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A new, more accurate prediction of Mach stem height in steady flow is presented. In addition, starting with a

regular reflection in the dual-solution domain, the growth rate of theMach stem from the time it is first formed till it

reaches its steady-state height is presented. Comparisons between theory, experiments, and computations are

presented for the Mach stem height. The theory for the Mach stem growth rate in both two and three dimensions is

compared to computational results. TheMach stem growth theory provides an explanation for why, once formed, a

Mach stem is relatively persistent.

Nomenclature

g = spacing between wedge and axis of symmetry
M = Mach number
P = pressure
s = Mach stem height
U = speed
w = wedge length
� = leading shock angle with respect to the freestream
� = ratio of specific heats
� = triple-point slip-line angle
� = wedge angle with respect to the freestream
� = Mach angle
� = density
� = triple-point reflected shock angle

Subscripts

a = conditions directly behind Mach stem
Ms = Mach stem properties
tp = triple-point properties
1 = region 1 condition
2 = region 2 condition
3 = conditions between Mach stem and sonic throat
? = sonic throat condition
1 = freestream condition

Superscripts

tp = triple-point reference frame
� = nondimensional quantity

I. Introduction

C ONSIDER the reflection of a shock, generated by a wedge in
steady supersonic flow, from a wall (single wedge confi-

guration) or from a plane of symmetry (doublewedge configuration).
For a sufficiently high freestreamMach number, there exists a range
of wedge angles (the dual-solution domain) in which both regular
and Mach reflections are possible. To date there is no accurate
method of predicting the height of a Mach stem in steady flow.
Predictions of Mach stem height can be important in the design of

supersonic inlets if the inlet is expected to experience Mach
reflection. An accurate prediction of the Mach stem height may also
be useful in understanding the behavior of the shock reflection in the
dual-solution domain.

Azevedo [1,2] (see also Ben-Dor [3]) developed a theory based on
the location of the sonic throat formed by the initially converging
flow behind the Mach stem. However, his prediction consistently
underestimated the actual Mach stem height. The primary drawback
of his calculation is that the sonic throat of the converging flow
formed behind theMach stem is assumed to be at the point where the
leading characteristic of the expansion fan intersects the slip stream.
Also, Li and Ben-Dor [4] note that Azevedo uses a methodology,
which overdefines the problem, and as a result there is no unique
solution based on his formulation. The aims of the presentwork are to
relax some of the assumptions made by Azevedo to obtain more
accurate predictions of the Mach stem height and to analyze the rate
of growth of a Mach stem starting from a regular reflection in the
dual-solution domain. Work by Li and Ben-Dor [4] corrects some of
the flaws in the theory of Azevedo, but gives very similar
approximations of the Mach stem height, which differ significantly
from the experimental work of Hornung and Robinson [5]. In
particular, Li andBen-Dor provide amethodology for solving for the
Mach stem height that produces a unique solution. In addition, their
work gives a Mach stem height of zero at the von Neumann
condition. The primary difference in the results of Li and Ben-Dor is
a shift in the Mach stem height curve, such that it intersects that
von Neumann condition when the Mach stem height is zero, thus
providing a slightly higher prediction for the Mach stem height. A
brief comparison of the theoretical work by Azevedo, Li, and
Ben-Dor and the current paper is presented in Table 1. The works by
Li et al. [6] and Schotz et al. [7] consider downstream influences on
the Mach stem height; however, the theoretical work of Ben-Dor
et al. [8] and the experimental work of Chpoun and Leclerc [9] show
that theMach stemheight does not varywith downstream conditions.
This is as expected, because the flow in the expansion region and
downstream of the sonic throat is supersonic and therefore these
influences cannot affect theMach stem height. There is, therefore, no
need in the current work to consider the flow downstream of the
expansion wave corresponding to the sonic throat.

II. Problem Setup

The problem setup is shown graphically in Fig. 1. We can either
consider two opposing wedges, or for inviscid flow, a wedge above a
flat plate. The wedge, with a lengthw, is declined at an angle �1 with
respect to the freestreamflowand produces a shock at an angle�. The
height of the triple point above the surface is the Mach stem height,
denoted s. In the case of two symmetric wedges, s is half the total
Mach stem height. At the triple point a slip line is created, which is
initially declined at an angle �with respect to the surface or plane of
symmetry. The reflected shock from the triple point is inclined at an
angle � with respect to the surface.
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In general theMach stemheight s is a function of theMach number
M, the ratio of specific heats �, the spacing between the wedge and
the flat surface g, the angle of the wedge �1, and the wedge lengthw.
That is to say

s� � f��M; �; g�; �1� (1)

where f� is an unknown nondimensional function, s� � s
w
, and

g� � g

w
. Normalizing lengths by w is a good choice, because, in

experiments, w will almost always be a fixed length and not a
function of the wedge angle �1.

III. Mass and Momentum Balance

Azevedo [1,2] considers a problem setup as shown in Fig. 1
subject to several assumptions. First, he assumes that the sonic throat
occurs where the leading characteristic of the expansion fan
intersects the slip line. Second, he assumes that the region between
the slip line and the symmetry plane, and between theMach stem and
the sonic throat is an isentropically converging ideal gas flow with a
straight streamline TH. To analyze the flow, Azevedo applies
conservation of mass andmomentum, and this derivation is included
in Sec. I.

The result can be written in matrix form and solved; the matrix
equation is
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0 0 a23 a24 a25

1
�M2

1
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(2)

where

a14 �
sin�

sin�� � �1�
sin�1 (3)

a15 �
sin� sin��1 � ��

sin�� � �1� sin��� �� sin�2 (4)

a23 � �P�
? � P�

? (5)

a24 � �P�
1 M1 cos �1 � P�

1 sin��1 � �1� (6)

a25 � �P�
2 M2 cos �� P�

2 sin��2 � �� (7)

a34 � �P�
1 M1 sin �1 � P�

1 cos��1 � �1� (8)

a35 � �P�
2 M2 sin � � P�

2 cos��2 � �� (9)

a44 �� cos��1 � �1� (10)

a45 �� cos��2 � �� (11)

a54 � sin��1 � �1� (12)

a55 � sin��2 � �� (13)

and Ar is the area ratio between s� and s�? . This matrix equation
agrees with the results of Azevedo.

Table 1 Summary table comparing themethodology of the present paper to Azevedo [1,2], andLi and

Ben-Dor [4].EF refers to the leading characteristic of the expansion fan originating from the aft corner

of the wedge

Azevedo [1,2] Li and Ben-Dor [4] Present

Sonic throat location At EF Downstream of EF Downstream of EF
Mach stem shape Straight Curved Straight
Reflected wave through expansion N=A Curved Kinked
Slip stream Straight Curved Straight
Von Neumann condition Not matched Matched Matched
Growing Mach stem No No Yes
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Fig. 1 Illustration of flow setup used by Azevedo [1,2] to predict the

Mach stem height.
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The equations necessary to solve these individual terms are
included in Sec. I.

There is, however, a subsystem of equations for s�? , EF
�, and

FH�, which is sufficient to solve for theMach stem height given that
s� � Ars

�
? .

Ar a14 a15

a23 a24 a25

1 a54 a55

0

@

1

A

s�?
EF�

FH�

0

@

1

A�
� 1

�M2
1
cos�1 �P�

1 cos�1
0

g�

0

@

1

A (14)

In this case the Mach stem height would be calculated using the area
relationship of the sonic throat behind the Mach stem,

s� � Ars
�
? (15)

The analysis of Azevedo produces a geometry which is not self-
consistent. Specifically, the pressure in region 2 is taken to be
constant, which is not consistent with the fact that theflow in region 3
is of varying pressure. Furthermore, there are two other equally valid
solutions for s�, besides that given in Eq. (15).

Specifically, as Azevedo writes,

s� � g� � sin �1 � �x�s � cos �1� tan� (16)

which states that the height of the Mach stemmust be equal to g plus
the height of the wedge minus the height of the incident shock.
Another equally valid way of writing the Mach stem height is

s� � s�? � x�? tan � (17)

All three of these calculations, Eqs. (15–17), for the Mach stem
height produce slightly different answers. Again, this is due to the
fact that the pressure in region 3 varies and is not consistent with the
assumption of constant pressure in region 2. It is important to note
that there is no simple way of matching the pressure across the slip
line. Because the pressure is not correct a solution that tries to
conserve momentum is also incorrect and produces an inconsistent
geometry. Therefore, it may be useful to fix the geometry and
continue to allow the pressure across the slip line to be mismatched.

IV. Geometric Solution

In Azevedo’s solution the most restrictive assumption is that the
sonic throat occurs at the leading characteristic of the expansion fan.
Also, Azevedo does not force the geometry to be self-consistent,
specifically, the condition that the slip line TH, the expansion wave
FH, and the sonic throat intersect at a point is not imposed. To solve
the latter problem we can write five equations that fix the geometry,
assuming that all shocks and slip lines are straight. These equations
are given in Sec. II and can be written in matrix form as

sin� Ar 0 0 0

0 1 sin����2� sin��1��1� 0
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(18)

Finally, the Mach stem height s can be calculated using Eq. (15).
These equations, unlike those used by Azevedo, do not explicitly
include the conservation of mass and momentum. However, if we
consider the slip line to be a solid wall, we see that mass and
momentum are conserved. This is because if the slip line were a solid
wall the assumptions made in this analysis are exact, because the

entire geometry is self-consistent, and all of the shock jump
conditions used conserve mass and momentum. Unfortunately, like
Azevedo’s solution, the pressure across the slip line is not
continuous.

V. Generalized Geometric Solution

The problem still remains that all of these solutions assume that the
sonic throat of the flow behind the Mach stem occurs at the leading
characteristic of the expansion fan. To eliminate this problem, we
will allow the sonic throat to occur further downstream. This
generalized setup is shown in Fig. 2. The geometrical considerations
are the same as those leading to Eq. (18), withF andH replaced byF0

andH0, respectively. Also,�10 and�20 refer to the Mach angle along
the characteristic corresponding to the sonic throat, rather than along
the leading characteristic. A key point of this theory, like that of Li
and Ben-Dor [4], is that the flow right above the sonic throat is
parallel to the freestream flow.

sin� Ar 0 0 0

0 1 sin����20� sin��10 ��1� 0
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(19)

� and � are calculated as before using triple-point theory. �20 is
calculated knowing that the flow just above the slip line must turn
through an angle of � to be parallel to the freestream just above the
sonic throat,

�� ��M20� � ��M2� (20)

where the Prandtl–Meyer function � is defined as

��M� �
������������

� � 1

� � 1

s

tan�1

��������������������������������

� � 1

� � 1
�M2 � 1�

s

� tan�1
����������������

M2 � 1
p

(21)

BecauseM2 is known from Eq. (A24), solutions forM20 and�20 may
be obtained. �10 is more difficult to determine because the flow
deflection angle is not simply �, because the flow has passed through
part of the expansion before it reaches the shock, as opposed to the
flow in region 2, which first goes through the reflected shock. This
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Fig. 2 Illustration of flow setup used to predict the Mach stem height.
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means that the flow in region 1 must turn through an angle of �� �e,
where �e is the extra turning required to compensate for the fact that
the reflected shock is weaker at F0 than at T. Specifically, the
reflected shock at the pointF0 must turn the flow through �1 � � � �e.
Using oblique shock relations produces

cot��1 � � � �e� � tan��1 � � � �e � ��

�
� �� � 1�M2

10

2�M2
10sin

2��1 � � � �e � �� � 1� � 1

�

(22)

where M10 is given by the Prandtl–Meyer function,

�� �e � ��M10� � ��M1� (23)

Equations (22) and (23) can then be solved simultaneously for �e and
M10 . At this point �10 is known and Eq. (19) can be solved. Once the
matrix equation has been solved, the Mach stem height s can be
calculated using Eq. (15).

VI. Numerical Calculations

Numerical simulations of the flow were performed for various
conditions using the AMRITA software system. This software
system has been constructed by Quirk [10]. It is a system that
automates and packages computational tasks in such a way that the
packages can be combined (dynamically linked) according to
instructions written in a high-level scripting language. The present
application uses features of AMRITA that include the automatic
construction of an Euler solver, automatic adaptive mesh refinement
according to simply chosen criteria, and scripting-language-driven
computation and postprocessing of the results. The Euler solver
generated for the present computation was an operator-split scheme
with Harten–Lax–van Leer (HLLE) flux and kappa-monotone
upstream-centered schemes for conservation laws (MUSCL)
reconstruction.

The coarse grid for the Mach stem height calculations was
330 � 140, to which two levels of adaptive mesh refinement by a
factor of 2 were applied. This results in an effective grid of
1320 � 560. The mesh was refined based on a density gradient
criterion as well as along the surface of the wedge. An example of the
grid is shown in Fig. 3, with an enlarged section shown in Fig. 4.

VII. Mach Stem Height Results

A comparison of the current theory with that of Azevedo [1,2] as
well as the theory of Li and Ben-Dor [4], the numerical results of
AMRITA, the experimental results of Hornung and Robinson [5],
and the computations of Vuillon et al. [11] is shown in Fig. 5. This
figure shows the significant improvement made using the
generalized geometric solution. Overall agreement with the
experimental data of Hornung and Robinson as well as with
computational results is good. Of course differences between theory,
computations, and experiments remain. There are several reasons for
these discrepancy. First, the slip line originating from the triple point
is not in fact straight. Second, the reflected shock will curve through
the expansion fan. Third, viscous effects will cause a shear layer with
negative displacement effect to develop along the slip line.

It is important to note that the data which both Azevedo [1,2] and
Li and Ben-Dor [4] attribute to Hornung and Robinson [5] are in fact
not the data presented in that paper. The actual data of Hornung and
Robinson are significantly different and show higher Mach stem
heights than what is presented by Azevedo and by Li and Ben-Dor.
This discrepancy is not obvious by simple visual inspection, because
Hornung and Robinson normalize the Mach stem height by w,
whereas others normalize theMach stem height byL. Figure 5 shows
the actual results presented by Hornung and Robinson. Azevedo and
Liu [2] attribute this same data to a personal communication with
Hornung. This personal communication consisted of Azevedo
personally remeasuring the schlieren photographs of Hornung and
Robinson [5]. AsHornung andRobinson note in their paper,many of
their results suffered from wall interference effects, and as a result
they did not use these data to determine the Mach stem height.
Although no record exists of which schlieren photographs Azevedo
made hismeasurements from, it is believed that most of the results he
presents in his thesis [1], and which have been subsequently used by
later authors, were from the schlieren images with wall interference
effects.

VIII. Moving Triple-Point Analysis

The triple-point analysis presented earlier assumed a stationary
Mach stem. We will now consider the case where the Mach stem

Fig. 3 Representative mesh refinement for the calculation of the Mach
stem height using Amrita.

Fig. 4 Englarged region of a representative mesh refinement for the

calculation of the Mach stem height using Amrita.
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0
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Azevedo Theory
Li and Ben-Dor Theory
Hornung and Robinson
Amrita Computation
Vuillon et al. Computation

Fig. 5 Comparison of current Mach stem height calculations against

those of Azevedo [1,2] and of Li [4], measurements by Hornung and

Robinson [5], computations by Vuillon et al. [11], as well as current

computations done using Amrita. �� 1:4 and g=w� 0:4.
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moves with an upstream velocity UMs. This may occur in a steady
freestream, for example, if transition toMach reflection is initiated by
some disturbance when the flow is initially in the dual-solution
region. The rate at which the Mach stem moves upstream UMs is
related to the speed at which the triple point travels up along the lead
shock Utp by

Utp �
UMs

cos�
(24)

Figure 6 shows the flow setup when the triple point is moving.
To perform the triple-point analysis we must examine the flow

both in the lab-fixed reference frame and in the frame of reference of
the triple point. For this triple-point analysis wewill consider aMach
stem that is not perpendicular to the flow, as is shown in Fig. 7.
Quantities calculated in the reference frame of the triple point are
denotedwith a superscript tp. The flowMach number coming into the
Mach stem, M

tp
1 is

M
tp
1 �

����������������������������������������������������������������������

�M1 �Mtp cos��2 � �Mtp sin��2
q

(25)

where

Mtp �
Utp

a1
(26)

Because the leading oblique shock is stationary in the lab framewe
can write the Mach number in region 1 M1 and the normalized
pressure in region 1 P�

1 as

P�
1 � 	�M1; �; �� (27)

M1 �M�M1; �; �� (28)

To calculate theflow in region 2,wemust consider theflowfirst in the
reference frame of the triple point. The normalized pressure, Mach
number, and flow angle in region 2 can be written as

P�
2 � P�

1 	�M
tp
1 ; �; �

tp� (29)

M
tp
2 �M�Mtp

1 ; �; �
tp� (30)

�
tp
2 � �

tp
1 � ��Mtp

1 ; �; �
tp� (31)

where

M
tp
1 �

��M1a1 cos�1�Utp cos��2��M1a1 sin�1�Utp sin��2
a2
1

�

1=2

(32)

�
tp
1 � tan�1

M1a1 sin �1 �Utp sin�

M1a1 cos �1 �Utp cos�
(33)

Converting back into the lab-fixed coordinates, we see that

�� �tp � �
tp
1 (34)

Similarly, the normalized pressure, Mach number, and flow angle in
region a0 can be written as

P�
a0 � 	�Mtp

1; �; 
tp� (35)

M
tp

a0 �M�Mtp
1; �; 
tp� (36)

�
tp

a0 � �
tp
1 � ��Mtp

1; �; 
tp� (37)

where

M
tp
1 �

����������������������������������������������������������������������

�M1 �Mtp cos��2 � �Mtp sin��2
q

(38)

�
tp
1 � tan�1

Mtp sin�

M1 �Mtp cos�
(39)

Converting these values back into lab-fixed coordinates produces


� 
tp � �
tp
1 (40)

�a0 �
M

tp

a0aa0 cos �
tp

a0 � Utp cos�

M
tp

a0aa0 sin �
tp

a0 � Utp sin�
(41)

where aa0 is the speed of sound in region a0.

A 3
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∞

1

α

Utp

Fig. 6 Illustration of flow setup used for the Amrita simulations.
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δ∞
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a

Fig. 7 Illustration of a moving triple point with aMach stem that is not
perpendicular to the flow.
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Fig. 8 Shockpolar illustrating the effects of amovingMach stem. In the
case where the Mach stem is moving upstream the pressure ratio is

higher than the stationary-case value, and vice versa. Each point on the

moving triple-point curve represents the pressure and deflection angle

for a givenMtp. M1
� 4, �� 1:4, and �w � 24 deg.
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As we did earlier in Eqs. (A25) and (A26), we impose

P�
2 � P�

a0 (42)

�2 � �a0 (43)

The effect of a moving Mach stem is shown in Fig. 8. As one
would expect, if the Mach stem is moving upstream, the pressure
behind the Mach stem is higher, and if the Mach steam moves
downstream the pressure is lower than in the stationary case. The
speed atwhich theMach stem canmove downstream is limited by the
fact that a reflected shock must be able to exist. Specifically, it is not
possible for the triple point to be moving downstream so fast that the
relative flow into the reflected shock is subsonic. This means that the
perpendicular component of the flow into the reflected shockmust be
supersonic. As the flow speed into the reflected shock decreases, the
pressure rise across the reflected shock also decreases, and wewould

expect the pressure and the flow deflection to be similar to that of the
leading shock alone. In other words, as the triple point moves
downstream, the jump across the reflected shock becomes weaker
and the flow deflection across the reflected shock decreases. This is
indeed seen in Fig. 8, where the moving triple-point line terminates
near the incident shock point.

IX. Mach Stem Height Variation

As the Mach stem grows, it also slows down. Thus, for a given
Mach stem speed a corresponding Mach stem height exists. Using
Eq. (19) and substituting the modified flow parameters, as found in
Sec. VIII, it is possible to calculate the Mach stem height at a given
Mach stem speed. Conversely, given a Mach stem height, the Mach
stem speed can be calculated. At the steady-state Mach stem height,
the Mach stem velocity will of course be zero, because this is the
definition of the steady-state height. Of special interest is the speed of
the Mach stem when the height is different than the steady-state
height, in particular, the speed of the Mach stem during the Mach
stem growth phase.

To understand the growth phase of theMach stem, let us consider a
very small Mach stem, as shown in Fig. 9. If the Mach stem were
stationary, the slip line originating from the triple point would have a
finite angle and therefore reach the wall before the leading
characteristic. Because it is not physically possible for the slip line to
intersect the wall we know that this solution cannot be correct, and
therefore the Mach stem must move in order to produce a different
slip-line angle. Specifically, we need the slip-line angle to be at a
small enough angle such that it reaches the first characteristic. We
therefore now know that the triple point must move in a way as to
decrease the slip-line angle. Let us now consider a slip-line angle
sufficiently small that it intersects the first characteristic just above
the wall. In this case, the area ratio between the Mach stem and the
intersection of the slip line with the first characteristic would be very
large. This means that, in addition to the slip line being sufficiently
small, it would also be helpful if the Mach number behind the Mach

stem in the lab framewas low and therefore there was a large stem-to-
throat area ratio. Although it is required that the slip-line angle be less
than in the steady-state case, it is not required that the Mach number
behind the Mach stem be low, it is only helpful.

From Fig. 8, we see that the deflection angle is decreased if the
shock is moving upstream. Additionally, the flow Mach number
behind the Mach stem will decrease if the Mach stem moves
upstream, which produces a large area ratio. Based on this we can
hypothesize that for small Mach stems, the Mach stem must travel
upstream. Based simply on geometry, a Mach stem traveling
upstream also increases in height.

The movingMach stem changes the slip-line angle �, the reflected
shock angle�, theMach angle in region 20, and the area ratio between
the Mach stem and the sonic throat Ar. Assuming quasi-steady flow,
that is to say the speed at which the triple point grows is slow
compared to the flow speed, Eq. (18), with modifications taking into
account the moving Mach stem, becomes

sin� Ar�UMs� 0 0 0

0 1 sin��� �2�UMs� sin��1 � �1� 0

� cos� � cot ��UMs��Ar�UMs� � 1� cos��� �2��UMs� cos��1 � �1� 0

� cos� 0 0 cos��1 � �1� � cos��UMs�
� sin� 0 0 sin��1 � �1� sin��UMs�

0

B

B

B

B

@

1

C

C

C

C

A

OT�

s�?
FH�
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TF�
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@

1
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C

C

C

A

�

g� � sin �1
g�

� cos �1
� cos �1
� sin �1

0

B

B

B

B

@

1

C

C

C

C

A

(44)

where (UMs) denotes the value depending on the speed of the Mach
stem. These modified values are derived from Eqs. (30), (34), (38),
and (41).

Figure 10 illustrates the solution to the relationship betweenMach
stem velocity and Mach stem height as given by Eq. (44).

Given the numerical relationship between Mtp and s=w it is
possible to calculate the evolution of the Mach stem. Specifically,

ds

dt
�Utp sin� (45)

In nondimensional form, this becomes

d�s=w�
d�ta1=w� �Mtp sin� (46)

whereMtp is dependent on s=w,M1, g=w, �, and �1. The calculation
is quite straightforward and a comparison between the expected
Mach stem growth and a numerical calculation done usingAMRITA
is shown in Fig. 11. Figure 5 shows that the steady-state Mach stem
height grows rapidly with wedge angle. This means that even small
errors can result in a large height difference. It is therefore reasonable
to expect better agreement at lower steady-state Mach stem heights.
Figure 12 shows the comparison of the Mach stem height growth for
a wedge angle of �1 � 23 deg.

In Fig. 11we see that the predictedMach stem height is about 60%
greater than in the numerical computation; however, the general
growth trends show good agreement. We see in Fig. 13 that there is a
significant difference between the shape of the slip line originating
from the triple point and the slip line used in the theoretical estimate.
Specifically, the computed slip line gradually approaches 0 deg
thereby giving it a lower average angle. This lower average angle
causes a decrease in the Mach stem height. For the cases considered,
the theory appears to locate the throat formed by the flow
downstream of the Mach stem quite accurately.
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X. Three-Dimensional Mach Stem Growth

Consider a three-dimensional flow with a regular reflection in the
dual-solution domain. When a Mach stem is first formed it is both
small in height and in width in the spanwise direction. As it grows it
both increases in height and expands outward in the spanwise
direction. This opening is referred to as a mouth because of its shape
[12]. The spanwise regionwhere the transition from aMach stem to a
regular reflection occurs is characterized by a five-point theory. This
point exists at the intersection of five shocks, those being the
incoming shock, the regularly reflected shock, the Mach stem, the
Mach stem reflected shock, and a fifth shock dividing the
downstream flow region between the regular reflection and theMach
reflection. Further away from this point, we can expect the behavior
of the Mach stem to follow that of the two-dimensional theory in the
appropriate frame of reference. We can therefore conclude that the
expansion rate of the Mach stem in the spanwise direction is
determined by a complex system of five shocks, whereas the overall
change in height of the Mach stem is governed by the two-
dimensional theory presented in Sec. V. Using the two-dimensional
theory for the height and setting the spanwise expansion of theMach
stem to a constant, produces the evolution of aMach stem that is seen
in Fig. 14. This figure shows theMach stem as it would be seen by an
observer looking downstream. The assumption of a constant
spanwise expansion is consistentwith the dimensional analysis of the
five-shock system and agrees very well with computational results.

This theory assumes that the Mach stem starts at a point and
therefore predicts a cusp at the center of the Mach stem
corresponding to the point where the Mach stem started. This,
however, is not seen in computations and is believed to be due to the
fact that in the computations the tripping from regular reflection to

g

w

θ1

α

∞

1

Fig. 9 Illustration of a very smallMach stemwith afinite angle slip line.
If the Mach stem is small enough, the slip line will intersect the axis of

symmetry before it reaches the first expansion wave, which is not

physically possible.

-.25

0

.25

.5

0 4.2. .6
s / w

M
pt

Fig. 10 Mach stem velocity as a function ofMach stem height based on

Eq. (18). PositiveMtp indicates upstream speed. Calculated forM
1
� 4,

g=w� 0:4, �� 1:4, and �1 � 25 deg.
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.3

0 2 4 6 8
c∞ t / w

w
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Numerical
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Fig. 11 Theoretical and numerical results for the height of the Mach
stem as a function of time as it grows from an initial regular reflection

condition. Calculated for M
1
� 4, g=w� 0:42, �� 1:4, and

�1 � 25 deg.
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Fig. 12 Theoretical and numerical results for the height of the Mach

stem as a function of time as it grows from an initial regular reflection

condition. Calculated for M
1
� 4, g=w� 0:3907, �� 1:4, and

�1 � 23 deg.

Fig. 13 A quasi-schlieren image showing a comparison between the

theoretical shock structure and an Euler computation. The image shows

that the shape of the slip line in the computation is significantly different
than is assumed in the theory. This difference between computation and

theorymost likely accounts for themajority of the error between the two.

The theoretical lines are shown as dotted lines. Calculated for M
1
� 4,

g=w� 0:42, �� 1:4, and �1 � 25 deg.
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Mach reflection occurs over a finite span portion of the regular
reflection. This initial finite span is most likely due to the fact that the
disturbance given is more than what is required to trip from regular
reflection to Mach reflection. Essentially, in the computations the
Mach stem starts with a finite width. For accurate comparisons with
computations, an additional parameter, the initial width of the Mach
stem, must be included. This initial width essentially separates the
two halves of Fig. 14 and produces curves similar to Fig. 15.

For comparison with three-dimensional calculations done using
AMROC [13], the two-dimensional theory was used to calculate the
change in height as a function of time at each spanwise point along
the Mach stem. The expansion rate in the spanwise direction was
taken to be a constant andwas set to the best-fit value aswas the initial
Mach stem width. From dimensional analysis we can see that indeed
the spanwise growth should be constant, because it will depend only
on the local flow conditions around the five shock solutions;
therefore,

x

c1t
� h�M1; �; �w� (47)

which gives a constant spanwise expansion speed for any given flow
parameters. The use of the two-dimensional theory from Sec. VIII

and the best-fit spanwise growth rate yields very good agreement to
computations. Figures 16–18 show the progression of the three-
dimensional Mach stem with time, both computationally and
theoretically.
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Fig. 14 Growth of Mach stem height s and spanwise width of Mach

stem x, which is propagating outward at aMach numberMx. Curves for

flow times (a
1
t=w) between 1 and 10, in increments of 1, with the lower

curves corresponding to lower times. Calculated for M
1
� 3,

g=w� 0:4516, w� 150, �� 1:4, and �1 � 21 deg.
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Fig. 15 Growth of Mach stem height considering a Mach stem with an

initial finite width s and spanwise width of Mach stem x, which is

propagating outward at a Mach number Mx. Curves for flow times
(a

1
t=w) between 1 and 10, in increments of 1, with the lower curves

corresponding to lower times. Calculated for M
1
� 3, g=w� 0:4516,

w� 150, �� 1:4, and �1 � 21 deg.
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Fig. 16 Numerical and theoretical growth of Mach stem height s and

growth in the spanwise direction x at a
1
t=w� 0:11. The Mach stem is

propagating outward at a Mach number Mx � 0:5916. Calculated for

M
1
� 3, g=w� 0:4516, w� 150, �� 1:4, and �1 � 21 deg.
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Fig. 17 Numerical and theoretical growth of Mach stem height s and

growth in the spanwise direction x at a
1
t=w� 0:39. The Mach stem is

propagating outward at a Mach number Mx � 0:5916. Calculated for
M

1
� 3, g=w� 0:4516, w� 150, �� 1:4, and �1 � 21 deg.
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Fig. 18 Numerical and theoretical growth of Mach stem height s and

growth in the spanwise direction x at a
1
t=w� 0:79. The Mach stem is

propagating outward at a Mach number Mx � 0:5916. Calculated for

M
1
� 3, g=w� 0:4516, w� 150, �� 1:4, and �1 � 21 deg.
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XI. Conclusions

An approximate theory is presented for the Mach stem height and
growth rates in both two and three dimensions. The calculation of
Mach stem height shows a significant improvement over previous
estimates and good agreement with both experiment and com-
putations. Aweakness in the theory lies in the assumptions relating to
the slip line originating from the triple point. The theory could be
improved by permitting the slip line to be curved, as Li and Ben-Dor
[4] did, which would more accurately capture the true physics.
However, such an improvement would drastically complicate the
theory and produce a set of equations which would be significantly
harder to solve.

The approximate theory predicts Mach stem growth rates that
show good agreement in terms of both the time to reach the steady-
state height as well as initial growth rate, while it does not do so well
with the asymptoticMach stemheight. The fact that the growth rate is
positive for smallMach stems is significant, because this tells us that,
absent other disturbances, even the smallest Mach stem will grow
until it reaches its steady-state height. It also shows that, after a small
disturbance to theMach stem, theMach stemwill return to its steady-
state height. This indicates that a substantial disturbance would be
required to cause transition from Mach reflection to regular
reflection, because a disturbance that only shrinks and does not
entirely remove theMach stemwill be insufficient. Computations by
Kudryavtsev et al. [14] indicated that a relatively small disturbance
would be able to cause transition from Mach reflection to regular
reflection. Later, more refined computations by Khotyanovsky et al.
[15] show that small disturbances are not sufficient to cause transition
from Mach reflection to regular reflection, but can only temporarily
decrease the height of theMach stem height, which is consistent with
the theory presented.

Good agreement between three-dimensional computations and the
three-dimensional theory was observed. A weakness in the theory is
the lack of an analytic approximation for the spanwise growth rate of
theMach stem. In addition, there are significant computational issues
in accurately measuring the size of the Mach stem as a function of
time. As is the case with the two-dimensional growth rate, a better
estimate of the steady-state Mach stem height would improve the
three-dimensional growth rate predictions.

Appendix A: Mass and Momentum Balance

Azevedo first considers the conservation of mass. Specifically, he
considers the mass flow entering between the wedge tip O and the
symmetry plane. Thismassflow can then be equated to themass flow
through EF, FH, and s?. Equating these two mass fluxes produces
the following equation:

g� � sin �1

� ��1 u
�
1 sin�1EF

� � ��2 u
�
2 sin�2FH

� � ��? u
�
? s

�
? (A1)

where �1 and �2 are the Mach angles and are given by

�1 � sin�1
1

M1

(A2)

�2 � sin�1
1

M2

: (A3)

Next, he considers the conservation of momentum in the freestream
flow direction. Equating the pressure and momentum flux between
the wedge tip and the solid surface with the pressure and the
momentum flux through EF, FH, and s? produces

P�
1�g� � sin �1� �P�

1 �sin �1 � sin��1 � �1�EF��
�P�

2 sin��2 � ��FH� �P�
? s

�
? � ��1 �u�

1 �2 sin�1 cos�1EF
�

� ��2 �u�
2 �2 sin�2 cos �FH

� � ��? �u�
? �2s�? � g� � sin �1 (A4)

Similarly, for conservation of momentum perpendicular to the
freestream flow direction, he finds that

P�
1�x�s � cos �1� � P�

3 x
�
? � P�

1 �cos �1 � cos��1 � �1�EF��
� P�

2 cos��2 � ��FH� ����1 �u�
1 �2 sin�1 sin �1EF

�

� ��2 �u�
2 �2 sin�2 sin �FH

� (A5)

Azevedo takesP3 to be the average pressure in region 3, which is the
average of the pressure at the sonic throat and the pressure right
behind the Mach stem. The numerical result is almost identical if we
takeP3 to be the integrated pressure using the area ratio relationship.

The superscript � refers to nondimensional quantities.
Specifically, density is normalized by the freestream density �1,
velocities are normalized by the freestream velocity u1, pressures
are normalized by twice the freestream dynamic pressure �1u2

1, and
distances are normalized by the wedge length w.

We can now apply the shock jump conditions and the equation of
state for a perfect gas. Specifically, we will use the following
relations:

��1 u
�
1 � sin�

sin�� � �1�
(A6)

��2 u
�
2 � sin� sin��1 � ��

sin�� � �1� sin��� �� (A7)

��? u
�
? � s�

s�?
(A8)

��1 �u�
1 �2 � �P�

1 M
2
1 (A9)

��2 �u�
2 �2 � �P�

2 M
2
2 (A10)

��? �u�
? �2 � �P�

? (A11)

With these relations we can rewrite Eqs. (A1–A5) as

g� � sin �1 �
sin�

sin�� � �1�
sin�1EF

�

� sin� sin��1 � ��
sin�� � �1� sin��� �� sin�2FH

� � s� (A12)

1

�M2
1
�g� � sin �1� � P�

1 �sin �1 � sin��1 � �1�EF��

� P�
2 sin��2 � ��FH� � P�

? s
�
? � �P�

1 M
2
1 sin�1 cos �1EF

�

� �P�
2 M

2
2 sin�2 cos �FH

� � �P�
? s

�
? � g� � sin �1 (A13)

1

�M2
1
�x�s � cos �1� �P�

3 x
�
? � P�

1 �cos �1 � cos��1 � �1�EF��

� P�
2 cos��2 � ��FH� ���P�

1 M
2
1 sin�1 sin �1EF

�

� �P�
2 M

2
2 sin�2 sin �FH

� (A14)

At this point there are five unknowns, x�s , x
�
? , s

�
? , EF

�, and FH�,
but only three equations. Therefore, to close the system, Azevedo
uses two geometric relationships:

x�? � cos��1 � �1�EF� � cos��2 � ��FH� � x�s (A15)
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s�? � g� � sin��1 � �1�EF� � sin��2 � ��FH� (A16)

Given the geometry, the Mach number, and the ratio of specific
heats, all of the parameters of the matrix equation can be calculated.
The shock angle �, the Mach number, and the pressure behind the
leading oblique shock, M1 and P1, can be calculated using the
oblique shock relations:

cot �1 � tan�

0

B

B

@

�� � 1�M2
1

2
�

M2
1sin2� � 1

�� 1

1

C

C

A

(A17)

P�
1 � 1

�M2
1

2�M2
1sin2� � �� � 1�

� � 1
(A18)

M2
1 �

�� � 1�M2
1sin2�� 2

sin2�� � �1�
�

2�M2
1sin2� � �� � 1�

� (A19)

Because Azevedo assumes that theMach stem is a normal shock, the
Mach number and pressure just behind theMach stemMa andPa can
be found using the normal shock relations,

P�
a � 1

�M2
1

2�M2
1 � �� � 1�
� � 1

(A20)

M2
a �

�� � 1�M2
1 � 2

2�M2
1 � �� � 1� (A21)

Again using the oblique shock relations we find the flow angle, the
pressure, and the Mach number in region 2 to be

cot��1 � �� � tan��� �1�

0

B

B

@

�� � 1�M2
1

2
�

M2
1sin

2��� �1� � 1
�� 1

1

C

C

A

(A22)

P�
2 � P�

1

2�M2
1sin

2��� �1� � �� � 1�
� � 1

(A23)

M2
2 �

�� � 1�M2
1sin

2��� �1� � 2

sin2��� ��
�

2�M2
1sin2� � �� � 1�

� (A24)

The angle of the slip line � can be calculated using the triple-point
theory. This theory states that the pressure and flow angle must be
continuous across the slip line. Up to this point we have been
assuming that the Mach stem is a normal shock; however, to
accurately analyze the triple point, the angle of the Mach stem is
important. A close-up of the triple point is shown in Fig. 7, for the
steady-state case, U=rmtp is taken to be zero. Note that the region
behind the Mach stem is referred to as a0 rather than a, for the
purposes of calculating the triple-point deflection angle when an
oblique Mach stem is used; whereas, for calculating the flow in the
converging flow behind the Mach stem a normal Mach stem is
considered. There is no closed form solution to this problem, so an
iterative scheme must be used. The two following equations are
solved for � and 
:

P�
2 � P�

a0 (A25)

�2 � �a0 (A26)

These equations are

P�
1

2�M2
1sin

2��� �1� � �� � 1�
� � 1

� 1

�M2
1

2�M2
1sin2
 � �� � 1�

� � 1

(A27)

tan��� �1�
�

�� � 1�M2
1

M2
1sin

2��� �1� � 1
� 2

�

� tan


�

�� � 1�M2
1

M2
1sin2
 � 1

� 2

�

(A28)

With � known, Eq. (A22) can be used to solve for �. Finally, to solve
Eq. (2), the area ratio Ar and pressure ratio P?=Pa of the converging
flow behind the Mach stem must be calculated. These are

Ar �
1

Ma

�

2

� � 1

�

1� � � 1

2
M2

a

�� ��1

2���1�
(A29)

P?

Pa

�
�

2

� � 1

�

1� � � 1

2
M2

a

�� �
��1

(A30)

since the point ? corresponds to the sonic throat. At this point, all the
terms in the matrix in Eq. (2) are known and the linear system can be
solved. Finally, Azevedo solves for the Mach stem height by using
the geometric relationship

s� � g� � sin �1 � �x�s � cos �1� tan� (A31)

This equation illustrates that the problem is overdefined, because the
above equation is not consistent with the area ratio relationship
presented earlier.

Appendix B: Geometric Solution

sin�OT� � Ars
�
? � g� � sin �1 (B1)

s�? � sin��� �2�FH� � sin��1 � �1�EF� � g� (B2)

cos�OT� � cot ��Ar � 1�s�? � cos��� �2�FH�

� cos��1 � �1�EF� � cos �1 (B3)

cos�OT� � cos�TF� � cos��1 � �1�EF� � cos �1 (B4)

sin�OT� � sin�TF� � sin��1 � �1�EF� � sin �1 (B5)
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