is satisfied, due to the fact that the 

family Ao0,... , An is essential. This implies that the unique essential subfamily of 

{bo}, A1,... ,An is {bo}. 

Using this formula, we have that 

ResA(co,bbo0b, fl, ... fn) = Cmoo H Resv(fi) ... ) fik ,)e' 
v 

where the product ranges over all primitive inward normal vectors of the facets of 
the Newton polytope of A1 + .. + An, and 

(41) ev = (aFo(v) + aFo(-v)) [Lv : LA1+...+Anv] ev. 

* Fo is the convex hull of {bo} U Aov. 
* If {Ailv, . AikV} is the unique essential subfamily of {A, v, , Anv,, then 

ev is defined as follows: 
1. Let LA1V+-..+An = S(AAilV+.+Aik ) 0 ?? be the orthogonal decompo- 

sition, and denote by 7r the projection over the second factor. 
2. Define e' := MV (rr(Qiv))i{il ... ,ik}, where MV(') denotes the normal- 

ized mixed volume with respect to L?. 

Now we will prove the proposition. We can suppose w.l.o.g. that Q = 0, because 

adding a polytope to the Minkowski sum cannot decrease the number of sets of the 
form (39). Moreover, we may suppose w.l.o.g. that the unique essential family is 

Alv, '.. ,Akv. 

If v is an admissible vector, then ev and d:v coincide. Following the construction 
of the Sylvester style matrix for the generalized unmixed case (Section 3.1), it turns 
out that Tv n C may be decomposed as a disjoint union of 

(aFo(v) + aFo(-v)) [ : LA1+...+SA] 

sets parallel to Qlv + -* * + Qnv. 
From each of these partitions we may have at least as many subsets of the form 

(39) as there are integer points in 
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It is well-known that the mixed volume of these polytopes may be computed as 
the number of integer points lying in a subset of a displacement of (42) (see for 
instance [Emil, HS]), so e' will be less than or equal to the number of integer points 
in (42). E 

Remark 4.4. The reader can check that the role played by 6 in the previous section 
is played here by the additional polytope Q: at each step of the recursion, we need 
to impose some conditions on the different additional polytopes of lower dimensions 
in order to guarantee that all integer points are in the interior of a cell. It is easy 
to see that this happens for a "generic" polytope. One can set, for instance, 

Q = fixed polytope + 5, 

with 6 generic as in the previous section. 

4.2. Generalized Macaulay Style Formula. What follows may be regarded as 
the main result of this paper, and an extension of Theorem 3.8: 

Theorem 4.5. M is a Sylvester style matrix and det(M) 7 0. Moreover, we have 
the following formula a la Macaulay: 

det (M) = ResA(fo,..., fn) det (E), 

where E is the square submatrix of M made by omitting all rows and columns 
indexed by non-mixed points. 

As E does not contain coefficients of fo, we get again that det (M) has the 
same degree as ResA(fo,... , fn) in the coefficients of fo. Replacing fo with fi, i = 

1,.. , n, we have a formula for computing ResA(fo,..., fn) as the gcd of n + 1 
determinants. 

Proof. The same argument given in the proof of Theorem 3.8 may be applied to 
this situation in order to see that M is a Sylvester style matrix. So, we have that 

ResA(fo,... , fn) divides det (M). 
As before, we shall prove that det(M) is not identically zero by showing that its 

initial term with respect to 
- 

is nonzero. Again we have 

degcoeff(fo) (ResA(fo, .. , fn)) = degcoeff(fo) (det(M)). 

Then, 

det (M) initi (det(M)) 

ResA(fo, ... , fn) initu (ResA(fo, * ?, fn)) 

coeffficient of coo in det(M) 

coefficient of cob in ResA(fo, ., fn) 

We will see that the numerator of this fraction is nonzero and that the ratio is 

det(E) by induction on n. The initial case was already covered in the previous 
section. Suppose n > 1, and let us introduce again a parameter of deformation t: 

fo,w = CO,bobo + 
EaeAi\{bo} Ci,axa 

fi, = fi, i 1. 

Consider the modified matrix M (ci,a twi(a)). For p E ?, let h(p) be the largest 
rational number such that 

(p, h(p)) E QQ = Qo, + Q1,Q + . Q+ Qn,Q + Q. 
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For every p E ?, we shall multiply all the entries in the row indexed by p by 
th(p)-wi(a), where, as usual, (i, a) denotes the row content of p. We shall denote this 
matrix by M'(t). It is not hard to see that the leading coefficient of det(M'(t)) is 

init^(det(M)). 
The following assertions may be proven mutatis mutandis as the results given in 

the previous section: 

Lemma 4.6. It turns out that 

1. 0 < h(p) < 1, for every p E ?. 
2. h(p) = 1 if and only if p belongs to the primary cell. 
3. If p and q both belong to the same secondary cell, say JFv, then 

h(p) = h(q) - (p, v) = (q, v). 

4. If p E Fv n L has row content (i, a) and v' $ IL v, p, > 0, then 

(43) ((p - a, h(p)) + Qi,Q) n QQ(v',l') = 0, Vl' E R<o. 

Proposition 4.7. Let 0 < 71 < Y2 < ... < vYN = 1 be the different values of h(p) 

for p E E. Then, the leading coefficient of det(M'(t)) (regarded as a polynomial in 

t) factors as follows: 

N 

(44) I det (Mj), 
j=1 

where Mj is the square submatrix of M made by choosing all rows and columns 
indexed by those points p such that h(p) = yj. 

This product may be also factored as follows: 

(45) det(MN) J (det(Ml)... det(Md)), 
v 

where 

* the product ranges over all secondary cells Fv, 
* for every v, dv is the number of sets of the form (39) obtained by subdividing 

FFv, and 
* Mi is a matrix of the type Mv, , the latter being defined just after (40). 

By the inductive hypothesis, it turns out that det(Ml) 7 0, , V, i. Using the 
same argument given in the proof of Theorem 3.8, we also get that 

det(MN) = C o det(EN) $ 0. 

Here, EN is the square submatrix of MN made by all those rows and columns 
indexed by non-mixed points. This implies that det(M) 7: 0. Moreover, 

initu det(M) 

= cO det(EN) 1I (det(M )... det(M ')) -C,bo -. . 

(46) FV1 

x I (det(M2)... det(MV2)), 

%V2 

where Fv, ranges over all secondary cells associated to admissible vectors vl, and 

F,v2 over all cells indexed by nonadmissible vectors v2. 
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Choosing all rows and columns of M indexed by non-mixed points, a similar 
version of Proposition 3.12 holds for the matrix E instead of M, and it turns out that 
E will also have a block structure which will allow us to compute its determinant 
as follows: 

dv 

(47) det(E) = det(EN) 17 e det(Elt 1) 11 det(Ml1 ) Jdet(Mi2). 
l i=1 i>d: . '2 i 

From here, the proof of the theorem follows easily, just using Proposition 4.3. O 

Corollary 4.8. For every i = 0, 1,..., n, the number of i-mixed points is exactly 

MV(Qo ... , Qi-l, Qi+l, ...; Qn). 

If the family {4Ai}i=o,...,n is essential, then every coefficient ci,a appears in 

ResA(fo, , fn) 

with highest power MV(Qo,.. .. Qi-1, Qi+l .. Qn). 

Remark 4.9. The same observation given in Remark 3.15 holds also here. 

4.3. Examples. 

Example 4.10. Let us compute the resultant given in Example 2.5. In order to 
do this, we will take bo = (0,0) and Q = {(0, ?)}. Here, = 2. 

The primary cell is Q1 + Q2, and we will have four secondary cells: 

v type 
(2,-1) 2-mixed 

(48) (-1,-2) 1-mixed 

(-1, -1) non-mixed 

(-3,-1) 2-mixed 

In order to subdivide the primary cell, we take cZ1 = (0,0,0) and D2 = (1,1). 
This lifting produces two cells: a copy of Q1, and the unique 0-mixed cell of the 
subdivision. The set ? has 23 points, and we will associate the unique non-mixed 
cell of (48) with f2. With the aid of MAPLE, we have computed M, and obtained the 
result shown in Figure 1. Its determinant equals c4 ResA (f, fl, f2). The extraneous 
factor here is the first principal minor of size 4 x 4. 

Example 4.11. Let us compute the resultant of the same system given in the 

previous example, but now we will take Q as the unit square [0, 1] x [0,1] translated 

by the vector (e, j), with >> e > 0. The initial point bo will again be (0,0). The 

primary cell will now be equal to Q1 + Q2 + Q, and now we will have 6 secondary 
cells: 

v type 

(2,-1) 2-mixed 

(0, -1) non-mixed 

(-1,-2) 1-mixed 

(-1,-1) non-mixed 

(-3, -1) 2-mixed 

(-1, 0) non-mixed 
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Observe now that there are secondary cells associated to normal vectors of Q which 
do not define any facet in Qo + Q1 + Q2. We subdivide the primary cell by taking 

;1(0,0) = 1, iDl(1,2)= 1, i1(2,0)= 0, 
w2(1, 1) = 1, w2(3,0) = 0, 

D(0, 0) = 8, W(1, 0) = 4, &(0, 1) = 4, 5Z(1, 1) = 0. 

If we associate the points lying in the non-mixed secondary cells with fi, the 
matrix M obtained has size 36 x 36 and its determinant equals c3 b6 c3 b2 times the 
resultant. The submatrix E is the following: 

b2 0 0 bl 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 b2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 00 cl 0 0 0 0 C2 0 0 0 0 0 0 0 0 
O 0 0 0 c1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 b2 b3 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 b3 0 0 0 0 bl 0 0 0 0 0 
0 0 b2 0 0 0 0 b3 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 b3 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 cl 0 c2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 C2 0 0 0 0 0 0 
0 O O O O O O O O 0 C2 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 b3 0 0 0 0 
0 0 0 0 0 0 0 0 0 bl 0 0 0 b3 0 0 0 

0 0 0 0 0 0 0 b2 0 0 b1 0 0 0 b3 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b3 0 

0 0 0 0 0 b1 0 0 0 0 0 0 0 0 0 0 b3 

Example 4.12. We shall see in this example that the inequality established in 

Proposition 4.3 may be strict. Consider the following essential family: 

Ao = {(0,0); (1,0); (0, 1); (1, 1)}, 
Al = {(0,0); (1,1)}, 
A2 = {((1,0);(0,1)}. 

Denote the generic polynomials having those supports as follows: 

fo = a + a2x+ a3y + a4xy, 
fl = blx + b2y, 

f2 = cl + c2xy. 

Taking bo = (0,0), with 3 > e > 0, and Q as the triangle with vertices (0,0), 

(1, 0), (1, 1) shifted by (e, 3), we get: 
* The primary cell is Qi + Q2 + Q. 
* There are five secondary cells, associated with the following inward vectors: 

(1,-1), (0,-1), (-1,-1), (-1,0) and (-1, 1). 
* (F 1,-)) n Z2 has two points, while an explicit computation reveals that 

d~ -, =1. 

In this case, (Y(1_1)) nZ2 is subdivided into two smaller cells, each of them contains 

exactly one point, and either or both of the two points may be chosen as mixed. If 
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we take 5i, i = 1, 2, always equal to 2, & always equal to 0, and apply the algorithm 

given in ?4.1, we will get the following 13 x 13 matrix: 

C2 0 0 0 0 0 0 0 0 0 0 Cl 0 

0 C2 0 0 0 0 0 0 0 0 0 0 C 

b2 0 bl 0 0 0 0 0 0 0 0 0 0 

O 0 0 bl 0 0 0 0 0 0 0 b2 0 

M= 0 bl 0 0 0 0 b2 0 0 0 0 0 0 

Cl 0 0 0 0 0 0 0 C2 0 0 0 0 
0 C1 0 0 0 0 0 0 0 C2 0 0 0 

0 b2 0 0 0 0 0 0 0 0 bl 0 0 

a4 a2 0 0 0 0 as 0 0 0 0 al 0 

0 a4 0 a2 0 0 0 O 0 0 0 3 al 

We have ordered the rows and columns of M in such a way that the monomials 

lying in ( n(1i_1)) n Z2 index rows and columns 7 and 8. All the other non-mixed 

points index the first six rows and columns of M. An explicit computation reveals 
that 

det(M) = b2 c2 b ResA(fo, fi, 2), 

and it is straightforward to check that, in this case, b2C2b4 may be obtained by 

taking the principal minor of size 7 x 7, or computing the minor indexed by the 
monomials lying in the first six rows and monomial number eight. 
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