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Abstract
High dimensional predictive models of Major Adverse Cardiac Events (MACE), which includes heart attack (AMI), stroke,

and death caused by cardiovascular disease (CVD), were built using four longitudinal cohorts of Veterans Administration
(VA) patients created from VA medical records. We considered 247 variables / risk factors measured across 7.5 years
for millions of patients in order to compare predictions for the first reported MACE event using six distinct modelling
methodologies. The best-performing methodology varied across the four cohorts. Model coefficients related to disease
pathophysiology and treatment were relatively constant across cohorts, while coefficients dependent upon the confounding
variables of age and healthcare utilization varied considerably across cohorts. In particular, models trained on a retrospective
case-control (Rcc) cohort (where controls are matched to cases by date of birth cohort and overall level of healthcare
utilization) emphasize variables describing pathophysiology and treatment, while predictions based on the cohort of all active
patients at the start of 2017 (C-17) rely much more on age and variables reflecting healthcare utilization. In consequence,
directly using an Rcc-trained model to evaluate the C-17 cohort resulted in poor performance (C-statistic = 0.65). However,
a simple reoptimization of model dependence on age, demographics, and five other variables improved the C-statistic to
0.74, nearly matching the 0.76 obtained on C-17 by a C-17-trained model. Dependence of MACE risk on biomarkers for
hypertension, cholesterol, diabetes, body mass index, and renal function in our models was consistent with the literature.
At the same time, including medications and procedures provided important indications of both disease severity and the
level of treatment. More detailed study designs will be required to disentangle these effects.

Introduction
Cardiovascular disease (CVD) is implicated in ∼ 25% of deaths, both in the US [2] and worldwide, where it was responsible for
18.6 million deaths in 2019 [65]. Epidemiological studies of CVD consistently find that risk is associated with non-modifiable
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risk factors such as age and sex, with biomarkers for low-density lipoprotein (LDL) cholesterol, hypertension, and diabetes, and
modifiable risk factors such as obesity, smoking, and lack of physical activity [81, 16, 33, 26, 65]. However, there is substantial
heterogeneity in how these risk factors impact patients’ morbidity and mortality. The co-occurrence and interdependence of
many of these pathophysiological CVD risk factors is defined as a metabolic syndrome [22]. A better understanding of the
impact of diverse risk factors in CVD will have important implications, given the large number of associated clinical issues
and healthcare burden [41].

Advances in artificial intelligence (AI) have led to a variety of applications in analyses of electronic medical records (EMR)
[69], with detailed neural network architectures proposed to capture the logic of EMR analysis [61]. In recent years, several
studies have assessed the value of AI in predicting outcomes for chronic diseases. Singh et al.[70] predicted deterioration of
renal function in a cohort of 6,435 patients with a variety of longitudinal AI models, concluding that longitudinal, multi-task
predictors showed great promise, yet they emphasized that the details of problem formulation significantly impacted results.
Zhao, et al. [82] compared multiple AI techniques applied to several data sets in analyses of 109,490 CVD patients, and
concluded there was minimal accuracy improvement with the AI techniques, but some benefit to larger sets of predictor
variables, compared to the American College of Cardiology (ACC) and the American Heart Association (AHA) guidelines.
[33]. Steele, et al. [73] predicted coronary artery disease mortality in a cohort of 80,000 patients, concluding that AI models
worked well without imputation, that random forest models did not outperform Cox models, and that variable selection
techniques could identify important, novel, predictors in a data driven manner.

Many of the challenges in making practical use of AI for medical outcomes prediction could be anticipated from the general
difficulties associated with deep learning methodologies, as described by Marcus [51]. In particular, these methods are data
hungry, opaque to feature importance, difficult to integrate with prior knowledge, and work poorly with hierarchical structures.
They also assume stable relationships among variables and thus do not support robust engineering. Sculley, et al. [68] argued
that these aspects of deep learning models lead to substantial hidden costs in deploying deep learning solutions to practical
problems, as they are brittle and often need to be re-trained with fairly innocuous changes in details of the input data stream.

The need for robustness in solving medical outcomes problems has led to a variety of detailed comparisons of logistic
regression, Kaplan-Meier analysis, and Cox proportional hazard models [23, 16, 55]. Notably, the critique that retrospective
studies are intrinsically less reliable than randomized, controlled trials may depend significantly on our ability to define
predictor variables in a way that minimizes bias [10, 9]. Another difficulty with traditional regression models is that they
often neglect to incorporate known interaction terms, creating misleading associations with an outcome [78]. Thus, it is
important to assess not only the calibration and subgroup performance of predictive models, as described in Ref. [40], but
also to construct models in a more generalized way to be applicable beyond the specific study design and population used to
create the models [39]. Note that there are several classes of methods used to probe the determinants of classification in deep
learning, as reviewed in Ref. [46]; we confine ourselves here to interpretation of logistic regression coefficients.

In this work, we predict MACE events in millions of veterans based on analyses of hundreds of longitudinal, hand-curated
variables from the VA electronic medical records (EMRs) describing demographics, diagnoses, laboratory results, medications,
and treatments, with 7.5 years of predictor variables and follow-up of up to 15 years. We begin by describing the selection,
cleaning, and encoding of data in our chosen study designs, which include both retrospective case-control (Rcc) and prospective
designs. This is followed by characterization of model accuracy for several prediction methodologies, including Cox models and
interval prediction with logistic regression and LASSO model selection, as well as three machine learning (ML) approaches - a
simple neural network (Nnet), a neural network with an attention scheme (Tabnet), and a random forest (RF). Included in our
analyses is the transfer learning across study designs, based on a re-optimization of selected variables to account for specific
differences among the study designs. For the case of logistic regression on Rcc, we examine in some detail predictor variables
relating to disease pathophysiology. Finally, we compare model coefficients for Rcc and the cohort of all active patients at the
start of 2017 (C-17), analyze associations of Rcc model variables with individual components of our combined outcome, and
examine the dependence of selected variables on two key confounding variables, age and the level of healthcare utilization.

Methods

MACE outcomes and study designs
Our outcome (and its time) was defined as the first recorded instance (and that time) of any one of three types of MACE
(Major Adverse Cardiac Events): acute myocardial infarction (AMI), ischemic stroke, and ASCVD death. For AMI and stroke,
we used International Classification of Diseases (ICD-9 and ICD-10) codes from inpatient and outpatient records, and hospital
service fees. For ASCVD death, we linked our patient data to the underlying cause of death in the National Death Index
(NDI) database. For AMI, both 410.x (acute myocardial infarction) and 412.x (old myocardial infarction) were used for ICD-9
codes, while I21.x (acute myocardial infarction), and I22.x, and I25.2 (old myocardial infractions) were used for ICD-10. For
stroke, 433.[012389]1 (occlusion and stenosis of cerebral arteries, with infarction, where square brackets indicate any of the
enclosed digits can be matched) and 434.91 (occlusion of cerebral arteries with unspecified infarction) were used for ICD-9
codes, while I63.x (cerebral infarction) were used for ICD-10. In addition to the AMI and stroke conditions, the cause of
death file was searched for any I25, (chronic ischemic heart disease), Z95.1 (presence of aortocoronary bypass graft), and
Z98.61 (presence of coronary angioplasty implant and graft) codes.
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We define ’time of prediction’ as the date when prediction of a given outcome, which occurs later, is made. For all study
designs (see Figure 1), any record of the above-defined outcomes prior to the time of prediction resulted in exclusion of the
patient as either a case or a control. We analyzed four cohorts of patients each with its own additional criteria. For the Rcc
cohort, the ’time of prediction’ was required to be after July 1, 2007. For the LDL decision support (LDL-DS) cohort, at least
one cholesterol lab reported in the 3 yrs prior to July 1, 2010 was required, and the time of prediction was one week after the
first such result. Similarly, for the visit decision support (Visit-DS) cohort, at least one outpatient visit was required in the 3
yrs prior to July 1, 2010, and the time of prediction was one week after the first such visit. Finally, for the C-17 cohort, at
least one inpatient or outpatient visit was required in the three months prior to the ’time of prediction’, which was January 1,
2017 for all patients in this cohort.

Additionally for all designs: 1) we required a date of birth post-January 1, 1901 and a registration with the VA by Jan 1,
2022, when the data tables were created, and 2) we included a 4-6 week gap between the ’time of prediction’ and the time
of the first ’allowed’ outcome, in order to minimize predictor variables from ’leaking’ information from the very same visit
defining the outcome. A very small number (dozens) of patients were excluded on the basis of failed self-consistency checks,
such as recorded dates of death in the future, perhaps resulting from inconsistent information when patients registered at
multiple VA Medical Centers.

Our Rcc design used as cases all first MACE events occurring between Aug 15th, 2007 and Jan 1st, 2022, and prediction
was made with data spanning 7.5 years before the event. Controls were selected by randomly choosing visits of patients
among non-cases during the same time period as the matching outcome event and from the same date of birth cohort. This
study design allows the greatest amount of information (both chronic and acute) to be used, utilizes all of the available cases,
removes age as a confounding variable, and balances overall healthcare utilization between cases and controls, potentially
providing more insight into physiology and mechanism of disease. In this study design, we have 1 million cases and 1 million
controls (Figure 1). For matching in the Rcc cohort, two criteria were used. First, controls were chosen from within one of 100
equally sized and time ordered date-of-birth cohorts of roughly 230,000 patients each. Second, in order to balance the average
healthcare utilization of controls and cases, controls were chosen randomly among visits of patients who were not excluded or
cases. This approach increases the likelihood of a patient being chosen as a control in proportion to the number of its visits.

Our second study design, LDL-DS, was designed as a time to event model with an opportunity for at least 12.5 years of
follow up, and the time of prediction set one week after LDL cholesterol labs were obtained. The LDL labs were required to
be obtained during the three year period from July 1, 2007 to July 1, 2010. No matching of cases to controls occurred, so
there were approximately 40% as many cases, but nearly twice the controls as in Rcc. Our third study design, Visit-DS was
similar to LDL-DS, but required only a visit, rather than an LDL lab. Consequently, there were nearly twice as many of both
cases and controls, compared to LDL-DS.

Finally, we created a calendar study design, C-17, that predicted MACE events on January 1, 2017 for the five year interval
after February 8, 2017, for patients with a visit during the three month period before the time of prediction. This design
has the lowest fraction of cases (5.7%) but reflects a recent sampling of patients utilizing the VHA system, and we analyzed
it, together with Rcc, in most detail. To simplify the calculation and improve the machine learning model performance, we
down-sampled the controls by a factor of four, computed randomly within each date-of-birth cohort. This kept the enrichment
of cases in our actual predictive model calculations within a factor of two of each other (from 24% to 50%), which is helpful
when comparing results between models.

Our predictor variables include patient age, gender, race, ethnicity, and 243 time-dependent, binary variables, which
include vitals signs, lab results, diagnosis, procedure codes, and pharmacy fills data. For age, gender, race, and ethnicity,
many patients were queried multiple times. In this case, the most frequent (mode) of the answers was retained. Gender was
encoded as "male" (reference) and "not male". Race was encoded as Black or African American or "not" (reference), and
ethnicity was encoded as Hispanic (reference) or "not".

Our time-dependent predictor variables came from a number of data domains, including demographics, ICD-9 and ICD-10
diagnosis codes, medication generic names, procedure codes (Current Procedural Terminology - CPT), vital signs, hospital
resources utilized (stop codes) and laboratory results. The time dependence was organized backwards from the time of
prediction in adjacent periods two each of 3 months, 6 months, 1 year, and 2 years, for a total of 7.5 years of data, as illustrated
in Figure 1. This was in an effort to balance the need for parsimony against the desire for acute information while retaining
7.5 years of data. We refer to these periods as the time windows of data collection.

Medications, procedures, and diagnoses

The drugs and drug categories for: antidepressants, stimulants, opioid-for-pain, estradiol, levothyroxine, ezetimibe, bile acid
sequestrants (BAS), aspirin, warfarin, and metformin were defined by searching the "DrugNameWithoutDose" field for a list
of words or word stems, and manually checking the output for relevance. The statins were mapped into low, medium, and
high intensity based on the drug name and dosage following Grundy et al.[34]. Cardiovascular drugs and diabetes drugs were
identified by using the "VADrugClassification" scheme, such as HS502 for oral hypoglycemic agents, HS501 for insulin, and
most of the categories of CV drugs: CV050 for digitalis glycosides, CV150 for alpha blockers, CV200 for calcium channel
blockers, etc. The VA drug classification scheme can be found online at, for example, [77]. We also created a category "Any
Drug" simply matching any of the list of all products distributed by the pharmacy, including non-drug products such as
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Figure 1: The four study designs used in this work. (top left) The retrospective case-control (Rcc) study aggregates predictor
variables in eight time windows of data collection, ranging from 45 days to 7.5 years prior to a MACE outcome. The outcome
is either a first recorded MACE event after August 15, 2007 and before January 1, 2022 (cases) or a visit chosen randomly
from a list of visits during that time period from the same date-of-birth cohort (controls). Patients with a recorded MACE
event prior to August 15, 2007 were excluded from being either cases or controls. (right) Two prospective cohorts were
defined for time-to-event (Cox) models to mimic decision support conditions. For both, the time of prediction was defined to
be one week after, respectively, the first return of a LDL cholesterol measurement (LDL-DS) or the first visit for any purpose
(Visit-DS), occurring between July 1, 2007 and July 1, 2010. Follow up was until January 1, 2022. Predictor variables were
aggregated into 8 time windows spanning 7.5 years before the time of prediction in a manner identical to that used for Rcc.
(bottom left) Our C-17 cohort was defined with calendar dates, with all patients with a visit between October 1, 2016
and January 1, 2017, and no previous MACE event, included. The prediction was made on January 1, 2017, and predictor
variables were aggregated into time windows as in the other cohorts. Details of the study designs are provided in the Methods
section and attributes of the study populations are provided throughout the Results section.
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lancets. A spreadsheet with the most common medications comprising each group is provided in the SI. Medications were
recorded as present in each time window of data collection if one or more instance were recorded and absent if none of the
medications included for each variable was present.

Procedure codes were selected from among the most prevalent inpatient and outpatient CPT codes identified as pertinent
to CVD, grouped manually by inspection, and included EKG12 (9300, 9305, 93010, and 93225), rEKG (93040, 93041, and
93272), doppler (93307, 93320, and 93325), dialysis (90935, 90937, 90999, 90989, 36145, and 36489), stress test (9301[5678]
and 93350), artery scan (93875, 93880, and 9392[2346]), veinous study (93965, and 9397[0610]), ESRD service (9092[15]), left
heart catheter (93510), coronary angiography (93539, 9354[035], and 9355[56]), pacemaker (9373[123]), cardiac rehabilitation
(9379[78]), lung capacity test (93720), blood pressure monitoring (93784 and 93790), stent (92980), and defibrilator (93741),
where square brackets indicate any of the enclosed digits can be matched. Procedure codes were recorded as present in each
time window of data collection if one or more instances were recorded and absent if none of the codes included for each
variable was noted.

Variables defined from ICD-9 and ICD-10 codes were adapted from a list provided by the VA Office of Mental Health and
Suicide Prevention, following from definitions used in Ref. [52]. Diagnosis codes were collected from inpatient, outpatient, and
fee-for-service tables. ICD-9 and ICD-10 codes were lumped together, with letters for ICD-9 codes (used before October 1,
2015) changed to lower case and all search terms required to match from the first character in the field. For example, using
this process, alcohol use disorder is characterized by the variable alcdx_poss and matches any of ICD-9 codes starting with
291, 303, and 305.0 and ICD-10 codes starting with F10. Variables are sometimes overlapping in the codes they use and
were included with the idea that Lasso model selection would identify the best overall for the MACE prediction problem. An
important aspect is that variable definitions should ideally be consistent over time, including the ICD-9 to ICD-10 changeover
in 2015, and also through the yearly revisions of the coding manuals. To this end, we plotted histograms (see the SI) of
Dx-based variables together with the number of occurrences of the most prevalent component variables for a 3% sampling of
representative aged patients. This allowed verification that there was consistent reporting through time, and we attempted to
harmonize the definitions as much as possible, but a certain degree of confounding is likely to occur. Diagnosis-based variables
were recorded as present in each time window of data collection if one or more instances were recorded and absent if none of
the codes included for each variable was noted.

Vital signs and laboratory data

Vital signs were taken from both inpatient and outpatient visits, and included systolic and diastolic blood pressure, weight,
pulse, respiration rate, oxygen saturation and self-reported pain (scale from 1 to 10). Laboratory results were collected from
the "LabChemTestResultNumeric" field. For each of these variables, the median reported value was computed for each patient
during each of the eight time windows of data collection. For all vital signs except pain, and all laboratory results, values were
imputed for time windows without recorded values by first carrying values forward in time to replace NAs, then backwards in
time to replace any remaining NAs. The reasoning is that recorded values are observations of a continuous process; as such the
most recent observation should be used in the case of missing information. By contrast, reported pain, diagnoses, procedures,
and medications are considered events, and the presumption is that when they are not noted it is because they did not occur.
Weight was transformed into BMI using the median height for each patient, computed from all recorded measurements of
height for each individual patient, and any values below 10 or above 100 were discarded.

Laboratory results and vital signs were binned according to standard clinical nomenclature and referenced to the ’normal’
category. Note that lack of measurement is included as an ’NA’ category, which is potentially informative. Specifically,
BMI (kg/m2) was classified as (i) underweight if < 18.5, (ii) overweight if > 25 and < 30, and (iii) obese if > 30, with the
reference state, ’normal’, being between 18.5 and 25. Similarly, for systolic blood pressure (mmHg), (i) hypotension is < 90,
(ii) elevated blood pressure is between 130 and 140, (iii) hypertension 1 is between 130 and 140, and (iv) hypertension 2 is
greater than 140; with the reference state, ’normal’, between 90 and 130. A similar process was used for the other vital signs.
Pulse pressure was computed by subtracting reported median diastolic from reported median systolic, for a given time period.
Because of the way results were carried forwards and backwards across time bins, patients in the NA category will have NA
recorded for all eight time windows of data collection.

Laboratory results in the VA medical records are assigned an unique identifier ("LabChemTestSID"), along with a location
("sta3n") and sample type ("topology") codes. On the basis of these fields, we have established lists of identifiers associated
with 100 of the most common laboratory result types, and we selected a subset of these labs for use as MACE predictor
variables. Laboratory results were processed in a similar manner to vital signs, except that all labs had an NA category
included, so a patient not identified as NA, high, or low is a patient whose median result for that time window is within the
normal range for that lab result. Second, histograms of median results across patients were inspected for each laboratory
result type, and cutoff values were identified as likely separating values using other than those expected; values outside the
’reasonable’ range were assigned to the NA category, as with missing results. For the case of creatinine, values >10 were divided
by 88.2, to convert from µmol/L to g/dL before out of range values were identified, and the standard gender-dependent and
race-dependent formula was used to convert to eGFR. If both eGFR and creatinine were reported in a given time interval, the
eGFR value was used. For hemoglobin levels and red blood cell counts, distinct mappings between values and categories were
used for men and women, with 11-12 g/dL assigned ’low’ for men, and 10-11 g/dL assigned ’low’ for women for hemoglobin
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level, and the ’normal’ range for RBC was between 4.5 and 5.5 for men and 3.8 and 4.8 for women. For differential WBC, no
attempt was made to process absolute measures of WBC categories; if values were not in the range expected for percentage,
they were assigned to the NA category.

Prediction methodologies
Six different modeling algorithms were used to predict the occurrence of a MACE event over the time window of prediction,
given the 7.5 years of medical history of the patients before the time of prediction. The algorithms used are i) a AHA/PCE
[33] like equation for baseline, ii) logistic regression (GLM) [13, 23] with LASSO [76] penalty for model selection [17], iii)
random forests (RF) [5], iv) a fully connected (vanilla) neural network (NN) [20, 35, 53] with 3 hidden layers, v) a transformer
based neural network (TabNet) [4], and vi) a Cox model [12].

We recreated the American Heart Association’s Pooled Cohort Equations [33] (AHA-PCE) prediction model by matching
each of the predictor variables in that model, as best as possible, with the variables in our data set containing the 247
predictor variables. Demographics information were taken as is from our data. Information on the cholesterol level was
extracted from the HDL cholesterol, LDL cholesterol, and total cholesterol variables and encoded as present if it was present
in any of the eight time bins for the three variables. For smoking, the Nicdx variable which includes the diagnosis codes
for nicotine use (ICD9 305.1, and ICD10 F12.2 and Z72.0) was used. Blood pressure information was extracted from the
hypotension, elevated blood pressure, hypertension_1 and hypertension_2 variables. To encode whether or not a patient is on
blood pressure medications, a combination of ace-inhibitors, angiotensin receptor blockers, anti-anginals, alpha blockers, beta
blockers, calcium channel blockers, loop diuretics, thiazide diuretics, and potassium sparing diuretics variables was used and
encoded as a yes if the patient was on any of these medications in any of the eight time bins. To encode whether a patient
had diabetes, a combination of diagnosis of diabetes, labs that show elevated glucose, or hemoglobin A1C greater than 7%,
and prescription of insulin or other diabetes drugs such as sensitizers, metformin, or thiazolidinediones was used.

For all methods except Cox, the problem was formulated as an interval prediction problem with a binary outcome. This
design was applied to the Rcc and C-17 cohorts, and analyzed with AHA/PCE-like model and logistic regression, as well as
machine learning algorithms - random forest, simple fully connected neural network, and TabNet. The logistic regression
model was tuned with the Lasso penalty to enable model selection of the predictor variables. For random forest, we used 500
trees, the square root of the number of input features for the number of features to consider for the best split, and require a
minimum of 100 samples at a leaf node. The fully connected neural networks had 3 hidden layers with 1024, 512, and 256
neurons respectively and ReLu non-linearity [27]. For Tabnet, the Pytorch implementation was used [19] with default settings
for the hyperparameters, including 8 for the width of the decision prediction layer, 8 for the width of attention embedding, 3
for number of steps in the architecture, and 1.3 for gamma, which is the coefficient for feature reusage in the masks.

For Cox models, the study was formulated as a time-to-event problem. The LDL-DS and Visit-DS cohorts were analyzed
with a Cox regression time-to-event approach. To facilitate comparison with the predictions of the other algorithms, after
fitting the Cox models, they were evaluated as interval prediction at the indicated times-to-event. The LDL-DS and Visit-DS
cohorts were also analyzed with AHA/PCE-like model by formulating them as an interval prediction problem. We calculated
c-statistics (or area under the receiver operating characteristic - ROC - curve) to compare the different models and study
designs. As part of this comparison, we evaluated the c-statistic both with the trained model used directly on each study
design, and with a version of the trained model ’re-optimized’ by computing a logistic regression (GLM) model on a subset of
variables, including the model score described, together with Gender, Race, Ethnicity, Age, Age2, Pain > 0, AnyDrug, HbA1c
> 9%, DEMENTIA, and EH HYPERTENSION.

For all study designs and methodologies, we use half of the cases and controls to train the model, and the other half to
evaluate it.

Results
Table 1 compares subject characteristics across the four cohorts of patients we created. Motivation and detailed descriptions
for each are provided in the Methods section and Figure 1. We have between 210,084 and 1,078,498 cases across study designs
(top row). Because statistical power was not an issue with our large numbers of cases and controls, and because several of the
prediction methodologies perform better with balanced data sets, we down-sampled the cohorts for calculation, as indicated in
the bottom row of Table 1. As is common in the VA Healthcare system, females, African-Americans and Hispanics have age
distributions that differ from the overall average, which is dominated by white males. Details characterizing these distributions
and the raw breakdown of cases across sub-outcomes (AMI, stroke, and ASCVD death) and demographics are provided in the
table.
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Rcc LDL-DS Visit-DS C-17
Control Cases Control Cases Control Cases Control Cases

Total 1,648,330 1,078,498 (39.6%) 2,340,480 391,803 (14.3%) 3,585,628 548,554 (13.2%) 3,491,024 210,084 (5.7%)
AMI 519,225 186,274 255,752 109,284

Stroke 440,035 166,278 241,672 92,514
ASCVD death 119,238 38,058 51,120 8,286

Female 98,263 35,713 (26.7%) 183,353 12,900 (6.6%) 222,540 15,817 (6.6%) 384,516 9,045 (2.1%)
Black 264,330 163,829 (38.3%) 368,813 66,450 (15.3%) 511,674 87,694 (14.6%) 629,516 40,916 (6.1%)
Hispanic 133,052 48,670 (36.2%) 133,052 22,673 (14.6%) 175,052 25,684 (12.8%) 56,892 11,818 (4.9% )
Age (median) 69.3 69.8 60.1 63.1 62.7 64.6 64.2 69.2

Female 58.9 61.2 47.8 55.3 49.4 56.8 49.4 60.1
Black 63.7 64.7 53.9 59.0 55.5 60.5 58.1 65.2

Hispanic 66.8 69.3 57.6 64.0 58.5 64.3 56.7 69.2
Youngest quartile 56.1 56.9 42.2 47.7 44.8 50.4 40.2 47.9

Oldest quartile 84.9 85.2 79.6 79.0 81.0 80.5 79.9 80.1
Computed dataset 1,000,000 1,000,000 (50%) 1,568,000 386,658 (19.8%) 1,001,838 331,691 (24.9%) 872,756 210,084 (19.4%)

Table 1: Selected characteristics of each of the four study populations, broken down by cases and controls. The first row
provides the total number of cases and controls in each study, together with the percentage of cases in each group, which drops
from 39.6 % in the enriched Rcc study, to the 5.7% in C-17, which has only 5 years of followup. The next 3 rows provides the
breakdown of the combined MACE outcome into AMI, stroke and ASCVD death. The breakdown of component outcomes is
roughly 48:42:10 for all studies except C-17, which only has 4% ASCVD deaths, because our NDI data reporting ends after
only 2 of the 5 years of followup, at the end of 2018. Below this are case and control breakdowns for three important and
overlapping subgroups, females, Blacks, and Hispanics. From the reported percentage with MACE events for each group, we
see that women have a much lower rate of events than overall and than each of the other subgroups. Some of this difference is
determined by the age distribution, which are characterized in the bottom portion of the table.

Model Scores
Figure 2 and Table S1 present c-statistics for models trained with eleven combinations of prediction methodology and study
design, and evaluated on the four study designs: Rcc, C-17, LDL-DS, and Visit-DS, as described in Table 1 and Methods.
Figure 2 characterizes the discrimination power (c-statistic) of our predictive models. Each of the four panels shows scores for
the evaluation test cohort indicated below the panel, but with models trained with eleven different combinations of study
design and prediction methodology, as represented (and indicated) by each bar. The left most bar (green) has the lowest
score in each panel, corresponding to our baseline AHA-PCE-like model trained on the panel’s test cohort. Next we present
four different prediction methods - GLM, NN, RF, and TabNet - trained on Rcc; the Cox model trained on the LDL-DS
and Visit-DS cohorts; and the same four prediction methods trained on the C-17 study design. Additionally, each model,
with the exception of the AHA-PCE-like, was also ’re-optimized’ on the study cohort being evaluated in each panel, with the
improvement in score shown in red. The ’re-optimization’ algorithm is based on a logistic regression with a subset of variables
and the original model scores (see Methods).

The scores for the pooled cohort equation (AHA-PCE-like) models vary considerably across the four study cohorts with
the lowest score for Rcc cohort (∼ 0.58) and highest score (∼ 0.71) for the C-17 cohort. The low score for the Rcc cohort,
which is loosely age-matched, may indicate the important role of age in the AHA-PCE-like equations. At the other extreme,
the AHA-PCE-like equations, with their eight variables, performed nearly as well in C-17 as the re-optimized Visit-DS Cox
model, with its 243 longitudinal variables.

Also notable is that the models trained on the three unmatched, prospective, cohorts performed equally poorly (∼0.55)
when evaluated against the Rcc cohort, and substantially worse than the Rcc-trained models (all > 0.68). Even after
re-optimization, their c-statistic was only 0.65. In contrast, models trained on the Rcc design are relatively good at predicting
the C-17 cohort, with losses of only ∼ 2%, after re-optimization (red bars on top right panel of Figure 2), compared to
C-17-trained models.

The two lower panels show model prediction scores re-optimized to 10-year interval predictions, in LDL-DS and Visit-DS
cohorts. The LDL-DS cohort had a requirement of LDL lab data, rather than simply a visit, as is the case of Visit-DS.
Eliminating the patients without the laboratory results produced better-performing models not only for evaluation on LDL-DS,
but also Visit-DS (compare LDL-Cox to Visit-Cox bars in the lower right panel). Also striking is how much better the Cox
models performed on LDL-DS than the interval prediction models.
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Figure 2: C-statistics for MACE prediction evaluated on each of the four study cohorts from Table 1, as indicated below each
of the four panels. Models were trained on eleven prediction methodologies-study cohort combinations, as indicated with
labels on each bar. The leftmost bar in each of the four graphs (green) indicates the c-statistic for our baseline model, the
AHA-PCE-like model trained and evaluated on the indicated evaluation cohort. For the other ten bars in each group, the blue
color represents the initial score of model with the indicated training and evaluation cohorts, while the red color represents
the improved c-statistic when the model is re-optimized for the evaluation study cohort, as described in detail in the Methods
section.
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Model calibration in selected subgroups of patients
While c-statistics are commonly used to evaluate predictive models in medical outcomes analysis, they incompletely characterize
model performance; calibration curves can provide additional insights [11]. Figure 3 shows calibration curves for four of our
model calculations. In the calibration curves, the x-axis shows the model score and the y-axis is the observed probability of
a MACE event, evaluated over different subsets of patients. In a well-calibrated model, all of the curves are given by the
function shown as a solid black line in the figure (top row). In each of the four top panels, the black dots show the calibration
curve for all of the patients in our test set (1M for Rcc, 0.5M for C-17), with symbol size proportional to the number of
patients at each score. In the lower panels, we provide normalized histograms of the distribution across model scores, centered
around a score of zero, which corresponds to a 50% probability of a MACE event. For all panels, colored dots represent the
calibration curve and score histograms for distinct subgroups of patients, as defined in the figure legend and caption.

The calibration curves in Figure 3 show results from four model calculations drawn from two cohorts of patients. In the
leftmost panel of the figure, we present the simple neural network model (NN) trained and evaluated on the Rcc cohort of
patients. Although most patients have predicted risks near 50%, as expected for a balanced data set, subgroups of patients
are accurately placed at probabilities ranging from 5% to 95% probability of having a MACE event, and the curves for stage 2
hypertension, CAD, and HbA1c ≥ 9 also show excellent calibration (i.e., they follow the black solid line). Histograms of risk
in the lower left panel show the model is able to identify high risk patients better than low risk. The sharp spikes in the
histogram correspond to the risk scores for patients with only demographic information recorded; since Rcc is date-of-birth
matched, the age-dependent risk does not spread these patients into distinct risk groups. The rightward displacement of the
colored curves relative to black (for all patients) reflects the increased MACE probability associated with each of the defined
subgroups.

For the other three panels, we compare the calibration of predictions from three different methodologies on the C-17
cohort, which includes 19.4% cases. As expected, the median probability of MACE event is now 19.4%, with the histograms of
scores shifted to the left. Our baseline, AHA-PCE-like model (second column from the left in the figure), is unable to identify
patients with MACE risk above 50%, and systematically under-estimates risk for patients with CAD and HbA1c ≥ 9, as
expected for a model trained only on a few basic biomarkers. The third column shows our GLM trained on the Rcc cohort,
then re-optimized for and evaluated in the C-17 cohort. The c-statistic improved by 3 percentage points, patients with MACE
probabilities are accurately identified up to 60%, and the subgroups are much better-calibrated, although the risk for the
low end risk of the CAD subgroup has their risk underestimated. As with the AHA-PCE model (second column), the risk
histograms are all smooth, but in GLM model (third column), the increased risk associated with a CAD diagnosis and high
HbA1c levels is clearly visible. The final model shown, a neural network model trained and evaluated on C-17 cohort, has the
highest c-statistic (0.76), and it is also better calibrated across all the subgroups we analysed.

Figure 3: Calibration curves (top) and normalized histograms of scores (bottom) for all patients (black) and three subgroups
of patients, defined by the presence of stage 2 hypertension (red), a diagnosis of coronary artery disease (green), and at least
one time window with a median hemoglobin A1c ≥ 9% (blue). Symbol areas (top panels) are scaled to be proportional to
the fraction of patients in each histogram with the indicated score. At the left are results from Rcc using the simple neural
network, Second from the left to far right are results evaluated on the C-17 cohort, but trained in three different ways. First is
our AHA-PCE-like model, next are results from our GLM re-optimized model, and at the far right are results from a neural
network trained and evaluated on the C-17 data set. Neural network output probabilities, Pr, were transformed with the logit
functionn, log(pr/(1− pr)), before histograms were made, in order to facilitate comparison with logistic regression outputs.
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It is important to characterize model calibration for two reasons. First to verify that the model is accurately evaluating
risk for particular variables, such as the risk factors shown in Figure 3. Second, to see that risk for important subgroups
of patients is not systematically biased, which we address in supplementary information for gender, race, and ethnicity in
Figure S3, age in Figure S4, and several subgroups which may impact healthcare utilization patterns in Figure S5. The most
striking feature of Figure S3 is that all of the models are well calibrated across all four subgroups, and that females have
significantly lower risk, even in the date-of-birth matched Rcc study. The pattern of spikes in the histograms of the Rcc neural
net calculation suggest an interaction term between sex and healthcare utilization, but we do not attempt to disentangle this
further in the present work. Careful examination of the curves show a small group (∼ 5%) of Blacks and Hispanics moved
from medium (-0.8) to high (+0.8) risk, with a much smaller fraction in the age- and healthcare utilization-matched Rcc
study. While the coefficient for Blacks in C-17 indicates a 14% higher MACE risk, that for Hispanics did not emerge through
model selection.

Figure S4 breaks down the risk distribution by age for the four models. The three panels for the C-17 cohort all show
relatively small differences for patients above age 60, and a one to two unit reduction in MACE score for the younger age
groups. Reassuringly, the Rcc study, matched on date of birth, is able to accurately reproduce the lack of age dependence (see
the histogram in the first column of Fig. S4), with good calibration throughout the risk curve. A systematic broadening of
the width of the risk distributions for the younger age groups is evident, and the increased amplitude at low risk for the <50
group may be explained by the increased representation of females.

Figure S5 shows the risk distribution for four subgroups with distinct healthcare utilization patterns: those with diagnoses
of homelessness, a mental health diagnosis, dementia, and a diagnosis of alcohol use disorder. The two regression models
(second and third columns in the figure) is noticeably less well calibrated for every subgroup, with the largest difference for
homelessness. The similarity of the score histograms in these subgroups to those for age, in Figure S4, is evident with the
expected correlation of dementia in the > 80 and homelessness in the < 50 categories. Inspection of Table S2 also shows
an association of homelessness with treatment: in the Rcc cohort, the 6.6% of patients with a homelessness diagnosis code
reported have a 30% greater chance (than overall) of HbA1c > 9.0%, but a 10% lower chance of being prescribed insulin
sensitizers. Whatever the origin of the relationship, it is evident that the NNet models are much better able to capture the
relationship.

Model Coefficients
Predictive model coefficients can provide insights into the correlates of MACE events, but we are faced with the question: which
of the 84 calculations explored in Figure 2, or the four calculations described in detail in Figure 3 will be most informative?
Model discrimination, presented in Table S1 and calibration curves and subgroup analyses presented in Figures 3 and S3 -
S5 provide some guidance. We choose to focus on the GLM predictions using the Rcc study design because it maximizes
the number of cases, averages over the past fifteen years, utilizes acute information for every case, and uses matching to
minimize the impact of the confounding variables of age and level of healthcare utilization. We choose to examine the logistic
regression calculation despite the substantial improvement in accuracy attainable with the other ML methods because the
model assumptions of logistic regression are broadly understood.

We divide the predictor variables into two Figures. Figure 4 shows the coefficients for variables pertaining to metabolic
syndrome, with laboratory results, diagnoses, and medication variables grouped together for each condition. In these stacked
bar charts, the red colors at the base of each bar indicate the contribution to the coefficient of that variable for a time closer
to the MACE event or control visit, over the 7.5 years of time of data collection corresponding to the redder shades in the
arrow of Figure 1. In the bottom panel of Figure 4, the bars have a width proportional to the number of MACE cases with the
given variable. Together with the detailed information provided in Table S2, and Figure S2, we can begin to understand much
more about each predictor’s influence on MACE outcomes. We divide the variables pertaining to metabolic syndrome into
four physiologically-related groups: BMI, hypertension and pulse rate, electrolytes and renal function, and lipids and diabetes.

BMI

Although BMI is a well-established risk factor for CVD [81, 16, 33, 26, 65], obesity is protective as a model coefficient (bars
pointing down), whether characterized as a diagnosis code (EH_OBESITY; 278.0 or E66.x) or a vital sign, where overweight
is defined as a median BMI between 25 and 30 kg/m2, while for obese, the median BMI is > 30.0 kg/m2. Although the
coefficient for the Dx-code based variable is more than double that from the vital signs, it is important to recall from the
Methods section that vital signs were imputed across time bins while the Dx-code based variables were not. This has the
effect of increasing the impact of vital-sign-based coefficients in comparison to Dx- or medication-based. The widths in the
bottom panel of Figure 4 are proportional to the number of patients with the code appearing at least once, and each time bin
contributes separately.

Examination of the first few rows of Table S2 shows that BMI-related coefficients are much smaller (-0.08) for the C-17
study design, but also that the protective effect is not simply due to correlation with other risk factors, as the simple ratio of
%cases/%controls also shows a protective effect. The dependence of raw percentage in Rcc and C-17 is evident in Figure S2 to
be quite similar, at 32% and 41%, respectively. Also for both study designs, 85% of the patients with a Dx code for obesity
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Figure 4: Stacked bar plots of our GLM model coefficients related to metabolic syndrome, from the Rcc cohort. (Top) Model
coefficients, with the eight time windows of data collection stacked, with those proximal to the event at the base and colored
red, while distal predictors (out to 7.5 years) are in bluer colors, corresponding to those shown in the arrow of Figure 1.
Upward bars are predictive of a MACE event while downward bars indicate protection. Not shown are the reference categories
for each lab and vital sign, which are taken to be the normal ranges. For most labs, lab_NA is included as a category
indicating the patient did not have available data. (Bottom) The same data as at the top, but with the width of each bar
proportional to the fraction of MACE cases in each category. The y-axis at left indicates the score resulting from the GLM
model, and is in the range +/- 0.4 for most of the variables shown. Analogous plots for C-17, LDL-DS, and Visit-DS, can be
found in Supplemental Figures S6, S7 and S8

have at least one record of BMI > 30, while 60% of those with a BMI > 30 have a diagnosis code of obesity.

Hypertension and pulse rate

Stage 2 hypertension, defined as having a median systolic blood pressure measurement during a given time window greater
than 140 mmHg, is one of the strongest MACE risk factors (Fig. 4), with a coefficient of 0.43 in Rcc and 0.53 in C-17 (Table
S2), and a prevalence of 59% (Figure S2). Although the diagnostic code for stage 1 hypertension affects nearly as many
people, its coefficient is neutral in Rcc and much smaller in C-19, at 0.15.

Each of the major classes of blood pressure medications are themselves strong and independent predictors of MACE events.
Examination of the joint probability distributions in Figure S2 shows, however, that the likelihood of having a recorded
pharmacy fill for blood pressure medications is only 30% elevated in subjects with stage 2 hypertension, perhaps indicating
that the medications are effective in reducing blood pressure below 140 mmHg. While less prevalent than beta blockers,
antianginal medications are both stronger MACE predictors and more acute (higher contribution of the dark red shaded area
at the bottom of the bar in Fig. 4).

High pulse rate and pulse pressure are both predictive of MACE events, although high pulse pressure is only a strong
predictor at higher levels (≥ 90 mmHg), where it is present in only 6.5% of patients.

Electrolytes and renal function

Electrolyte imbalances, especially low sodium, potassium, and chloride are present in only a few percent of patients, but have
coefficients in the 0.14-0.23 range in the Rcc study. High bicarbonate levels, which are associated with acid-base imbalance,
are much more prevalent than the other imbalances and slightly protective.

Declining renal function, in each of three categories of eGFR between 60 and 15 ml/min/1.73m2 of body surface area,
is acutely predictive of MACE events. The 30% of patients with eGFR < 60 ml/min/1.73m2 are 15% more likely to have
stage 2 hypertension. From Figure S2, we see that they are also 50% more likely than the average patient to be taking first
generation beta blockers.
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Lipid metabolism and diabetes

Low values of HDL (<40 mg/dL), high values of LDL (>130 mg/dL), high values of triglycerides (>200 mg/dL), and taking
high intensity statins are all predictive of MACE events, with model coefficients of 0.1-0.2 and 5% to 25% of patients in each
group. High intensity statin usage is 30% to 50% higher in patients with high LDL and triglycerides, compared to average,
similar to the level of enrichment to that of a CAD diagnosis. The predictive value of the cholesterol labs is quite similar
across study designs.

The contribution of diabetes risk to MACE events is multi-factorial and indicated by multiple diagnostic codes, laboratory
results, and medications. Similar to the other categories of MACE risk factors, recently diagnosed diabetes and recently
started diabetes treatments are protective, while abnormal laboratory results are predictive of poor outcome, with the highest
levels (e.g., HbA1c) showing the strongest predictive coefficient.

As with the discussion of BMI, it is important to realize that laboratory results are imputed across all eight time bins,
in contrast to both medications and diagnosis codes, which are only ’present’ in time bins where they are reported. For
diabetes, medication usage is acutely protective, while laboratory results are distal predictors of MACE events, with Dx codes
in between. The protective nature of diagnoses and medications presumably indicates that attention is being paid to the
condition, while the predictive nature of the laboratory results is because of their ability to more accurately indicate the
severity of disease. For example, both Rcc and C-17 cohorts exhibit a much stronger risk for MACE when HbA1c ≥ 9%
compared to lower values, similar to the highest category of glucose (>150 mg/dL) versus (125-150 mg/dL). When aggregated
to indicate the top 16% of patients in terms of diabetes severity, HbA1c is about 20% more potent of a risk factor than glucose.

Other predictors

Figure 5 is constructed in a manner similar to Figure 4, but characterizes predictor variables not directly related to the
pathophysiology of metabolic syndrome, including specific CVD conditions and procedures, medications, mental health
conditions, injuries and other laboratory assays. The strongest predictors in this figure are diagnoses of CAD or chest pains,
with coefficients of 1.03 and 0.59, respectively. The most protective variable is a measure of healthcare utilization patterns:
whether the patient had taken any drug during the 7.5 years prior to the time of prediction.

Analysis of complete blood counts (CBC) identified a number of statistically associations with MACE outcome, including
liver enzymes, platelets, elevated white blood cell (WBC) counts, reb blood cell (RBC) counts, and red cell distribution width
(RDW). These conditions are statistically significant, but comprise a much smaller population-attributable risk than the other
variables discussed, and we consider them no further in this work.

Several mental health conditions correlate with MACE outcomes, and are generally protective. This may be because CVD
and mental health care are two of the largest categories of VA care, and since we are not comparing to healthy controls,
mental health is protective against MACE events. A notable contrast is nicotine dependence, which is strongly predictive
of MACE events with a coefficient of ∼0.4 in all study designs, and with a prevalence > 20% in Rcc (see Table S2). A
diagnosis of alcohol use disorder is protective (-0.33 in Rcc and neutral in C-17). While nicotine addiction is a well-known risk
factor for MACE events, further investigation is required to understand whether the behavioral health codes are indicative
of pathophysiology or healthcare utilization patterns. Aspirin is strongly predictive, presumably because it is prescribed to
at-risk patients.

Comparison across study designs, sub-outcomes, and confounders
While Figure 4 reproduces a variety of known risk factors with consistency across study designs, Figure 5 highlights the
importance of predictors that are indicative of other effects, such as healthcare utilization patterns, age, or missingness of
information. In order to better-understand these effects, we characterize how the results of models with our 247 variables
depends on study design, components of our combined MACE outcome, and two confounding variables, age and healthcare
utilization.

Dependence on study design

The Rcc and C-17 study designs differ in many important aspects, with the most notable being the year-of-birth matching and
enrichment of controls with healthcare utilization performed in the Rcc study. But they also differ in a variety of subgroup
compositions, the time-period over which predictor variables are collected (i.e., always 7.5 years, but at different times prior
to event in the two studies), the level of missingness of certain data types, and the relative importance of CVD onset vs.
progression.

Figure 6 compares coefficients from the Rcc and C-17 study designs, with vital signs and laboratory results highlighted in
the left panel and demographics, diagnoses, medications, and treatments highlighted in the right panel. In general, the vital
sign and laboratory result predictors related to the pathophysiology as discussed with Figure 4 are highly correlated between
the two study designs. This pattern includes important predictors such as stage two hypertension, HbA1c > 9%, and glucose
> 150 mg/dl, as well as protective lab values for red cell distribution width (RDW), the liver enzyme ALT, and bicarbonate,
and not having had a troponin test performed. Also evident in Figure 6 are a handful of variables that behave quite differently
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Figure 5: Stacked bar plots of GLM model coefficients related to CVD disease progression, comorbidities, mental health,
complete blood count, and selected items from differential white blood counts, from the Rcc cohort. Panels and color-scheme
for bars are as defined in Figure 4, except that the y-axis scale spans a broader range, to accommodate CAD and patients who
have taken any drug. Analogous plots for LDL-DS, Visit-DS, and C-17 can be found in Supplemental Figures S6, S7 and S8

in the two study designs, such as reporting a non-zero level of pain (Pain gt 0), or not having had a reported respiration
rate (RR_NA). We also observe a predominantly protective behavior from not having had laboratory results or vital signs
measured at all during the 7.5 year window of prediction variables (green symbols). This may be due to the confounding effect
that patients who utilize VA healthcare to a greater effect are more likely to have their AMI or stroke recorded, although a
correlation caused by healthier patients not having heart attacks or CVD-related labs measured would produce a similar effect.

The right panel shows the same plot type, but for demographics, diagnoses, medications, and other treatments. It has an
expanded scale, compared to the laboratory results, with generally good correlation between study designs, especially for
the strong diagnosis-based (orange symbols) predictors of coronary artery disease (CAD), chest pains, nicotine dependency,
peripheral vascular disease, and somewhat oddly, severe adverse effects from falls (SAE Falls). Notable exceptions to this
trend include a diagnosis code for homelessness, alcohol and substance use disorders, and obesity. Women are protected from
MACE events in both study designs, although more so in the Rcc than C-17. Medications are also correlated, but with much
less dispersion than Dx codes.

Another clear effect that is visible in both panels of Figure 6 are groups of related codes with the same sign, but differing
values of coefficients. Apparently, the models are grouping sets of partially overlapping parallel predictors in order to optimize
overall scale. A variety of effects will contribute to this, such as differing statistical power of the study designs due to the
enrichment of cases in Rcc (50%) compared to C-17 (19.4%), differing levels of disease severity, treatment patterns, and
missingness between the two study designs. One large difference not visible in Figure 6 is the importance of age as a covariate
in C-17, while it was matched for Rcc.

Dependence on components of MACE outcome

Another important comparative metric to help understand the predictor variables is their level of enrichment in each component
of our combined outcome. This is shown in Figure 7, using the Rcc study design and the same color scheme as in Figure 6. In
this figure, we have plotted the level of enrichment of every variable for AMI vs. stroke on the left panel, and ASCVD death
vs. AMI or stroke on the right. Enrichment is calculated as described in the figure caption.

Most variables lie along the diagonal, and are equally enriched in both outcomes. Most clear among them are the large
number of laboratory and vital sign metrics not being recorded (green symbols) that are 40% enriched in both AMI and
stroke, and 3-fold enriched in ASCVD deaths, compared to the average patient. It is useful to compare this to the coefficients,
where these missing variables are protective. It must be noted that patients missing one lab are often missing others, and so
this discrepancy between uni-variate associations and model coefficients should be expected. It means the model is using the
profile of missing information (labs, vitals, and medications) to implicitly model types of healthcare utilization.

Variables plotted above the diagonal in the left panel are enriched in AMI sub-outcomes, and include high troponin and
BNP levels, diagnoses of CAD, heart failure, renal failure, and prescriptions for antianginals, beta blockers, and antiarrhythmics.
In contrast, the symbols below the diagonal are enriched in stroke, and include a diagnosis of traumatic bran injury, female
gender, Black race, low potassium, HDL between 40 and 60 mg/dl, and diagnoses with dementia or Parkinsons.

The Figure 7 right panel is more complex, and is dominated by the differing levels of enrichment for the different modalities
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Figure 6: Comparison of GLM model coefficients between Rcc and C-17 study designs. The x-axis indicates the coefficient in
the C-17 model, the y-axis indicates the coefficient in the Rcc study design, the symbol area is proportional to the number
of cases with each attribute, and the color code as indicated in the legend. The left panel highlights variables associated
with vital signs and laboratory results, while the right panel highlights demographics, diagnoses, medications, and other
treatments. Variables of non-highlighted categories are provide in black, with reduced size, and selected variables are labeled.
GLM coefficients and other information for all four study designs are provided in the SI. Horizontal and vertical axes and a
line of slope one through the origin are provided for reference.

of data (different colored symbols) in ASCVD death compared to AMI or stroke. Missing labs are enriched in ASCVD death,
while specific treatments, such as venous studies or EKGs (the tight cluster of yellow symbols at coordinates 1.2,0.6) are
more enriched in AMI and stroke. Labs, diagnoses, and medications are generally in lines of slope one, at different levels of
enrichment in ASCVD death, with medications most enriched and specific lab results least. This result is concordant with
expectation if one assumes an important, confounding, reporting bias that the Dx-code based outcomes (AMI and stroke) are
more likely to be identified in patients with a greater degree of VA care, while ASCVD death, which is reported through the
CDC’s National Death Index, is independent of VA utilization except for a matching to patient registration records.

Dependence on confounders

Figure 8 compares the behavior for each component of our MACE outcome to that of selected variables as a function of age
(left) and a metric of healthcare utilization (right). While they are not the only confounding variables in the analyses, they do
represent the two quantities that were matched in the Rcc study, but not in C-17. Examination of these cases will provide
insight into the complexity involved in interpreting the large number of predictor variable.

The three components of our outcome are shown as fractions of each age group from 30 to 100 years old, in red in the
top left panel. Both AMI and stroke increase exponentially from 0.5% to nearly 10% of the patients as their age at time of
prediction increases from 30 to 60 years of age. Above age 60, the fraction of patients having an event in the next five years
stays nearly constant at 10%. In contrast, the ASCVD death steadily increases from 0.5% at age 60 to 5% by age 100. As
described above, the relevant difference is that AMI and stroke are both reported as diagnosis codes in the VA medical record,
while ASCVD death is obtained through the information on death certificates, reported through the CDC’s National Death
Index, and then matched to identities of VA patients. As such, it may reflect the impact of reporting differences on outcome
determination.

Stage 2 hypertension, defined by a median systolic blood pressure above 140 mmHg in a time window, increases from
20% at age 30 to 50% by age 60. Obesity, defined as a median BMI ≥ 30 kg/m2 during a time window, increases to a peak
of nearly 50% at age 50, then starting at age 70 the prevalence decreases steadily to about 7% by age 100. Uncomplicated
diabetes, defined as a diagnosis code, increases from 1.5% at age 30 to a peak of 45% at just over age 70, then decreases in
prevalence. High LDL cholesterol (> 130 mg/dL) peaks at age 47, then decreases above that, presumably because of increased
statin usage.

The age-dependence of the relative risk four these four factors can be seen in the middle panel, where we present the risk
ratio for MACE (defined as the MACE prevalence within each subgroup to the MACE prevalence across all patients) in the
C-17 cohort. The strongest relative risk is in the younger diabetic patients, with those under 45 years of age experiencing
more than 2-fold elevated MACE risk. With stage 2 hypertension in those under 45, the risk is 5̃0% greater compared to
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Figure 7: Association of each predictor variable with (left) AMI on the y-axis and stroke on the x-axis, and (right) ASCVD
death on the y-axis and AMI + stroke on the x-axis, for the Rcc study design. The color code and symbol sizes are the same
as in Figure 6. Note that these are not model coefficients, but the fraction of patients with the indicated suboutcome divided
by the number of controls, for each variable, compared to that quantity for all patients. Vertical and horizontal axes and a
line of slope one through the origin are provided for reference.

those without this diagnosis, while obesity and high cholesterol each confer approximately 20% greater risk. The increased
risk associated with these risk factors, other than diabetes, is further augmented above age 70, with obesity showing a strong
increase above age 90.

The right panel in Figure 8 compares the incidence of the three components of our MACE outcome to a measure of
healthcare utilization, as described in the caption. The incidence of AMI and stroke increases in proportion to the number of
recorded variables. This could be due to either a greater amount of healthcare associated with MACE patients or a greater
likelihood of identifying people who use the VA healthcare system regularly. This effect can be disambiguated. First, we
see that among patients with more than 30 positive variables (1.5 on the x-axis) there are approximately 2-fold more heart
attacks than strokes, although both are defined by Dx codes. Second, the NDI-associated ASCVD deaths (not including
patients with a recorded AMI or stroke) also increases with increasing healthcare utilization, although with a smaller slope.

In black are shown the incidence of any mental health diagnosis, alcohol use disorder, and the prescription of antidepressants.
All have a similar slope to AMI, except that the curve for any mental health diagnosis saturates at about 50 Dx codes. The
middle panel shows healthcare utilization in terms of lack of laboratory results, vital signs, and the prescription of any drug.
Our models are able to use this set of variables to correct for healthcare utilization patterns in a complex manner. The bottom
panel shows a histogram, which is a bumpy because of the binning noise of low counts on the log scale, but otherwise well
behaved, with good signal all the way across.

Discussion
The pathophysiology of CVD progresses throughout a person’s lifetime and the prevalence of clinical CVD has greatly increased
in recent years, now accounting for 32% of deaths worldwide [29]. We have attempted to improve CVD prediction in this work
by assembling high dimensional longitudinal data sets with carefully encoded predictor variables and millions of veterans
in four cohorts with distinct study designs. Our analyses then predicted MACE outcomes with both linear and non-linear
models. Our analyses provided statistical power to constrain 243 longitudinal and four demographic variables with any of our
prediction methodologies. As with recent work by Zhou [82] and Steele [73], our high dimensional models outperformed our
implementation of an AHA-PCE-like model in both discrimination and calibration. Attempts to compare accuracy metrics
across published studies, however, are complicated because each study typically makes distinct choices in study populations,
choices in variables, their curation, and their encoding, exclusion criteria, and missingness of information [67].

In this paper, we systematically consider our predictor variables, results for measures of disease severity, confounding
variables of age and healthcare utilization, co-morbidities, and indicators of patient behavior. We finally assess the effectiveness
of interventions, both in terms of included variables and analysis methodologies.
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Figure 8: Characterization of two confounding variables for the C-17 cohort: age (left) and an aggregated measure of healthcare
utilization (right). The top left panel shows on a logarithmic scale the age dependence of the fraction of each component
of our combined outcome (in red), and variables representative of each of four risk factor groups, hypertension, diabetes,
obesity, and high LDL cholesterol. The middle left panel compares the age dependent relative risk for MACE for each of the
above subgroups vs. the overall C-17 cohort. The bottom left panel is a histogram of total number of patients in each age
group. The top right panel shows the fraction of each indicated subgroup on a logarithmic scale as a function of an aggregated
measure of healthcare utilization for each component of our combined outcome (in red) and for three behavioral healthcare
usage metrics (in black). The middle right panel is similar, but shows the number of patients not receiving the indicated
laboratory, vital sign, and pharmacy usage. The bottom right panel shows a histogram of the number of patients at each
level of healthcare utilization. Our healthcare utilization metric (x-axis, right panel) was computed by summing the number
of diagnosis code present over the 47 distinct diagnosis variables across each of the 8 time windows of data collection, for a
maximum possible score of 376 (each bin is encoded as presence / absence, or 0/1). We placed the x-axis on a log10 scale, for
which the histogram peaks at 1.3, or 20 codes present.
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Predictor variables
We included several modalities of data: laboratory results and vital signs, diagnoses, treatments, and demographics. These
domains of data include markers of CVD severity, age, demographics, and patterns of healthcare utilization. For laboratory
results, diagnosis codes, and treatments, we included most CVD-specific measures as well as a variety of other commonly used
codes. Using the language of Ref. [62], we modeled a wide range of covariates and now compare results to studies that exclude,
randomize, stratify, or match on most of the conditions. This allows us to compare subsets of our model coefficients to specific
studies exploring a subset of variables. Our linear coefficients, however, are extrapolated from a baseline of real-world levels of
comorbidities and treatments, as much as the VA population reflects real-world conditions.

Although we used LASSO model selection [76] as an objective way to control the dimensionality of our fit, our goal
was not simply to develop a parsimonious predictive model or an exploratory search for novel predictors as in Ref. [1], but
to understand the relative importance of a large number of interpretable variables. Known CVD risk factors include both
behaviors (tobacco use, diet, and physical inactivity) and metabolic measures (lipid levels, hypertension, obesity, and diabetes
mellitus) [29]. The importance of these risk factors has been established in numerous studies, such as those containing current
treatment guidance [33]. Unfortunately, it is difficult to isolate these risk factors from other elements of study design, such as
missingness of data, confounding variables, and composition of the study population [9]. Additional challenges arise in CVD
prediction because the pathophysiology of the several important metabolic risk factors are intertwined with one another and
have been labeled ’metabolic syndrome’, with origins in obesity, inflammation, and insulin resistance [21]. In this situation,
not only it is important to carefully define a study design with appropriate predictor variables [14], but also to recognize that
missing interaction terms can introduce spurious relationships in linear models [71].

To facilitate the comparison of model coefficients across data types, we encoded all variables except age as binary (zero-one)
variables. For laboratory results, it is helpful to define a spanning, non-overlapping set of categories, including NA as a
distinct category. We did this using standard ranges for low, normal, and above normal categories. Collins et al. [8] showed
accuracy improvements of only a few patients per thousand for continuous variables over 3 or 4 categories, so we chose the
improved interpretability, decreased sensitivity to outliers, and ability to relate directly to terms used in standards of care.
ICD billing codes are used by the VA to capture patient diagnoses, and the potential problems in directly using them to
characterize a state of health have been outlined [75] and assessed [57]. The changeover in the US from ICD9 to ICD10
systems on October 1, 2015 further complicates their use [49]. To account for these difficulties, we utilized an extensive set of
derived Dx-based variables that had already been harmonized across the ICD9/ICD10 changeover, from McCarthy, et al. [52],
and updated them according to our own analyses needs. For medications, we simply grouped medications according to the VA
Drug Classification System.

Another important aspect of variable definition in time-dependent studies is the treatment of time periods and missing
data. Laboratory results and vital signs (except pain) were treated as observations, and carried forward, then backwards,
across the time windows of data collection for a given patient. All diagnosis-based, procedure, and medication data were
treated as events, in that absence of a record was treated as absence of the variable. Clearly, this is more appropriate for, e.g.,
overdoses or an insulin fill than for a diagnosis of uncomplicated diabetes.

Risk profiles
Our curation and harmonization of the laboratory results enables us to understand the relative likelihood of MACE events for
different levels of a range of laboratory results, and to compare the importance of abnormal labs and vital signs across a
breadth of risk factors. Our Rcc study design matches on birth year and level of healthcare utilization, and we also control for
other healthcare utilization patterns, some behaviors and varying levels of treatment. It is reasonable to compare our Rcc
models to previous outcomes analysis to constrain potential pathophysiological mechanism for each of the lab/vital sign based
predictors, and we begin with that process across the range of risk factors. Many risk factors are independent predictors of
comparable amplitude, and we grouped them in Figure 4 for the metabolic variables and in Figure 5 for variables relating to
disease progression and mental health conditions.

Lipid metabolism includes measures of HDL cholesterol, LDL cholesterol, total cholesterol, and triglycerides, and is
reviewed in the context of CVD in Reference [72]. Elevated LDL cholesterol is a major cause of heart disease, causing both
atherosclerosis and inflammation. We observe a steady increase of MACE risk with greater LDL concentrations, and even
a slight decrease in risk from below-normal LDL levels. HDL particles promote cholesterol efflux and reduce inflammation.
HDL metabolism is more complex, with lower MACE risk associated with high HDL levels, as long as both triglycerides and
LDL cholesterol are not elevated. As seen in Figure 4, very high levels of HDL cholesterol are predictive of MACE events,
as reported by others [47]. Two studies carefully examined the probability of MACE outcomes on lipid levels [48, 47] and
comparison of their Figure 1 to our coefficients characterizing lipid dependence shows striking agreement on the non-linear
(U-shaped) effect of HDL and LDL on MACE outcomes. As we found, elevated triglycerides were also linked to elevated
atherosclerotic cardiovascular disease risk [34, 72].

Hypertension has long been known to be among the important CVD risk factors, with the stresses on the arteries causing
a similar type of damage to atherosclerosis, but in a complementary manner [37]. It is a stronger risk factor in younger adults
and the risk rises steeply for those with a systolic blood pressure of >140 mmHg (stage 2 hypertension) [42], as we saw in
Figures 4 and 8. While systolic blood pressure continues to increase with age, diastolic tends to decrease, and our observation
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of high pulse pressure being an independent MACE predictor is consistent with the literature [18]. We found that hypotension,
although present only in a small minority of patients, was also a strong predictor of MACE events. This observation has
been controversial for some time, especially in terms of aggressiveness of therapy to reduce high blood pressure [50, 79]. A
meta-analysis by Bohm et al [6] showed that a target blood pressure of 120–130 mm Hg systolic and 70–80 mm Hg diastolic is
associated with the lowest rate of CVD events. We also observed a high pulse/heart rate to be independently predictive of
MACE events, in agreement with Ref. [74], although we did not observe elevated risk for low heart rates.

Decreased renal function, measured by reduced eGFR and increased urinary albumin-to-creatinine ratio were shown
to be independent predictors of MACE events in type-2 diabetics in the ADVANCE study with a 2.2 hazard ratio for
cardiovascular events for every halving of eGFR [56]. As seen in Figure 4, reduced eGFR is an acute MACE predictor and
MACE risk increases at eGFR levels of 60 and below. Although our coefficients in Figure 4 were small (0.1-0.2), 44% of the
patients in Rcc with an eGFR between 45 and 60 also had a diagnosis of CAD, with a model coefficient of 1.0. A follow-up
retrospective study by Currie, et al. [15] reported that the MACE risk for a given level of eGFR was 2.4-4.6 times higher in the
presence of type-2 diabetes. The importance of understanding the interdependencies of risk factors is evident in meta-analyses
of cardiovascular outcome trials with SGLT-2 inhibitors to reduce CVD events and mortality [31, 32]. Understanding these is
even more important in type-2 diabetes patients with impaired renal function, where reductions ranging from 7% to 20%
beyond standard of care were achieved, but the relevant differences among trials was still unclear [31, 32].

Electrolyte imbalances are present in only a few percent of the participants in Rcc, but their model coefficients are as
large as the other predictors we have discussed, with low sodium, potassium, magnesium, and chloride predictive of MACE
events and low calcium levels protective. Low sodium [64] and potassium and magnesium [43] levels are associated with
poor outcomes in CVD patients. Community prevalence and the distinct risk factors of the various electrolyte disorders are
discussed in Ref. [45]. Numerous classes of medications are available to treat hypertension, and electrolyte imbalance is one of
several important side effects considered in the choice of medication [36]. The protective effects of low serum calcium levels
with respect to MACE outcomes that we observe may be related to the direct appearance of Ca2+ ions in the aterial plaques,
promoting both stroke [80] and AMI [38].

Diabetes has been reported to increase women’s chronic heart disease risk by a factor of approximately 2.8, and men’s
by 2.2 [60]. Although the presence of diabetes is highly correlated with many other predictor variables, mechanistically, it
augments microvascular and macrovascular risk and is considered to be an independent predictor of many vascular disease
outcomes [44]. The risk coefficients in Figure 4 show that both high HbA1c and high glucose are predictive of MACE events,
and that the effect is positively associated with blood glucose levels. Only rarely is hypoglycemia seen, but when it occurs it
is strongly predictive of MACE events. Both diabetes diagnostic codes and medications protect against MACE events, and
our interpretation is that this is because diagnosis and treatment are highly correlated. Our results are consistent with the
observation of Galbete et al., who noted in a review of 19 studies of CVD risk in populations with diabetes and 46 studies
of the general population that many studies have a high risk of bias due to methodological shortcomings and scarcity of
independent validations [28].

Obesity in our study is protective against MACE events (Figure 4), despite the general epidemiological association of
obesity with an increased risk of developing CVD [25]. The observation that being overweight or obese can improve chances
of survival is known as the obesity paradox [7]. While the association of obesity with the metabolic syndrome [21] and its
co-linearity with other MACE risk factors certainly reduces our observed model coefficients, this effect is still observed in
an univariate analysis and across multiple study designs. Several effects appear relevant to this point. First, we observe,
in agreement with Ref. [59], that being underweight (BMI < 18.5 kg/m2) is a risk factor for CVD, perhaps due to poor
nutritional status. Second, BMI as a predictive variable, ignores important issues of muscle mass and the distribution of
adipose tissue that strongly impacts the prognosis associated with obesity [25]. Finally, selection biases are likely occurring
because we restricted our analysis to the first recorded MACE event. The observation that obesity has a much larger model
coefficient in Rcc than C-17 supports this supposition.

CVD progression is not considered in the AHA-PCE equations [33], presumably because of their co-linearity with
other risk factors and the difficulty in defining an appropriate cohort in a generalizable manner. Nevertheless, our observed
coefficients are in line with those for CAD [54] and PVD [3] of 1.3-3.0.

Other aspects of pathophysiology have been explored in our model, such as nicotine dependence, delivery of estrogen,
complete blood counts, and differential blood counts. Most of them have smaller model coefficients and lower prevalence,
compared to the major risk factors described above, but can themselves be related to the literature in a more detailed
treatment of this data set.

Our comparison of risk factors for Stroke vs. AMI agreed with Reference [30] that hypertension and being female were
more favored in stroke, but also identified Blacks, Hispanics, and pulse pressure > 90 mmHg, visual impairment, traumatic
brain injury, dementia, and Parkinson’s as more associated with stroke than AMI. Diagnoses of CAD, chest pains, renal failure,
and heart failure, taking anti-anginals and 3rd generation beta blockers, and laboratory results with elevated troponin were
more associated with AMI. We did not see the association of cholesterol and diabetes with AMI that was observed by [30].

Age is a strong predictor of both MACE events and its four main risk factors, as shown in Figure 8. Additionally,
essentially all of our predictor variables and many competing causes of death that we did not include are associated with age
to some degree. As a straightforward consequence, model coefficients of predictor variables will be dependent on how age is
treated in the model, and the predictive ability of a MACE model may change significantly with the age distribution of the
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model cohort or subgroup being examined. We explore this association in sensitivity analyses by including a date-of-birth
cohort matched study design, Rcc, in our analyses along with the three non-matched study designs. Figure S1 shows the
explicit age-dependence observed differs considerably between models, while Figure 3 shows excellent calibration in subgroups
for both Rcc and C17, demonstrating both models can predict MACE events well.

The situation is not symmetric, however. Figure 2 shows that in a GLM model trained on Rcc the c-statistic slips from
0.68 to 0.62 when evaluation shifts from Rcc to C17. Similarly, in a GLM trained on C-17 the c-statistic falls from 0.75 to
0.55. Although some of this degradation in discrimination is due to the different underlying risk distributions, as described
in Ref. [11], it is evident that the Rcc-trained model generalizes better to C17 than the reverse. Figure 6 shows that while
the two study designs differ across many model coefficients, the largest differences involve metrics of healthcare utilization,
such as not having respiratory rate measured, or never reporting pain. This result prompted us to examine how much model
accuracy could be recovered by re-optimizing the tradeoff between age and healthcare utilization patterns, described in detail
in the caption to Table S1. Indeed, much of the model accuracy can be recovered in this way, and reoptimized Rcc-trained
models produce discrimination scores on C17 within two percentage points of C17 trained models.

Healthcare utilization patterns introduce confounding effects into our study as 90% of our outcomes and nearly all of
our predictor variables are extracted from the EMR. Unlike age, healthcare utilization can be assessed by a variety of metrics,
such as visits, medications, common laboratory results, specialty labs, or utilization of preventative medicine. We elected to
use minimal exclusion criteria to enable the model to identify the best markers of utilization, and many variables emerge
as important predictors of MACE outcome (see Figure 8). One interesting aspect of the non-linear models is that they are
capable of allowing model coefficients to depend on the level of available information. Thus, while the LDL-DS trained model
(where LDL cholesterol labs are an inclusion criteria) outperforms Visit-DS (where only a visit is required) by 3 percentage
points, little difference is observed among the non-linear models.

Further understanding of healthcare utilization biases can be found by comparing predictors of our sub-outcomes: specifically
ASCVD death (which is reported independently of the EMRs) to AMI and stroke (which are obtained from the EMRs). The
propensity of different modalities of data to be associated with ASCVD death rather than Dx-encoded outcomes is strongest
for missingness of laboratory results and weakest for CVD-specific procedures, with other modalities of data intermediate
in the spectrum, visible in Figure 8. Nevertheless, Figure 8 shows that even the likelihood of ASCVD death increases in
proportion to greater levels of healthcare utilization. Our interpretation of this finding is that the level of healthcare utilization
predicts MACE outcomes both because of reporting biases and because patients with CVD have a greater level of healthcare
utilization.

Predictive models
Model performance metrics such as c-statistic are often used to compare models. We have seen in Figure 2 that different
prediction methodologies provided the highest score in the four different cohorts. Evidently, the best methodology is dependent
on choices in study design, completeness of data, included predictive variables, confounding variables and definition of outcome.
Alternative metrics to assess model performance could include subgroup analysis, calibration, and comparison of model
coefficients with known mechanisms. We found that the three non-linear models typically performed better than logistic
regression with subgroup analysis and calibration. Linear model coefficients characterizing laboratory results and vital signs
were generally consistent with literature, across all study designs.

Other variables such as age and healthcare utilization depend strongly on cohort and study design, raising concerns for
both the generalizability of the model and the interpretation of model coefficients, as discussed in the literature [78]. This
observation motivated our Rcc study design, which matches on two of the strongest confounding variables. While techniques
exist to compare predictor variables to mechanisms for non-linear models [66], these methods themselves are complex and we
chose not to explore them further here.

Model generalizability, broadly defined in [39], is a valuable performance metric for models, but done properly would
require repetition of this entire work in another healthcare system. By comparing across study cohorts, and the transferability
of models across cohorts, with re-optimization, we gain understanding of which models will generalize better and why. The
Rcc-trained model outperformed the C-17-trained model in two respects. First, it retained much more of its accuracy when
transferred across cohorts, both before and after re-optimization. Second, the improvement in model scores with the nonlinear
models (NN, tabnet, RF) over logistic regression was twice as large for Rcc compared to the other study designs. Our Rcc study
design matches on two of the strongest confounding variables, and forces the nonlinear models to evaluate interaction terms
among more interesting variables, such as comorbidities and between modalities of data, such as diagnoses and treatments.
One important aspect of the problem we did not explore is accounting for the possibility of repeated MACE events.

If the internal representation of the data is an important determinant of a model’s utility, at least two basic strategies can
be found in the literature. Pham et al. [61] provides an elaborate scheme to reproduce the logic of disentangling outcomes into
component concepts, utilizing many of the sophisticated forms developed with neural network techniques. Without proper
levels of data completeness and ability to control for confounding and biases, however, it is unclear whether thee concepts will
decompose according to the intended logical decomposition. Another approach is to explicitly model the joint probability
distribution of two explicit variables. Such joint models have been used to model treatment effects [63], repeated intermediate
outcomes [58], or correlated outcomes [24]. Clearly, there are many possibilities for how to set up such models, and the ’best’
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solution will likely depend on the problem in question, the available data, and the intended use of the model.

Conclusions
We have compared high-dimensional predictions of MACE incidence in millions of US Veterans across study designs and
prediction methodologies. Our calculations provided sufficient statistical power to constrain 243 time-resolved variables
representing age and demographics, laboratory results and vital signs, diagnoses and treatments, and several measures of
healthcare utilization. Predictors characterizing the pathophysiology of CVD, including obesity, lipid metabolism, diabetes,
hypertension, CAD, PVD, and comorbidities remained relatively consistent across study designs and associated with MACE
events. Laboratory measures and vital signs provided risk profiles consistent with, but difficult to quantitatively compare
to, existing literature. Diagnosis codes related to laboratory results tended to be protective, presumably because they were
indicators of patients seeking treatment. Medications were mixed in their association with MACE outcomes, with the presence
of any medication being strongly protective, insulin or high intensity statins associated with poorer outcomes, and metformin,
lower intensity statins, and alpha blockers associated with reduced levels of MACE outcome.

The confounding variables of age and those related to healthcare utilization had large coefficients, but these coefficients
changed with study design, particularly between Rcc (which was year-of-birth matched) and C-17 (which included all patients
active in a 3-month period). This change suggests that associations with homelessness, alcohol dependency, obesity, non-zero
pain, not having respiration rate measured, and not taking medications may be due more to selection biases than their direct
impact on MACE risk.

Comparison of model discrimination and calibration across a dozen subgroups showed significant improvement for all
high-dimensional models in comparison to our baseline AHA-PCE-like model, and greater performance in the non-linear
models compared to GLM models. The Rcc study design, enriched in cases, and with prediction time set to six weeks before
the predicted event, the LDL-DS (Cox) model, and the C-17 model with 5-year interval prediction, all provided accurate
calibration and comparable discrimination, although with different methods of encoding the longitudinal aspect of prediction.
The LDL-DS and Visit-DS study designs, with 12 years of follow-up, did not perform well with interval prediction methods,
and the LDL-DS model, which was trained on fewer patients, but with more complete laboratory data, outperformed Visit-DS,
even on the Visit-DS study design. Models trained on Rcc could be re-optimized using age and a handful of other variables,
including healthcare utilization, to achieve performance on the C-17 cohort comparable to models trained on C-17, while the
reverse process was much less effective. The ability of re-optimized Rcc-trained non-linear models to approach the level of
discrimination of C-17 trained models on the C-17 cohort suggests a greater generalizability for models trained in this manner.
Our neural network model outperformed our GLM by four percentage points in Rcc, which had acute information for all
events.

By treating the wide range of risk factors in a single calculation, we demonstrate a broad set of independent predictors
for the risk of MACE outcomes, designed to be interpreted in the presence of the other factors. Comparison across study
designs and prediction methodologies highlights variables whose impact on CVD risk is less likely to generalize from the
present study population or the VA healthcare system, such as age and measures of healthcare utilization. While it would be
valuable to clearly distinguish the effects of laboratory results, diagnoses, and treatments, we were not able to achieve this
level of model resolution in this work; more sophisticated longitudinal study designs with distinct models of within-patient
and between-patient parameter variation will be required to solve this important class of problems.
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1 Supplementary Information

Method
Data set Rcc LDL-ds Visit-ds C-17

10yr 10yr 5 yr

AHA/PCE-like∗ 0.580 0.662 0.610 0.705
Rcc - glm 0.686 0.607 0.610 0.620

reopt. 0.685 0.699 0.687 0.731
Rcc - Neural Net 0.723 0.645 0.635 0.658

reopt. 0.723 0.701 0.688 0.739
Rcc - RF 0.712 0.637 0.642 0.657

reopt. 0.714 0.701 0.692 0.740
Rcc - TabNet 0.713 0.640 0.637 0.654

reopt. 0.713 0.701 0.692 0.744
LDL-ds 0.547 0.760 0.742 0.744
reopt. 0.652 0.776 0.755 0.745

Visit-ds 0.552 0.732 0.719 0.636
reopt. 0.654 0.747 0.732 0.709

C-17-glm 0.546 0.722 0.722 0.751
reopt. 0.654 0.744 0.739 0.751

C-17-NN 0.579 0.678 0.672 0.759
reopt. 0.662 0.693 0.687 0.760

C-17-RF 0.545 0.680 0.677 0.763
reopt. 0.648 0.694 0.689 0.768

C-17-TabNet 0.556 0.683 0.662 0.756
reopt. 0.648 0.698 0.680 0.756

Table S1: C-statistics for MACE prediction from a variety of study designs and prediction methodologies, including an
assessment of the transferability of models from one study design to another. The first row provides C-statistics for an
AHA-PCE-like model for the indicated study designs, where models were trained on half the data and evaluated on the
other half for each study design. For Rcc and C-17, models were trained with four prediction methodologies (GLM, NN, RF,
TabNet), and evaluated in each of the study designs. Within each table cell, the top number indicates C-statistic with the
trained model used directly on each study design, while the lower number is the C-statistic with each model score included
together with Gender, Race, Ethnicity, Age, Age2, Pain gt 0, AnyDrug, HbA1c gt 9%, DEMENTIA, EH HYPERTENSION
in a glm re-optimization. Typically, this re-optimization improves the score by less than two percentage points, but for the
case of Rcc models used to predict on the non-age-matched models, model performance increases by 8-10 percentage points.
About half the improvement comes from the age variable. For our time-to-event models (LDL-DS and Visit-DS), scores were
evaluated as interval predictions at 10 years past time of prediction.
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Conditions % tot C.C17 C.V C.Rcc OR.Rcc Cases Controls %Cas/%Cnt Enr.AMI Enr.S Enr.dth
Total 1,078,498 1,648,330 31.5% 26.7% 7.2%
Female 3.4 -0.31 -0.34 -0.47 0.62 33102 59619 0.7 0.62 0.82 0.41
Black 11.5 0.13 0 0.01 1.01 151916 160427 0.97 0.93 1.22 0.64
Hispanic 3.6 0 -0.07 -0.07 0.93 45140 51951 0.93 0.95 1.05 0.65
Alcohol depen. 11.4 0 0.02 -0.33 0.72 140322 171104 0.89 0.9 1.01 0.73
Nicotine Dx 20.6 0.47 0.41 0.38 1.46 285800 275297 1.03 1.11 1.12 0.97
OBESITY Dx 23.3 -0.08 -0.13 -0.37 0.69 291662 343753 0.88 0.98 0.95 0.8
CAD Dx 23.8 0.87 0.58 1.03 2.79 393600 254971 1.35 1.52 1.18 1.98
ChestPain Dx 15.9 0.47 0.16 0.59 1.81 226909 205638 1.06 1.22 1.11 0.73
Hypertension 2 43.3 0.53 0.33 0.43 1.53 598373 581602 1.04 1.04 1.14 1.32
PulsePr ≥ 90 mmHg 6.5 0.06 0.22 0.17 1.18 100079 78377 1.14 1.17 1.31 1.9
HYPERTENS Dx 54.8 0.15 0.1 -0.02 0.98 749502 745751 1.01 1.03 1.1 1.32
Aspirin 21.4 0.16 0.26 0.27 1.31 322468 262152 1.15 1.21 1.29 1.17
ACEInhibitors 32.8 0.07 0.07 0.11 1.12 469526 423910 1.1 1.13 1.15 1.38
AntiAnginals 11.7 0.16 0.22 0.34 1.4 197898 119921 1.31 1.6 1.2 1.93
BetaB 1st gen 31.2 0.19 0.17 0.27 1.31 470978 380469 1.2 1.26 1.18 1.49
Na < 134 6.2 0.1 0.22 0.14 1.15 87795 80740 1.05 1.08 1.18 1.41
K < 3.5 4.6 0.15 0.13 0.23 1.25 61277 63932 0.98 0.96 1.15 1.04
Cl ≤ 92 mEq/L 0.9 0.06 0.29 0.16 1.17 13449 11441 1.08 1.11 1.18 2.07
TotChol ≥ 220 mg/dl 6.5 0.17 0.12 0.21 1.24 89184 86983 1.01 1.09 1.11 1.05
LDL 130-160 mg/dl 9.9 0.06 0.06 0.06 1.06 128165 140553 0.95 0.98 1.05 0.98
LDL 160-190 mg/dl 3.7 0.16 0.15 0.16 1.17 51600 50506 1.01 1.08 1.12 1
LDL ≥ 190 mg/dl 1.4 0.19 0.22 0.24 1.27 20351 17725 1.07 1.18 1.2 1.06
Trig ≥ 200 mg/dl 24.1 0.15 0.12 0.15 1.16 329803 327522 1.01 1.09 1.07 1.04
Statin High 20.8 0.02 0.06 0.14 1.15 307052 260463 1.12 1.2 1.17 1.4
Statin Medium 23.4 -0.08 -0.03 -0.04 0.96 317539 319767 0.99 1.04 1.08 1.3
UNCDIAB Dx 26.9 0.02 0.01 -0.15 0.86 375857 357250 1.04 1.08 1.13 1.29
COMDIAB Dx 13.7 0.12 0.07 -0.01 0.99 199280 172997 1.09 1.17 1.21 1.18
Metformin 16.4 -0.02 -0.02 -0.06 0.94 227720 218833 1.03 1.09 1.14 0.99
Sensitizers 13.6 0 0 -0.06 0.94 196330 175201 1.07 1.14 1.17 1.35
Insulin 9.7 0.02 0.05 0.02 1.02 148362 116546 1.14 1.25 1.28 1.36
HbA1c 8-9% 8.4 0.16 0.16 0.16 1.17 125231 105006 1.1 1.2 1.24 1.19
HbA1c ≥ 9% 6.5 0.63 0.47 0.52 1.67 102192 73862 1.18 1.31 1.38 1.23
Glucose > 150 mg/dl 18.6 0.28 0.26 0.21 1.23 269424 238577 1.08 1.15 1.19 1.25
RR NA 5.7 0 0 0.45 1.57 112236 42472 1.51 1.76 1.87 3.94
AnyDrug 66.5 0.04 -0.07 -0.88 0.41 869836 942797 0.69 0.98 1.03 1.2
EKG12 2.7 0.27 0.22 0.47 1.6 38576 34394 1.06 1.24 1.13 0.62
Troponin NA 65.7 -0.25 -0.07 -0.21 0.81 879744 912713 0.85 0.99 1.07 1.41
Troponin > 0.4 0.3 -0.08 -0.01 0.07 1.07 5829 2926 1.33 1.83 1.23 1.68
WBC ≥ 12 × 109/L 5.1 0.13 0.21 0.16 1.18 72137 67169 1.04 1.14 1.1 1.23
EEstradiol 0.1 -0.2 -0.3 -0.22 0.8 849 2720 0.48 0.38 0.56 0.05

Table S2: Attributes of selected predictor variables. For each of 40 variables shown, we provide 11 columns of information,
including the percentage of total patients in each category (% tot), logistic regression model coefficients for C-17 (C.C17),
Visit-DS (C.V), and Rcc (C.Rcc) cohorts, the calculated odds ratio for Rcc (exp(C.Rcc) in OR.Rcc), number of cases and
controls in the Rcc cohort, the percentage of cases divided by the percentage of controls for each variable, and an enrichment
factor for each element of our combined outcome (Enr.AMI, Enr.Stroke, and Enr.dth), computed as the number with the
respective outcome divided by the number of controls for each variable, in turn divided by that quantity for all patients.
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Figure S1: Age dependent contribution to log likelihood of MACE events from age and age2 terms of the generalized linear
models for each of the four study designs.
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Figure S2: Co-occurrence of selected variables in the Rcc (top) and the C-17 (bottom) cohorts. Each row defines a subgroup
of patients, where the value in each column is the percentage of that subgroup with the indicated attribute. For example, 12%
of homeless patients have at least one time window with a median HbA1c level above 9%, compared to 8.8% of all patients in
the Rcc cohort. Note that Rcc is enriched to 50% cases and is matched on date of birth cohort. With this information we can
understand which interaction terms among variables may be important to MACE risk prediction.
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Figure S3: Plots are as described in Figure 3, except with subgroups defined by sex (male and female), race (Black), and
ethnicity (Hispanic).

Figure S4: Plots are as described in Figure 3, except with subgroups defined by five age groups, as indicated by color in the
legend. Note that the lack of an age dependence for the Rcc study design (left column, bottom panel) is expected, as controls
were associated with cases by matching on date of birth.

Figure S5: Plots are as described in Figure 3, except with subgroups defined by all patients (black) and four subgroups of
patients with potentially distinct healthcare utilization patterns: homeless patients, patients with a mental health diagnosis,
patients with dementia, and patients with a diagnosis involving alcohol use disorder.
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Figure S6: Stacked bar plots of model coefficients related to (top) metabolic syndrome, and (bottom) CVD disease progression,
comorbidities, mental health, CBC, and dWBC, from the GLM model and C-17 cohort. Descriptions are the same as for Figs
4 and 5
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Figure S7: Stacked bar plots of model coefficients related to (top) metabolic syndrome, and (bottom) CVD disease progression,
comorbidities, mental health, CBC, and dWBC, from the GLM model and LDL-DS cohort. Descriptions are the same as for
Figs 4 and 5
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Figure S8: Stacked bar plots of model coefficients related to (top) metabolic syndrome, and (bottom) CVD disease progression,
comorbidities, mental health, CBC, and dWBC, from the GLM model and Visit-DS cohort. Descriptions are the same as for
Figs 4 and 5

Figure S9: Histograms of the number of patients with each Dx-encoded variable each month from 2000 through 2022. Also
indicated are the top 10 most prevalent codes contributing to that variable’s signal, in the order of decreasing prevalence.
ICD-9 and ICD-10 codes are interspersed for the purposes of ranking, and the ICD description is provided. Figures are
provided as a separate pdf file with 47 pages, named CVD.pdf. These figures allow one to assess the utilization of the different
codes through time and detect any discrepancies.
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